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On the spectrum
of the periodic focusing Zakharov—Shabat operator

Gino Biondini, Jeffrey Oregero, and Alexander Tovbis

Abstract. The spectrum of the focusing Zakharov—Shabat operator on the circle is studied, and
its explicit dependence on the presence of a semiclassical parameter is also considered. Several
new results are obtained. In particular: (i) it is proved that the resolvent set is comprised of two
connected components; (ii) new bounds on the location of the Floquet and Dirichlet spectra are
obtained, some of which depend explicitly on the value of the semiclassical parameter; (iii) it is
proved that the spectrum localizes to a “cross” in the spectral plane in the semiclassical limit.
The results are illustrated by discussing several examples in which the spectrum is computed
analytically or numerically.

1. Introduction

In this work we investigate the spectrum of the non-self-adjoint Zakharov—Shabat
(ZS) scattering problem with a periodic potential. The ZS scattering problem is given
by the first-order coupled system of ordinary differential equations (ODEs) [1,22,50,
70]:

eV = (—izos + Q(x))v, (1.1)

where v(x; z, &) = (v1, v2)T (the superscript T denoting matrix transpose), 03 =
diag(1, —1) is the third Pauli matrix, Q(x) is the matrix-valued function
0 qx)
0t = (o5 %), (12)
—q(x) 0

z € C is the spectral parameter, prime denotes differentiation with respect to the inde-
pendent variable (here x), overbar denotes complex conjugation, and 0 < ¢ < 1 is the
semiclassical parameter. Unless stated otherwise, throughout this work, the “poten-
tial” g: R — C is a complex-valued function with minimal period L, i.e.,

qg(x + L) =¢g(x), forall x € R. (1.3)
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Unless stated otherwise, we assume ¢ € L°(R), the space of essentially bounded
Lebesgue measurable functions with essential supremum norm. We say a function
v(x; z, €) is solution of equation (1.1) if it is locally absolutely continuous, i.e., if
v € ACj,c(R), and the equality (1.1) holds almost everywhere (cf. A.1).

The main motivation for studying (1.1) derives from its role in the analysis of the
focusing nonlinear Schrédinger (NLS) equation on the circle, which is given by

iedy + 205y + 2|y |y =0, (1.4)

where ¢: R x Ry — C is the slowly-varying complex envelope of a quasi-mono-
chromatic, weakly dispersive nonlinear wave packet, and the physical meaning of the
variables depends on the context. (E.g., in nonlinear fiber optics, ¢ represents propaga-
tion distance while x is a retarded time.) In general, the parameter ¢ quantifies the
relative strength of dispersion compared to nonlinearity. (In the quantum-mechanical
setting, ¢ is also proportional to Planck’s constant 7.)

Specifically, it was shown by Zakharov and Shabat in 1972 that (1.1) makes up
the first half of the Lax pair for the focusing NLS equation [70]. This observation is
the key to solving the initial value problem for (1.4) by means of the inverse scat-
tering method. The solution ¥ (x, ¢; ¢) of (1.4) with initial data ¥ (x, 0; &) := g(x)
is constructed by computing suitable scattering data generated by the potential g (x)
in (1.1). Time evolution according to (1.4) corresponds to an isospectral deformation
of the potential in (1.1), and the time evolution of the scattering data can be computed
trivially in certain cases. This allows one to obtain the solution ¥ (x, ¢; ) of (1.4) by
solving an inverse scattering problem, i.e., by reconstructing the potential of the ZS
scattering problem from the knowledge of the time-evolved scattering data. As a res-
ult, analysis of ZS systems such as (1.1) has become an active area of research (e.g.,
see [5-7,16,25,29,30,35,36,40,44,47,56,62,63]) and a natural starting point in the
study of solutions to the focusing NLS equation.

Importantly, (1.1) and (1.4) depend on the semiclassical parameter . Letting ¢ | 0
in (1.4) is referred to as the “semiclassical limit” since it allows one to establish a con-
nection between quantum and classical mechanics [45,46]. Similar phenomena occur
in physical applications when dispersive effects are weak compared to nonlinear ones.
These situations, referred to as small dispersion limits, can produce a wide variety of
physical effects such as supercontinuum generation, dispersive shocks and wave tur-
bulence, to name a few (e.g., see [2,15,19,52,53,59, 67-69] and references therein).
Semiclassical, or small dispersion, limits are also of mathematical interest. Solutions
to equations such as focusing NLS have rich structure which becomes more evident
as the semiclassical parameter tends to zero. As a result, much effort has been devoted
to the analysis of integrable nonlinear evolution equations in the semiclassical limit
(e.g.,see [4,11-13,20,32,34,37-39,41,48,49,65, 66] and references therein).
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Since (1.1) is a non-self-adjoint eigenvalue problem, its spectrum is in general
quite complicated. Much of the research in this area has been devoted to studying (1.1)
with zero-background potentials, or more precisely, ¢ € L!(R), i.e., Lebesgue integ-
rable. In 1974, Satsuma and Yajima proved that if g(x) = A sech x with 4 € R,
then (1.1) has purely imaginary point spectrum [56]. Moreover, when A € N there are
precisely 24 eigenvalues located at z = +i(n — 1/2),n = 1,..., A. More recently,
one of the authors and S. Venakides extended these results to a one-parameter fam-
ily of potentials of the form ¢g(x; &) = sechx exp(i S(x)/¢), where S’(x) = « tanh x
with ¥ € R [63]. More generally, Klaus and Shaw proved that all real, piecewise-
smooth, single-lobe potentials with zero background have purely imaginary point
spectrum [35, 36]. Here, the term single-lobe means g(x) is nondecreasing when
x < 0, and is nonincreasing when x > 0. Recently, one of the authors and X.-D. Luo
generalized the Klaus—Shaw result to real, single-lobe potentials on non-zero back-
ground, that is, ¢(x) — qo as |x| — oo and ¢(x) > go for all x € R [5]. Consid-
erable work has also been devoted to potentials with rapid phase variations, namely,
q(x;e) = A(x)exp(iS(x)/e), where A(x) and S(x) are both real. Careful numerical
experiments by Bronski showed that, in the semiclassical limit, the point spectrum
can accumulate on a “Y-shaped” set of curves in the spectral plane, and the number
of eigenvalues scales like O(1/¢) as ¢ | 0 [7]. Also, bounds on the point spectrum
were derived by Deift, Venakides, and Zhou under the assumptions A(x) — 0, and
S’(x) — 0 as |x| — oo [7]. (For details of the proof, see the work by DiFranco and
Miller [14].) Later, Miller put forth a formal WKB based asymptotic analysis [47].
Moreover, one of the authors and S. Venakides used the idea of the semiclassical limit
of the scattering transform to derive spectral information of various potentials [64]. In
particular, the Y-shaped spectral curve from [7] was confirmed there. The semiclas-
sical limit of solutions to the focusing NLS equation generated by zero-background
potentials was then studied in [4, 20, 32, 34,41, 65]. Even so, there are still many
important open questions.

Many studies have been devoted to analyzing the spectrum of (1.1) with poten-
tials in L'(R). Many works have also been devoted to studying the spectrum of Hill
operators with complex potentials (e.g. see [16,26,54,55,57,58,61] and references
therein). However, less is known for the non-self-adjoint ZS system (1.1) with a peri-
odic potential. Some localization results corresponding to (anti)periodic eigenvalues
of (1.1) were obtained in [16,40], and “gap estimates” in weighted Sobolev spaces
were obtained in [16, 29, 30]. The spectrum was also rigorously studied in [27, 28,
44,62], where, among other results, asymptotic statements as z — oo were obtained.
Moreover, for real-analytic periodic potentials, it was shown in [25] that the set of
periodic eigenvalues was discrete and clustered on the real and imaginary axes of the
spectral variable in the limit ¢ |, 0.
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The semiclassical limit of (1.1) with real periodic potentials was recently studied
by two of the authors using a formal WKB approach, and numerical simulations [6].
This work is partly motivated by that study. The main results of the present work are
several statements about the spectrum of (1.1), both in general and in the semiclas-
sical limit. Specifically, the work is organized as follows. We begin in Section 2 by
briefly recalling various preliminary notions concerning the spectral problem (1.1). In
Section 3 we present various general properties of the spectrum, several of which are
new to the best of our knowledge. For example, we show that the resolvent set of (1.1)
with a periodic potential is comprised of two connected components, in contrast with
the case of Hill’s equation, whose resolvent set is path connected. In Section 4 we
show that, under fairly general assumptions on the potential, the spectrum localizes
to a subset of the real and imaginary axes of the spectral variable in the limit ¢ | 0,
thus putting the asymptotic and numerical results of [6] into a rigorous mathemat-
ical setting. In Section 5 we discuss some further properties acquired by the spectrum
when the potential is real and/or symmetric. The proofs of all results discussed in Sec-
tions 3, 4, and 5 are given in Section 6. In Section 7, specific examples are analyzed
exactly and via careful numerical simulations, and we comment on the similarities
between the periodic problem and the infinite line problem when 0 < ¢ < 1. Various
details about the numerical simulations and some of the calculations are relegated to
the appendices.

2. Preliminaries

Equation (1.1) is equivalent to the eigenvalue problem
£fv = zv, 2.1

where

£%:=1i03(edx — 0), (2.2)

is a one-dimensional Dirac operator acting in L?(R, C?) with dense domain H (R,
C?), and Q is given by (1.2). Here H'! is the Sobolev space of square integrable
functions with square integrable first derivative. (For a brief discussion on notation
and function spaces see A.1.)

Regarding the inverse spectral method for the focusing NLS equation on the circle,
one is concerned with the Lax spectrum of the operator £°, namely, the set of z €
C for which a non-trivial solution of (1.1) exists which is bounded for all x € R.
Specifically, the Lax spectrum — or, simply, the spectrum — is defined as

Srax ;= {z € C: there exists v # 0 € AC,.(R)

s.t. £8v = zvand sup,cg ||V(x; z, &)| < oo}. (2.3)
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It is well known that Xy 4 is purely continuous, that is, essential without any eigen-
values and empty residual spectrum [9, 27,31, 54, 55]. Likewise, consider the oper-
ator (2.2), now acting in L2([0, L], C?) with dense domain H ([0, L], C?). Then, for
each v € R, the associated Floquet spectrum is defined as

Y, :={z € C: thereexists v # 0 € H'([0, L], C?)
s.t. £8v =zvandv(L;z,¢) = ¢ "L v(0; z, £)}. 2.4)

Importantly, v = 2n7/ L corresponds to the periodic spectrum, and v = 2n — 1)/ L
corresponds to the antiperiodic spectrum, where n € Z. Any z € X,, will be referred to
as an eigenvalue of (2.1), and the corresponding v(x; z, €) as a Floquet eigenfunction.
Clearly, the eigenvalues depend on ¢, i.e., z = z(g).

Basic properties of the Lax spectrum that follow from the theory of linear homo-
geneous ODEs with periodic coefficients are reviewed next to introduce some relevant
concepts and to set the notation.

Theorem 2.1 (Floquet, [8,23]). Consider the system of linear homogeneous ODEs
given by

y = A(x)y, (2.5)
where A € L}

1oc(R) is a n x n matrix-valued function such that A(x + L) = A(x).
Then, any fundamental matrix solution Y (x) of (2.5) can be written in the Floquet

normal form
Y(x) = U(x)eR*, (2.6)

where W(x + L) = W(x), Y is nonsingular, and R is a constant matrix.

Without loss of generality, one can take R to be in Jordan normal form. Since
W(x) is locally absolutely continuous and periodic, the behavior of solutions as x —
+oo0 is determined by the eigenvalues, called Floquet exponents, of the matrix R. In
particular, (i) if the Floquet exponent has non-zero real part then the solution grows
exponentially as x — 00, or as x — —oo; (ii) if the Floquet exponent has zero real
part, but R has non-trivial Jordan blocks then the solution is algebraically growing;
(iii) otherwise the Floquet exponent is purely imaginary and the solution remains
bounded for all x € R;

By Theorem 2.1, all Floquet eigenfunctions of the ZS system (1.1) have the form

v(x;z,e) = e w(x;z, ), 2.7

where w(x + L;z,¢) = w(x;z,¢), and v = v(¢) € R is the quasi-momentum. More
generally, one has the so-called normal solutions, that is, solutions of (1.1) such that

vix+ L;z,e) = ov(x;z,¢), (2.8)
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and o0 = o(¢) is the Floquet multiplier. Thus, a solution of (1.1) is bounded for all
x € R if and only if |o| = 1 in which case one has 0 = e'*L. Moreover, the Floquet
multipliers are the eigenvalues of a monodromy matrix, which is defined as

Y(x+ L;z,e) =Y(x;z,6)M(z;¢), (2.9)

where Y (x; z, €) is any fundamental matrix solution of (1.1). Let ® := ®(x; z, ¢) be
the principal matrix solution of (1.1), that is, the solution of (1.1) normalized so that
®(0;z,¢) =1, where I is the 2 x 2 identity matrix. Since all monodromy matrices
are similar, for the remainder of this work we fix

M(z;e) = ®(L;z,¢). (2.10)
Note also that the well-known symmetries of solutions of (1.1) imply
M(z;e) = 0, M(z; €)02, (2.11)

where 07 is the second Pauli matrix (cf. A.1). In turn, (2.11) implies M(z; €) can be
written as

c(z:e) —5(525)) (2.12)

s(z;e) c(zye)

M(z;e) = (
where, by (2.10), c(z; ¢) and s(z; &) are the components at x = L of the solution
v(x:z,¢) of (1.1) equaling (1,0)T at x = 0. Also, since (1.1) is traceless, it follows
from Abel’s formula that det M(z; &) = 1. Hence, the eigenvalues of M(z;¢) are given

by roots of the quadratic equation 6> — (2A.)o + 1 = 0, where we introduced the
Floquet discriminant

Ag = Ag(2) = %trM(z;e), (2.13)

and “tr” is the matrix trace. Thus, (1.1) has bounded solutions if and only if the fol-
lowing two conditions are simultaneously satisfied:

ImA.(z) =0, (2.14a)

—1 <ReA.(z) <. (2.14b)

(Here “Re” and “Im” denote the real and imaginary components of a complex func-
tion, respectively.) Thus, one gets the following equivalent representation of the Lax

spectrum, namely,
Srax ={z € C: Ag(2) € [-1,1]}. (2.15)

Note (2.12) and (2.13) immediately imply A; is real-valued along the real z-axis.
Further, recall the following:

Lemma 2.2 (Entire, [42,44]). The Floquet discriminant A¢(z) is entire.
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Hence, A satisfies the Schwarz reflection principle, i.e., Ag(Z) = A¢(2).
Additionally, the Floquet spectrum (2.4) has the equivalent representation (see [43]
for further details)

3y, ={z € C: Ae(z) = cos(vL), v € R}. (2.16)

Clearly, for v € R one has X, 4,,/; = X,. Importantly, the above arguments show
that

= J 3 (2.17)
vel[0,2x/L)

where the eigenfunctions of (2.4) extend naturally to R. That is, the Lax spectrum
is the union of all Floquet spectra. (Note however that the terminology used in the
literature varies somewhat.)

Recall that &£° is isospectral with respect to time deformations of the potential
that obey the NLS equation (1.4). Thus, X, and X ., and therefore also A, are all
conserved with respect to the flow of the NLS equation (1.4).

Also recall that for the defocusing NLS equation [i.e., (1.4) with a negative sign
in front of the nonlinear term], the corresponding Zakharov—Shabat spectral problem
[i.e., (1.1) with the entry —g(x) in Q(x) replaced with g(x)] is self-adjoint, and there-
fore the spectrum is confined to the real z-axis. In that case, for periodic potentials the
real z-axis decomposes into a (possibly infinite) number of spectral bands [8, 17,43].
Thus, in the self-adjoint case, knowing the periodic/antiperiodic spectrum and their
geometric multiplicities is enough to completely characterize the Lax spectrum.

In contrast, the focusing NLS equation corresponds to the non-self-adjoint case,
for which there is no restriction on the location of the spectral bands in the complex
plane (apart from constraints such as the Schwarz symmetry). This greatly complic-
ates the analysis; and implies the entire Floquet spectrum is relevant. Nonetheless,
one can still introduce the concept of spectral bands and gaps like with self-adjoint
problems, as discussed in Section 3.

Importantly, the inverse spectral theory for (1.1) also involves the Dirichlet spec-
trum. The Dirichlet spectrum is defined as

Ypir(x0) := {¢ € C: there exists v # 0 € H'([x,, x, + L], C?)
s.t. £8v = ¢vand v € BCp;(x,)}, (2.18)

where “BCpjy(x,)” are Dirichlet boundary conditions (BCs) with base point x,, i.e.,

Ul(xo; g? 8) + UZ(XO; é‘v 8) = O? (2193)
vi(xo + L; ¢ e) +va(xo + L; L, e) =0. (2.19b)
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Any value { € Xp;(x,) will be referred to as a Dirichlet eigenvalue of (2.1). Simil-
arly to the Floquet spectrum, one can define Xp;(x,) as the zero set of an analytic
function. Consider the following modified fundamental matrix solution of (1.1):

1

&)(x;z,s) = P(x;z,6)C, C = E(_i 1) (2.20)

The monodromy matrix M¢ (z) associated with D is M¢ (z) = C7'M(z;¢)C. Then,
it follows easily that (see A.3 for details)

Tpir(0) = {¢ € C: M%,(0) = 0}, 2.21)

where the subscript “21” denotes the second row first column entry of the corres-
ponding matrix. Unlike the Floquet spectrum, however, the Dirichlet spectrum is
dependent on the base point x,. Similarly, ¥p;(x,) is not conserved by the flow of the
NLS equation (1.4). Indeed, the Dirichlet spectrum provides angle information in the
“action—angle” formalism of an integrable system. Moreover, Floquet and Dirichlet
spectra together comprise the set of scattering data from which one can reconstruct
the potential (1.3). Namely, one has the following:

Theorem 2.3 (Trace formulae, [44]). Let {z,}nez be the sequence of periodic and
antiperiodic eigenvalues, {C,(x,)}nez the sequences of Dirichlet eigenvalues, and
{En (x0) }nez the sequences of auxiliary Dirichlet eigenvalues, defined respectively as
Sfollows: R

Alzg) =1 =0, M (nixo) =0, Mgy (Znixo) =0, (2.22)

where M (z; x0) and M €(z; x,) are respectively the modified monodromy matrices
ME(z) associated with the translated potentials q(x, + x) andiq(x, + x). Then,

q(x) —q(x) =2 (225 + z2j41 — 25 (x)), (2.23a)
JEZ
q(x) +q(x) = =2i Y (22 + 22j41 — 25;(x)). (2.23b)
JEZ

The numbering of the eigenvalues in (2.23) is such that, for | j| sufficiently large,
take z5j4+1 = Z»; and the {; and {; are the Dirichlet eigenvalues associated with z5;
and z5; 1 (cf. Theorem 3.14 and [16,29]).

3. General properties of the spectrum

In this section we discuss some general properties of the Lax spectrum. Some of the
results below were known, but here are proven for a broader class of potentials. Other
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results are new to the best of our knowledge. In this section we assume & > 0 is fixed.
Proofs of all the results in this section are given in Section 6.1.
Owing to (2.14a), the Lax spectrum (2.3) is located along the contour lines

I''={zeC:ImA,(z) = 0}. (3.1)

Moreover, I' is the union of an at most countable set of regular analytic curves ', in
the complex z-plane [27], each starting from infinity and ending at infinity:

r = U T,. (3.2)

nez

(The precise details of the map n +— I';, are not important for the present purposes.)

Definition 3.1. A spectral band is a maximally connected regular analytic arc along
I, determined by (2.14b). Each finite portion of I, where | Re A¢| > 1 and which is
delimited by a band on either side is called a spectral gap.

With the above definition, one can talk about bands and gaps along each I, as
in a self-adjoint problem. The difference is of course that the bands and gaps are not
restricted to lie along the real z-axis as they would be in a self-adjoint problem, but lie
instead along arcs of I',. Moreover, different curves I'; # I'; (and therefore different
spectral bands) can intersect at saddle points of A,. Figure 1 provides a schematic
illustration of the Lax spectrum. Note that two curves in I" can intersect at most once,
as a result of the following:

Lemma 3.2. The set I, and thus the Lax spectrum Xy ,x, cannot contain any closed
curves in the finite z-plane.

The equivalent statement to Lemma 3.2 for non-self-adjoint Sturm—Liouville oper-
ators is well known [54,55]. As in the self-adjoint case, the band edges still correspond
to the periodic and antiperiodic eigenvalues. More precisely, for A.(z) = 1, the cor-
responding eigenfunctions are periodic with period L, while for A.(z) = —1, the
corresponding eigenfunctions are antiperiodic (i.e., 2 L-periodic). As with Hill’s equa-
tion, some of the spectral gaps might be closed, in which case, for the purposes of this
work, we will count two adjacent bands along a single I',, as a single one. On the
other hand, two intersecting spectral bands lying on different curves I'; # I'; will be
counted as separate. Given this convention, we say ¢ is a finite-band potential if its
Lax spectrum is composed of finitely many spectral bands.

We note that the terminology “finite-gap potential” is much more common in the
literature, especially in the context of special solutions of infinite-dimensional integ-
rable systems (e.g., see [3]). In the self-adjoint case, every finite-gap potential is also
a finite-band potential and vice versa, so the two concepts are equivalent. However,
this is not true in the non-self-adjoint case.
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Figure 1. Left. Schematic illustration of the Lax spectrum of the focusing Zakharov—Shabat
scattering problem with a generic periodic potential. Right. Schematic illustation of the Lax
spectrum of the focusing Zakharov—Shabat scattering problem with a real, even, or odd periodic
potential. In these cases elements of the Floquet spectrum come in quartets, i.e., {z,z, —z, —Z}
(see Lemma 5.1).

The following property is well known, but a proof of it is provided in Section 6.1
for convenience:

Lemma 3.3 (Infinite band, [24,42,44]). The real z-axis is an infinitely long spectral
band; that is, R C Xy .

A key to characterize many properties of the spectrum is the asymptotic behavior
of the Floquet discriminant as z — 0.

Lemma 3.4. If ¢ € L°°(R), then for each fixed ¢ > 0 the Floquet discriminant A,
has the following asymptotic behavior:

1 —izL/e 2izL/¢

X (1+4+e +o0(1)), z—>00,Imz >0,
Ae(z) = { 2 (3.3)
2

e"1zL/e(] 4 e?12L/e £ O(1/Imz)), Imz — oo, Imz > 0.
If ¢’ € L'([0, L)), then for each fixed & > 0

1. . . 1
AS(Z) — Ee—lzL/a(l + e/ZIZL/E +2128(1 —62IZL/E)||Q||§0(;)>,

z—00,Imz > 0. (3.4)

Moreover,

Limz

1
Ags(z) =cos(zL/e) — Toe sin(zL/¢)||q|15 + 0(6 ) z—>00,Imz>0. (3.5)
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If. additionally, g’ € L*°(R), then,

1 . ‘ 1 4 1
A - _ —1zL/a(1 2izL/e 1— 2izL/e 2 ( ))7
e(2) = e +e to.0—e Migllz +o (Imz)?
Imz - o0, Imz > 0. (3.6)
Further, by differentiating (1.1) with respect to z one also has the following:
Lemma 3.5. [fg € L°°(R), then for each fixed ¢ > 0

L
Al(z) = - sin(zL/g) +eX™%/25(1), z — 0o, Imz > 0. 3.7

If, additionally, ' € L'([0, L)), then for each fixed & > 0

Limz

L . e
NL(2) = = sin(zL /) = 55 cosGL/e) g1 + o ().
z—00,Imz > 0. (3.8)

Note the asymptotic behavior for Im z < 0 follows from the Schwarz reflection
principle. Expansions similar to those in Lemma 3.4 were given in [27,44], but were
obtained under the assumptions that the potential is twice differentiable. Lemmas 3.4
and 3.5 extend the validity of the corresponding results to potentials in L>°(R). Lem-
mas 2.2 and 3.4 also immediately imply:

Corollary 3.6. If ¢ € L>®°(R), the Floquet discriminant A;(z) has an essential sin-
gularity at infinity.

The fact that A, is entire has a further consequence. Recall (2.16), which says
that the Floquet spectrum for a given value of v € R is the set of z € C for which
A¢(z) = cos(vL). Then one easily gets:

Lemma 3.7. Foreachv € R, the corresponding Floquet spectrum %, is discrete.

Similarly, by (2.21) one has that Xp;(x,) is also discrete. Next, we derive an
upper bound on the imaginary component of points in the spectrum.

Lemma 3.8. Let g € L°(R). Then, forall z € Xy,
[Imz| < [|¢]|cc- 3.9)
Moreover, for all ¢ € Zpi(x,),
[Tm | < lIq|loo- (3.10)
The proof of Lemma 3.8 actually yields a stronger estimate: for all z € Xy 4,

[Tm z| < | Re(qua. vi)l/(lvill2][v2]12). (3.11)
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where v(x;z, &) = (v1,v2)7 is an associated Floquet eigenfunction of the ZS prob-
lem (1.1), and (-, -) is the L2([0, L]) inner product (cf. A.1). Inequality (3.9) refines
the bound obtained in Theorem 4.2 in [27]. Importantly, there exists potentials such
that estimate (3.9) is sharp (see Section 7.1 for an example).

Next, Lemma 3.4 leads to the following result:

Lemma 3.9. Let g € L°°(R). Then for each fixed ¢ > 0 the Floquet discriminant
A¢(z) has infinitely many simple real zeros, and at most finitely many nonreal zeros.
The same is true for the zeros of AL(z).

In turn, Lemma 3.2, combined with Lemma 3.4 provides the key to proving the
next result. Recall that the resolvent set of an operator is the complement of its spec-
trum. Thus, we give the following definition:

Prax = C \ Zpax. (3.12)

Theorem 3.10. Let g € L°°(R). Then the resolvent set pLay is comprised of two con-
nected components.

Importantly, Theorem 3.10 should be compared to that for Hill’s equation, whose
resolvent set is connected [54,55].

By Lemma 2.2 and Corollary 3.6, one gets that A, is entire as a function of z with
an essential singularity at infinity. It then follows from Picard’s theorem that A, takes
on every value infinitely many times with at most one exception. The following result,
which is a consequence of Lemma 3.9, clarifies that the lone exception (if one exists)
cannot be a value corresponding to the Lax spectrum:

Theorem 3.11. Let g € L>®(R). Then, for every v € R the Floquet spectrum X, is
countably infinite.

Next, we turn our attention to the number of spectral bands. As discussed above,
adjacent bands belonging to the same contour ', with a degenerate gap are counted
as a single one (and therefore the real axis counts as a single infinitely long band), but
bands belonging to different contours I'; # I'; (which can intersect at most once) are
counted as separate. Note that a degenerate gap occurs at a multiple point, i.e., a point
zM € C such that A2(z™) = 1, and AL(zI") = 0. Thus, a multiple point is a periodic,
or antiperiodic, eigenvalue that is also a critical point of the Floquet discriminant. An
important distinction is that in the self-adjoint case necessarily A (z)') # 0, while in
the non-self-adjoint case one may have higher order zeros.

Recall that, if the number of spectral bands is finite, we call g a finite-band poten-
tial. Equivalently, ¢ is a finite-band potential if the number of points z;, € R such that
Al(zy) = 0,and Ag(z5) € (—1, 1) is finite.
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Next, let Ry denote the rectangle with vertices =N +i||¢|lco Where N € N. An
important consequence of Lemmas 3.8 and 3.9 is the following:

Theorem 3.12. Let g € L°°(R) and fix ¢ > 0. Then, q is a finite-band potential if and
only if there exists N = N(q;¢) € N such that (Z1.x \ R) C Ry.

As a special case, Theorem 3.12 implies that, if the Lax spectrum is contained in
the “cross” R U iR, the potential is finite-band. Importantly, one can show that, if all
periodic and antiperiodic eigenvalues are in R U i R, that is enough to conclude that
the potential is finite-band. Specifically:

Theorem 3.13. Let g € L°°(R) and suppose
YL UXorr CRUIR, (3.13)

that is, the periodic/antiperiodic spectrum is only real and purely imaginary. Then q
is a finite-band potential.

Note that the converse of Theorem 3.13 does not hold. That is, there are finite-band
potentials whose periodic and antiperiodic eigenvalues are not only real or imagin-
ary. (For example, any Galilean transformation of a potential obviously preserves its
finite-band nature, but shifts the Lax spectrum horizontally, and therefore moves any
imaginary eigenvalues off the imaginary z-axis.) Nonetheless, Theorem 3.13 will be
relevant in Section 5, where we study potentials whose spectrum possesses additional
symmetries.

Next, we discuss the asymptotic distribution of bands as z — oo. For this purpose,
following [44], we introduce the concept of “spine,” defined as a spectral band that
intersects the real axis transversally and does not intersect any other band. Recall that
any intersection point between two or more bands is a saddle point (or critical point)
of the discriminant, that is, a point z;, € C such that A/(z5) = 0.

Theorem 3.14. For any g € L (R) and each fixed ¢ > 0, there exists some N =
N(q;e) € N, such that all but finitely many bands of the Lax spectrum are spines
located outside Ry . Moreover,

i.  for each of these spines, there exists n € Z such that the intersection point
between the spine and the real axis is o(1)-close to the point nme/L as
n — %£oo;

ii.  only one spine can be o(1)-close to nmwe/L as n — +o0.

Further, if ¢’ € L'([0, L)), the intersection point is O(1/z)-close.
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Figure 2. Left. Schematic diagram of the spectrum for a finite-band potential. Right. Schematic
diagram of the spectrum for an infinite-band potential.

Related asymptotic results were given in [16,27,44]. As a consequence of The-
orem 3.14, we have that the potential ¢ € L°°(RR) is a finite-band potential if and only
if there exists N € N such that X 4 contains no spines outside Ry. An illustration
of Theorem 3.14 is given in Figure 2.

Theorem 3.14 has an important consequence. Since a spectral gap is delimited by
the presence of a spectral band on either side of it, the number of gaps associated
to any given potential is always finite, since for any potential there is a finite region
of the complex plane outside of which all bands are spines (for which there are no
associated gaps), and the number of spectral bands (and therefore gaps) inside any
finite region of the complex plane is always finite (as a consequence of the fact that
Ag(z) is entire). In other words, for the focusing Zakharov—Shabat operator on the
circle, every potential is a finite-gap potential (cf. [28]). This situation is in marked
contrast with the case of the spectral problem for the Hill operator and that for the
self-adjoint Zakharov—Shabat operator, for which finite-gap potentials are a special
subset. In contrast, for the focusing Zakharov—Shabat operator the only meaningful
distinction is that between finite-band and infinite-band potentials (cf. [28]). The key
distinction is the existence of finitely many (as opposed to infinitely many) simple
periodic/antiperiodic eigenvalues, which defines a Riemann surface of finite-genus [3,
27,28].

4. Properties of the spectrum in the semiclassical limit
In this section we describe the Lax spectrum in the semiclassical limit for complex-

valued potentials that do not depend on & (see Section 7 for a discussion regarding
potentials that depend on ¢ via a “fast phase.”). Before we do so, however, we dis-
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Figure 3. Left. Bounds on the Lax spectrum for ¢ = 1 (dark red). Right. Bounds on the Lax
spectrum when 0 < ¢ < 1 (dark red).

cuss further rigorous bounds on the location of the Lax spectrum under fairly weak
assumptions on the potential.

Lemma 4.1. Suppose ¢’ € L®(R). If z € I, then
€
|Rez|[Imz] < ~lg"lloo- “.1)
The proof of Lemma 4.1 actually yields the stronger estimate

&
|Rez||Imz| < 5' Im(g'v2, v1i)|/ (v ll2[[v2]]2). (4.2)

where v(x;z, &) = (v1,v2)7 is an associated Floquet eigenfunction of the ZS sys-
tem (1.1), and (-, -) denotes the L2 ([0, L]) inner product (cf. A.1). Thus, if z € Ty,
then Lemmas 3.8 and 4.1 together give the bound

. ellg’lloo
I < , . 4.3
2] < min g1, 51 @3)
Theorem 4.2. Suppose g’ € L°(R). Then
Srax C A%(q), 4.4)

where
&
A%(q) = {z € C:|Tmz| < [[g]lec} N {z € C:|Rez||Imz| < E||q,'||oo}. 4.5)

That is, the Lax spectrum is contained in the set A®(g) depending explicitly on &,
the semiclassical parameter. The region A®(g) is shown in dark red in Figure 3.



G. Biondini, J. Oregero, and A. Tovbis 954

Theorem 4.2 complements the localization result of [16] for the periodic and anti-
periodic eigenvalues. Moreover, the results in Lemmas 3.8 and 4.1 apply to the entire
Lax spectrum, not just the periodic and antiperiodic eigenvalues.

Also, recall that cardinality results for the periodic, antiperiodic, and Dirichlet
eigenvalues were obtained in [29, 30,44]. Namely, there exists N = N(g) € N such
that in the disc D(0; (N — 1/2)nr/L) there are exactly 2N — 2 periodic eigenval-
ues, 2N antiperiodic eigenvalues, and 2N — 1 Dirichlet eigenvalues. Importantly, for
g € H'([0, L]) one can get an explicit estimate for N = N(q) (see [44] for details).
Theorem 4.2 allows one to strengthen those results. For brevity, we let ¢ = 1 in The-
orem 4.3 and Corollary 4.4.

Theorem 4.3. Suppose g’ € L°(R) and ¢ = 1. Consider the sets

Miax(q) := A®(q) N D(0: (N — 1/2)7/L), (4.6a)
Mpir(q) := (R X i[=[l¢gllco. Igllec]) N D(0: (N —1/2)/L). (4.6b)

The set TlLax(q) contains exactly 2N — 2 periodic eigenvalues and 2N antiperiodic
eigenvalues. The set Tp;(q) contains exactly 2N — 1 Dirichlet eigenvalues.

A consequence of Lemma 3.4 and Lemma 4.1 is the following:

Corollary 4.4. Fix v € R. Suppose q¢' € L>°(R) and ¢ = 1. Then the Floquet eigen-
values {z, (V) }nez can be partially ordered such that Re z,,(v) — +o0 as n — £o0.
Moreover,

Imz,(v) = O(1/Rez,(v)), asn — Foo, Rez # 0, (4.7)

We now turn to the semiclassical limit. Theorem 4.2 allows us to give a rigorous
characterization of the Lax spectrum as ¢ |, 0. This is important since for certain initial
data the focusing NLS equation on the circle appears to admit a coherent structure in
the semiclassical limit [6]. Note that spectral confinement to the real and imaginary
axes together with the fact that the real z-axis is an infinitely long band implies that
all nonlinear excitations emerging from the input have zero velocity.

Corollary 4.5. Suppose q' € L™ (R). Define
Too = RUIi[—[¢]loc: 9 loo]- (4.8)
Moreover, let Ng(Xo0) be a §-neighborhood of X . Then for any § > 0,
Yrax C Ns(Eo), (4.9)

Sor all sufficiently small values of . That is, for any § > 0 there exists an e« > 0 such
that (4.9) holds for all 0 < & < g4.
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Figure 4. Left. The §-neighborhood of ¥ (light gray). Right. Bounds on the Lax spectrum
for 0 < & < 4 (dark red) with the §-neighborhood of X~ (light gray).

Corollary 4.5 is a direct consequence of Theorem 4.2. Moreover, Corollary 4.5
corroborates and puts on a rigorous footing the numerical results of [6]. Roughly
speaking, one can interpret Corollary 4.5 as saying that the Lax spectrum of £° “con-
verges” to Yoo in the limit ¢ | 0. Note, however, that in general the semiclassical
limit is a singular limit. This is why it is necessary to state the result in a more indirect
way. (It was also shown in [6] through numerical and asymptotic calculations that the
number of bands is O(1/¢) as ¢ | 0. However, no rigorous proof of this result exists
to the best of our knowledge.) An illustration of the §-neighborhood Ns(X ) and its
relation to the Lax spectrum is given in Figure 4. The proof of Theorem 4.5 and of all
results in this section is given in Section 6.2.

5. Properties of the spectrum for real or symmetric potentials

In addition to Schwarz symmetry, the Lax spectrum acquires additional symmetries
when the potential in (1.1) is itself symmetric. In particular, if the potential ¢ is real
then it follows that the monodromy matrix satisfies

M(—z;e) = M(z;¢). (5.1)

Next, we list some additional symmetries of the monodromy matrix when the poten-
tial is symmetric. These symmetries are easily deduced from the symmetries of the
ZS system (1.1) (cf. A.2). Suppose that the potential satisfies a generalized reflec-
tion symmetry, that is, there exists # € R such that ¢(—x) = e?'¢ ¢(x) for all x > 0.
(Obviously for 8 = 0 mod 7z, and # = /2 mod w one has the cases of even and
odd potentials, respectively.) Then, one gets

M(—Zz;e)~! = (cosBoy + sinfor) M(z; €)(cos Boy + sinfoy), (5.2)

where 0, and o are the first and second Pauli matrices, respectively (cf. A.1).
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If the potential in (1.1) is PT-symmetric, that is, if g(—x) = g(x), then it follows
that the monodromy matrix satisfies

M((Z;e)™! = 03M(z;¢)03. (5.3)
Using the above symmetries, for odd real, or even real potentials we obtain

c(z;8) +s5(z;¢) ) (5.4)

M(z:e) = (s(z;s) (1 £5%(z;:¢))/c(z5¢)

where ¢ = M11(z;¢) # 0, and s = M>1(z; ¢), and where the “+” sign holds for odd

w9

real potentials and the sign for even real potentials. Using the above symmetries,

we get the following:

Lemma 5.1. Let the potential q satisfy at least one of the following conditions:
(a) it is real; (b) it is even; (c) it is odd. Then, ¥y, is symmetric with respect to
the imaginary z-axis, and I includes the Im z-axis, cf. (3.1).

Next, using Lemma 5.1 we get the following:

Theorem 5.2. Let the potential q satisfy at least one of the following conditions:
(a) it is real; (b) it is even; (c) it is odd. If the periodic and antiperiodic spectra are
real and purely imaginary only, then the entire Lax spectrum is contained within the
real and imaginary axes, that is, X1 ,x C Yoo C RUIR, cf (4.8).

Further, by assuming the potential is real, or symmetric one is able to obtain
stronger bounds on the Dirichlet and Floquet spectra:

Lemma 5.3. Suppose g’ € L (R). Moreover, let the potential q satisfy at least one
of the following conditions: (a) it is real; (b) it is odd; (¢) it is PT-symmetric. If ¢ €
EDir(O); then

€ !/
IRe{[[Im ] = Slg"loo- (5.5)

Importantly, for ¢ real, the result holds more generally for { € ¥p;(x,). That is,
the bound (5.5) is independent of the base point x, when g is real.

Theorem 5.4. Assume q¢' € L (R). Let the potential q satisfy at least one of the
following conditions: (a) it is real; (b) it is odd; (c) it is PT-symmetric. Then,

Zpir(0) C A%(q), (5.6)
where

A(@) = (¢ € C:/Im) < llglloo) N { € C: Rl ImE] < S0 oo} 57)
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Thus, for these classes of potentials the Dirichlet spectrum localizes to the real and
imaginary axes in the semiclassical limit. An interesting open question is whether the
bound obtained in Lemma 5.3 holds more generally for complex-valued potentials.
These results should be compared to those pertaining to the Lax spectrum. Finally,
we have the following interesting bound:

Lemma 5.5. Let g be real, strictly positive, and suppose that ¢’ € L (R). Then,
[1mz] < 1 ing) e (58)
Jorall z € Zp . \ iR. Moreover,
[1mE] < S0 g) oo (59)

Jorall L € Tpir(x,) \iR.

Thus, for strictly positive real potentials Im z(v; &) (resp. Im {(¢)) is uniformly
O(e) as ¢ |, 0 for non-purely imaginary z € Xy, (resp. { € Xpir(x,)). (Note by phase
invariance this result can easily be extended to strictly negative potentials as well.)
This result provides strong justification of the WKB analysis employed by two of
the authors in [6]. Moreover, Lemma 5.5 is the analogue for periodic potentials of
the classic results about purely imaginary discrete eigenvalues for potentials on the
line [5,35]. Finally, localization along the imaginary axis of the spectral variable as
in Lemma 5.5 together with the WKB results obtained in [6] find application in the
study of soliton and breather gases in focusing nonlinear media (see [18]).

When the potential in the ZS system (1.1) is real, one can map (1.1) to a non-self-
adjoint Hill’s equation. Specifically, the invertible change of variables

y+(x;id,e) = vi(x;z,e) Liva(x;z,e) (5.10)
maps (1.1) into linear second-order ODEs

(—&20% + We(x;8)ys = Ays, (5.11)

which are of course the celebrated Hill’s equation, with spectral parameter A := z2

and complex potentials
Wi(x;e) = —q*(x) Fieq'(x). (5.12)

Because Wy (x;e) are not real, in general the eigenvalue problems (5.11) are non-
self-adjoint. Note however that, when ¢ is real and even, the potentials in (5.12) are
PT-symmetric, i.e., invariant under the combined action of space reflections and com-
plex conjugation [21]. So, the results above for real and even potentials also serve as a



G. Biondini, J. Oregero, and A. Tovbis 958

further study of spectral problems for the Hill operator with a PT-symmetric potential.
Note, estimate (3.9) gives Re A > —||¢||%,, and the estimate (4.1) gives ImA = O(¢)
ase | 0in (5.11). Theorem 5.2 implies that, even though real potentials are associated
with a Hill operator with a complex potential, if the periodic and antiperiodic Floquet
eigenvalues are all real or purely imaginary, then the corresponding non-self-adjoint
Hill equation (5.11) has a purely real spectrum. Moreover, this implies that W is
a finite-band potential (recall that for the ZS system the real z-axis is an infinitely
long band). Hence, if ¢ € L°°(R), then along the real A-axis the spectral bands and
gaps are confined to the interval [—||¢||2,, 0), followed by one infinitely long spec-
tral band along the interval [0, co). Note however the thesis of Theorem 5.2 is not
true if the potential is not real or even or odd, because in that case the spectrum pos-
sesses no left-right symmetry. The proofs of all the results in this section are given in
Section 6.3.

6. Proofs

6.1. Proofs: General properties of the spectrum
We refer the reader to A.1 for definitions.

Proof of Lemma 3.2. By Lemma 2.2, A.(z) is an entire function differing from a con-
stant. Thus, Im A,(z) is harmonic. By the maximum principle the set I" cannot contain
any closed curve. Further, along any spectral band we have Im A, (z) = 0. Hence, Xy 4«
contains no closed bands in the finite complex z-plane. ]

Proof of Lemma 3.3. By (2.12), A¢(z) € R along the real z-axis, and
lc(zie)]? + |s(z:e)|* = 1.
Further, along the real z-axis A.(z) = Rec(z;¢). Thus,
M@ = (1= Iszie))? < 1.
Hence, R C Xy . [

In order to prove Lemma 3.4, we need two intermediate results. Recall that one
can write
M(z;e) = ®(L;z,¢), 6.1)
where ®(x; z, ¢) is the principal matrix solution of (1.1). Thus, (2.13) implies A;(z) =
% tr ®(L;z, ). Accordingly, Lemma 3.4 is a consequence of the asymptotic behavior
of ®(x;z,¢) as z — oo. Introducing the change of dependent variable

(x;z,6) 1= O(x;z,¢) e Z¥03/¢ (6.2)

as well as the notation u;; for i, j = 1,2 to denote matrix entries, we next prove:
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Lemma 6.1. Let g € L°°([0, L)), and let Im z > 0. Then, for each fixed ¢ > 0

M 2
L
e ezoe) — 1] < Lo o (6.3a)
2¢Imz
where M = (L/¢)?||q||co. Moreover,
ni1(x;z,e) =1+o0(), z—o00,Imz >0, (6.3b)

uniformly for x € [0, L]. If ¢’ € L'([0, L)), then for each fixed ¢ > 0
1 X
pnGze) =1+ 5 [0IPdy 4001/, 200 mz =0 (64)
ize
0
If, additionally, ' € L*°([0, L]), then,

X
1
uii(x;z,e) =1+ TT7e / lg(»)|>dy + O(1/(Imz)?), Imz — oo, Imz > 0.
ize
0

(6.5)
Proof of Lemma 6.1. Using (6.2), it follows that p = (u;;) satisfies the following
system of ODEs:
ep' = —izfos, u] + Q(xX)p, (6.6)
where [03, 1] := o34 — wo3. Thus, p satisfies the matrix Volterra linear integral equa-
tion
X

pxiz,e) =1+ / e 1 ZTNS/E O (y)u(yiz,e) €FTIEdy fe (6.7)
0

Explicitly, (6.7) yields coupled integral equations for the individual entries of ;. (x;z, €).
In particular,

X

iz = 1+ / gzt (vi 2. 8) d v e, (6.8)
0
X
p21(x:z,6) = — / 2 Z0mNEg(V i (v;z,e) d y/e, (6.8b)
0

with similar equations for @12(x; z, €) and o3 (x; z, €). Eliminating (1, one then
obtains

nr1(x;z,e) =1+ K(ugp)(x;z, €), (6.92)
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where
K(f)(x;z,¢e):= /k(x,t;z,e)f(t)dt/s, (6.9b)
0
k(x,t;z,8) ;= —M/eﬁz(y_’)/sq(y)dy/s, x> 1. (6.9¢)
t

Note that, forall x € [0, L] and 7 € [0, x], |k(x,7;z,¢)| < L||q||%/¢. Then, introducing
the Neumann series

o0
pnizoe) =) u(xiz.e). (6.10a)
n=0
=1, J ez e = K@) = K" (W), (6.10b)

we have the bound
th—1

K" (f)(x:2.8)] /|k<x,t1;z,s)|---/ k(tnr tn: 2. )11 f 1) At - d 1 /"
0 0

A

Mfl
n!

=

1/ lloo-

where M := (£)2||q|/% . Hence, the series is absolutely convergent, and

o0
sup  |pai(xiz,e)| < Y [K"(D)(x;z,8)] < e, (6.11)

x€[0,L],Imz>0 n=0

since u(lol) = 1. Next, from (6.8b) and (6.11) we immediately have |uz1(x; z, &)| <

eM |¢lloo/(2Imz) for all z such that Im z > 0. Thus, using (6.8a) one gets (6.3a).

Next, we consider the case z — oo while Im z remains bounded. The Riemann—
Lebesgue lemma applied to (6.9¢) implies that, for all x € [0, L] and ¢ € [0, x], k(x, ¢,
z,&) = o0(1) as z — oo from Imz > 0. Moreover, it is straightforward to show that,
as in [17], g € L®°([0, L]) is sufficient to ensure that the o symbol is uniform with
respect to x € [0, L]. (E.g., this can be done by approximating ¢ in (6.9c) with smooth
functions, which are dense in L' ([0, L]).) Note that [17] considers a Sturm—Liouville
problem, which involves not only ¢ but also ¢’, and absolute continuity of ¢ implies
the existence of ¢’ € L1 ([0, L]). Here, g € L*°([0, L]) implies g € L' ([0, L]). Together
with the uniform boundedness of (1, for Im z > 0, this gives

X
|K(11)(x;z,8)| §eM/|k(x,t;z,s)|dt/s:0(1), z =00, Imz > 0. (6.12)
0
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Thus, p11(x;z,6) =14 0(l)as z — oo from Imz > 0, i.e., (6.3b). In turn, using (6.8b)
and recalling (6.11) one gets immediately

U21(x;z,6) =o0(l), z—>o00,Imz >0. (6.13)

Now, assume additionally that g’ € L' ([0, L]). From (6.6), it follows 1, = g(x)21/e.
Then, integrate (6.8b) by parts:

1 — . -
H21(x:z,8) = E(Q(X)MII(X;Z’S) —e217¥/% 4(0))

X
1

-5 / 21260 ()11 (y; 2, €)) d y, (6.14)
0

where p11(0; z, &) = 1. This implies, for ¢’ € L*°([0, L]),

[h21(x;2, ) = ! ( (O p11(x: 2, €) — 21752 4(0))

1
O(W), Imz — o0, Imz > 0. (6.15)

Plugging (6.15) into (6.8a) gives (6.5). Finally, note, by (6.13), and since ), is pro-
portional to 51, it follows that u’“ (x;z,8) = o0(1) as z — oo from Im z > 0. Hence,
by (6.14) one gets

1 _
pa1(x;2,8) = ——(q(pn (x; 2, 8) =€ /° 4 (0))
—1—0(1), z — 00, Imz > 0. (6.16)
z

Plugging (6.16) into (6.8a) gives (6.4). [ ]

Next, since (»2(x; z, €) is unbounded as Imz — oo from Im z > 0 we make a
further change of variables, namely,

({12, fiza)T = €278 (luyn, 122) 7, (6.17)

and examine the asymptotic behavior of ji25(x;z, €) as z — oo from Imz > 0.

Lemma 6.2. Let g € L*°([0, L]), and let Im z > 0. Then, for each fixed ¢ > 0,

M 2
2izafe) o & Lldlle

, Imz >0, (6.18a)
2¢eImz

|f22(x;z,8) —e
where M = (L/¢)?||q||%. Moreover

fiaa(x;z,€) = e212¥/¢ 1o(1), z— o0, Imz >0, (6.18b)



G. Biondini, J. Oregero, and A. Tovbis 962

uniformly for x € [0, L]. If ¢’ € L'([0, L)), then, for each fixed & > 0,

21zx/8

. 1
ﬂgg(x;z,s):eZIZ"/s ¥ /|q(y)|2dy+0( ), z—00,Imz >0. (6.19)
ize

If, additionally, g’ € L*°([0, L)), then,

] 2izx/e ~
fiaa(x;z,8) = e12¥/e — . /Iq(y)lzdy
0
1
O(W), Imz — oo, Imz > 0. (6.20)

Proof of Lemma 6.2. Using (6.7) and (6.17), we have

X

fi2(x:z,8) = /61()’)/122()/;2,8)(1)//8, (6.21a)
0
X
fira(x;z, ) = e17¥/e f 2 2NV a (s 2, e) d y /e (6.21b)
0

Eliminating fi1,, one then obtains

fia(x:2,8) = 22 £ G(fin)(x: 2. 8), (6.22a)
where
G(f)(x;z,8):= /g(x, t;z,e)f(t)dt/e, (6.22b)
0
g(x,t;z,8) := —q(t)/eZiZ(x_y)/""@dy/s, X >t (6.22¢)

Note that, forall x € [0, L] and 7 € [0,x], |g(x,;z,¢)| < L||q||%/¢. Then, introducing
the Neumann series

fira(x;z,€) = Z A% (x:z.e), (6.23a)

ﬂg()z) — QZIZX/S, [L(H-H)(x z, 8) G(FL(")) — G”+1(M(0)) (623b)
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we have the bound

X th—1
|G"<f)<x:z,s>|5/|g<x,t1;z,s)|---/ 18(nort. tn: 2. O f )| A1 --d 11 /6"
0 0
Mn
<)
n!

where M := (L/¢)?||q||%,. For Imz > 0, it follows | €2'?*/¢ | < 1 50 jizy(x;z,€) =
0 G"(e212¥/¢) is absolutely convergent, and
n=0 y g

o0
sup |fia(x:z,8)| < Y |G (@) (xiz ) <M (6.24)

x€[0,L],Imz>0 n=0

From (6.21a) and (6.24), we have |ji12(x; 2, €)| < eM L|q|lco/e. Using (6.21b), one
gets (6.18a).

Next, we consider the case z — oo while Im z remains bounded. The Riemann—
Lebesgue lemma applied to (6.22c) implies that, for all x € [0, L] and ¢ € [0, x],

gx,t;z,e) =0(1), z— o0, Imz>0.

Together with the uniform boundedness of fi», for Imz > 0, this gives

X
|G (fi22)(x;2,8)| < eM/ lg(x.t;z,8)|dt = 0(1), z—o00,Imz>0. (6.25)
0

Thus, fi22(x;z,€) = e217¥/¢ +o(1) as z — oo from Im z > 0, i.e., (6.18b). Inserting
this expression into (6.21a) then yields, by the Riemann-Lebesgue lemma,

P

f12(x;z,8) = /q(y)(ezuy/8 +o(1))dy/e =o0(l), z > 00, Imz>0. (6.26)
0

Now, assume additionally that ¢’ € L' ([0, L]). From (6.6) it follows 1}, = q(x)fi22/¢.
Then, integrate (6.21b) by parts:

] : —
fiza(x;z,8) = e?17¥/e +ECI(X)IL12(X§Z,8)
1 X
—E/eziz(x_y)/g(CI()’)ﬁlz(M278))/(1)’, (6.27)
0
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where [i12(0; z, ) = 0. Expanding the derivative, using (6.21a), and ¢’ € L*°([0, L])
gives

X

fiaaiz,) = 25 o [T (3iz. ) dy
0
1
O(W)’ (6.28)

as Imz — oo from Im z > 0. Then, using i}, = g(x)(e*'7*/* +0(1/Im z)) as
Imz — oo gives (6.20). Moreover, i}, = q(x)(e?'?*/¢ +-0(1)) as z — oo from
Imz > 0. Hence, using (6.27) one gets

_ . 1 _ e2izx/s % )
fiaa(x;z,6) = *12¥/° o ai(xiz.e) - —— / lg(»I~dy/e
0
1
+ o(—), (6.29)
z
as z — oo from Imz > 0. Using (6.26) gives (6.19). ]

We are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. Now that we have the asymptotic behavior of w1, and fis,
Lemma 3.4 follows by expressing A; as

1 1 i
Ae(z) = S d(Liz.e) = Se ZLIe (i (Ls 2, €) 4 fiaa(L; 2, 8)),

and combining the above results using the relevant function spaces. ]

Proof of Lemma 3.5. One of the consequences of Lemmas 6.1 and 6.2 is that the nor-
malized matrix fundamental solution ®(x; z, €), introduced right above equation (2.9),
has the asymptotics

D(x;z,6) = (I +o0(1)) e 17¥93/8 a5z — o0, (6.30)

from Im z > 0 and bounded, and for each fixed ¢ > 0.
To prove the remaining formula (3.7), we start with the equation

X
0, P(x;z,¢8) = —iCD(x;z,s)/ O 1(y;z,8)03P(y;z,€)d y, (6.31)
0
obtained by differentiating (1.1) (with v replaced by ®) with respect to z and then

solving the resulting nonhomogeneous ODE for d,®. Equation (3.7) follows after
substituting (6.30) into (6.31). A further consequence of Lemmas 6.1 and 6.2 is that
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if ¢’ € L'([0, L]), then the normalized matrix fundamental solution ®(x; z, ¢) has the
asymptotics

D(x;z,6) = [H+—2? 03 [ G2 dy/e + ——03(0(x) — e 21X93/¢ 0 (0))
iz 2iz
0

+ 0(1) e—izxog,/s’
zZ

as z — oo from Im z > 0 and bounded, and for each fixed ¢ > 0. Then, substitut-
ing (6.32) into (6.31) gives

(6.32)

2e2z

X
0;P(x;z,8) = (—1%;3 I /Iq(y)lzdy) e—izxo3/e
0

LImz

i ;;_Z(e—izx@/e 0(0) + elzxo3/e Q(X)> + 0(6 >’ (6.33)

as z — oo from Im z > 0. Finally, (3.8) is given by A(z) = %tr 9, P(L;z,¢). ]

Proof of Corollary 3.6. From Lemmas 2.2 and 3.4, we know A; is an entire function
differing from a constant. Thus, A, must have either a pole, or an essential singu-
larity at infinity. Suppose A, has a pole at infinity. Then, it must be a polynomial.
This implies there exists an integer n > 1 such that A.(z) = O(z") as z — oco. By
Lemma 3.4, one has A,(z) = O(eX™7) as Imz — oo which is a contradiction. Thus,
A, must have an essential singularity at infinity. |

Proof of Lemma 3.7. Fix v, € R. Define fz(z) := Ag¢(z) — cos(v,L). By Lemma 2.2,
fe is an entire function of z. Further, using (2.16) one gets X,,, = {z € C: fz(z) = 0}.
Hence, %, is the set of zeros of an entire function. Thus, the Floquet spectrum is
discrete. ]

Proof of Lemma 3.8. Let z € X ,«. This implies v € L*°(R) is a non-trivial solution

of (1.1) bounded for all x € R. By Floquet’s theorem, v = ¢'”* w, where w(x + L;

z,6) =w(x;z,¢),and v € R. Plugging this expression for v into (1.1) gives a modified
scattering problem, namely,

., [zHev ig(x)
iew = (—im . —|—sv)w' (6.34)

Write (6.34) in component form:
iew] —ig(x)wy = (z + ev)wy, (6.352)
iew) +ig(x)wy = (—z + ev)w,. (6.35b)
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Multiply (6.35a) by w; and take the complex conjugate. This gives two equations
which we integrate over a full period. Thus, we arrive at the integrated expressions

L

i/ g)wiwadx = —ie(wy, wi) — (z + ev)(wy, wy), (6.36a)
0
L

i/ g()wiwa dx =ig(wy, w)) + (Z + ev){wr, wy), (6.36b)
0

where (-, -) is the L?([0, L]) inner product of a scalar function (cf. A.1), and boundary
terms vanish since wi(x + L;z,¢&) = wi(x;z,¢). Adding (6.362) to (6.36b), one gets

—Imz|w; |3 = Re(qwa, wy). (6.37)

Similarly, multiply (6.35b) by w,, take the complex conjugate, and integrate. Thus,
we have the integrated expressions

L

i/q(x)wlwz dx =ie(wy, wy) + (—z + &v){wa, wa), (6.38a)
0
L

i/q(x)wlwz dx = —ie{wa, w5) + (Z — ev){wz, wa), (6.38b)
0

where again boundary terms vanish since wy (x + L;z,¢&) = w,(x;z,¢). Adding (6.38a)
and (6.38b), one gets
—Imz[lwz |3 = Re(qwa, w). (6.39)

Equating (6.37) and (6.39), we conclude
z € Zax \R = Jwi]2 = [[wz]2. (6.40)
Thus, the Cauchy—Schwarz inequality implies
0 < [Imz||wa3 < {gwz, wi)| < llglloollw2l3.

Hence, one gets (3.9).
Next, let { € Zpi(x,). Without loss of generality, take x, = 0. Note that the
Dirichlet boundary conditions (2.19) imply

vi(L: L o) = [1(0: 8. &) = [v2(L: 8. &)” = [v2(0: . &) (6.41)
Write (1.1) in component form:

iev] —ig(x)va = Cvy, (6.42a)
ievh +ig(x)vy = —{vs. (6.42b)
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Multiply (6.42a) by v; and take the complex conjugate. This gives two equations
which we integrate over a full period. Thus, we arrive at the integrated expressions

L
i/q(x)f)lvzdx
0
—ie(ui(L: L o)) — o1 (0: L 0)P) —ie(vrv}) — il (6430)
and
L
i/mmazdx =ie(vy,v}) + C|lv1]3. (6.43b)
0
Adding (6.43a) to (6.43b), one gets
L
/Q(X)ﬁlvz +q(x)v17,dx
0
= e([vi(L; & &) = [v1(0: ¢, £)[?) — 2Im ¢ |va 5. (6.44)

Similarly, multiply (6.42b) by v, and take the complex conjugate. This gives two
equations which we integrate over a full period. Then, add to get

L

/Q(X)ﬁlvz +g(x)v1v2dx
0
= —e(|v2(L; & 8)* — [v2(0; ¢, €)?) — 2Im ¢ [Jv2 |3 (6.45)

Adding (6.44) to (6.45) gives
L

—Im¢(v,v) = /q(x)ﬁlvz + g(x)v v dx, (6.46)
0

where (v, v) is the L2([0, L], C?) inner product of a two-component vector function
(cf. A.1). Thus, since 2|vy||va] < |v1]? + |v2]?, it follows

L
2 = = 2
[ImEffv]lz < ||q||oo/ [U102] + [v102] dx < g ]looll¥I3-
0

Hence, one gets (3.10). n
In the following proofs we use the fact that one can rewrite (3.3) as
Ag(z) =cos(zL/e) +o(1), z—>00,0<Imz < ||q]loo> (6.47)

for each fixed ¢ > 0, and that A.(Z) = Ag(2).
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Lemma 6.3. Let R, denote the rectangular region with vertices ="7* £ i ||q|l 0o,
where n € N, and ¢ > 0 is fixed. Define Ry, := Ry \ Rn, where k € N with k > n.
Then, for k,n sufficiently large, the functions A¢(z) and cos(zL/¢g) have the same
number of zeros inside Ry .

Proof of Lemma 6.3. Let us fix some arbitrary § € (0, 1) such that § < sinh(]|¢||co)
and assume that k, n € N are so large that, according to (6.47)

|Ag(z) —cos(zL/e)| <8, z € 0Rg 5. (6.48)

where dR , is the boundary of Ry ,. Then, using | cos(x +iy)|? = cos? x + sinh? y,
we see that | cos(zL/¢)| > 1, and | cos(zL/¢e)| > sinh(||¢|lc0) on the vertical and the
horizontal sides of dRy ,, respectively. Thus, by inequality (6.48),

0 < |Ag(z) —cos(zL/e)| < |cos(zL/e)|, z € ORg . (6.49)

We now apply Rouché’s theorem (cf. [60]) for g(z) := As(z) —cos(zL/¢) and f(z) :=
cos(zL/¢) to complete the argument. [

Proof of Lemma 3.9. By Lemma 3.8, all zeros of A,(z) are confinedto S := {z € C:
| Imz| < ||g]loo} (cf. (2.15)). Take § € (0, 1) as in Lemma 6.3 and choose M > 0 so
large that the inequality (6.48) holds for all z € S such that | Re z| > M. Denote by
Sy the set of such z. To prove the lemma, we first prove that A.(z) has infinitely
many real zeros and then show that it has no complex (non-real) zeros in Syy.

Consider the points z, = nwe/L and z,41 = (n + 1)we/L, n € N, where, say,
z, > M. The remaining case z_, < —M can be worked out similarly. Since A.(z)
is real on R, (6.48) shows that Ag(z;)Ae(zn+1) < 0 and, thus, there exists a zero of
A¢(z) on (zy, Zp+1). Thus, there are infinitely many zeros of A;(z) on R.

We can now use Lemma 6.3 to show that there is exactly one zero of A.(z) on the
rectangle R, 41 and, as it was just shown above this zero is real. Thus, there are no
non-real zeros in Sps and we have completed the proof about the zeros of A.(z). In
view of (3.7), the proof of zeros of A%(z) is similar. [

Proof of Theorem 3.10. Consider the set p:=H \ X,, where H:={z€C:Im z >0}
is the upper half-plane. Since Xj,x is Schwarz symmetric, and R C Xj,x (cf.
Lemma 3.3), one gets prax = p U p. To prove the result it is only necessary to show
that p is connected. First, by Lemma 3.2 no spectral band can be closed in the finite
z-plane. Next, we show that the only spectral band extending to infinity is the real
z-axis. Suppose to the contrary that there exists a band extending to infinity and inter-
secting the real z-axis at most once. By Lemma 3.8 and (6.47), it is sufficient to
assume the band is confined to {z € C:Rez >0, 0 <Imz <||¢|loo}. Recall that along a
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spectral band one necessarily has Im A, = 0. Fix § € (0, 1) such that § < sinh(||¢/|c0)-
Then, there exists N = N(g; &) > 0 such that

|Re Ag(z) —cos(RezL/e) cosh(ImzL/¢g)| < 6, (6.50)

for all Rez > N. Let n € N be such that N < nmwe/L. As in Lemma 3.9, it then
follows that there exists a zero of A;(z) for Rez € (nmwe/L, (n + 1)mwe/L). Further,
by assumption, Im z = 0 for at most one point on the band. This implies that A, has
infinitely many complex zeros which contradicts Lemma 3.9. Thus, we have shown
that the real z-axis is the only spectral band extending to infinity. Hence, the set p is
connected which completes the proof. ]

Proof of Theorem 3.11. Recall that Ag(z) is real-valued along the real z-axis.
By Lemma 3.9, there exists a sequence {z,} of simple real zeros of A, for |n|
sufficiently large. Suppose that zx_; and z; are two consecutive zeros such that
AL (zx—1) > 0,and A (zx) < 0. Then, by Rolle’s theorem, there exists z}, € (zx—1,2x)
such that A} (z;) =0. Moreover, {z,,} are simple zeros of A} by Lemma 3.9. Also, by
Lemma 3.3, necessarily 0 < Ag(z;) < 1. Suppose A¢(z;) < 1. Since Re A, is har-
monic, it follows that z,cc is a saddle point; and a band emanates from z,cC into the
complex plane along a steepest ascent curve. Further, Im A, = 0 along this steep-
est ascent curve. Thus, by Theorem 3.10 and continuity, there must exist a band edge
along this steepest ascent curve at which one gets Aa(z]j) = 1. Otherwise, Ag(zg) =1
(i.e., z; is adouble point) and no further analysis is required. Next, A (zx) < 0implies
AL (zx+1) > 0. In this case, —1 < Ag(z} +1) <0, and the argument is completely ana-
logous to that above. Finally, by Theorem 3.14 the bands emanating from the real
z-axis do not intersect; and by Lemma 3.7 the Floquet spectrum is discrete. This
completes the proof. ]

Proof of Theorem 3.12. Suppose ¢ is a finite-band potential. Recall z € X« implies
|Imz| < ||¢|lco (cf. Lemma 3.8). By Theorem 3.10, the real z-axis is the only band
extending to infinity. So, there are finitely many bands and each band (except R) is
bounded. Thus, Xy, \ R is bounded and the result follows trivially. Next, let N =
N(gq; &) > 0 be such that (X1« \ R) C Ry. Suppose Xy« is comprised of infinitely
many bands. Then, infinitely many periodic eigenvalues (which correspond to band
edges) exist in the closure of Ry . This implies the set of periodic eigenvalues must
have a finite limit point which is a contradiction (cf. Lemma 3.7). [ ]

Proof of Theorem 3.13. Recall that the periodic and antiperiodic Floquet eigenval-
ues correspond to the band edges of ¥j,c. Suppose that there exist infinitely many
spectral bands. Then, by Theorem 3.12, (Zp.x \ R) N Ry # @ for any N > 0. This
implies that there exist infinitely many periodic, or antiperiodic, eigenvalues along
the imaginary z-axis which is a contradiction. The contradiction follows from the
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fact that the Floquet eigenvalues are discrete with no finite accumulation points, and
[Im z| < [|¢]]co- u

Proof of Theorem 3.14. Let y; denote a generic spectral band. Two possibilities arise:
either y; has a periodic and an antiperiodic endpoint; or both of its endpoints are
periodic (or antiperiodic). If one endpoint is periodic and the other is antiperiodic,
A¢(z) = 0 at some point on y;. Conversely, if both endpoints are periodic or antiperi-
odic, there is a point on y;, where A%(z) = 0. In either case, according to Lemma 3.9,
there can be no more than finitely many such bands that do not intersect R. In order
to prove that these bands are actually spines, it remains to show that, as z — oo, these
bands cannot intersect any other bands. So, let y; be such a band, which intersects R
at some point z,. Then A(z,) = 0. Again, by Lemma 3.9 there can only be finitely
many such bands that have more than one point where A’(z) = 0 (since the number
of complex zeros of A is finite). Hence, there can be only finitely many bands that,
in addition to R, also intersects some other band. Thus, we proved that all but finitely
many bands are the spines. Moreover, by Lemma 3.5 A(z) = —Lsin(zL/e)/e +
o(l)as z — oo from |Imz| < ||q||cc- Thus, spines are o(1)-closetonmwe/L for |n| € N
sufficiently large. That this is the only o(1)-close spine follows from Rouché’s the-
orem. This completes the proof. ]

6.2. Proofs: Semiclassical limit

Proof of Lemma 4.1. Let z € Xy, be such that |[Imz| > 0, and |Re z| > 0. Again, we
can write v = e'”* w, where w(x + L;z,e) = w(x;z,¢), and v € R. Plugging this
expression for v into (1.1) gives the modified ZS system (6.34). Multiply (6.35a) by
w} and integrate by parts:

ie|w) |3 + i/(q(x)wz)’tﬁl dx = (z + ev){(wy, wh). (6.51)
The complex conjugate to (6.51) is

—ie|w}|3 —i/(@@z)’wl dx = (Z + ev)(w], wy). (6.52)
Integrate the right-hand side of (6.52) by parts, then add to (6.51) and multiply by ¢

getting

2ieIm{q'ws, wy)

L
= 2Imz(w;, ew}) —|—/ X)wy (W) —q(x)wl(swz)) (6.53)
0
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Using (6.35a), one gets

2Imz(wy, sw})
= 2Imz(wy, qws) +2iImz(Z + ev)|wy 3. (6.54)
Further, from (6.35b) and recalling equations (6.37), and (6.39), one gets
L

[ (@Cw1 (e8)) — g ()T (ew))) dx

0
= 2iImz Im{gwy, w;) — 2iImz(ev — Re z)||wa 3. (6.55)

Substitute (6.54) and (6.55) into (6.53) and simplify to get
4ilmzRez|wy |5 = 2ieIm(g'ws, wy) (6.56)
Applying the Cauchy—Schwarz inequality gives
0 < 2[Rez|[Imz|[|wz 3 < el{g'wa, w1)| < &g’ lollw2l3-
Hence, one gets (4.1). n
Proof of Theorem 4.2. This result follows immediately from Lemmas 3.8 and 4.1. m

Proof of Theorem 4.3. This result follows from the cardinality results found in [29,
30] together with Lemmas 3.8 and 4.1. |

Proof of Corollary 4.4. Fix v € R. Denote the corresponding countably infinite set
of eigenvalues by {z, (V) }nen. Without loss of generality, assume that Re z > 0 and
Im > 0. By Lemma 2.2 and (2.16), it follows that in any neighborhood of infinity X,
is infinite. Further, X, N D(0; r) is finite for any r > 0, where

DO;r):={zeC:|z| <r}.

This implies that infinity is the only accumulation point of %, and that, due to
Lemma 3.8, there exists a partially ordered increasing sequence {Re z, (v) }en such
that Re z,,(v) — oo as n — oo. Finally, that Im z,,(v) = O(1/Re z,(v)) now follows
easily from Lemma 4.1. ]

It now remains to show that Lemmas 3.8 and 4.1 together imply Corollary 4.5.

Proof of Corollary 4.5. Fix § > 0. Consider the §-neighborhood defined by Ng(Xoo).
Without loss of generality, assume that Im z > 0, and that | Re z| > 0. Next, consider
the curve in the spectral plane defined by | Im z| = min {||¢]lcc . €[l [lo/2| Re z|}
which bounds the set A®(g). Then, it is easily seen that there exists £« > 0 such that
A®*(q) C N§(Zo). Thus, if z € Xy 4, then z € Ng(X o) Whenever 0 < & < e,. Hence,
Srax N (C \ N§ (X)) = @ which completes the proof. [
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6.3. Proofs: Real or symmetric potentials

Proof of Lemma 5.1. Let v(x; z, ¢) be a bounded solution of the ZS system (1.1).
Then, (A.7) establishes the z — Z symmetry of the spectrum. Similarly, (A.8) and (A.9)
establish the z — —Z symmetry in the spectrum when the potential is real, even,
or odd. Suppose that the potential is real. By (A.8), it follows that the monodromy
matrix satisfies the symmetry (5.1). Then, noting z = —Z if and only if z = i1, we
have tr M(z; ¢) is real-valued for z € i R. Similarly, using (A.9), one gets the sym-
metry (5.2). Thus, if the potential is even (§ = 0 mod ), or odd (6 = 7/2 mod ),
then we have tr M(z; ¢) is real-valued for z € i R. Finally, recalling that A,(z) =
tr M(z; ¢)/2 it follows that when ¢ is real, even, or odd one gets iR C T. ]

Proof of Theorem 5.2. Let zni be a periodic, or antiperiodic eigenvalue, respectively.
This implies Im A,(zF) = 0, and | Re A¢(zF)| = 1. By assumption, zF € R UiR.
Further, z,jf belongs to Xy .x. Suppose z,jf € y;, where y; is a band that leaves the
real, or imaginary axis. By analyticity of A.(z), we need consider only two cases.
First, suppose there exists another point zki # zE along the spectral band such that
| Re Ag(z,f)| = 1. Then, zki € R UiR., Since the real and imaginary z-axes are
contours such that Im A.(z) = 0, we get a closed curve in the set I, which is a
contradiction (see Lemmas 3.2 and 5.1). Second, suppose | Re A (z)| < 1 forall z €
y;j. It then follows that y; extends to infinity. By Theorem 3.10, the only element of
Y1 ax Which has this property is the real z-axis. Again, we have a contradiction. Hence,
Yiax C Yoo CRUIR. ]

Proof of Lemma 5.3. Let { € ¥p;(0). Without loss of generality, assume Im ¢ > 0,
and Re ¢ > 0. Recall that the Dirichlet boundary conditions (2.19) imply

V1L &) = [v1(0:. &) = [va(L: L. &) — [02(0: 5. &), (6.57)

Further, the hypotheses imply Im ¢(0) = 0. Write (1.1) in component form,
iev] —ig(x)va = Cvy, (6.58a)
iev) +ig(x)vy = —{vs. (6.58b)

Multiply (6.58a) by v and integrate by parts:
L

ievi[3 —ig(0) (vi(L)v2(L) = v1(0)v2(0)) + i/(CI(X)vz)/ﬁl dx = f(vy,vy).
0

(6.59)
Then, using the boundary conditions, one can write
L

ieflvil3 +iq0)(Jui(L)|* — |v1(0)*) + i/(q(x)vz)’al dx = ¢(vy,v}). (6.60)
0
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Take the complex conjugate and add to (6.59):

L
i/(CI(X)Uz)/ﬁl — (q(x)52) v dx = E(v.v]) + (V). v1). (6.61)
0
Note that
C(vy,v1) = E(lvi(L)? = [v1(0)[%) = L (v, v)). (6.62)
Let a(¢) :=ie(Jv1(L)|? — |v1(0)|?). Then, using (6.61) and (6.62), one gets
L
a(l) + s/q’(x)ﬁlvg —q'(x)v10,d x
0
L
= (2¢Im¢)(vy, v}) +8/@v15;—q(x)51v/2dx, (6.63)
0

where we multiplied through by ¢. Using (6.58b), one then gets
L

s/@vlﬁ’z—q(x)ﬁlv'zdx
0
= (=2iRe ) Re{qvz,v1) + 2iIm &) Im{qv,, v1). (6.64)

Then, using (6.44), we get
(—2iRe ) Re(qua, v1) = —iReZ(e(lvr(L)[* — [v1(0)[*) — 2Im ) [v1[I3). (6.65)
Further, by (6.58a)

L
(2eIm &) (vy,v}) = (21m;)/mvlﬁzdx +2(iRetIm¢ + (Im&)?) vy [|3. (6.66)
0

Finally, using (6.64) and (6.66) and simplifying gives
a({) + (2ie) Im{g'va, v1)
= —iel(|vi(L)* — [v1(0)]*) + (4iRe L Im &) |v1 3. (6.67)

Next, we complete the same series of calculations using (6.58b). First, multiply (6.58b)
by v, and integrate by parts.

L
ievz)13 +1ig(0)(v1(L)v2(L) — v1(0)v2(0)) —i/(mvl)’ﬁz dx
0

= —{(v2, V). (6.68)
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Then, using the boundary conditions, one can write

L
iefvall3 —ig(0)(Jva(L)> — [v2(0)[?) —if(@vl)’azdx = —{(v2,v5). (6.69)
0

Take the complex conjugate and add

L
i/(‘](x)ﬁl)/UZ —(g(x)v1) Tr dx = —{(v2,vh) — L (v}, va). (6.70)
0

Note that
—&(v2,v5) = —¢(Jv2(L) 1> = [v2(0)]?) + £ {vh. v2). (6.71)

Let B(¢) := —iel(Jva(L)|? — |v2(0)|?). Then, using (6.70) and (6.71), one gets

L
p©) + = [ 4t - g0 dx
’ L
= (2¢Im{)(vy, v2) + s/@v’l Uy —q(x)0jv2dx, (6.72)
0

where we multiplied through by ¢. Using (6.58a) and (6.45) one then gets

(21) Im(v}, qvz) = iRe(e(lv1(L)> = [v1(0)[*) + (2Im Q) [[v23)
+ (2iIm¢) Im(vy, gv2). (6.73)

Further, by (6.58b)
(281m§)(v/2, v2) = (—2Imz)(vy,qv2) + 2(iRe§Im§‘ — (Im§)2)||v2||§. (6.74)

Finally, using (6.73) and (6.74) and simplifying gives

L
B +e / ¢ (X)P1v2 — T 012 dx
0
—1Z (|0 (L) = |01 (O)) + BiRe £ Im o)z 6.75)
Add (6.75) to (6.67) to get
L L

28/q/(x)171v2—q’(x)v1172dx =4iRe§Im§/|v1|2+ |v2|2dx. (6.76)
0 0
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Noting 2|vy||va| < |v1]? + |v2|?, one gets
L

/q’(X)ﬁlvz —q'(x)v10pd x
0

4|Re || Im¢l[Iv]3 = 2¢

L
5zs||q’||oo/|mz| il dx
0

< 2¢q'lloolIV3
which in turn yields the desired result. |
Proof of Theorem 5.4. This result follows from Lemmas 3.8 and 5.3. ]

Proof of Lemma 5.5. We take an approach analogous to the one first employed by
Klaus and Shaw for single-lobe potentials decaying as x — fo0. Let z € X, \ iR.
This implies the solution v # 0 € L>®°(R). By Floquet’s theorem, v = e'** w, where
w(x + L;z,&) = w(x; z,¢) and v € R. Plugging this expression for v(x; z, €) into
the ZS system gives (6.35) with ¢(x) = ¢(x). Multiply (6.35a) by i, and (6.35b) by
w;. Then, subtract and integrate over the period to get the expression

L L
is/w'lwz—wlwédx—i/q(x)(|w1|2—|— lwa|?) d x

0 0

= 2z Re{wy, wa) + 2ievIm({wy, w,). (6.77)

Note that, due to periodicity, integration by parts gives

L L
/w’lwz—wlw'zdx :/wiwz—wlw'zdx. (6.78)
0 0

Hence,
L L
/w’lwz—wlw’zdx :/w'lwz—wlw'zdx, (6.79)
0 0

and it follows that the left-hand side of (6.77) is purely imaginary. Thus,
(Re z) Re{wy, wp) = 0.

By assumption, Re z > 0 which implies Re{w1, wz) = 0. Next, multiply (6.35a) by
w; and write as

sw'w ) wi |2
1 1—{—1(z—i—zsv)| 1l

q(x) q(x)’

wlwz = (680)
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Take the complex conjugate of (6.80), add, and integrate over the period:

L L
N 2
2Re{wy, wy) = ¢ (w1w) dx —2Imz [wi] dx
q(x) ) q(x)
L 2 L 2
=¢ wdx—ZImz [wil dx
q*(x) ) q(x)
Note that, since g(x) > 0, it follows easily that
[ wi? !
w1 .
/ 70 dx > minye[o,z] {m}”wll@ > 0. (6.81)
0

Finally, since Re{w;, wy) = 0 one gets

|/ lw 1|2 / lwi]?q’(x ) 4
q*(x)
which gives (5.8).
Next, without loss of generality assume x, = 0. Let { € Xp;(0) \ i R. Write the

ZS system in component form as in (6.58). Multiply (6.58a) by v,, and (6.58b) by v;.
Subtract and integrate over the period to get the expression

/| wy |?
ng) |0 dx, (6.82)

L L
is/ V102 — Uvydx —i/q(x)(|v1|2 + [v[?)dx = 2¢Re(vy, v2).  (6.83)
0 0
Then, note integration by parts gives
L L

/v’lﬁz—ﬁlv’zdx=/ﬁ/1v2—v117/2dx, (6.84)
0 0

where since v(x; z, €) is an eigenfunction corresponding to Dirichlet BCs (2.19) it

follows

(0102 — D102)|§ = —[v2(L)[* + [v1 (L) + [v2(0)]> = [v1 (0)* = 0. (6.85)

Hence,

L L
/v’lﬁz—ﬁlv’zdx=/v/1172—171v/2dx, (6.86)
0 0

and it follows that the left-hand side of (6.83) is purely imaginary. The rest of the
argument is identical to that above for the Lax spectrum. This completes the proof. =
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7. Examples

In this section we illustrate the results of the previous sections by considering certain
interesting classes of periodic potentials and by computing their Lax spectrum analyt-
ically, or numerically using Floquet—Hill’s method [10]. (We refer the reader to A.6
for some details on Floquet—Hill’s method.) All results were checked for numerical
convergence.

7.1. Plane wave potentials

As our first example, we consider a potential whose spectrum can be computed exactly
(see A.4 for details). Namely, we consider the plane wave potential

g(x) = Ae'V™, (7.1)

where A € R is constant amplitude, and V' € R is the wave number.
When V' = 0, we get a constant background. In this case,

Tia = R Ui[-4, 4], (7.2)
When V # 0 and L = 27/|V|, the Lax spectrum is given by
Yiax = RU[—eV/2—1A4, —eV/2 +1iA]. (7.3)

Thus, the Lax spectrum is composed of two bands in the complex plane, as shown
in Figure 5. Note that in this case the number of bands is not proportional to 1/& as
¢ | 0. Indeed, there are only two spectral bands for any ¢ > 0. Also, for any ¢ > 0 and
V' # 0, there are no spectral bands on the imaginary axis. It is only in the limit ¢ | 0
that the complex band becomes purely imaginary.

7.2. Piecewise continuous potentials

As a second example, we look at whether the assumptions in Theorem 4.5 are neces-
sary or merely sufficient. To this end, suppose that the potential is only piecewise
smooth. That is, ¢ and ¢’ have finite left and right limits for all x, and finitely many
jump discontinuities on any bounded interval. Specifically, we consider the 2-periodic
extension of the signum function

+1 ifx >0,
q(x) = sgn(x) := ) (7.4)
-1 ifx <O,

where x € [—1, 1). In this case, the potential has a jump discontinuity, and therefore
the hypotheses of Lemma 4.1 are not satisfied.
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Figure 5. Lax spectrum for the potential ¢(x) = e'* with minimal period L = 27 (blue).
Contours I' = {z € C:Im A.(z) = 0} (black dashed). The curve which bounds the imaginary
component of elements in the spectrum | Im z| = min{||¢lco> €l|¢’[lco/2| Re z|} (red dashed).
Left. ¢ = 1. Right. ¢ = 0.2.
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Figure 6. Left. Same as Figure 5 but for the periodic potential g(x) = sgn(x) with L = 2, and
& = 0.019. Right. Convergence of eigenvalues to X as ¢ | 0 for “sgn” potential. Numerical
computation of maxye[o,27/1) | Rez(v)|| Imz(v)| as & | O (red triangles). Least-squares fit
through the data points (light green dashed).

On the other hand, the analytically calculated Floquet discriminant is given
by (A.32), and the numerically computed Lax spectrum of the ZS system (1.1) for
the potential (7.4) is shown in Figure 6. In this example, the Floquet eigenvalues arise
in symmetric quartets due to the symmetry of the potential (7.4) (specifically, odd and
real).

In this case, one could consider a bound on the imaginary component of the eigen-
value similar to (4.3), but obtained using the numerically calculated eigenvalues at
& = 1, and then examine (numerically) how the spectrum changes as a function of e.
The numerical results indicate that, while the spectrum is still confined to a region
of the complex plane similar to (4.5), the size of the region is no longer simply pro-
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Figure 7. Numerically computed Lax spectrum for the periodic potential g(x) = e sin® x

(blue). The curve which bounds the imaginary component of the eigenvalue | Im z| =
min{||¢ oo, €ll¢"|lco/2| Re z|} (dark red dashed). Left. Semiclassical parameter ¢ = 1. Right.
Semiclassical parameter ¢ = 0.079.

portional to €. Indeed, a numerical study shown in Figure 6 (right) suggests that one
has max,e[o,27/2) | Rez(V)|[Imz(v)| = O(e¥) as ¢ | 0, with = 0.784 < 1 (see
Figure 6). (Whereas, if the potential satisfied the hypotheses of Corollary 4.5, one
would have ¢ = 1.) Nonetheless, the numerical results clearly indicate that the spec-
trum tends to the real and imaginary axes in the limit ¢ | 0. An interesting future
direction would be to find « rigorously for piecewise continuous potentials. Similar
results are also obtained for potentials with steps of arbitrary magnitude (owing to the
invariant properties of the scattering problem under scaling transformations) as well
as for potentials with asymmetric steps (e.g., ¢(x) = 0 for x < 0 and ¢g(x) = 1 for
x > 0). A detailed discussion is omitted for brevity.

7.3. Real-valued periodic single-lobe potentials

Next, we consider a periodic analogue of the Klaus and Shaw single-lobe poten-
tials [35]. Specifically, we take the potential g to be the L-periodic extension of a
real-valued continuously differentiable function on the interval (—L /2, L/2). We fur-
ther assume: (i) g(x) > 0 for all x € R, (ii) g(—x) = ¢(x), and (iii) g(x) is increasing
on [—L/2,0) and is decreasing on (0, L/2]. In particular, below we consider two
examples:

gx)=e""F L=u, (7.5a)
q(x) =dn(x;m), L =2K(m), (7.5b)
where dn(x;m) is a Jacobi elliptic function, m € (0, 1) the corresponding elliptic para-

meter, and K(m) the complete elliptic integral of the first kind (see [51] for details).
Moreover, when m = 1 the problem reduces to that studied in [56].
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Figure 8. Same as Figure 7, but for the periodic potential ¢(x) = dn(x; m), where m = 0.6.
Left. ¢ = 0.5. Right. ¢ = 0.1.

Figures 7 and 8 show the results of numerical computations of the Lax spectrum
of the ZS system (1.1) for the two potentials in (7.5). The results clearly demonstrate
that, in the case of periodic single-lobe potentials, there exists complex Floquet eigen-
values of (1.1) off of the imaginary axis. This is in contrast to single-lobe potentials
decaying as x — =£o00, whose eigenvalues were proven to be only real and purely
imaginary, both for potentials with zero BCs [35] and for potentials with symmetric
non-zero BCs [5]. In contrast, Figures 7 and 8 show that, in the periodic case, the
confinement to the real and imaginary axes does not hold in general. Indeed, it would
be surprising if such a feature were present in the periodic case as this would form a
large class of finite-band potentials by Theorem 3.13. Another interesting feature of
the spectrum for single-lobe periodic potentials is the formation of spectral bands and
gaps along the intervals & (i ¢min, i ¢max) Of the spectral plane. Using WKB approxim-
ation, it was shown formally in [6] that the number of spectral bands in this interval
is O(1/¢) as ¢ | 0. Another interesting question is whether spines can occur along
the imaginary axis for single-lobe periodic potentials. The numerical results suggest
that the Lax spectrum is purely imaginary outside of a neighborhood of the real z-
axis. This property was shown to hold in the limit & | 0 (see Theorem 5.5) where the
neighborhood was proportional to &.

7.4. Periodic potentials with rapid phase variations

Here we let the potential depend on the semiclassical parameter, that is, ¢ = ¢q(x; ¢).
In particular, we consider a periodic potential with rapidly varying phase, i.e.,

g(x;e) = A(x) e S®/e, (7.6)

where A(x) and S(x) are continuously differentiable real functions independent of .
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Figure 9. Same as Figure 7 but for the periodic potential g(x; &) = el Left. & = 0.22.
Right. ¢ = 0.019.
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Figure 10. Same as Figure 7 but for the periodic potential ¢(x; €) = dn(x; m) ¢l 2dn(x:m)/e,
where m = 0.88. Left. ¢ = 0.2. Right. ¢ = 0.03.
Specifically, we consider the following two potentials:
g(x;g) = el »@0/e, L=m, (7.7a)
g(x:€) = dn(x;m) e2idnm/e [ — 2K (m). (7.7b)

Importantly, the bound (4.3) still holds. The key difference from the previous cases,
however, is that now ||¢’|lcc = O(1/¢) as ¢ | 0. Hence, one does not expect The-
orem 4.5 to hold for potentials of the form (7.7). Moreover, using turning point curves
and ideas of Deift, Venakides, and Zhou (see [14] for details) one expects that sharper
bounds beyond what is available in (4.3) can be obtained. This is an interesting dir-
ection for future work. Indeed, the results of numerical computations of the spectrum
produced by the potentials (7.7), and depicted in Figures 9 and 10, show that there
are complex spectral bands off of the real and imaginary axes that persist in the limit
¢ | 0. Importantly, the numerical results are still consistent with the inequality (4.3).
More interestingly, the spectrum appears to accumulate on a set of well-defined curves
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in the complex plane as ¢ | 0. This is qualitatively the same Y-shaped curve observed
in [7] for the zero-background potential ¢ (x; &) = sech(2x) e'*"(2¥)/¢ on the infinite
line. This is another example in which the differences in the spectrum due to different
choices of boundary conditions seem to become negligible in the semiclassical limit
of the focusing problem.

Appendix

A.1. Definitions

At various points in this work, we make use of the Pauli matrices which are defined

01 0 —i 10
o1 = (1 0), a2:=(i (;) 03:=(0 _1). (A1)

Next, we discuss the normed linear spaces used throughout the work. Let g be a

as

Lebesgue measurable function. Then, the essential supremum is defined as
[glloo :=inf{C:m({x € R:|g(x)| > C}) = 0}, (A.2)

where [m] is the Lebesgue measure. Note we always identify functions equal almost
everywhere “a.e” with respect to Lebesgue measure. Specifically, f = g if
m({x € R: f(x) # g(x)}) = 0. Thus, a Lebesque-measurable function is in L*°(R)
if it is bounded a.e. [m]. If g € L°°(R) is periodic, one easily gets g € L _(R), that
is, g is Lebesgue integrable on compact subsets of the real numbers.

Also, we define the inner product

L
(f.8) = [ fEtax, (A3)
0
where f, g are scalar Lebesgue measurable functions. This gives

L
/
112 = V77 = ([ 1reoPax) (A4)
0

and L2([0, L)) is the space of scalar Lebesgue measurable functions which are square
integrable, that is, || f||2 < oo. Similarly, we define the inner product

L
t.g) = / AT + HOBE dx, (AS)
0
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where f, g are two-component Lebesgue measurable vector functions. This gives

L 12
£l = VD = (/ AP+ |f2<x>|2dx) , (A6)
0

and L2([0, L], C?) is the space of two-component vector functions which are square
integrable, that is, ||f||> < oo.

Finally, a function f:[a,b] — C is absolutely continuous on [a, b] if, for all
n > 0, there exists § > 0 such that, whenever a finite sequence of pairwise disjoint sub-
intervals [a, bi] of [a, b] satisfies D " |bx —ax| < 6, then D | f(br) — f(ax)| <.
The collection of such functions is denoted AC([a, b]). Importantly, f € AC([a, b])
implies f” exists a.e [m], and f” is Lebesgue integrable. A function f € ACy.(R) if
it is absolutely continuous on compact subsets of the real axis.

A.2. Symmetries of the ZS scattering problem

Recall next some symmetries of the solutions of (1.1), all of which are easily verified
by direct computation. Let Y (x; z, ¢) be a fundamental matrix solution of the ZS
scattering problem (1.1). Then, another solution of (1.1) is

Y(x;z,6) =i0,Y(x;Z, ¢). (A7)
Moreover, if the potential is real, a further solution of (1.1) is given by
?(,)(x;z,s) =Y(x;-2z,¢). (A.8)

Alternatively, suppose the potential satisfies a generalized reflection symmetry, that
is, g(—x) = 219 g(x) for all x > 0, for some # € R. (Obviously, for § = 0, and
0 = 7/2 one has the cases of even and odd potentials, respectively.) Then, another
solution of (1.1) is given by

Y(g)(x;z,s) = (cosfBa; +sin0,)Y(—x,—Z,¢). (A.9)

Finally, if the potential is PT-symmetric, i.e., if ¢(—x) = ¢(x), then another solution
of (1.1) is given by
Ypr(x:z,6) = 03Y(—x:Z,¢). (A.10)

A.3. Comparison between various definitions of Dirichlet spectrum

In this section we show how to connect the Dirichlet spectrum to the zeros of an
analytic function. Recall the Dirichlet BCs:

v1(0: ¢, 8) +v2(0:8,8) =0, vi(L:& &) +va(L; 8 e) =0, (A.11)



G. Biondini, J. Oregero, and A. Tovbis 984

where {{,} denote Dirichlet eigenvalues and x, = 0 without loss of generality. Let
v(x;z,e) = O(x; z, e)c(z; €), where, as before, ® is a fundamental matrix solution
of (1.1) normalized so that ®(0;z,¢) =1, and ¢(z;¢) = (cl,cz)T. Clearly, v(0;z,¢) =
c(z;e). If ¢ € Tpi(0) and v(x; ¢, €) is the eigenfunction associated to ¢, by the first
of (A.11), one can write

(A.12)

V(L:8.8) = MG o)e(:e) = vi(0:4.6) (Z; _ %Z)

where M(z;¢) = ®(L; z, ¢) is the monodromy matrix associated with ®, as per (2.9)
and (2.10). Using the second of (A.11), we then have

(M1 — Mis + My — Ms)|,=¢ = 0. (A.13)

Now, using the modified fundamental matrix solution ® defined in (2.20), recall that
the associated monodromy matrix is M®(z) = C ! M(z;&)C. One therefore gets

~ i
Mzsl(é‘) = E(Mll — My + My — M22)|Z:; =0. (A.14)

Hence, { € Xp;(0) if and only if 1\2;1 (&) = 0, in agreement with (2.21).
Note that some authors define the Dirichlet spectrum via slightly different bound-
ary conditions, namely,

v1(0:8,8) = v2(0:,6) =0, vi(L:l &) —va(L: g, e) =0, (A.15)
(see [16,29,30]). Using similar arguments as above, with these BCs one gets
(M1 — My + Mip — M)|,=¢ = 0. (A.16)

We then introduce the modified fundamental matrix solution CiJ(x; z,8) =®(x;z,¢8) C s

where
Y 1 /1 —1
C =— . A.17
ﬁ(i 1) A1

For the associated monodromy matrix Mé(z) = C~'M(z;¢)C, one gets
v i
M3, (0) = _E(Mll — M3y + M3 — M2s)|,—¢ = 0. (A.18)

Hence, with either choice of BCs, one can relate the Dirichlet spectrum to the zeros of
an analytic function which is the row 2 column 1 element of a modified monodromy
matrix. The trace formulae (2.23a) and (2.23b) use definition (A.11). The Dirichlet
eigenvalues obey certain ODEs (called Dubrovin equations) with respect to x, and
t [24,42].

Importantly, it is straightforward to see that the bounds obtained for the Dirichlet
spectrum are independent of which choice of boundary conditions is used.
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A.4. Floquet discriminant for constant and plane wave potentials

Here we calculate the Lax spectrum for plane wave potentials, namely, ¢(x) given
by (7.1). In this case, the ZS system (1.1) is given by

—iz AelVx
v = (—A iV . )V. (A.19)

As a special case, when IV = 0 we obtain a constant background potential. In this
case, (A.19) is a constant-coefficient differential equation, and it is easy to obtain a
fundamental matrix solution as

-y |
Y(x;z,s):(]l— ! ol)eléx‘”/s, (A.20)

where I is the 2 x 2 identity matrix, £2 = A2 + z2, and the Pauli matrices o and 03
are as in (A.1). A simple calculation then yields a monodromy matrix (2.9) as

M(z;¢) = e'§L03/2, (A.21)
and hence,
Ag(z) =cos(EL/e). (A.22)

It follows that z € X, if and only if £ € R. Thus, for a constant background potential
one gets

Siax = RU[—14,14]. (A.23)
Additionally, using the similarity transformation (2.20) one gets

z—1A

ME,(z) = ( )sin(gL/g). (A.24)
It then follows that the Dirichlet spectrum is the set of zeros of the analytic func-
tion (A.24).

When V # 0, (A.19) is not constant-coefficient. Nonetheless, the substitution v =

¢! V*03/2 y transforms (A.19) to the constant-coefficient system

, —i(z + €V/2) A
= . A25
o ( A iz+ev/))" (A.25)
As before, we obtain a fundamental matrix solution, namely,
. 14 .
Y(x:z, — iVxo3/2 T — 1 1§x03/8’ A26
(x;z,6) =e ( 7Z_$+8V/201)e ( )

where £2 = A% + (z + €V/2)2. Simple calculations then yield a monodromy matrix

M(z;e) = (cos(VL/2) + sin(VL/2)(—i(z + eV/2)03 — i Aoy)) e¥L93/¢ | (A.27)
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and hence,

Ag(z) = cos(VL/2)cos(EL/¢e) + Zrev/2

sin(VL/2) sin(§L/¢). (A.28)
Take L = 27/|V|. Then (A.28) simplifies to Az(z) = —cos(27&/eV). It follows that
z € ¥ if and only if £ € R. Then, the Lax spectrum for a plane wave potential is
given by (7.3) (see Figure 5).

A.5. Floquet discriminant for piecewise constant potentials

As one last example, we calculate the trace of the monodromy matrix for ¢(x) =
A sgn(x), where A > 0 is a constant, and “sgn” is given by (7.4). In this case, the ZS
system (1.1) is given by

;L —iz A sgn(x)
ev = (—A sen(x) . )V. (A.29)

Solving the above system on the intervals [—L /2, 0), and [0, L/2), and imposing the
normalization ®(0; z, ¢) = I, one finds the matrix solution

b(xiz.e) = Ez_gz (H _ zi—Asal) eisxas/e(n + Zi_ASol), (A.30)

where £2 = A2 + z2. It follows that

M(z;e) = ® Y (—=L/2;z,6)®(L/2;z,¢), (A.31)
and, hence,
Ag(z) = SLZ(AZ + z2cos(EL/¢)). (A.32)

A.6. Floquet—Hill’s method

Here we provide some details regarding the numerical calculations of the Lax spec-
trum in the main text. Recall that the Zakharov—Shabat scattering problem is given by
the first-order system of ODEs (1.1). Further, recall that we can rewrite (1.1) in the
form of an eigenvalue problem (2.1). Since (2.1) is non-self-adjoint, when comput-
ing its spectrum numerically one needs an approach capable of accurately calculating
eigenvalues in a large region of the complex plane. One such approach is Floquet—
Hill’s method (see [10] for more details). The method is particularly well-suited for
calculating the eigenvalues of linear operators with periodic coefficients, and provides
a global approximation of the spectrum.
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Recall that Floquet’s theorem 2.1 implies that any bounded solution of (1.1) is
necessarily of the form
v(x;z,e) = e w(x;z, ), (A.33)

where w(x + L;z,e) = w(x;z,¢) and v € [0,27/L). Plugging (A.33) into the ZS
system (1.1) yields the modified eigenvalue problem

io3(e(dx +iv) — Q)w = zw. (A.34)

The key point is that the modified eigenvalue problem acts on periodic functions.
Therefore, one can expand (A.34) using a discrete Fourier transform (DFT):

L5 W = Zn Wy, (A.35)

where . .
EN = (_Sii%”) 8(;; U))szzN. (A.36)
Moreover, k = diag(k,) withn € {—&, ..., % — 1} is a diagonal matrix of Fourier

modes such that k, = 2nm/L, and T is a N x N Toeplitz matrix representing the
convolution operator generated by the DFT of gw.

Floquet—Hill’s method then approximates the Floquet spectrum by numerically
computing the eigenvalues of the matrix (A.36). Indeed, fix v € [0,27/L). Then
choosing a truncation N = 2/ of the number of Fourier modes of the eigenfunction
w(x; z, &) results in a matrix system of dimension 2/N. Moreover, zy are approxima-
tions in the sense that all zy € Z(f’i;) — z € ¥, as N — oo. By taking an evenly
spaced sequence v; € [0, 27/ L) one approximates the entire Lax spectrum, i.e.,

lim (L5 N) = X A.37
N>o00 VE[O’LZJH/L) ( v,N) Lax ( )
(For details on convergence, see [33].) Numerical accuracy of the approximation is
determined by the number of Fourier modes used in the truncation, and on the method
used to compute the eigenvalues of the matrix (A.36). The resolution of the spectral
bands is determined by how fine we partition the interval v € [0, 277/ L). All compu-
tations in the main text were checked for numerical convergence.

Acknowledgment. We thank the anonymous referee for the careful review and the
many helpful comments.

Funding. This work was partially supported by the National Science Foundation
under grant number DMS-2009487.



G. Biondini, J. Oregero, and A. Tovbis 988

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and continuous nonlinear
Schrodinger systems. London Math. Soc. Lecture Note Ser. 302, Cambridge University
Press, Cambridge, 2004 Zbl 1057.35058 MR 2040621

D. S. Agafontsev and V. E. Zakharov, Integrable turbulence and formation of rogue waves.
Nonlinearity 28 (2015), no. 8, 2791-2821 Zbl 1330.35391 MR 3382586

E. D. Belekolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its and V. B. Matveev, “Algebro-
geometric approach to nonlinear integrable equations.” Springer Series in Nonlinear
Dynamics. Springer, Berlin, 1994

M. Bertola and A. Tovbis, Universality for the focusing nonlinear Schrédinger equation at
the gradient catastrophe point: rational breathers and poles of the tritronquée solution to
Painlevé 1. Comm. Pure Appl. Math. 66 (2013), no. 5, 678-752 Zbl 1355.35169

MR 3028484

G. Biondini and X. Luo, Imaginary eigenvalues of Zakharov—Shabat problems with non-
zero background. Phys. Lett. A 382 (2018), no. 37, 2632-2637 Zbl 1404.35402

MR 3836750

G. Biondini and J. Oregero, Semiclassical dynamics and coherent soliton condensates
in self-focusing nonlinear media with periodic initial conditions. Stud. Appl. Math. 145
(2020), no. 3, 325-356 Zbl 1454.35332 MR 4174160

J. C. Bronski, Semiclassical eigenvalue distribution of the Zakharov—Shabat eigenvalue
problem. Phys. D 97 (1996), no. 4, 376-397 Zbl 1194.81093 MR 1412550

B. M. Brown, M. S. P. Eastham, and K. M. Schmidt, Periodic differential operators. Oper.
Theory: Adv. Appl. 230, Birkhduser/Springer, Basel, 2013 Zbl 1267.34001

MR 2978285

L. I. Danilov, Absolute continuity of the spectrum of a periodic Dirac operator. Differ.
Uravn. 36 (2000), no. 2, 233-240, 287 Zbl 1041.81026 MR 1773794

B. Deconinck and J. N. Kutz, Computing spectra of linear operators using the Floquet-
Fourier-Hill method. J. Comput. Phys. 219 (2006), no. 1, 296-321 Zbl 1105.65119

MR 2273379

P. Deift and K. T.-R. McLaughlin, A continuum limit of the Toda lattice. Mem. Amer.
Math. Soc. 131 (1998), no. 624 Zbl 0946.37035 MR 1407901

P. Deift, S. Venakides, and X. Zhou, New results in small dispersion KdV by an extension
of the steepest descent method for Riemann-Hilbert problems. Internat. Math. Res. Notices
(1997), no. 6, 286-299 Zbl 0873.65111 MR 1440305

G. Deng, S. Li, G. Biondini, and S. Trillo, Recurrence due to periodic multisoliton fission
in the defocusing nonlinear Schrodinger equation. Phys. Rev. E 96 (2017), no. 5, article
no. 052213 MR 3825035

J. C. DiFranco and P. D. Miller, The semiclassical modified nonlinear Schrodinger equa-
tion. I. Modulation theory and spectral analysis. Phys. D 237 (2008), no. 7, 947-997

Zbl 1158.35086 MR 2417083

J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers. Cambridge
University Press, Cambridge 2010


https://zbmath.org/?q=an:1057.35058
https://mathscinet.ams.org/mathscinet-getitem?mr=2040621
https://zbmath.org/?q=an:1330.35391
https://mathscinet.ams.org/mathscinet-getitem?mr=3382586
https://zbmath.org/?q=an:1355.35169
https://mathscinet.ams.org/mathscinet-getitem?mr=3028484
https://zbmath.org/?q=an:1404.35402
https://mathscinet.ams.org/mathscinet-getitem?mr=3836750
https://zbmath.org/?q=an:1454.35332
https://mathscinet.ams.org/mathscinet-getitem?mr=4174160
https://zbmath.org/?q=an:1194.81093
https://mathscinet.ams.org/mathscinet-getitem?mr=1412550
https://zbmath.org/?q=an:1267.34001
https://mathscinet.ams.org/mathscinet-getitem?mr=2978285
https://zbmath.org/?q=an:1041.81026
https://mathscinet.ams.org/mathscinet-getitem?mr=1773794
https://zbmath.org/?q=an:1105.65119
https://mathscinet.ams.org/mathscinet-getitem?mr=2273379
https://zbmath.org/?q=an:0946.37035
https://mathscinet.ams.org/mathscinet-getitem?mr=1407901
https://zbmath.org/?q=an:0873.65111
https://mathscinet.ams.org/mathscinet-getitem?mr=1440305
https://mathscinet.ams.org/mathscinet-getitem?mr=3825035
https://zbmath.org/?q=an:1158.35086
https://mathscinet.ams.org/mathscinet-getitem?mr=2417083

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

On the spectrum of the periodic focusing Zakharov—Shabat operator 989

P. Dzhakov and B. S. Mityagin, Instability zones of one-dimensional periodic Schrodinger
and Dirac operators. Uspekhi Mat. Nauk 61 (2006), no. 4(370), 77-182; English transl.,
Russian Math. Surveys 61 (2006), no. 4, 663-766 Zbl 1128.47041 MR 2279044

M. S. P. Eastham, The spectral theory of periodic differential equations. Texts in Mathem-
atics, Scottish Academic Press, Edinburgh; Hafner Press, New York, 1973

Zbl 0287.34016 MR 3075381

G. El and A. Tovbis, Spectral theory of soliton and breather gases for the focusing nonlin-
ear Schrodinger equation. Phys. Rev. E 101 (2020), no. 5, article no. 052207

MR 4115253

G. A. El and M. A. Hoefer, Dispersive shock waves and modulation theory. Phys. D 333
(2016), 11-65 Zbl 1415.76001 MR 3523490.

G. A. El, E. G. Khamis, and A. Tovbis, Dam break problem for the focusing nonlinear
Schrodinger equation and the generation of rogue waves. Nonlinearity 29 (2016), no. 9,
2798-2836 Zbl 1391.35354 MR 3544808

R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z .H. Musslimani, S. Rotter and
D. N. Christodoulides, Non-Hermitian physics and PT symmetry. Nature Phys. 14 (2018),
11-19

L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons.
Springer Series in Soviet Mathematics, Springer, Berlin, 1987 Zbl 1111.37001

MR 905674

G. Floquet, Sur les équations différentielles linéaires a coefficients périodiques. Ann. Sci.
Ecole Norm. Sup. (2) 12 (1883), 47-88 Zbl 15.0279.01 MR 1508722

M. G. Forest and J. E. Lee, Geometry and modulation theory for the periodic nonlinear
Schrodinger equation. In Oscillation theory, computation, and methods of compensated
compactness (Minneapolis, Minn., 1985), pp. 35-69, IMA Vol. Math. Appl. 2, Springer,
New York, 1986 Zbl 0615.35003 MR 869821

S. Fujiié and J. Wittsten, Quantization conditions of eigenvalues for semiclassical
Zakharov—Shabat systems on the circle. Discrete Contin. Dyn. Syst. 38 (2018), no. 8,
3851-3873 Zbl 1400.34138 MR 3814355

F. Gesztesy and R. Weikard, Picard potentials and Hill’s equation on a torus. Acta Math.
176 (1996), no. 1, 73—-107 Zbl 0927.37040 MR 1395670

F. Gesztesy and R. Weikard, A characterization of all elliptic algebro-geometric solutions
of the AKNS hierarchy. Acta Math. 181 (1998), no. 1, 63—-108 Zbl 0955.34073

MR 1654775

F. Gesztesy and R. Weikard, Elliptic algebro-geometric solutions of the KdV and AKNS
hierarchies—an analytic approach. Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 4,271-317
Zbl 0909.34073 MR 1638298

B. Grébert and T. Kappeler, Estimates on periodic and Dirichlet eigenvalues for the
Zakharov—Shabat system. Asymptot. Anal. 25 (2001), no. 3-4, 201-237 Zbl 0982.34073
MR 1853394

B. Grébert, T. Kappeler, and B. Mityagin, Gap estimates of the spectrum of the Zakharov—
Shabat system. Appl. Math. Lett. 11 (1998), no. 4, 95-97 Zbl 0940.35186 MR 1630812


https://zbmath.org/?q=an:1128.47041
https://mathscinet.ams.org/mathscinet-getitem?mr=2279044
https://zbmath.org/?q=an:0287.34016
https://mathscinet.ams.org/mathscinet-getitem?mr=3075381
https://mathscinet.ams.org/mathscinet-getitem?mr=4115253
https://zbmath.org/?q=an:1415.76001
https://mathscinet.ams.org/mathscinet-getitem?mr=3523490
https://zbmath.org/?q=an:1391.35354
https://mathscinet.ams.org/mathscinet-getitem?mr=3544808
https://zbmath.org/?q=an:1111.37001
https://mathscinet.ams.org/mathscinet-getitem?mr=905674
https://zbmath.org/?q=an:15.0279.01
https://mathscinet.ams.org/mathscinet-getitem?mr=1508722
https://zbmath.org/?q=an:0615.35003
https://mathscinet.ams.org/mathscinet-getitem?mr=869821
https://zbmath.org/?q=an:1400.34138
https://mathscinet.ams.org/mathscinet-getitem?mr=3814355
https://zbmath.org/?q=an:0927.37040
https://mathscinet.ams.org/mathscinet-getitem?mr=1395670
https://zbmath.org/?q=an:0955.34073
https://mathscinet.ams.org/mathscinet-getitem?mr=1654775
https://zbmath.org/?q=an:0909.34073
https://mathscinet.ams.org/mathscinet-getitem?mr=1638298
https://zbmath.org/?q=an:0982.34073
https://mathscinet.ams.org/mathscinet-getitem?mr=1853394
https://zbmath.org/?q=an:0940.35186
https://mathscinet.ams.org/mathscinet-getitem?mr=1630812

[31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

G. Biondini, J. Oregero, and A. Tovbis 990

P. D. Hislop and I. M. Sigal, Introduction to spectral theory. Appl. Math. Sci. 113,
Springer, New York, 1996 Zbl 0855.47002 MR 1361167

R. Jenkins and K. D. T.-R. McLaughlin, Semiclassical limit of focusing NLS for a family
of square barrier initial data. Comm. Pure Appl. Math. 67 (2014), no. 2, 246-320

Zbl 1332.35327 MR 3149844

M. A. Johnson and K. Zumbrun, Convergence of Hill’s method for nonselfadjoint operat-
ors. SIAM J. Numer. Anal. 50 (2012), no. 1, 64-78 Zbl 1246.65134 MR 2888304

S. Kamvissis, K. D. T.-R. McLaughlin, and P. D. Miller, Semiclassical soliton ensembles
for the focusing nonlinear Schrodinger equation. Ann. Math. Stud. 154, Princeton Uni-
versity Press, Princeton, NJ, 2003 Zbl 1057.35063 MR 1999840

M. Klaus and J. K. Shaw, Purely imaginary eigenvalues of Zakharov—Shabat systems.
Phys. Rev. E (3) 65 (2002), no. 3, article no. 036607 MR 1905252

M. Klaus and J. K. Shaw, On the eigenvalues of Zakharov—Shabat systems. SIAM J. Math.
Anal. 34 (2003), no. 4, 759-773 Zbl 1034.34097 MR 1969601

P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg—de Vries
equation. I. Comm. Pure Appl. Math. 36 (1983), no. 3, 253-290 Zbl 0532.35067

MR 697466

P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg—de Vries
equation. I. Comm. Pure Appl. Math. 36 (1983), no. 5, 571-593 Zbl 0527.35073

MR 0716197

P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg—de Vries
equation. I. Comm. Pure Appl. Math. 36 (1983), no. 6, 809-829 Zbl 0527.35074

MR 0720595

Y. Liand D. W. McLaughlin, Morse and Melnikov functions for NLS PDEs. Comm. Math.
Phys. 162 (1994), no. 1, 175-214 Zbl 0808.35140 MR 1272771

G. D. Lyng and P. D. Miller, The N -soliton of the focusing nonlinear Schrodinger equation
for N large. Comm. Pure Appl. Math. 60 (2007), no. 7, 951-1026 Zbl 1185.35259

MR 2319053

Y. C. Ma and M. J. Ablowitz, The periodic cubic Schrédinger equation. Stud. Appl. Math.
65 (1981), no. 2, 113-158 Zbl 0493.35032 MR 628138

W. Magnus and S. Winkler, Hill’s equation. Intersci. Tracts Pure Appl. Math. 20, Inter-
science Publishers, New York etc., 1966 Zbl 0158.09604 MR 0197830

D. W. McLaughlin and E. A. Overman, II, Whiskered tori for integrable PDEs: chaotic
behavior in near integrable pde’s. In Surveys in applied mathematics, Vol. 1, pp. 83-203,
Plenum, New York, 1995 Zbl 0843.35116 MR 1366208

A. Messiah, Quantum mechanics. Vol. 1. North-Holland, Amsterdam; Interscience Pub-
lishers, New York, 1961 MR 0129790 Zbl 0102.42602

A. Messiah, Quantum mechanics. Vol. I1. North-Holland, Amsterdam; Interscience Pub-
lishers, New York, 1961 MR 0147125 Zbl 0102.42602

P. D. Miller, Some remarks on a WKB method for the nonselfadjoint Zakharov—Shabat
eigenvalue problem with analytic potentials and fast phase. Phys. D. 152-153 (2001),
145-162 Zbl 1037.81043 MR 1837905


https://zbmath.org/?q=an:0855.47002
https://mathscinet.ams.org/mathscinet-getitem?mr=1361167
https://zbmath.org/?q=an:1332.35327
https://mathscinet.ams.org/mathscinet-getitem?mr=3149844
https://zbmath.org/?q=an:1246.65134
https://mathscinet.ams.org/mathscinet-getitem?mr=2888304
https://zbmath.org/?q=an:1057.35063
https://mathscinet.ams.org/mathscinet-getitem?mr=1999840
https://mathscinet.ams.org/mathscinet-getitem?mr=1905252
https://zbmath.org/?q=an:1034.34097
https://mathscinet.ams.org/mathscinet-getitem?mr=1969601
https://zbmath.org/?q=an:0532.35067
https://mathscinet.ams.org/mathscinet-getitem?mr=697466
https://zbmath.org/?q=an:0527.35073
https://mathscinet.ams.org/mathscinet-getitem?mr=0716197
https://zbmath.org/?q=an:0527.35074
https://mathscinet.ams.org/mathscinet-getitem?mr=0720595
https://zbmath.org/?q=an:0808.35140
https://mathscinet.ams.org/mathscinet-getitem?mr=1272771
https://zbmath.org/?q=an:1185.35259
https://mathscinet.ams.org/mathscinet-getitem?mr=2319053
https://zbmath.org/?q=an:0493.35032
https://mathscinet.ams.org/mathscinet-getitem?mr=628138
https://zbmath.org/?q=an:0158.09604
https://mathscinet.ams.org/mathscinet-getitem?mr=0197830
https://zbmath.org/?q=an:0843.35116
https://mathscinet.ams.org/mathscinet-getitem?mr=1366208
https://mathscinet.ams.org/mathscinet-getitem?mr=0129790
https://zbmath.org/?q=an:0102.42602
https://mathscinet.ams.org/mathscinet-getitem?mr=0147125
https://zbmath.org/?q=an:0102.42602
https://zbmath.org/?q=an:1037.81043
https://mathscinet.ams.org/mathscinet-getitem?mr=1837905

(48]

[49]

[50]

(51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

On the spectrum of the periodic focusing Zakharov—Shabat operator 991

P. D. Miller and S. Kamvissis, On the semiclassical limit of the focusing nonlinear
Schrodinger equation. Phys. Lett. A 247 (1998), no. 1-2, 75-86 Zbl 0941.81029

MR 1650432

A. Mussot, C. Naveau, M. Conforti, A. Kudlinski, F. Copie, P. Szriftgiser, and S. Trillo,
Fibre multi-wave mixing combs reveal the broken symmetry of Fermi—Pasta—Ulam recur-
rence. Nature photonics 12 (2018), 303-308

S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of solitons. Con-
temporary Soviet Mathematics, Consultants Bureau, New York, 1984 Zbl 0598.35002
MR 779467

F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST handbook of
mathematical functions. U.S. Department of Commerce, National Institute of Standards
and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010

Zbl 1198.00002 MR 2723248

M. Onorato, A. R. Osborne, and M. Serio, Modulational instability in crossing sea states:
A possible mechanism for the formation of freak waves. Phys. Rev. Lett. 96 (2006), article
no. 014503

S. Randoux, P. Walczak, M. Onorato and P. Suret, Intermittency in integrable turbulence.
Phys. Rev. Lett. 113 (2014), article no. 113902

F. S. Rofe-Beketov, On the spectrum of non-selfadjoint differential operators with periodic
coefficients. Dokl. Akad. Nauk SSSR 152 (1963), 1312-1315; English transl., Soviet Math.
Dokl. 4 (1963), 1312-1315 Zbl1 0199.14002 MR 0157033

F. S. Rofe-Beketov and A. M. Kholkin, Spectral analysis of differential operators. World
Scientific Monograph Series in Mathematics 7, World Scientific, Hackensack, NJ, 2005
Zbl 1090.47030 MR 2175241

J. Satsuma and N. Yajima, Initial value problems of one-dimensional self-modulation of
nonlinear waves in dispersive media. Progr. Theoret. Phys. Suppl. 55 (1974), 284-306
MR 0463733

M. L. Serov, Certain properties of the spectrum of a non-selfadjoint differential operator of
the second order. Dokl. Akad. Nauk SSSR 131 (1960), 27-29 English transl., Soviet Math.
Dokl. 1 (1960), 190-192 Zbl 0106.05902 MR 0131016

K. C. Shin, On the shape of spectra for non-self-adjoint periodic Schrodinger operators.
J. Phys. A 37 (2004), no. 34, 8287-8291 Zbl 1064.81029 MR 2092798

D. R. Solli, C. Ropers, P. Koonath and B. Jalali, Optical rogue waves. Nature 450 (2007),
1054-1057

E. C. Titchmarsh, The theory of functions. Second edn., Oxford University Press, Oxford,
1939 JFM 65.0302.01 MR 3728294

V. Tkachenko, Spectra of non-selfadjoint Hill’s operators and a class of Riemann surfaces.
Ann. of Math. (2) 143 (1996), no. 2, 181-231 Zbl 0856.34087 MR 1381985

V. Tkachenko, Non-self-adjoint periodic Dirac operators. In Operator theory, system the-
ory and related topics (Beer-Sheva/Rehovot, 1997), pp. 485-512, Oper. Theory Adv. Appl.
123, Birkhiduser, Basel, 2001 Zbl 0996.34070 MR 1821926


https://zbmath.org/?q=an:0941.81029
https://mathscinet.ams.org/mathscinet-getitem?mr=1650432
https://zbmath.org/?q=an:0598.35002
https://mathscinet.ams.org/mathscinet-getitem?mr=779467
https://zbmath.org/?q=an:1198.00002
https://mathscinet.ams.org/mathscinet-getitem?mr=2723248
https://zbmath.org/?q=an:0199.14002
https://mathscinet.ams.org/mathscinet-getitem?mr=0157033
https://zbmath.org/?q=an:1090.47030
https://mathscinet.ams.org/mathscinet-getitem?mr=2175241
https://mathscinet.ams.org/mathscinet-getitem?mr=0463733
https://zbmath.org/?q=an:0106.05902
https://mathscinet.ams.org/mathscinet-getitem?mr=0131016
https://zbmath.org/?q=an:1064.81029
https://mathscinet.ams.org/mathscinet-getitem?mr=2092798
https://zbmath.org/?q=an:65.0302.01
https://mathscinet.ams.org/mathscinet-getitem?mr=3728294
https://zbmath.org/?q=an:0856.34087
https://mathscinet.ams.org/mathscinet-getitem?mr=1381985
https://zbmath.org/?q=an:0996.34070
https://mathscinet.ams.org/mathscinet-getitem?mr=1821926

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

G. Biondini, J. Oregero, and A. Tovbis 992

A. Tovbis and S. Venakides, The eigenvalue problem for the focusing nonlinear Schro-
dinger equation: new solvable cases. Phys. D 146 (2000), no. 1-4, 150-164

Zbl 0984.34072 MR 1787410

A. Tovbis and S. Venakides, Semiclassical limit of the scattering transform for the focusing
nonlinear Schrodinger equation. Int. Math. Res. Not. IMRN (2012), no. 10, 2212-2271
Zbl 1239.35151 MR 2923165

A. Tovbis, S. Venakides, and X. Zhou, On semiclassical (zero dispersion limit) solutions
of the focusing nonlinear Schrodinger equation. Comm. Pure Appl. Math. 57 (2004), no. 7,
877-985 Zbl 1060.35137

A. Tovbis, S. Venakides, and X. Zhou, On the long-time limit of semiclassical (zero disper-
sion limit) solutions of the focusing nonlinear Schrodinger equation: pure radiation case.
Comm. Pure Appl. Math. 59 (2006), no. 10, 1379-1432 Zbl 1115.35127 MR 2248894
G. B. Whitham, Linear and nonlinear waves. Pure Appl. Math., Wiley-Intersci. Ser. Texts
Monogr. Tracts, Wiley—Interscience, New York etc., 1974

N. J. Zabusky and M. D. Kruskal, Interaction of solitons in a collisionless plasma and the
recurrence of initial states. Phys. Rev. Lett. 15 (1965), 240-243 7Zbl 1201.35174

V. E. Zakharov, Turbulence in integrable systems. Stud. Appl. Math. 122 (2009), no. 3,
219-234 Zbl 1178.37099 MR 2504627

V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and
one-dimensional self-modulation of waves in nonlinear media. Z. Eksper. Teoret. Fiz. 61
(1971), no. 1, 118-134; English transl., Soviet Physics JETP 34 (1972), no. 1, 62-69

MR 0406174

Received 7 October 2020; revised 21 March 2022.

Gino Biondini
Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260,
USA; biondini @buffalo.edu

Jeffrey Oregero
Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260,
USA; jaoreger@buffalo.edu

Alexander Tovbis

Department of Mathematics, University of Central Florida, 4393 Andromeda Loop N,
Orlando, FL 32816, USA; alexander.tovbis@ucf.edu


https://zbmath.org/?q=an:0984.34072
https://mathscinet.ams.org/mathscinet-getitem?mr=1787410
https://zbmath.org/?q=an:1239.35151
https://mathscinet.ams.org/mathscinet-getitem?mr=2923165
https://zbmath.org/?q=an:1060.35137
https://zbmath.org/?q=an:1115.35127
https://mathscinet.ams.org/mathscinet-getitem?mr=2248894
https://zbmath.org/?q=an:1201.35174
https://zbmath.org/?q=an:1178.37099
https://mathscinet.ams.org/mathscinet-getitem?mr=2504627
https://mathscinet.ams.org/mathscinet-getitem?mr=0406174
mailto:biondini@buffalo.edu
mailto:jaoreger@buffalo.edu
mailto:alexander.tovbis@ucf.edu

	1. Introduction
	2. Preliminaries
	3. General properties of the spectrum
	4. Properties of the spectrum in the semiclassical limit
	5. Properties of the spectrum for real or symmetric potentials
	6. Proofs
	6.1. Proofs: General properties of the spectrum
	6.2. Proofs: Semiclassical limit
	6.3. Proofs: Real or symmetric potentials

	7. Examples
	7.1. Plane wave potentials
	7.2. Piecewise continuous potentials
	7.3. Real-valued periodic single-lobe potentials
	7.4. Periodic potentials with rapid phase variations

	Appendix
	A.1. Definitions
	A.2. Symmetries of the ZS scattering problem
	A.3. Comparison between various definitions of Dirichlet spectrum
	A.4. Floquet discriminant for constant and plane wave potentials
	A.5. Floquet discriminant for piecewise constant potentials
	A.6. Floquet–Hill's method

	References

