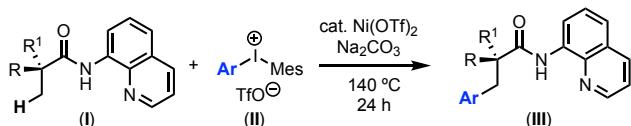
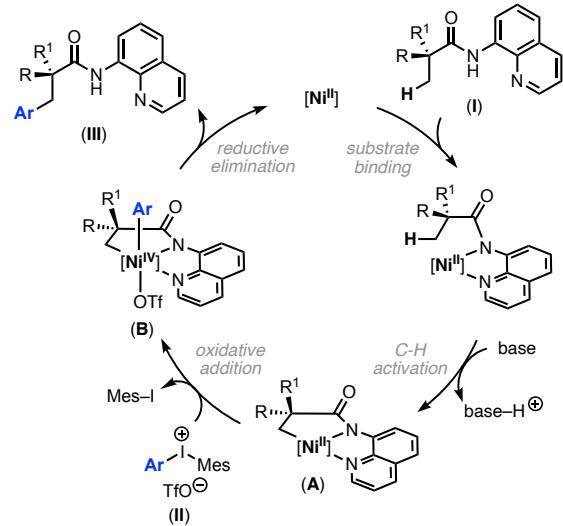


Nickel(IV) Intermediates in Aminoquinoline-Directed C(sp²)–C(sp³) Coupling


Michael W. Milbauer, Jeff W. Kampf, and Melanie S. Sanford*

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA


ABSTRACT: We use a ligand-design strategy to isolate a cyclometallated nickel(IV) complex that is directly analogous to a key intermediate proposed in aminoquinoline-directed C–H functionalization catalysis. This nickel(IV) complex is formed by oxidative addition of a diaryliodonium reagent to an anionic nickel(II)-picolinate precursor. The nickel(IV) σ -aryl complex is stable at room temperature but undergoes C(sp²)–C(sp³) bond-forming reductive elimination under mild conditions (70 °C, 120 min). Overall, this study demonstrates the accessibility of long-sought-after nickel(IV) intermediates in C–H functionalization catalysis. Furthermore, it demonstrates that LX-type (bidentate mono-anionic) ligands such as picolinate dramatically stabilize these nickel(IV) species.

Since seminal early work by Daugulis,¹ metal-catalyzed aminoquinoline (AQ) directed C–H functionalization reactions have been widely used for the formation of carbon–carbon and carbon–heteroatom bonds.² These reactions most commonly involve Pd or Ni catalysts, an aminoquinoline substrate bearing a tethered C–H bond, and an aryl halide or diaryliodonium-based oxidant. In a representative example relevant to this work, Chatani reported the Ni(OTf)₂-catalyzed C(sp³)–H arylation of substrate **I** with diaryliodonium reagents (**II**) to afford products of general structure **III** (Figure 1a).³ The proposed catalytic cycle (which is similar for both Pd and Ni catalysts) involves (i) AQ-directed C–H activation to form metallacycle **A**, (ii) oxidative addition of **II** to generate M^{IV} intermediate **B**, and (iii) finally C–C bond forming reductive elimination to release the functionalized product **III** (Figure 1b).^{2,4,5}

A. Chatani (2014)

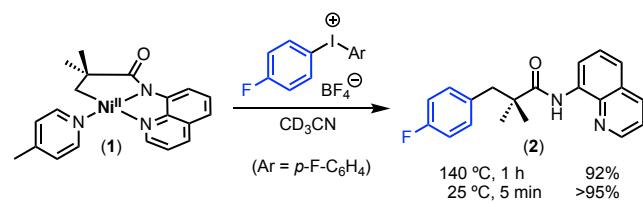
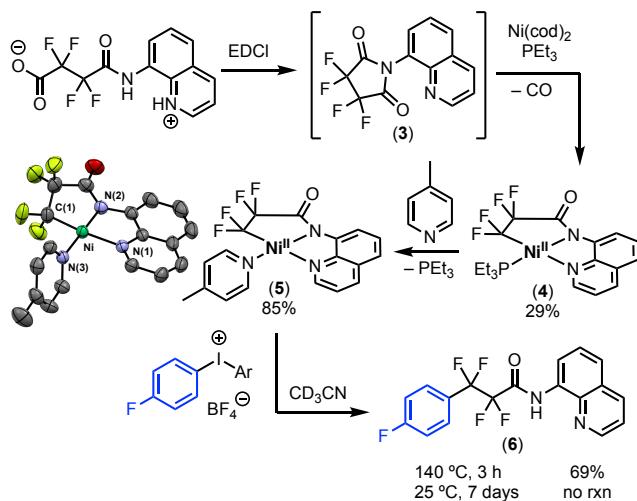

B. Proposed catalytic cycle

Figure 1. (a) Chatani's Ni-catalyzed aminoquinoline-directed C–H arylation of **I** with **II**.³ (b) Proposed mechanism.

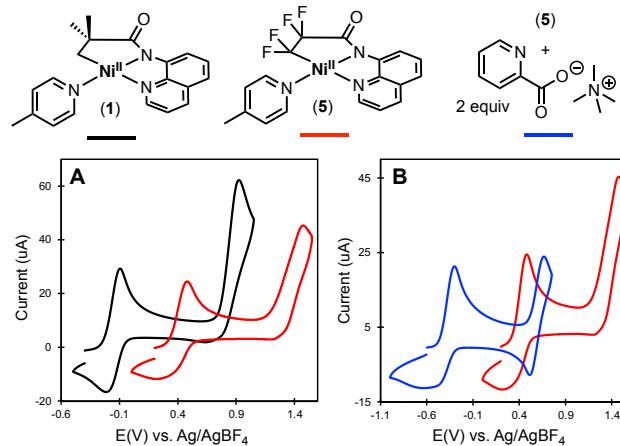
Over the past two decades, numerous studies have interrogated aminoquinoline-directed C–H activation to generate intermediates like **A** (or related σ -aryl species) at Pd^{II} and, more recently, Ni^{II} centers.^{4,6,7} In contrast, the oxidative functionalization step has been much less explored. While the stoichiometric reactions of **A** and analogues with aryl electrophiles (ArX) has been shown to yield **III** in several systems (with M = Pd and Ni), M^{IV} intermediates have not been isolated, to date, with either metal.^{8,9} As such the accessibility of M^{IV} intermediates like **B** remains speculative, particularly in Ni-based systems that can readily participate in single electron redox cycles.^{5a} In this report, we leverage a ligand design strategy to isolate a Ni^{IV} analogue of **B** via the oxidation of a nickel(II)-picolinate precursor with a diaryliodonium reagent. Furthermore, we demonstrate that this intermediate undergoes C(sp²)–Ph bond-forming reductive elimination under mild conditions. The implications of these results for catalysis are discussed.


We initiated these studies with nickelacycle **1**, a direct analogue of the putative Ni^{II} intermediate **A** in Chatani's catalytic reaction (Scheme 1).¹⁰ The reaction of **1** with Ar₂IBF₄ (Ar = *p*-FC₆H₄) at 140 °C (the temperature used in catalysis)³ resulted in 92% yield of the C(sp³)–Ar coupling product **2** within 1 h. In an attempt to detect intermediates in this transformation, the temperature was decreased. However, the reaction remained fast at both 25 °C (quantitative yield within 5 min) and –25 °C (18% yield within 10 min). Furthermore, no diamagnetic Ni intermediates were detected by ¹H NMR spectroscopy under any conditions. These results suggest that the oxidative addition/reductive elimination sequence is unlikely to be rate-limiting in catalysis. Instead, the high temperatures required for the reaction in Figure 1A may be due to slow C–H activation and/or to the formation of off-cycle Ni species.^{7b}

Scheme 1. Reaction of **1** with Ar₂IBF₄ to afford **2**

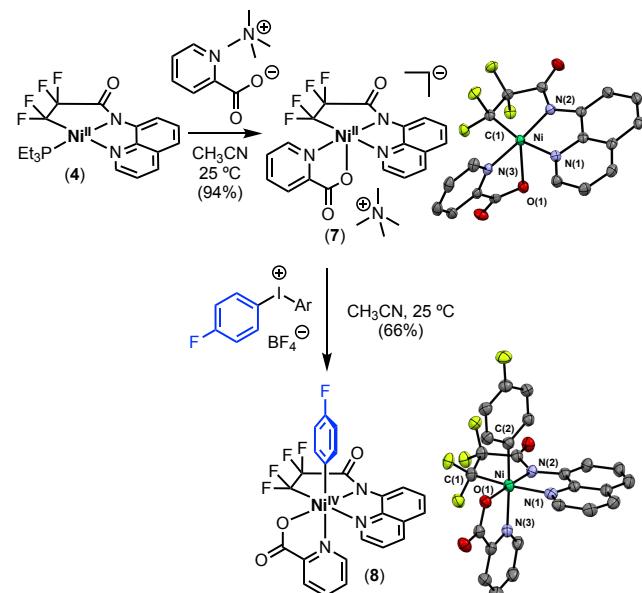
We hypothesized that replacing the σ -alkyl ligand in **1** with a fluoroalkyl group could potentially stabilize high oxidation

state Ni intermediates. This approach has proven effective for the isolation of other high valent late transition metal complexes of Pd^{IV} , Ni^{III} , and Ni^{IV} .^{9,11,12} The fluoroalkyl analogue **5** was synthesized via the route outlined in Scheme 2. The treatment of a mixture of $\text{Ni}(\text{cod})_2$ and PEt_3 with 3,3,4,4-tetrafluoro-1-(quinolin-8-yl)pyrrolidine-2,5-dione (**3**) resulted in oxidative addition and carbonyl de-insertion to yield nickelacycle **4** in 29% isolated yield over the two steps. Exchange of the PEt_3 ligand for picoline then afforded **5**, a direct analogue of **1** bearing a fluoroalkyl ligand. Complex **5** was isolated in 85% yield from this reaction and characterized by ^1H , ^{13}C , and ^{19}F NMR spectroscopy as well as elemental analysis and X-ray crystallography. Comparison of the solid-state structures of **1** and **5** shows that both assume a square planar geometry with comparable Ni–N bond distances (see Table S6 for complete data). The largest difference between the two structures is that the Ni–C bond in **5** is approximately 0.03 Å shorter than that of **1**. A similar 0.04 Å difference was noted by Vicic when comparing $\text{Ni}^{\text{II}}\text{--CH}_3$ and --CF_3 complexes.¹³



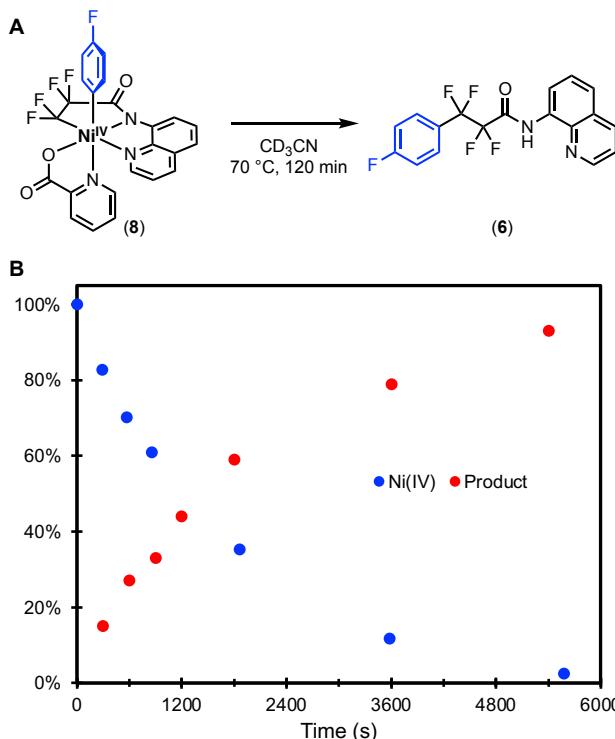
Scheme 2. Synthesis and reactivity of Ni^{II} fluoroalkyl amino-quinoline complex **5**

We next examined the reaction of **5** with Ar_2IBF_4 under analogous conditions to Scheme 1. Overall, **5** showed dramatically lower reactivity. For example, no conversion of **5** was observed at room temperature, even after 7 days (Scheme 2). This is in contrast to the nearly instantaneous reaction between **1** and Ar_2IBF_4 at room temperature (Scheme 1). Heating a solution of **5** and Ar_2IBF_4 at 140 °C did result in 69% yield of **6** after 3 h; however, again, no intermediates were detected in this reaction.


To gain further insight into the relative reactivity of **1** and **5**, cyclic voltamograms (CVs) of the two complexes were compared in $\text{CH}_3\text{CN}/\text{NBu}_4\text{PF}_6$. As shown in Figure 2A, the CVs are qualitatively similar, displaying one quasi-reversible ($\text{Ni}^{\text{II/III}}$) and one irreversible ($\text{Ni}^{\text{III/IV}}$) oxidation peak separated by ~ 1.0 V. However, both of the oxidation peaks of the σ -fluoroalkyl complex **5** (red) are shifted by approximately +475 mV relative to those of the σ -alkyl complex **1** (black).¹⁴ This large positive shift is consistent with the sluggish reactivity of the σ -fluoroalkyl complex with the Ar_2IBF_4 oxidant. We hypothesized that a picolinate ligand could displace the picoline of **5** to generate an anionic Ni^{II} intermediate that would be more susceptible (both thermodynamically and kinetically) to oxidation. To test this proposal, we carried out cyclic voltammetry of **5** in the presence of 2 equiv of tetramethylammonium picolinate. As shown in Figure 2B, this resulted in a dramatic ~ 800 mV negative shift in

the oxidation peaks to -0.47 V and 0.59 V, respectively. Remarkably, these couples are significantly more negative than even those of the neutral σ -alkyl complex **1**. Additionally, the $\text{Ni}^{\text{III/IV}}$ couple (at 590 mV versus Ag/Ag^+) is now quasi-reversible, suggesting that Ni^{IV} intermediates might be observable or even isolable in this system under appropriate conditions.

Figure 2. (A) Overlaid CVs of **1** (black) and **5** (red). (B) Overlaid CVs of **5** (red) and **5** + 2 equiv of tetramethylammonium picolinate (blue). Conditions: 0.01 mM solution of $[\text{Ni}^{\text{II}}]$ in 0.1 M NBu_4PF_6 in CH_3CN ; scan rate of 100 mV/s.


To test whether this shift in redox potential translated to enhanced reactivity with Ar_2IBF_4 , we first synthesized the anionic Ni^{II} picolinate complex **7** via a ligand exchange between **4** and 1 equiv of tetramethylammonium picolinate in CH_3CN at 25 °C (Scheme 3). The product was isolated in 94% yield and characterized by ^1H , ^{13}C , and ^{19}F NMR spectroscopy as well as elemental analysis and X-ray crystallography. The X-ray structure of **7** shows a five-coordinate pseudo-square pyramidal anionic Ni^{II} complex. The CNN (carbon–nitrogen–nitrogen) pincer ligand and N of the picolinate are equatorial and show bond distances within 0.015 Å of those in **5** (see Table S6 for full details). The Ni–O bond is in the axial position, and the bond distance of 2.467 Å is consistent with a relatively weak interaction.

Scheme 3. Synthesis of picolinate complex **7** and oxidation with Ar_2IBF_4 .

The treatment of **7** with Ar_2IBF_4 at 25 °C in CH_3CN resulted in a rapid and quantitative reaction to form a new diamagnetic Ni species within 15 min. The product precipitated from the reaction mixture over the course of several hours at room temperature. This Ni^{IV} complex (**8**) was isolated in 66% yield and characterized by ^1H and ^{19}F NMR spectroscopy, elemental analysis, and X-ray crystallography. The X-ray structure confirms that **8** is a neutral octahedral Ni^{IV} complex with the σ -Ar group in the axial position. Notably, the picolinate ligand isomerizes upon oxidation, such that the carboxylate oxygen is now trans to the amide nitrogen of the aminoquinoline. The oxidation results in a significant (nearly 0.1 Å) lengthening of the Ni–fluoroalkyl bond.¹⁵ Overall, this complex is a direct analogue of putative catalytic intermediate **B**. The isolation of this species provides a direct experimental demonstration that $\text{M}^{\text{IV}}\text{-}\sigma\text{-aryl}$ intermediates are accessible with these aminoquinoline CNN pincer-type ligand scaffolds.

Heating solutions of **8** in CD_3CN at 70 °C for 120 min resulted in clean $\text{C}(\text{sp}^2)\text{-Ar}$ bond-forming reductive elimination to afford product **6** in 93% yield (Scheme 4A). A time study of this reaction shows that the consumption of **8** occurs at a comparable rate as the appearance of **6**. (Scheme 4B). These results demonstrate the feasibility of product formation from this Ni^{IV} species, providing further evidence that such Ni^{IV} species could be catalytically relevant.

Scheme 4. (a) $\text{C}(\text{sp}^2)\text{-C}(\text{sp}^3)$ bond-forming reductive elimination from complex **8**. (b) Time study of the reductive elimination.

¹ Zaitsev, G. V.; Shabashov, D.; Daugulis, O. Highly regioselective arylation of sp^3 C–H bonds catalyzed by palladium acetate. *J. Am. Chem. Soc.* **2005**, *127*, 13154–13155.

² Reviews: (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Bidentate monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. *Acc. Chem. Rec.* **2015**, *48*, 1053–1064. (b) Castro, L. C. M.; Chatani, N. Nickel catalysts/*N,N'*-bidentate directing

This study has several implications for the continued development of Ni-catalyzed C–H functionalization reactions. First, it shows that with appropriate ligand design, Ni^{II} complexes of general structure **A** can react with Ar_2IBF_4 to form isolable Ni^{IV} intermediates. This directly confirms the feasibility of a mechanism that has long been proposed in catalysis. Second, bidentate monoanionic ligands (specifically picolinate in this study) form Ni^{II} -ate complexes with dramatically lower redox potentials and faster oxidation rates than their neutral analogues. This insight provides a roadmap for how to further accelerate the oxidation step and promote the generation of Ni^{IV} intermediates in catalysis. Indeed, the formation of related Ni^{II} -ate intermediates could be a key (and largely overlooked) role for the anionic additives (e.g., carbonate and carboxylate salts) that are commonly used in C–H functionalization catalysis of these and related scaffolds. A second equivalent of aminoquinoline substrate (which is in large excess under catalytic conditions) could also potentially play a role as a bidentate mono-anionic donor ligand in this context.^{7b} Finally, a σ -fluoroalkyl group participates in facile and high yielding $\text{C}(\text{sp}^2)\text{-C}(\text{sp}^3)$ bond-forming reductive elimination from complexes of general structure **A**.¹⁶ This suggests the potential feasibility of coupling fluorocarbons ($\text{R}_\text{F}\text{-H}$) with aryl electrophiles via $\text{Ni}^{\text{II/IV}}$ pathways. Ongoing work is focused on leveraging these insights for the development and optimization of new Ni-catalyzed C–H functionalization processes.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, NMR spectra, and cyclic voltammograms. The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

* Melanie Sanford; Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; orcid.org/0000-0001-9342-9436; Email: mssanfor@umich.edu

ACKNOWLEDGMENT

We gratefully acknowledge the US National Science Foundation (CHE-1954985) for funding.

REFERENCES

groups: An excellent partnership in directed C–H activation reactions. *Chem. Lett.* **2015**, *44*, 410–421. (c) Yang, X.; Shan, G.; Wang, L.; Rao, Y. Recent advances in transition metal (Pd, Ni)-catalyzed $\text{C}(\text{sp}^3)\text{-H}$ bond activation with bidentate directing groups. *Tetrahedron Lett.* **2016**, *57*, 819–836. (d) Potoschnig, G.; Maulide, N.; Schnürch, M. Direct functionalization of C–H bonds by iron, nickel, and cobalt catalysis. *Chem. Eur. J.* **2017**, *23*, 9206–9232. (e) Harry, N. A.; Saranya, S.; Ujwaldev, S. M.; Anilkumar,

G. Recent advances and prospects in nickel-catalyzed C–H activation. *Catal. Sci. Technol.* **2019**, *9*, 1726–1743. (f) Khake, S. M.; Chatani, N. Chelation-assisted nickel-catalyzed C–H functionalizations. *Trends in Chemistry* **2019**, *1*, 524–539. (g) Zhang, S. K.; Samanta, R. C.; Del Vecchio, A.; Ackermann, L. Evolution of high-valent nickel-electrocatalyzed C–H activation: From cross-(electrophile)-couplings to electrooxidative C–H transformations. *Chem. Eur. J.* **2020**, *26*, 10936–10947. (h) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B. F. Transition metal-catalyzed, coordination-assisted functionalization of nonactivated C(sp³)–H bonds. *Chem. Rev.* **2021**, *121*, 14957–150774.

³ Iyanaga, M.; Aihara, Y.; Chatani, N. Direct arylation of C(sp³)–H bonds in aliphatic amides with diaryliodonium salts in the presence of a nickel catalyst. *J. Org. Chem.* **2014**, *79*, 11933–11939.

⁴ For proposals of Ni(IV) intermediates in aminoquinoline directed C–H functionalization catalysis: (a) Aihara, Y.; Chatani, N. Ni-catalyzed direct arylation of C(sp³)–H bonds in aliphatic amides via bidentate-chelation assistance. *J. Am. Chem. Soc.* **2014**, *136*, 898–901. (b) Zhang, S. K.; Samanta, R. C.; Sauermann, N.; Ackermann, L. Nickel-catalyzed electrooxidative C–H amination: Support for Ni(IV). *Chem. Eur. J.* **2018**, *24*, 19166–19170. (c) Zhang, S. K.; Struwe, J.; Hu, L.; Ackermann, L. Nickel-electrocatalyzed C–H alkoxylation with secondary alcohols: Oxidation-induced reductive elimination at nickel(III). *Angew. Chem. Int. Ed.* **2020**, *59*, 3178–3183. (d) Zhang, S. K.; Del Vecchio, A.; Kuniyil, R.; Messinis, A. M.; Lin, Z.; Ackermann, L. Electrocatalytic C–H phosphorylation through nickel(III/IV/II) catalysis. *Chem* **2021**, *7*, 1379–1392.

⁵ Computational mechanistic studies: (a) Omer, H. M.; Liu, P. Computational study of Ni-catalyzed C–H functionalization: Factors that control the competition of oxidative addition and radical pathways. *J. Am. Chem. Soc.* **2017**, *139*, 9909–9920. (b) Singh, S.; S, K.; Sunoj, R.B. Aliphatic C(sp³)–H bond activation using nickel catalysis: mechanistic insights on regioselective arylation. *J. Org. Chem.* **2017**, *82*, 9619–9626. (c) Haines, B. E.; Yu, J.-Q.; Musaev, D. G. The mechanism of directed Ni(II)-catalyzed C–H iodination with molecular iodine. *Chem. Sci.* **2018**, *9*, 1144–1154.

⁶ Examples of organometallic studies of AQ-directed C–H activation at Pd: (a) Shabashov, D.; Daugulis, O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp² and sp³ carbon–hydrogen bonds. *J. Am. Chem. Soc.* **2010**, *132*, 3965–3972. (b) Jiang, Y.; Zhang, S. Q.; Cao, F.; Zou, J. X.; Yu, J. L.; Shi, B. F.; Hong, X.; Wang, Z. Unexpected stability of CO-coordinated palladacycle in bidentate auxiliary directed C(sp³)–H bond activation: A combined experimental and computational study. *Organometallics* **2019**, *38*, 2022–2030. (c) Perez-Gomez, M.; Azizollahi, H.; Franzoni, I.; Larin, E. M.; Lautens, M.; Garcia-Lopez, J. A. Tandem remote Csp³–H activation/Csp³–Csp³ cleavage in unstrained aliphatic chains assisted by palladium(II). *Organometallics* **2019**, *38*, 973–980. (d) Li, Y.; Zhang, P.; Liu, Y. J.; Yu, Z. X.; Shi, B. F. Remote γ -C(sp³)–H alkylation of aliphatic carboxamides via an unexpected regiodetermining Pd migration process: Reaction development and mechanistic study. *ACS Catal.* **2020**, *10*, 8212–8222.

⁷ Examples of organometallic studies of AQ-directed C–H activation at Ni^{II}: (a) Beattie, D. D.; Grunwald, A. C.; Perse, T.; Schaefer, L. L.; Love, J. A. Understanding Ni(II)-mediated C(sp³)–H activation: Tertiary ureas as model substrates. *J. Am. Chem. Soc.* **2018**, *140*, 12602–12610. (b) Liu, J.; Johnson, S. A. Mechanism of 8-aminoquinoline-directed Ni-catalyzed C(sp³)–H functionalization: Paramagnetic Ni(II) species and the deleterious effect of carbonate as a base. *Organometallics* **2021**, *40*, 2970–2982. (c) Kim, Y. B.; Won, J.; Lee, J.; Kim, J.; Zhou, B.; Park, J. W.; Baik, M. H.; Chang, S. Ni-catalyzed intermolecular C(sp³)–H amidation tuned by bidentate directing groups. *ACS Catal.* **2021**, *11*, 3067–3072. (d) Pei, C.;

Zong, J.; Li, B.; Wang, B. Ni-catalyzed direct carboxylation of aryl C–H bonds in benzamides with CO₂. *Adv. Synth. Catal.* **2022**, *364*, 493–499.

⁸ (a) Vicente, J.; Arcas, A.; Julie-Hernandez, F.; Bautista, D. Oxidative addition of an aryl iodide at a CNO pincer Pd(II) complex: Synthesis of a palladium(IV) complex by oxidative addition of an aryl halide to palladium(II) and its use as a precatalyst in a C–C coupling reaction. *Angew. Chem. Int. Ed.* **2011**, *50*, 6896–6899. (b) Vicente-Hernandez, I.; Chicote, M. T.; Vicente, J.; Bautista, D. A new type of oxidative addition of an iodoarene to a Pd(II) complex. *Chem. Commun.* **2016**, *52*, 594–596. (c) Whitehurst, W. G.; Blackwell, J. H.; Hermann, G. N.; Gaunt, M. J. Carboxylate-assisted oxidative addition to aminoalkyl Pd^{II} complexes: C(sp³)–H arylation of alkylamines by distinct Pd^{II}/Pd^{IV} pathway. *Angew. Chem. Int. Ed.* **2019**, *58*, 9054–9059. (d) Whitehurst, W. G.; Gaunt, M. J. Synthesis and reactivity of stable alkyl-Pd(IV) complexes relevant to monodentate N-directed C(sp³)–H functionalization processes. *J. Am. Chem. Soc.* **2020**, *142*, 14169–14177.

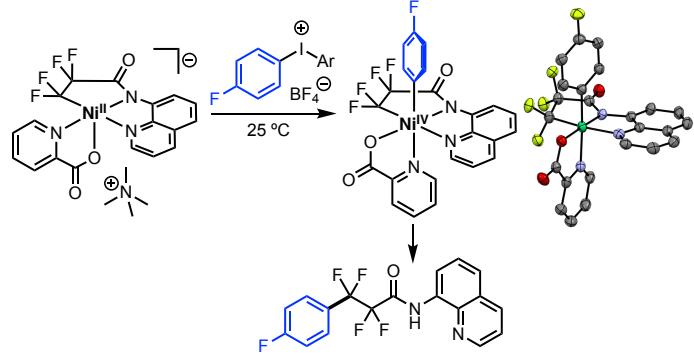
⁹ (a) Zhang, B.; Yan, X.; Guo, S. Synthesis of well-defined high-valent palladium complexes by oxidation of their palladium(II) precursors. *Chem. Eur. J.* **2020**, *26*, 9430–9444. (b) Nebra, N. High valent Ni^{III} and Ni^{IV} species relevant to C–C and C–heteroatom cross-coupling reactions: State of the art. *Molecules* **2020**, *25*, 5, 10.3390/molecules25051141.

¹⁰ Roy, P.; Bour, J. R.; Kampf, J. W.; Sanford, M. S. Catalytically relevant intermediates in the Ni-catalyzed C(sp²)–H and C(sp³)–H functionalization of aminoquinoline substrates. *J. Am. Chem. Soc.* **2019**, *141*, 17382–17387.

¹¹ Examples of fluoroalkyl groups stabilizing high valent Pd and Ni complexes: (a) Ball, N. D.; Kampf, J. W.; Sanford, M. S. Aryl-CF₃ bond-forming reductive elimination from palladium(IV). *J. Am. Chem. Soc.* **2010**, *132*, 2878–2879. (b) Camasso, N. M.; Sanford, M. S. Design, synthesis, and carbon–heteroatom coupling reactions of organometallic Ni(IV) complexes. *Science* **2015**, *347*, 1218–1220. (c) Camasso, N. M.; Canty, A. J.; Ariafard, A.; Sanford, M. S. Experimental and computational studies of high-valent nickel and palladium complexes. *Organometallics* **2017**, *36*, 4382–4393. (d) D'Accriscio, F.; Borja, P.; Saffon-Merceron, N.; Fustier-Boutignon, M.; Mezaillies, N.; Nebra, N. C–H bond trifluoromethylation of arenes enabled by a robust high-valent nickel(IV) complex. *Angew. Chem. Int. Ed.* **2017**, *42*, 13078–13082. (e) Meucci, E. A.; Nguyen, S. N.; Camasso, N. M.; Chong, E.; Ariafard, A.; Canty, A. J.; Sanford, M. S. Nickel(IV)-catalyzed C–H trifluoromethylation of (hetero)arenes. *J. Am. Chem. Soc.* **2019**, *141*, 12872–12879. (f) Shreiber, S. T.; DiMucci, I. M.; Khrizanforov, M. N.; Titus, C. J.; Nordlund, D.; Dudkina, Y.; Cramer, R. E.; Budnikova, Y.; Lancaster, K. M.; Vicić, D. A. [(MeCN)Ni(CF₃)₃]²⁻ and [Ni(CF₃)₄]²⁻: Foundations toward the development of trifluoromethylations at unsupported nickel. *Inorg. Chem.* **2020**, *59*, 9143–9151.

¹² For examples of isolated organometallic Ni(IV) complexes without fluoroalkyl groups: (a) Klein, H. F.; Bickelhaupt, A.; Jung, T.; Cordier, G. Syntheses and properties of the first octahedral diorganonickel(IV) compounds. *Organometallics* **1994**, *13*, 2557–2559. (b) Dimitrov, V.; Linden, A. A. pseudotetrahedral, high-oxidation-state organonickel compound: Synthesis and structure of bromotris(1-norbornyl)nickel(IV). *Angew. Chem. Int. Ed.* **2003**, *42*, 2631–2633. (c) Schultz, J. W.; Fuchigami, K.; Zheng, B.; Rath, N. P.; Mirica, L. M. Isolated organometallic Ni(III) and Ni(IV) complexes relevant to carbon–carbon bond formation reactions. *J. Am. Chem. Soc.* **2016**, *138*, 12928–12934. (d) Watson, M. B.; Rath, N. P.; Mirica, L. M. Oxidative C–C bond formation reactivity of organometallic Ni(II), Ni(III), and Ni(IV) complexes. *J. Am. Chem. Soc.* **2017**, *139*, 35–38. (e) Smith, S. M.; Plana, O.; Gomez, L.; Rath,

N. P.; Ribas, X.; Mirica, L. M. Aerobic C–C and C–O bond formation reactions mediated by high-valent nickel species. *Chem. Sci.* **2019**, *10*, 10366–10372.


¹³ (a) Tucci, G. C.; Holm, R. H. Nickel-mediated formation of thio esters from bound methyl, thiols, and carbon monoxide: A possible reaction pathway of acetyl-coenzyme A synthase activity in nickel-containing carbon monoxide dehydrogenases. *J. Am. Chem. Soc.* **1995**, *117*, 6489–6496. (b) Yamaguchi, Y.; Ichioka, H.; Klein, A.; Brennessel, W. W.; Vicic, D. A. Linear bis(perfluoroalkyl) complexes of nickel bipyridine. *Organometallics* **2012**, *31*, 1477–1483.

¹⁴ Kieltsch, I.; Dubinina, G. G.; Hamacher, C.; Kaiser, A.; Torres-Nieto, J.; Hutchison, J. M.; Klein, A.; Budnikova, Y.; Vicic, D. A. Magnitudes of electron-withdrawing effects of the trifluoromethyl ligands in organometallic complexes of copper and nickel. *Organometallics* **2010**, *29*, 1451–1456.

¹⁵ Examples of Ni–C bond lengthening upon oxidation from Ni(II) to Ni(IV): (a) Chong, E.; Kampf, J. W.; Ariafard, A.; Carty, A. J.; Sanford, M. S. Oxidatively induced C–H activation at high valent nickel. *J. Am. Chem. Soc.* **2017**, *139*, 6058–6061. (b) Roberts, C. C.; Chong, E.; Kampf, J. W.; Carty, A. J.; Ariafard, A.; Sanford, M. S. Nickel(II/IV) manifold enables room-temperature C(sp³)–H functionalization. *J. Am. Chem. Soc.* **2019**, *141*, 19513–19520. (c) Shreiber, S. T.; Vicic, D. A. Solvated nickel complexes as stoichiometric and catalytic perfluoroalkylation agents. *Angew. Chem. Int. Ed.* **2021**, *60*, 18162–18167.

¹⁶ For aryl–CF₃ coupling from tris(pyrazolyl)borate-ligated Ni^{IV}(CF₃)₂(aryl) model complexes, see: Bour, J. R.; Camasso, N. M.; Sanford, M. S. Oxidation of Ni(II) to Ni(IV) with aryl electrophiles enables Ni(IV)-mediated aryl–CF₃ coupling. *J. Am. Chem. Soc.* **2015**, *137*, 8034–8037.

TOC Figure

