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I. Introduction

ULTIROTOR small unmanned aircraft systems (SUASs) can

increase the spatiotemporal resolution of wind observations
near the Earth’s surface [1-4]. Compared to mast towers, weather
balloon radiosondes, and remote sensing wind profilers, multirotor
SUASs are mobile, portable, low cost, and easy to maneuver in
complex environments [5]. These characteristics of multirotor SUAS
can revolutionize existing atmospheric sensor networks and give way
to transformative advances for aviation and weather forecasting enter-
prises [6-9]. For instance, wind observations collected with multirotor
SUASSs can help map wind velocity fields in urban landscapes, which is
critical for developing disturbance rejection and path planning algo-
rithms for safe and efficient urban air mobility. Multirotor SUAS wind
observations can also improve numerical weather prediction models:
an imperative for increasing the accuracy of hyperlocal weather fore-
casts [4]. Therefore, developing reliable wind sensing techniques is
important for realizing the full potential of multirotor SUASs for
increasing velocity observations in the lower atmosphere.

Several studies have explored the use of multirotor SUASs and
onboard low-cost sensors for atmospheric wind sensing. For exam-
ple, multirotor SUAS atmospheric observations have been used to
study the evolution of the atmospheric parameters [3,10,11], atmos-
pheric transport of pollutants and biohazards [10,12], and source
emissions of greenhouse gases [13,14]. Although wind observations
from multirotor SUAS integrated sensors have been found to be
reliable in stationary flight, exhaustive experiments are required to
characterize systematic measurement biases resulting from vehicle
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motion and propeller downwash effects. Moreover, the added weight
and power requirements of airflow sensors also reduce the payload
capacity and endurance of multirotor SUASs. Therefore, sensor-free
alternatives for sensing wind velocity will become more relevant as
multirotor SUASs continue to decrease in size.

A number of model-based methods have already been developed
to estimate wind velocity from wind-induced motion perturbations
instead of an airflow sensor [2,15]. A study comparing the perfor-
mance of kinematic particle, point mass, and rigid-body models has
found that the bandwidth and accuracy of model-based wind esti-
mates improve with the fidelity of the vehicle motion models [2]. An
extension of the rigid-body model wind estimation framework has
also shown good efficiency in resolving vertical wind profiles
ascending at steady rates of up to 2 m/s based on a comparison of
wind observations from a sonic detection and ranging wind profiler
[16]. These wind sensing algorithms have also been applied to study
the drift of small objects, wind flow variations, and transport of
aerosolized toxins in aquatic environments [5,17]. However, it
remains unknown how the performance of model-based wind esti-
mation varies across multirotor SUAS configurations.

A recent study examining the thrust generation of puller and pusher
multirotors has shown the latter to have a lower lift-to-drag ratio in
forward flight [18]. Differences in the lift-to-drag ratios of puller and
pusher hexacopters are attributed to their respective propeller and
airframe configurations. Puller hexacopters, which are more common,
have the rotors installed above the rotor arms such that the multirotor
airframe is pulled as thrust is generated. Pusher hexacopters have the
rotors installed below the rotor arms such that the multirotor airframe is
pushed as thrust is generated. The differences observed across puller
and pusher multirotor SUASs may also provide opportunities for
understanding how the fidelity of time-varying wind estimates com-
pares across platforms with distinct lift-to-drag ratios.

This Note extends the model-based wind estimation algorithm
presented in Ref. [2] to evaluate the performance of pusher and
puller hexacopters estimating time-varying wind fluctuations. First,
the closed-loop rigid-body dynamics of pusher and puller hexacop-
ters were characterized using stepwise regression and output error
algorithms for model structure determination and parameter esti-
mation. The vehicle motion models identified for each aircraft were
then used to synthesize state observers for wind estimation. Wind
velocity estimates from state observers designed for pusher and
puller hexacopter platforms were validated using wind velocity
observations interpolated at the center of four sonic anemometers
arranged in a tetrahedron configuration. To the best of the authors’
knowledge, this research presents the first comprehensive study of
the model-based wind estimation performance of pusher and puller
hexacopter multirotors.

II. Modeling

The equations of motion for a feedback-stabilized hexacopter can
be expressed as a system of first-order nonlinear time-invariant
ordinary differential equations [2]:

xzf(xvu’w(tsx))a x(to) =X (1)
where the rate of change x of the vehicle’s 12-dimensional state x
(i.e., position, attitude, velocity, and angular velocity) relates to the
state itself, the control inputs u, and translational wind disturbances
w(t, x) varying over time and space. Moreover, when the aircraft
motion is modeled as a small perturbation from some equilibrium
flight condition that corresponds to hovering (i.e., » =0 and @ = 0),
the nonlinear dynamics describing the feedback-stabilized motion of
the hexacopter are well approximated by a linear model of the form
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where the vectors of ¥ = x — x.q and # = u — u., denote, respec-
tively, small deviations in the state and input vectors from their
steady-state values. The state matrix A € R!?¥!2 models unforced
dynamics, the input matrix B € R'>** characterizes applied forcing,
and the disturbance matrix I' € R'>? captures wind-induced trans-
lational perturbations. Effects due to spatial wind gradients such as
effective angular damping are ignored. We use this model form to
estimate wind velocity while hovering in equilibrium flight using a
state observer. The state observer is constructed based on the state,
input, and disturbance matrices characterized from system identifi-
cation experiments.

III. Multirotor System Identification
A. System Identification Overview

A number of frequency- and time-domain system identification
algorithms have been developed to characterize bare-airframe and
closed-loop dynamic models for multirotor aircraft. Frequency-
domain system identification techniques have been used to character-
ize bare-airframe models using flight-test data collected from
feedback-stabilized systems [19-22]. Reliable bare-airframe models
are critical for validating physics-based simulations and control
system designs. Time-domain system identification methods, such
as the stepwise regression and output error algorithms described by
Klein and Morelli (Ref. [23]), have been effective for characterizing
multirotor aircraft closed-loop models; and they have already been
used to estimate wind velocity from quadrotor motion in previous
studies [1,2,16]. For this reason, time-domain system identification
techniques were employed to characterize the closed-loop dynamics
of puller and pusher aircraft.

B. System Identification Flight Testing

System identification experiments were conducted at the Univer-
sity of Michigan M-Air facility to characterize a set of linear time-
invariant closed-loop models approximating the rigid dynamics of
the pusher and puller hexacopter platforms described in Ref. [18].
Autonomous flights were conducted in calm atmospheric conditions
(ie., Vy, =0 m/s) using a Qualisys motion capture system, which
can measure position and orientation at 200 Hz. During each flight,
the vehicle’s plunge, yaw, roll, and pitch dynamics were excited from
equilibrium flight separately using the frequency-sweep inputs:

u(i) = sin[p(i), i=0,1,2,....N—1

$(0) = o))
w(i) = 107

1(i)
p =logjowg + (logyow; — 10g10w0)7
where u is the commanded translational velocity, w, = 0.5 Hz,
@y =4 Hz, T = (N — 1)At, and #(i) = iAt. The maximum excita-
tion frequency was determined based on sampling volume constraints.
The input and output measurements collected from the flight controller
and the motion capture system were then used to characterize the
model structures and parameter estimates for the plunge, yaw, roll,
and pitch dynamics separately by employing stepwise regression and
output error parameter estimation algorithms.

C. Model Structure Determination

The stepwise regression algorithm described in Ref. [23] was
employed to determine the parameter structure of linear time-invariant
models approximating the plunge, yaw, roll, and pitch dynamics of
each hexacopter in equilibrium flight. Using this approach, the vehicle
state and input measurements are postulated as explanatory functions
&,i=1,2,...,n, to construct a model that best fits the vehicle’s
modeled response y, which is assumed to take the form

y=0+ Y 0 3)
i=1

where 0;,i = 1,2,...,n, is the set of model coefficients associated
with n regressor functions; 6y is the model bias; and N is the sample
size of measurements. How well each model structure fits the observed
data is determined using the F|, statistic and coefficient of determi-
nation R? metrics because explanatory variables are considered for
integration into the model one at a time. The F|, statistic gives a
measure of how much each explanatory variable contributes to the
fit of the model. The coefficient of determination quantifies how well
the output matches the measured data. Leveraging the two metrics
together, model structures were determined for linear approximations
of each hexacopter’s plunge, yaw, roll, and pitch dynamics in equilib-
rium flight.

D. Parameter Estimation

The model structures and parameter values determined from the
stepwise regression were used to initialize the estimation of model
parameters using the output error algorithm described in Ref. [23].
The output error algorithm estimates model parameters using the
output of the linear aircraft model described by Eq. (2) in still air
conditions and using the N sample points of measured flight data,
which are assumed to be corrupted by sensor noise . The model and
measurements used by the output error method are summarized as
follows:

d. -, p- -

Ex = Ax + Bu, x(0) = x, @)
y=Cx+ Du 5)

z()=y(@) +v(i) i=12,...,N (6)

where y is the output vector, z is the measurement vector, C is the
output matrix, and D is the feedthrough matrix. This formulation of
the output error method assumes that the model being identified is
free of process noise, making numerical integration of state outputs
possible. Moreover, we assume the flight measurements to be cor-
rupted with uncorrelated zero-mean Gaussian noise v € N (0, Rc,)
such that

Cov((i)) = E (i (i)] = Reo,dy;

Using this framework, parameter estimates are tuned iteratively while
minimizing the cost function:

N
7 =33 0) - 2OF RaL (D) — 2] ™
i=1

which is the uncertainty-weighted residual between the model output
and observation measurements.

IV. Observer Synthesis
The wind sensing method presented in Ref. [2] was adapted to
synthesize observers used in estimating the hexacopter wind velocity.
We assume that absolute measurements of the position and attitude and
their respective time derivatives can be obtained from the motion capture
system, Therefore, the output equation, as in Ref. [2], is of the form

0;

|0
y=Ipx+ -1V,

I3

0;

where the output measurements of translational velocity are the sum-
mation of both air-relative and wind velocities (with the identity and zero
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Fig.1 Placement of wind sensors and hexacopter hover position for outdoor wind sensing experiments. All coordinates are in meters with respect to the

inertial (ground) frame (shown in blue).

matrices written in short notation, e.g., I;, € R'?¥!2), Noise in the
output measurement is assumed to be negligible, and it is therefore
not modeled. The output measurements and identified models were then
used to formulate wind-augmented models for the operating condition
prescribed by v,

V. Wind Sensing Experiments
A. Flight Testing

The outdoor experimental setup to collect the wind data and
hexacopter response is shown in Fig. 1. These experiments were
conducted in the M-Air [24] facility, where system identification
experiments took place as well. This facility has motion capture
(mocap) cameras that allow tracking of reflective markers fixed to
the hexacopter, enabling accurate position tracking. The reflective
targets were placed on the arms and the landing gear of the hexa-
copters such that the mocap virtual body centroid is as close as
possible to the center of gravity of the hexacopter. Before flying,
each hexacopter was placed at the center of the triangle represented
by the (i, i,, i3) North-East-Down (NED) frame as shown in Fig. 1.
The mocap had millimeter accuracy in position. The aircraft orienta-
tion was provided by the attitude and heading reference system that is
integral to the onboard flight controller. A reference flight trajectory
was created, enabling the hexacopter to autonomously take off and
ascend to a height of 3 m, hover for 3 min, and land. Additionally, the
hexacopters were also connected to the same ground control station
(GCS) through Wi-Fi, as shown in Fig. 1. The data for the hexacopter
system response (e.g., roll, pitch, yaw angular rates, and control
commands) were collected on board at 200 Hz. To ensure the data
from wind sensors and the hexacopter can be correlated, computer
clock times between the hexacopter and the GCS were synchronized
just before flight.

B. Atmospheric Sensors

To collect wind data for outdoor experiments, we used four Atmos
22 sonic anemometers.’ The anemometers were mounted on tripod
stands as shown in Fig. 1 to form a tetrahedron, with all facing north. A
reflective marker was placed on each sonic anemometer to record its
absolute position. The placement of the anemometers was chosen to
avoid collecting wind data from flow disturbed by the hexacopter and
capture the ambient wind conditions only. The sonic anemometers
were interfaced to the GCS computer through the SDI-12 universal

f“Atmos22 Ultrasonic Anemometer,” M. Environment, https://www.
metergroup.com/environment/products/atmos-22-sonic-anemometer/ [retrieved
2020].

Tablel Plunge, yaw, roll, and pitch model structures identified using
stepwise regression

Vehicle motion
models Formulas

Plunge 2\ _ (0 1 z 0
w/] Zz Zw w + 7 Hplunge

m
Yaw v _ (0 1 W 0
(1) =, w0 (%) + (), o
Roll v 00 1 0)\/[y 0
o] (o 0o o 1|[s 0
o= o v, v, v, [lov|T] o [
p) \o oz, 0 ,)\») \z
Pitch i 00 1 0\/x 0
ol o o o 1|[e 0
il = o x, x, x, |{u]T| o |Hri
g o My 0 M,J\q M,

serial bus (USB) adapter ** shown in Fig. 1. The data logging code was
also provided along with the SDI-12 USB adapter to collect sonic
anemometer data on the GCS with an update rate of 0.6 Hz.

VI. Results and Discussion
A. System Identification Results
1. Model Structure Determination

After the system identification flight experiments were completed,
the input and output measurements were used to characterize the
plunge, yaw, roll, and pitch dynamics of the puller and pusher aircraft
in hovering flight. The results from this analysis led to the charac-
terization of the plunge, yaw, roll, and pitch models described in
Table 1. We also note that the model parameter Z, was included in
our modeling to account for the effects of position control on the
closed-loop dynamics of puller and pusher hexacopters. Further-
more, time delays resulting from transmission and computation
delays, as well as phase lag due to neglected higher-order dynamics,
were not modeled separately; and they can potentially impact the
accuracy of puller and pusher hexacopter wind estimates.

*##“SDI-12 USB Adapter with Large Terminals,” Official Blog (online
database), LiuDr Electronic Solutions, Sartell, MN, 31 July 2019, https://
liudr.wordpress.com/2019/07/31/sdi-12-usb-adapter-with-larger-terminals-2/
[retrieved 2020].
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Table 2 Plunge, yaw, roll, and pitch model parameters identified for puller and pusher hexacopters

Puller hexacopter Pusher hexacopter

Hexacoptermodel Parameter ~ Value  Standard error Units Parameter ~ Value  Standard error Units
Plunge Z, -0.13 0.0 1/s? Z, —-0.10 0.00 1/s?

Z, -0.18 0.02 1/kg Zy, -0.62 0.01 1/s

Z, 21.41 0.20 1/s? Z, 17.87 0.14 1/kg
Yaw N, —-165.70 0.69 1/s% N, —-131.83 0.85 1/s?

N, -23.16 0.19 1/s N, -11.29 0.09 1/s

N, 160.74 1.21 1/(kg - m?) N, 149.81 1.16 1/(kg - m?)
Roll Y, 3.70 0.51 m/s? Yy 1.05 0.51 m/s

Y, —2.40 0.55 1/s Y, —13.56 0.55 1/s

Y, -2.10 0.08 m/s Y, -2.92 0.08 m/s

L, -371.7 1.00 1/s? L, —247.66 1.00 1/s?

L, -8.20 0.07 1/s L, -8.49 0.07 1/s

L, 361.60 1.93 1/(kg - m?) L, 253.18 1.93 1/(kg - m?)
Pitch Xy -2.80 0.13 m/s? Xy -4.0 0.09 m/s?

X, -3.60 0.12 1/s X, -1.0 0.03 1/s

X, 2.41 0.04 m/s Xy 2.6 0.03 m/s

M, —523.81 2.13 1/s% M, —274.9 1.78 1/s?

M, -5.69 0.09 1/s M, —-9.00 0.12 1/s

M, 450.21 3.33 1/(kg - m?) M, 195.5 2.51 1/(kg - m?)

2. Model Parameter Estimates

Following the characterization of the plunge, yaw, roll, and pitch
model structures for puller and pusher hexacopters, the correspond-
ing parameter values were estimated using the output error parameter
estimation method. As shown in Table 2, the parameter values of the
plunge, yaw, roll, and pitch models identified for puller and pusher
hexacopters were estimated with relatively small standard error
values. Moreover, the sign convention of parameter estimates was
found to be consistent across the plunge, yaw, roll, and pitch models
identified for puller and pusher hexacopters. For all models, a positive
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input command resulted in a negative moment. However, the magni-
tude of the model parameter values (i.e., Z,, N, L,, and M,, for the
plunge, yaw, roll, and pitch models) were found to be larger for the
puller hexacopter.

3. Model Validation

The plunge, yaw, roll, and pitch models identified for puller and
pusher hexacopters were validated using an independent set of
input—output observations collected during system identification
experiments. As shown in Figs. 2 and 3, the time histories of the
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Fig. 2 Validation of the a) plunge, b) yaw, c) roll, and d) pitch models identified for the puller hexacopter.
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Fig.3 Validation of the a) plunge, b) yaw, c) roll, and d) pitch models identified for the pusher hexacopter.

puller and pusher hexacopter flight measurements and model out-
puts were compared. Overall, the performances of the plunge, yaw,
roll, and pitch models were found to be comparable across puller
and pusher hexacopters based on root-mean-squared error measure-
ments (see Figs. 2 and 3). However, a more significant difference in
root-mean-squared values was observed across the pitch models
identified for puller and pusher hexacopters. The larger difference
in the root-mean-squared error values may be attributed to a brief
loss of communication between the motion capture system and the
pusher hexacopter 7 s into the flight.

B. Wind Sensing

A total of twelve 3 min flight tests were conducted to evaluate the
performance of puller and pusher hexacopters estimating wind veloc-
ity while hovering. Atmospheric winds during this period were
blowing from the north, with wind speeds varying between calm
(Vy, = 0) and 4 m/s (see Figs. 4 and 5).

After the flight tests were completed, the accuracy of the puller and
pusher hexacopter wind velocity estimates was evaluated using sonic
anemometer observations as reference. Hexacopter and sonic
anemometer measurements of u,, and v,, wind velocity components
were compared using mean absolute error (MAE) and root-mean-
squared error (RMSE) metrics. The results from this analysis for puller
and pusher hexacopters are shown in Tables 3 and 4, respectively. On
average, the puller hexacopter estimated u,, and v,, with MAE values
0f 0.42 and 0.55 m/s and RMSE values of 0.54 and 0.42 m/s. Similarly,
the pusher hexacopter estimated u,, and v,, with MAE values of 0.69
and 0.37 m/s and RMSE values of 0.48 and 0.58 m/s. Therefore, we
found the puller and pusher hexacopters to have a comparable perfor-
mance measuring the prevailing wind conditions.

A frequency-domain analysis was conducted to determine the
performance of the puller and pusher hexacopters resolving time-
varying fluctuations of u,,. First, the power spectral density estimates
of the hexacopter and sonic anemometer measurements of u,, were
compared across the sampled frequency range (0, 0.25] Hz. As shown
in Fig. 6, the puller and pusher hexacopters can both capture the
power distribution of wind fluctuations based on sonic anemometer

measurements. The puller hexacopter was found to underestimate the
amplitude of wind fluctuations across most of the sampled frequency
range (see Fig. 6¢). The pusher hexacopter, on the other hand, was
found to consistently overestimate the amplitude of wind fluctua-
tions, but it agreed more consistently with the power spectral density
estimates derived from sonic anemometer wind observations (see
Fig. 6d). Additionally, a cross-power spectral density analysis was
performed to determine the coherence and phase lag between the
hexacopter and sonic anemometer measurements of wind fluctua-
tions. As shown in Fig. 7, wind fluctuation estimates from pusher
hexacopter were found to have higher coherence and smaller phase
lag in comparison with the sonic anemometer observations. There-
fore, the findings from this frequency-domain analysis demonstrate
that although the puller and pusher hexacopters have similar perfor-
mances measuring prevailing winds, the pusher hexacopter can
measure time-varying wind fluctuations with higher accuracy.

A frequency response analysis was conducted to evaluate the
influence that the feedback stabilization of puller and pusher hexa-
copters has on the fidelity of wind velocity estimates. The transfer
functions used in this analysis, Hpyjer(s) and Hpyyeher(s), map the
input ppich to the output & based on the pitch models identified for
puller and pusher hexacopters:

558.1s2 + 2009
53 +9.35% + 544.35 + 1886

Hpuller(s) = (8)

256.1s + 256.1
53 +10 s 4+ 256.9s + 247.9

Hpusher (Y) = 9

The results from this analysis demonstrate that the —3 dB cutoff
frequencies of H e (5) and H pygner (5) exceed the Nyquist frequency
of the sonic anemometer wind velocity observations (0.25 Hz) by
margins of 3.41 and 5.35 Hz, respectively (see Fig. 8). Therefore,
differences in the feedback-stabilized pitch dynamics of the puller
and pusher hexacopters are ruled out as a factor limiting the fidelity of
puller and pusher hexacopter wind fluctuation estimates.
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Fig.4 Comparison of puller hexacopter and sonic anemometer measurements of wind speed and wind direction collected from 1:50 to 4:40 AM Eastern
Daylight Time (EDT) on 26 September 2020. UAS denotes unmanned aircraft system (SA, sonic anemometer; UAS, unmanned aircraft system).

VII. Conclusions

System identification experiments were performed to character-
ize the closed-loop dynamics of puller and pusher hexacopters
while hovering in equilibrium flight. Validation results from these
experiments demonstrate that the plunge, yaw, roll, and pitch
dynamics of puller and pusher hexacopters are well characterized
by linear models with identical parametric models (see Figs. 2 and
3). However, consistent differences were observed across the input
parameters of the puller and pusher hexacopters. As shown in
Table 2, the input parameters identified for the plunge, yaw, roll,
and pitch models of the pusher hexacopter were consistently of

lower magnitudes. These results suggest that the pusher hexacopter
can track reference input commands exerting less control effort,
which can be attributed to the pusher hexacopter having a greater
thrust efficiency in hovering flight (see Ref. [18]).

The frequency-domain analysis shows the pusher hexacopter to have
a higher performance resolving time-varying wind fluctuations,
although the performance of puller and pusher hexacopters estimating
general trends in wind velocity was found to be comparable based on
the results shown in Tables 3 and 4. As shown in Fig. 6, the power
spectral density estimates of the pusher hexacopter and the sonic
anemometer measurements of i, were in closer agreement throughout



Downloaded by Virginia Tech University Libraries Serials on August 9, 2023 | http://arc.aiaa.org | DOI: 10.2514/1.C036792

Article in Advance / ENGINEERING NOTES 7

26 26
£ £
= 4 = 4
[} [}
[« [«
2, 2,
xR 2 Q2
el el
A= A=
Zo I I I £ o

01:52:00 01:53:00 01:54:00 02:03:00 02:04:00 02:05:00

= =
=} =}
B B
5 , e
= o =
A - A
< ]
8 8
B 01:52:00 01:53:00 01:54:00 B 02:03:00 02:04:00 02:05:00
a) Time [hour:min:s] b) Time [hour:min:s
z 6 . . . z 6 . . .
= [ A SA = UAS| g [ A SA m UAS
o 4t 4
(5] 5]
(% (%
2 =
A 2 A 2
< e
=] ] 1]
£ £
g 0 L g 0 L L L
02:43:00 02:44:00 02:45:00 02:53:00 02:54:00 02:55:00
2360 : : . o360 — . .
g g
2 .S 270t ]
g g X T
= A 180%
A A P
= = 90 1
8 8
g 0 L L L g 0 L L L
02:43:00 02:44:00 02:45:00 02:53:00 02:54:00 02:55:00
) Time [hour:min:s] d) Time [hour:min:s]
26 26
£ £
4 4
Q Q
5] 5]
= =
A 2 A 2
< <
= =
=0 =0
236 o=
= =
Q27 S
e} e}
3 3
£ 180478 B
A A
o 9 b=
= =
g 0 L L L B L L L
03:50:00 03:51:00 03:52:00 04:20:00 04:21:00 04:22:00
e) Time [hour:min:s f) Time [hour:min:s]

Fig.5 Comparison of pusher hexacopter and sonic anemometer measurements of wind speed and wind direction collected from 1:50 to 4:30 AM EDT on
25 September 2020.

Table3 Puller hexacopter MAE, RMSE, and correlation coefficients for u,, and v,, wind velocity components

Sonic
anemometer Puller hexacopter

Flight no. Ewy) EY) E@w) E@.) E(uy—ul) E(vi-vl) VEQE —u)?) VE@ —v)?)
1 028 144 051 142 0.4 0.49 0.45 0.34

2 0.14 151 021 153 0.36 0.48 0.45 0.34

3 0.08 1.76 021 1.64 0.48 0.63 0.65 0.51

4 -0.15 198 -0.16 2.24 0.45 0.63 0.59 0.46

5 -0.16 154 -0.07 131 0.41 0.52 0.59 0.45

6

0.02 0.65 0127 1 0.41 0.52 0.51 0.41

Average values _ 0.42 0.55 0.54 0.42
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Table4 Pusher hexacopter MAE, RMSE, and correlation coefficients for u,, and v,, wind velocity components

Sonic
anemometer Pusher hexacopter
Flight no. Euy) E@Y) E) E@y) E(uy—u) E(vi v VE(G —u)?) VE(@ —v)?)
1 0.10 159 0.64 1.52 0.57 0.41 0.71 0.53
2 028 148 0.8 1.39 0.46 0.37 0.56 0.47
3 020 127  0.66 1.29 0.51 0.29 0.59 0.38
4 0.03 1.69 0.69 1.78 0.7 0.47 0.82 0.62
5 0.08 0.84 0.61 0.79 0.55 0.33 0.63 0.41
6 -0.15 1.13 045 1.17 0.71 0.35 0.8 0.46
Average values —— —— —— —— 0.69 0.37 0.48 0.58
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Fig. 6 The zero-mean time-varying fluctuations of #,, estimates from the a) puller and b) pusher hexacopters and the associated power spectral density
(PSD) estimates for the c) puller and d) pusher hexacopters.
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the frequency range of wind fluctuations extending from 0 to 0.25 Hz.
The coherence and phase lag evaluation of the hexacopter estimates and
sonic anemometer measurements of i,, also demonstrated the pusher
hexacopter to estimate wind velocity fluctuations with higher accuracy.
As shown in Fig. 7, the coherence between pusher hexacopter estimates
and sonic anemometer measurements was found to be consistently
greater, and the phase lag between pusher hexacopter estimates and
sonic anemometer measurements of i,, was found to be smaller.

The difference observed across the performances of puller and pusher
hexacopters measuring time-varying wind fluctuations is attributed to
the pusher hexacopter having an enhanced sensitivity to wind gusts. The
higher sensitivity to wind gusts is likely due to the pusher hexacopter
having higher drag in air-relative motion, as reported in Ref. [18].
Additionally, findings from a frequency response analysis show that
the feedback-stabilization characteristics of puller and pusher hexacop-
ters have an insignificant influence in the estimation of time-varying
wind fluctuations. As shown in Fig. 8, the -3 dB frequency cutoff of the
puller and pusher hexacopter feedback-stabilized dynamics are well
above the Nyquist sampling frequency of the sonic anemometer. The
current findings suggest that exploiting the aerodynamic characteristics
of pusher hexacopter platforms to estimate wind velocity provides a
new opportunity for complementing conventional observations of wind
velocity fluctuations in the lower atmosphere.
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