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GEOMETRIC EVOLUTION OF BILAYERS UNDER THE
DEGENERATE FUNCTIONALIZED CAHN–HILLIARD EQUATION⇤

SHIBIN DAI†, TOAI LUONG†, AND XIANG MA‡

Abstract. Using a multiscale analysis, we derive a sharp interface limit for the dynamics of
bilayer structures of the functionalized Cahn–Hilliard equation with a cuto↵ di↵usion mobility M(u)
that is degenerate for u  0 and a continuously di↵erentiable double-well potential W (u). We show
that the bilayer interface does not move in the t = O(1) time scale. The interface motion occurs
in the t = O("�1) time scale and is determined by porous medium di↵usion processes in both
phases with no jumps on the interface. In the longer O("�2) time scale, the interface motion is a
complex combination of porous medium di↵usion processes in both phases and the property of mass
conservation.
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1. Introduction. Natural and synthetic amphiphilic materials, such as phos-
pholipids, detergents, and block copolymers, play an essential role in biological and
medical sciences [1, 18, 26, 29], and in engineering of new materials and devices
[25]. These amphiphiles contain both hydrophobic and hydrophilic segments. When
dispersed in aqueous solutions at a concentration higher than the critical micelle con-
centration, they self-assemble into aggregates with various structures and sizes, such
as bilayer vesicles, micelles (spheres and tubes), and multilamellar compounds [17, 19].
The system must have defined boundaries that separate it from the environment [26,
28]. It is, therefore, of mathematical interest to understand the geometric evolution
of amphiphilic structures during the self-assembly. The functionalized Cahn–Hilliard
(FCH) equations,

ut = r · (M(u)rµ),(1.1)

µ = (�"2�+W 00(u)� "2⌘2)(�"2�u+W 0(u)),(1.2)

was introduced to study phase-separated mixtures with an amphiphilic structure [16].
This equation is usually subject to periodic or zero-flux boundary conditions on @⌦,
where ⌦ is an open subset of Rn. The initial data should be taken as

u(x, 0) = �(x),(1.3)

µ(x, 0) =  (x) := (�"2�+W 00(�)� "2⌘2)(�"2��+W 0(�))(1.4)

in ⌦, where � 2 H4(⌦).
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1128 SHIBIN DAI, TOAI LUONG, AND XIANG MA

The function µ in equation (1.2) is the chemical energy which is defined by the
variational derivative of the FCH free energy

F(u) = "�2

Z

⌦

1

2
(�"2�u+W 0(u))2 � "2⌘2

✓
"2

2
|ru|2 +W (u)

◆
dx,(1.5)

and M(u) in denotes the di↵usion mobility. W (u) represents the double-well potential
with two unequal depth local minima b� < b+ for which W (b�) > W (b+), and W 0

has exactly three zeros b� < b0 < b+. The phase u = b� with the higher self-energy
is the majority phase, while the phase u = b+ is the minority phase. In this paper we
take

W (u) = u2(u� 1)(u� 2),(1.6)

which has two local minima b� = 0 < b+. In this paper, we choose the di↵usion
mobility M(u) to be

M(u) =

⇢
0, u < 0,
u, u � 0,

(1.7)

which is degenerate at u = 0. This corresponds to an attempt to model the elimina-
tion of exchange of amphiphilic molecules between disjoint morphologies; see [30] for
experimental descriptions.

The FCH free energy (1.5) is a phenomenological model describing the free energy
of amphiphilic mixtures that supports codimension-one bilayer interfaces separating
two identical phases u = b� by a thin region of another phase u = b+ [4, 10, 11, 13, 14,
15, 20]. Using asymptotic analysis, we will derive sharp interface models of the system
with respect to di↵erent scales of time t. In this paper we use a periodic boundary
condition on @⌦ for (1.1)–(1.2). It was established in [9] that the FCH equations (1.1)–
(1.2) with W (u) and M(u) defined by (1.6) and (1.7), along with periodic boundary
condition on @⌦, have a nonnegative weak solution that is not identically zero in ⌦.
So in this paper we make the following assumptions. Specifically, we assume the initial
data are compatible with these assumptions.

Assumption 1.1. There exists a solution u � 0 to (1.1)–(1.2) that is smooth
enough to carry out the formal calculation.

Assumption 1.2. There is a smooth, codimensional-one initial interface �0 ⇢ Rn

that splits ⌦ into the interior ⌦+ and the exterior ⌦�, which is parametrized by

�0 = {�0(s) : s = (s1, . . . , sn�1) 2 Q0 ⇢ Rn�1},(1.8)

where �0 : Q0 7! Rn is a smooth function.

In section 3, we define the outer expansion

u(x, t) = u0 + "u1 + "2u2 + "3u3 + · · · .(1.9)

Throughout this paper we assume u ⇡ u0 = b� = 0 in the bulk phase ⌦±. Since
u � 0, we assume the following.

Assumption 1.3. u1(x, t) � 0. Specifically we require the initial data to also
satisfy this assumption.
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GEOMETRIC EVOLUTION OF BILAYERS 1129

In subsection 6.2, we show that in the t2 = "2t time scale, u1(x, t2) = 0, and since
u � 0, we assume the following.

Assumption 1.4. In the t2 = "2t time scale, u2(x, t2) � 0.

It is important to point out that the stability of codimension-one solutions is
an important and nontrivial problem, even for the relatively simpler case when the
di↵usion mobility M(u) is constant [3, 13, 20, 27]. To the best of our knowledge there
is no result about the stability of solutions when M(u) depends on u. In this paper
we concentrate on formal asymptotic analysis, assuming that the parameters in our
equations are in a range where meandering or pearling instabilities do not occur.

We will describe the motion of the bilayer interfaces �(t), which is parametrized
by

�(t) = {�(s, t) : s = (s1, . . . , sn�1) 2 Q(t) ⇢ Rn�1},(1.10)

as time t changes. The parametrization �(s, t) is chosen so that si corresponds to the
arc length along the ith coordinate curve, and the coordinate curves are curvature
lines. Then the tangent vectors

Ti =
@�

@si
, i = 1, . . . , n� 1,(1.11)

form an orthonormal basis for the tangent space to � at the point �(s, t). Let n(s, t)
be the outer normal vector of � pointing toward ⌦�; then we have the relations

@Ti

@si
= �kin,

@n

@si
= kiT

i, i = 1, . . . , n� 1,(1.12)

where ki = ki(s) (i = 1, . . . , n� 1) are principal curvatures of � at �(s, t). Our main
result is the following statement about the quasi-equilibrium evolutions.

Main Result 1.5. With the choice of W (u) and M(u) in (1.6) and (1.7), the
nontrivial interface motion under the FCH equations (1.1)–(1.2) with the initial data

(1.3)–(1.4) starts to occur in the time scale t1 = "t, or t = O("�1). The normal

velocity Vn of the interface in the t1 = "t time scale is determined by the following

free boundary problem:

@µ1

@t1
= r · (µ1rµ1) in ⌦\�,(1.13)

[[@nµ1]] = 0 on �,(1.14)

µ1 is periodic on @⌦,(1.15)

µ1(x, 0) =  1(x) in ⌦,(1.16)

Vn = µ10 on �,(1.17)

where 0 = k1 + · · · + kn�1 is the mean curvature, and  1(x) is a given function

defined by (3.4).
In the t2 = "2t time scale, i.e., t = O("�2), the normal velocity Vn of the interface

is determined by the following free boundary problem:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1130 SHIBIN DAI, TOAI LUONG, AND XIANG MA

@µ2

@t2
= r · (µ2rµ2) in ⌦\�,(1.18)

[[@nµ2]] = 0 on �,(1.19)

µ2 is periodic on @⌦,(1.20)

µ2(x, 0) =  2(x) in ⌦,(1.21)

Vn =

✓
µ2 +

m2

m1
⌘2

◆
0 +

m2

m1

✓
�s0 �

30
2

� 01

◆
on �,(1.22)

where 1 = �(k21 + · · · + k2n�1),  2(x) is a given function defined by (3.4), and

m1 =
R1
�1 Udz, m2 =

R1
�1 U2

z dz. Here, U(z) is the homoclinic solution to the

codimensional-one bilayer equation

�U 00(z) +W 0(U(z)) = 0, U(0) = 1, lim
z!±1

U(z) = 0.(1.23)

By Assumption 1.3 and equality (3.8), µ1 = 16u1 � 0. Hence the porous medium
equations (1.13)–(1.6) are well-posed, and the mean-curvature flow (1.17) is also well-
posed. By Assumption 1.4 and equality (6.22), µ2(x, t2) = 16u2(x, t2) � 0. So the
porous medium equations (1.18)–(1.21) are also well-posed.

Remark 1.6. Our main results show a few interesting things.

1. When the double-well potential W is smooth, the degeneracy in the di↵usion
mobility is not enough to completely cut o↵ the di↵usion in the bulk phase.
This is similar to what happens in the degenerate Cahn–Hilliard (CH) equa-
tions [6, 5, 7, 8, 22, 23]. However, rather than a quasi-stationary porous
medium di↵usion in the degenerate CH equation, we have a porous medium
di↵usion in the bulk phase.

2. Similar to the FCH equation with constant mobility [10, 11], the t1-dynamics
of the degenerate FCH is still a quenched mean curvature flow with a variable
coe�cient. However, the coe�cient is determined by the porous medium
di↵usion. In comparison, for the FCH equation with constant mobility, the
coe�cient in the quenched mean curvature flow is a spatial constant that
varies with time.

3. Similarly to the FCH equation with constant mobility, the t2-dynamics is
still a Willmore-type flow, but with some coe�cient determined by a porous
medium di↵usion. For the constant mobility case, the corresponding coe�-
cient in the Willmore-type flow is again a spatial constant.

4. Based on these observations, we conjecture that in order to completely sup-
press di↵usion in the bulk phase, we should consider a combination of de-
generate mobility and a nonsmooth potential, as suggested in [12], or maybe
some completely di↵erent approaches.

2. The whiskered coordinates and inner expansion.

2.1. The whiskered coordinates. By the implicit function theorem, for each
x̄ on �, there exists a neighborhood Nx̄ ⇢ � of x̄ such that the map x 7! (s, r) defined
by

x = �(s, t) + rn(s, t)(2.1)

is locally and smoothly invertible for each fixed time t. The thickness of the bilayer
interfaces is of order ", so we rescale the normal local coordinate r(x) by z = r/".
Lemma 2.1 below summarizes the properties of the local coordinate system [2].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GEOMETRIC EVOLUTION OF BILAYERS 1131

Lemma 2.1. Let � = �(t) be a smooth interface of the form (1.10) with curvatures

{ki}n�1
i=1 uniformly of order 1. The normal velocity of � at �(s, t) is Vn = �@r

@t (s, t),
which is positive when � moves in the direction of n, and the tangential coordinates

(r, s) satisfy the formulae

rxsi =
1

1 + rki
Ti, �xsi = � r

(1 + rki)3
@ki
@si

, i = 1, . . . , n� 1,(2.2)

and

rxr = n, �xr =
n�1X

j=1

kj
1 + rkj

.(2.3)

In the scaled local coordinates (z, s), the Cartesian-Laplacian �x can be represented

in terms of the Laplace–Beltrami operator �s and the curvatures

�x = "�2@zz + "�10@z + z1@z +�s + "�1 +O("2),(2.4)

where 0 = k1 + · · · + kn�1 is the mean curvature, 1 = �(k21 + · · · + k2n�1), 2 =
k31 + · · ·+ k3n�1, and

�1 = �z
n�1X

j=1

@kj
@sj

@

@sj
+ z22@z � 2z0�s.(2.5)

The Jacobian matrix J of the transformation x 7! (z, s) has the form

J =
�
(1 + "zk1)T

1, . . . , (1 + "zkn�1)T
n�1, "n

�
,(2.6)

and the Jacobian J = |detJ| satisfies

J(s, z) = "
n�1Y

i=1

(1 + "zki) = "+ "2z0 +O("3).(2.7)

For a given constant l > 0, we define the so-called “whiskers” at every point on
the interface � along the normal direction as [10]:

w(s) =

⇢
�(s) + zn(s) : z 2


� l

"
,
l

"

��
.(2.8)

The interface � is called far from intersection if there exists l > 0 such that none of
the whiskers of length l intersect each other or @⌦.

Definition 2.1. Let � be far from self-intersection and let

�l =
[

s2Q

w(s)(2.9)

be the subset of ⌦ consisting of all points x 2 ⌦ with dist(x,�)  l. A function

f 2 L1(⌦) is called localized on � if there exist positive constants M and ↵, not
depending on ", such that

|f(x(z, s))|  Me�↵|z|(2.10)

for all x 2 �l

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1132 SHIBIN DAI, TOAI LUONG, AND XIANG MA

Lemma 2.2 below shows the relation between the integral with respect to the
global variable x and the integral with respect to the scaled local variables (z, s) [10].

Lemma 2.2. If � is far from self-intersection and f is localized on �, then the

following integral formula holds:

Z

⌦
f(x)dx =

Z

Q

Z l/"

�l/"
f(x(z, s))J(z, s)dzds+O(e�⌫(l/")),(2.11)

where J is the Jacobian associated with the immersion � : Q = Q(t) 7! �(t) ⇢ Rn.

Let U = U(z) be the homoclinic solution to the codimensional-one bilayer equa-
tion

�U 00(z) +W 0(U(z)) = 0(2.12)

representing the standard transition layer profile. We assume that the initial data
� of u is close to a bilayer interface, that is, for some interface �, � is close to the
�-extension U� of U . Lemma 2.3 below establishes the existence of the maximum of
the homoclinic solution U and some properties of the associated linearization [10].

Lemma 2.3. Let U be the solution of equation (2.12) which is homoclinic to b�,
and even in z, that is, U(z) = U(�z), then U attains its maximum value UM at

z = 0, where UM is the unique zero of W in (b�, b+). Moreover, there exists ⌫ > 0
such that the linearization L on H2(R) defined by

L = �@zz +W 00(U)(2.13)

has the spectrum satisfying

�(L) ⇢ {�0,�1 = 0} [ [⌫,1),(2.14)

where �0 < 0 is the ground-state eigenvalue. The corresponding eigenfunctions of

�0 and �1 are  0 � 0 and  1 = Uz, respectively. Also, L satisfies the following

identities:

L
⇣z
2
Uz

⌘
= �Uzz,(2.15)

L(Uzz) = �W 000(U)U2
z .(2.16)

Finally, there exist even functions '1,'2 2 L1(R) that satisfy

L'1 = 1, L'2 = '1,(2.17)

and 'j’s are orthogonal to the kernel of L which is spanned by Uz.

With the choice of W (u) = u2(u� 1)(u� 2), the maximum value of U is UM = 1
attained only at z = 0, and U is homoclinic to 0, that is, limz!±1 U(z) = 0.

2.2. Inner expansion. At a time scale ⌧ , we have the inner spatial expansions

u(x, t) = ũ(s, z, ⌧) = ũ0 + "ũ1 + "2ũ2 + · · · ,(2.18)

µ(x, t) = µ̃(s, z, ⌧) = µ̃0 + "µ̃1 + "2µ̃2 + · · · .(2.19)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GEOMETRIC EVOLUTION OF BILAYERS 1133

Using (2.4) we get

�xu = "�2ũ0zz + "�1(ũ1zz + 0ũ0z) + (ũ2zz + 0ũ1z + 1zũ0z +�sũ0)(2.20)

+ "(ũ3zz + 0ũ2z + 1zũ1z +�sũ1 +�1ũ0) +O("2).

From (1.2), we write µ = PA, where P = �"2� +W 00(u) � "2⌘2 and A = �"2�u +
W 0(u). Expanding P and A in local coordinates we get

P = [�@zz +W 00(ũ0)] + "[�0@z +W 000(ũ0)ũ1]

(2.21)

+ "2

�z1@z ��s � ⌘2 +W 000(ũ0)ũ2 +

1

2
W (4)(ũ0)ũ

2
1

�

+ "3[��1 + ũ1ũ2 +W 000(ũ0)ũ3 +W (4)(ũ0)ũ1ũ2] +O("4),

A = [�ũ0zz +W 0(ũ0)] + "[�ũ1zz � 0ũ0z +W 00(ũ0)ũ1] + "2

�ũ2zz � 0ũ1z � z1ũ0z

(2.22)

��sũ0 +W 00(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ

2
1

�
+ "3


�ũ3zz � 0ũ2z � z1ũ1z ��sũ1

��1ũ0 +W 00(ũ0)ũ3 +W 000(ũ0)ũ1ũ2 +
1

6
W (4)(ũ0ũ

3
1)

�
+O("4).

Grouping the orders of µ we get

µ̃0 = [�@zz +W 00(ũ0)][�ũ0zz +W 0(ũ0)],

(2.23)

µ̃1 = [�@zz +W 00(ũ0)][�ũ1zz � 0ũ0z +W 00(ũ0)ũ1]

+ [�0@z +W 000(ũ0)ũ1][�ũ0zz +W 0(ũ0)],(2.24)

µ̃2 = [�@zz +W 00(ũ0)]


� ũ2zz � 0ũ1z � z1ũ0z ��sũ0 +W 00(ũ0)ũ2

+
1

2
W (4)(ũ0)ũ

2
1

�
+ [�0@z +W 000(ũ0)ũ1][�ũ1zz � 0ũ0z +W 00(ũ0)ũ0]

+


�z1@z ��s � ⌘2 +W 000(ũ0)ũ2 +

1

2
W (4)(ũ0)ũ

2
1

�
[�ũ0zz +W 0(ũ0)],(2.25)

µ̃3 =[�@zz +W 00(ũ0)]


�ũ3zz � 0ũ2z � z1ũ1z ��sũ1 ��1ũ0 +W 00(ũ0)ũ3

+W 000(ũ0)ũ1ũ2 +
1

6
W (4)(ũ0)ũ

3
1

�
+ [�0@z +W 000(ũ0)ũ1]


�ũ2zz � 0ũ1z

� z1ũ0z ��sũ0 +W 00(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ

2
1

�
+


�z1@z ��s � ⌘2

+W 000(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ

2
1

�
[�ũ1zz � 0ũ0z +W 00(ũ0)ũ1]

+ [��1 +W 000(ũ0)ũ3 +W (4)(ũ0)ũ1ũ2][�ũ0zz +W 0(ũ0)].(2.26)
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D
ow

nl
oa

de
d 

08
/1

2/
23

 to
 1

30
.1

60
.2

24
.1

33
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



1134 SHIBIN DAI, TOAI LUONG, AND XIANG MA

Also,

�xµ = "�2µ̃0zz + "�1(µ̃1zz + 0µ̃0z) + (µ̃2zz + 0µ̃1z + z1µ̃0z +�sµ̃0)

+ "(µ̃3zz + 0µ̃2z + z1µ̃1z +�sµ̃1 +�1µ̃0) +O("2).(2.27)

Since we are interested in the quasi-equilibrium long-time behavior of the system, we
will assume that the leading order transition profile ũ0 reaches its equilibrium state,
which is the homoclinic solution U(z) of (2.12) satisfying 0 < U(z)  1, U(0) = 1,
and limz!±1 U(z) = 0.

Since W 0(0) = 0 and W 00(0) > 0, U exponentially approaches 0 as z ! ±1.
Assuming that ũ0(z) ⇠ e�|z|/� as z ! ±1, then by taking ⌘ = �ln( 1" ) we have

ũ0(z) 

8
>>>><

>>>>:

O(1), |z| < ⌘,
O("), |z| � ⌘,
O("2), |z| � ⌘2,
O("3), |z| � ⌘3,
O("4), |z| � ⌘4.

(2.28)

So it’s reasonable to split (�1,1) into subsets

{z : |z| < ⌘}, {z : ⌘  |z| < 2⌘}, {z : 2⌘  |z| < 3⌘}, {z : 3⌘  |z| < 4⌘}, {z : |z| � 4⌘}.

Letting �0,�1,�2,�3,�4 be the characteristic functions of these sets, we have the
following expansion of ũ0:

ũ0 = ũ0�0 + "ũ0�1"
�1 + "2ũ0�2"

�2 + "3ũ0�3"
�3 + "4ũ0�4"

�4.(2.29)

The first four terms on the right-hand side are, respectively, of orders 1, ", "2, "3, and
the last one is a residual term of order "4 and higher.

Since ũ0z decays exponentially to 0 as z ! ±1 at the same rate as ũ0, we have
a similar expansion for ũ0z:

ũ0z = ũ0z�0 + "ũ0z�1"
�1 + "2ũ0z�2"

�2 + "3ũ0z�3"
�3 + "4ũ0z�4"

�4.(2.30)

By the choice (1.7) of M(u) we obtain

r · (M(u)rµ) =

⇢
0, u < 0,
u�µ+ru ·rµ, u � 0.

(2.31)

By Assumption 1.1, u � 0, so we have

r · (M(u)rµ) = u�µ+ru ·rµ.(2.32)

Using Lemma 2.1 and (2.29), (2.30), we expand

r · (M(u)rµ) = "�2P�2 + "�1P�1 + P0 + "P1 + "2P2 +O("3),(2.33)
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GEOMETRIC EVOLUTION OF BILAYERS 1135

where

P�2 = ũ0µ̃0zz�0 + µ̃0zũ0z�0,

(2.34)

P�1 = ũ0�0(µ̃1zz + 0µ̃0z) + µ̃0zz(ũ0�1"
�1 + ũ1)

+ µ̃0z(ũ0z�1"
�1 + ũ1z) + µ̃1zũ0z�0,(2.35)

P0 = ũ0�0(µ̃2zz + 0µ̃1z + z1µ̃0z +�sµ̃0) + (ũ0�1"
�1 + ũ1)(µ̃1zz + 0µ̃0z)

+ (ũ0�2"
�2 + ũ2)µ̃0zz + µ̃0z(ũ0z�2"

�2 + ũ2z) + µ̃1z(ũ0�1"
�1 + ũ1z)

+ µ̃2zũ0z�0 +
n�1X

j=1

ũ0sj µ̃0sj ,(2.36)

P1 = ũ0�0(µ̃3zz + 0µ̃2z + z1µ̃1z +�sµ̃1 +�1µ̃0)

+ (ũ0�1"
�1 + ũ1)(µ̃2zz + 0µ̃1z + z1µ̃0z +�sµ̃0)

+ (ũ0�2"
�2 + ũ2)(µ̃1zz + 0µ̃0z) + (ũ0�3"

�3 + ũ3)µ̃0zz

+ µ̃0z(ũ0z�3"
�3 + ũ3z) + µ̃1z(ũ0z�2"

�2 + ũ2z) + µ̃2z(ũ0z�1"
�1 + ũ1z)

+ µ̃3zũ0z�0 � 2z
n�1X

j=1

ũ0sj µ̃0sjj +
n�1X

j=1

ũ0sj µ̃1sj +
n�1X

j=1

ũ1sj µ̃0sj .(2.37)

3. Outer expansion. Away from �l, we have the outer expansion

u(x, t) = u0 + "u1 + "2u2 + "3u3 + · · · ,(3.1)

µ(x, t) = µ0 + "µ1 + "2µ2 + "3µ3 + · · · ,(3.2)

where u ⇡ u0 ⌘ 0 in the bulk phase ⌦±. We also expand the initial data

�(x) = �0 + "�1 + "2�2 + "3�3 + · · · ,(3.3)

 (x) =  0 + " 1 + "2 2 + "3 3 + · · · .(3.4)

Using Taylor series to expand W 0(u) and W 00(u) about u0, we have

W 0(u) = W 0(u0) + "u1W 00(u0) + "2

u2W 00(u0) +

1

2
u2
1W

000(u0)

�
+O("3),(3.5)

W 00(u) = W 00(u0) + "u1W 000(u0) + "2

u2W 000(u0) +

1

2
u2
1W

(4)(u0)

�
+O("3).(3.6)

Then from (1.2) we obtain

µ0 = W 00(u0)W 0(u0) = 0,(3.7)

µ1 = [W 000(u0)W 0(u0) +W 00(u0)
2]u1 = 16u1.(3.8)

Hence

r · (M(u)rµ) = "2r · (u1rµ1) +O("3).(3.9)
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1136 SHIBIN DAI, TOAI LUONG, AND XIANG MA

The following match condition connects the inner and outer expansions:

µ±
0 = lim

z!±1
µ̃0,(3.10)

µ±
1 + z@nµ

±
0 = µ̃1 + o(1) as z ! ±1,(3.11)

µ±
2 + z@nµ

±
1 +

1

2
z2@2nµ

±
0 = µ̃2 + o(1) as z ! ±1,(3.12)

µ±
3 + z@nµ

±
2 +

1

2
z2@2nµ

±
1 +

1

6
z3@3nµ

±
0 = µ̃3 + o(1) as z ! ±1,(3.13)

and

u±
0 = lim

z!±1
ũ0,(3.14)

u±
1 + z@nu

±
0 = ũ1 + o(1) as z ! ±1,(3.15)

u±
2 + z@nu

±
1 +

1

2
z2@2nu

±
0 = ũ2 + o(1) as z ! ±1.(3.16)

4. Time scale t = O(1). In this time scale, the outer solution satisfies @tu0 = 0
and @tu1 = 0. For the inner solution, we have

ut = ũt +rsũ · @s
@t

+ "�1 @r

@t
ũz = "�1�0ũ0z

@r

@t
+O(1).(4.1)

Expanding the normal distance r = r0 + "r1 + O("2) and matching (2.33) and (4.1),
also recalling that ũ0 = U(z) and µ̃0 ⌘ 0, the "�1 terms give

�0Uz
@r0
@t

= P�1 = �0
@

@z
(Uµ̃1z).(4.2)

Hence

@

@z

✓
U

✓
@r0
@t

� µ̃1z

◆◆
= 0 for z 2 (�⌘, ⌘).(4.3)

So there is a1 independent of z 2 (�⌘, ⌘) such that U
�
@r0
@t � µ̃1z

�
= a1. Since

U ! O(") as z ! ±⌘ and @r0
@t � µ̃1z = a1U�1, the only way for @r0

@t � µ̃1z to remain
O(1) is that a1 = 0 for z 2 (�⌘, ⌘). So

@r0
@t

= µ̃1z for z 2 (�⌘, ⌘).(4.4)

To find @r0
@t , let L := �@zz +W 00(U). Since ũ0 = U(z) and �Uzz +W 0(U) = 0, (2.24)

implies

µ̃1 = �0L(Uz) + L2(ũ1) = �0
d

dz
(�Uzz +W 0(U)) + L2(ũ1) = L2(ũ1).(4.5)

By Lemma 2.3, equation (4.5) has a solution ũ1 2 L2(R) if and only if µ̃1 ? Uz. Using
integration by parts and the solvability condition, we get

Z ⌘

�⌘
Uµ̃1zdz =

Z 1

�1
Uµ̃1zdz �

Z

|z|>⌘
Uµ̃1zdz

=�
Z 1

�1
Uzµ̃1dz +O(") = O(").(4.6)
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GEOMETRIC EVOLUTION OF BILAYERS 1137

Combining (4.4) and (4.6) we get @r0
@t

R ⌘
�⌘ Udz = O("), and since the left-hand side is

of order 1, then @r0
@t

R ⌘
�⌘ Udz = 0. Thus @r0

@t = 0, and hence the interface �(t) doesn’t
move to the leading order in this time scale.

By (4.4), µ̃1z = @r0
@t = 0 for z 2 (�⌘, ⌘). This is also consistent with the behavior

of µ̃1 as z ! ±1, which is limz!±1 µ̃1z = @nµ
±
0 = 0 by the match condition (3.11).

So we expect the equilibrium state of µ̃1 to be independent of z in the whole transition
layer. Thus there exists B̃1(s, t) independent of z such that µ̃1(z, s, t) = B̃1(s, t), which
is determined by matching the inner expansion µ̃1 with the outer expansion µ1 using

lim
r!0±

µ1(�(s, t) + rn) = lim
z!±1

µ̃1(z, s, t) = B̃1(s, t).

Recalling the function '2 in Lemma 2.3, we find the solution to equation (4.5):

ũ1 = B̃1(s, t)'2(z),(4.7)

where we assume that ũ1 ? Ker(L) on each whisker w(s).

5. Time scale t1 = "t.

5.1. Outer expansion. Since @t = "@t1 , we have

ut = "u0t1 + "2u1t1 + "3u2t1 +O("4).(5.1)

Matching (3.9) and (5.1), the "2 terms give

@u1

@t1
= r · (u1rµ1).(5.2)

Combining (3.8) and (5.2), it turns out that µ1 satisfies a porous medium equation

@µ1

@t1
= r · (µ1rµ1) in ⌦±.(5.3)

5.2. Inner expansion. We have ut = "(ũt1 + rsũ · @s
@t1

) + @r
@t1

ũz. Combining
with (2.27) we have

ut =
@r

@t1
ũ0z�0 +O(").(5.4)

Expanding the normal distance r = r0 + "r1 +O("2), and matching (2.33) and (4.1),
the order 1 terms give

@r0
@t1

Uz�0 = P0 = �0
@

@z
(Uµ̃2z).(5.5)

Hence

@

@z

✓
U

✓
@r0
@t1

� µ̃2z

◆◆
= 0 for z 2 (�⌘, ⌘).(5.6)

Using an argument similar to that in section 6, we get

@r0
@t1

= µ̃2z for z 2 (�⌘, ⌘).(5.7)
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1138 SHIBIN DAI, TOAI LUONG, AND XIANG MA

Hence µ̃2 = @r0
@t1

z + C2(s, t1) for z 2 (�⌘, ⌘). It is reasonable to assume that µ̃2 is
linear in terms of z in the whole transition layer, i.e.,

µ̃2 =
@r0
@t1

z + C2(s, t1) for z 2 (�1,1),(5.8)

provided we have already waited long enough for the whole transition profile to equi-
librate.

To find @r0
@t1

, we recall the form of µ̃2 in (2.25). From (4.7) we deduce that

Lũ1 = B̃1'1, where '1 is the function in Lemma 2.3. Then we can simplify (2.25) to
get

µ̃2 = L(�ũ2zz � 0ũ1z � z1Uz +W 00(U)ũ2 +
1

2
W 000(U)ũ2

1)

+ (�0@z +W 000(U)B̃1'2)(B̃1'1 � 0Uz).(5.9)

The solvability condition for (5.9) gives
Z 1

�1
[µ̃2 � (�0@z +W 000(U)B̃1'2)(B̃1'1 � 0Uz)]Uzdz = 0.(5.10)

Since U,'1,'2 are even functions and B̃1 is independent of z, we simplify the left-hand
side of (5.10) to get

Z 1

�1
[µ̃2 + B̃10('1

0 +W 000(U)'2Uz)]Uzdz = 0.(5.11)

Using Lemma 2.3, we rewrite the last term of (5.11) as
Z 1

�1
W 000(U)U2

z'2dz = �
Z 1

�1
'2L(Uzz)dz = �h'2,L(Uzz)i

= �hL'2, Uzzi = �h'1, Uzzi.(5.12)

And since L( z2Uz) = �Uzz, we get
Z 1

�1
W 000(U)U2

z'2dz = �h'1, Uzzi =
⌧
'1,L

✓
z

2
Uz

◆�

=

⌧
z

2
Uz,L'1

�
=

⌧
z

2
Uz, 1

�

=

Z 1

�1

z

2
Uzdz = �

Z 1

�1

U

2
dz.(5.13)

Using (5.13), the second term of (5.11) is simplified to

B̃10

Z 1

�1
'1

0Uzdz = �B̃10

Z 1

�1
'1Uzzdz = � B̃10

2

Z 1

�1
Udz.(5.14)

By (5.8), the first term of (5.11) is
Z 1

�1
µ̃2Uzdz = �

Z 1

�1
µ̃2zUdz = �@r0

@t1

Z 1

�1
Udz.(5.15)

Substituting (5.13), (5.14), and (5.15) into (5.11) we get
✓
�@r0
@t1

� B̃10

◆Z 1

�1
Udz = 0.(5.16)
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GEOMETRIC EVOLUTION OF BILAYERS 1139

Since
R1
�1 Udz 6= 0, we get

@r0
@t1

= �B̃10.(5.17)

Finally, since µ̃2z = @r0
@t1

= �B̃10 is independent of z, then limz!1 µ̃2z = limz!�1 µ̃2z,
and together with the match condition (3.12) we get

@nµ
+
1 = @nµ

�
1 , i.e., [[@nµ1]] = 0.(5.18)

We summarize the t1 = "t evolution in the following model:

@µ1

@t1
= r · (µ1rµ1) in ⌦\�,

[[@nµ1]] = 0 on �,

µ1 is periodic on @⌦,

µ1(x, 0) =  1(x) in ⌦,

and the leading order of the normal velocity is

Vn = �@r0
@t1

= B̃10,

where B̃1(s, t1) = limr!0 µ1(�(s, t1)+rn). Hence B̃1(s, t1) = µ1(�(s, t1)) on � if µ1 is
continuous across �. By Assumption 1.3 and equality (3.8), µ1(x, t1) = 16u1(x, t1) �
0, so the above porous medium equation is well-posed.

6. Time scale t2 = "2t.

6.1. Outer expansion. Since @t = "2@t2 and u0 ⌘ 0, we have ut = "3u1t2 +
O("4). Matching with (3.9), the "2 terms give

r · (u1rµ1) = 0 in ⌦±.

Combining with (5.18) and recalling that µ1 = 16u1, we obtain that µ1 satisfies a
quasi-stationary porous medium equation

r · (µ1rµ1) = 0 in ⌦\�,(6.1)

[[@nµ1]] = 0 on �,

µ1 is periodic on @⌦.

Using integration by parts with periodic boundary condition, equation (6.1) implies
that �(µ2

1) = 0 in ⌦. Since µ1 = 16u1 � 0, and with periodic boundary condition, it
follows from the maximum principle that µ1 is a spatial constant µ1(x, t2) = B1(t2)
for all x 2 ⌦. Consequently, @nµ1 = 0 on �, and by the continuity of the inner and
outer expansions of µ, we have µ̃1 = B̃1(s, t2) = B1(t2). Hence ũ1 = B1(t2)'2(z).

6.2. Inner expansion. We have

ut = "2
✓
ũt2 +rsũ · @s

@t2

◆
+ "

@r

@t2
ũz = "

@r

@t2
ũ0z�0 +O("2).(6.2)

Matching with (2.33), the order 1 terms give

P0 = �0
@

@z
(Uµ̃2z) = 0.(6.3)
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1140 SHIBIN DAI, TOAI LUONG, AND XIANG MA

Hence

@

@z
(Uµ̃2z) = 0 for z 2 (�⌘, ⌘).(6.4)

So there is a2 independent of z 2 (�⌘, ⌘) such that Uµ̃2z = a2. Since U ! O(")
as z ! ±⌘ and µ̃2z = a2U�1, the only way for µ̃2z to remain O(1) is that a2 = 0,
and thus µ̃2z = 0 for z 2 (�⌘, ⌘). This is also consistent with the behavior of µ̃2 as
z ! ±1, which is limz!±1 µ̃2z = @nµ

±
1 = 0 by the match condition (3.12). So we

expect the equilibrium state of µ̃2 to be independent of z in the whole transition layer.
Thus there exists B̃2(s, t2) such that µ̃2(z, s, t2) = B̃2(s, t2), which is determined by
matching the inner expansion µ̃2 with the outer expansion µ2 using

lim
r!0±

µ2(�(s, t2) + rn) = lim
z!±1

µ̃2(z, s, t2) = B̃2(s, t2).

Then using Lemma 2.3 and (2.25), with ũ1 = B1'2, we get

B̃2 = L
✓
Lũ2 � 0B1'2

0 � z1Uz +
1

2
W (4)(U)B2

1'
2
2

◆

+ [�0@z +W 000(U)B1'2][B1L'2 � 0Uz]

= L2(ũ2)� 0B1L('2
0) + z1Uzz +

1

2
W (4)(U)B2

1L('2
2)� 0B1'1

0

+ 20Uzz +W 000(U)B2
1'1'2 � 0W 000(U)B1'2Uz.(6.5)

By the solvability condition, to solve for ũ2, we need

B̃2 + 0B1L('2

0)� z1Uzz �
1

2
W (4)(U)B2

1L('2
2) + 0B1'1

0

�20Uzz �W 000(U)B2
1'1'2 + 0W 000(U)B1'2Uz

�
? Uz.

Simplifying the solvability condition integral, we get

B10

Z 1

�1
('1

0 +W 000(U)'2Uz)Uzdz = 0.(6.6)

Since ('1
0+W 000(U)'2Uz)Uz is even, we assume that

R1
�1('1

0+W 000(U)'2Uz)Uzdz 6=
0. Thus B1 ⌘ 0, and hence

ũ1 ⌘ 0, µ1 ⌘ 0, and u1 =
1

16
µ1 ⌘ 0,(6.7)

and (6.5) is simplified to

B̃2 = Lũ2 + (21 + 20)Uzz.(6.8)

And since Uzz and B̃2 are orthogonal to Ker(L), we can solve for ũ2:

ũ2 = B̃2'2 � (21 + 20) 2,(6.9)

where  j ? Uz are even functions that satisfy L 1 = Uzz and L 2 =  1.
Expanding the normal distance r = r0 + "r1 + O("2), and matching (2.33) with

(6.2), the " terms give

@r0
@t2

Uz�0 = P1 = �0
@

@z
(Uµ̃3z).(6.10)
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GEOMETRIC EVOLUTION OF BILAYERS 1141

Hence

@

@z

✓
U

✓
@r0
@t2

� µ̃3z

◆◆
for z 2 (�⌘, ⌘).(6.11)

Using an argument similar to that in section 6, we get

@r0
@t2

= µ̃3z for z 2 (�⌘, ⌘).(6.12)

Hence µ̃3 = @r0
@t2

z + C3(s, t2) for z 2 (�⌘, ⌘). Again, it is reasonable to assume that
µ̃3 is linear in terms of z in the whole transition layer, i.e.,

µ̃3 =
@r0
@t2

z + C3(s, t2) for z 2 (�1,1),(6.13)

provided we have already waited long enough for the whole transition profile to equi-
librate.

To find @r0
@t2

, we recall the form of µ̃3 in (2.26), and since ũ0 = U, ũ1 ⌘ 0, we
simplify (2.26) to get

µ̃3 = L(Lũ3 � 0ũ2z � z22Uz)� 0@z(Lũ2 � z1Uz)

+ (�z1@z +W 000(U)ũ2 ��s � ⌘2)(�0Uz).(6.14)

Using (6.9), we rewrite (6.14) as

L(Lũ3 � 0ũ2z � z22Uz) = R2,(6.15)

where

R2 = µ̃3 + 0B̃2('1
0 +W 000(U)'2Uz)� (21 + 20)0( 1

0 +W 000(U) 2Uz)

� 01(Uz + 2zUzz)� (�s + ⌘2)0Uz.

By the solvability condition, to solve for ũ3, we require R2 ? Uz. We examine the
terms of the integral

R1
�1 R2Uzdz one by one. From (6.13), using integration by parts

we get

Z 1

�1
µ̃3Uzdz = �

Z 1

�1
µ̃3zUdz = �@r0

@t2

Z 1

�1
Udz.(6.16)

Using Lemma 2.3 and integration by parts, we get

Z 1

�1
('1

0 +W 000(U)'2Uz)Uzdz = �
Z 1

�1
'1Uzzdz � hLUzz,'2i

= �hUzz,'1i � hUzz,L'2i
= �2hUzz,'1i = hL(zUz),'1i

= hzUz,L'1i =
Z 1

�1
zUzdz

= �
Z 1

�1
Udz.(6.17)
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1142 SHIBIN DAI, TOAI LUONG, AND XIANG MA

Similarly, we have
Z 1

�1
( 1

0 +W 000(U) 2Uz)Uzdz = hzUz,L 1i = hzUz, Uzzi

=

Z 1

�1
zUzUzzdz =

1

2

Z 1

�1
zd(U2

z )

= �1

2

Z 1

�1
U2
z dz.(6.18)

Using integration by parts, it is easy to see that
Z 1

�1
(Uz + 2zUzz)Uzdz = 0.(6.19)

Substituting (6.16), (6.17), (6.18), and (6.19) into the solvability condition integralR1
�1 R2Uzdz, we get

�@r0
@t2

Z 1

�1
Udz � 0B̃2

Z 1

�1
Udz + (21 + 20)

0
2

Z 1

�1
U2
z dz

�(�s + ⌘2)0

Z 1

�1
U2
z dz = 0.(6.20)

Hence the leading order of the normal velocity is

Vn =

✓
B̃2 +

m2

m1
⌘2

◆
0 +

m2

m1

✓
�s0 �

30
2

� 01

◆
,(6.21)

where we have introduced the constants

m1 =

Z 1

�1
Udz and m2 =

Z 1

�1
U2
z dz.

To determine B̃2 = µ̃2, we need to find µ2 and then determine µ̃2 by matching with
µ2 using

lim
r!0±

µ2(�(s, t2) + rn) = lim
z!±1

µ̃2(z, s, t2) = B̃2(s, t2).

To find µ2, we need the "2 terms in the outer expansions on both sides of (1.2). Since
u0, u1, µ0, and µ1 are both 0, we simplify (1.2) to get

µ2 = W 00(u0)
2u2 = 16u2.(6.22)

Substituting u = "2u2 + O("3) and µ = "2µ2 + O("3) into (1.1) then simplifying, we
get

"4
@u2

@t2
+O("5) = "4r · (u2rµ2) +O("5).(6.23)

Hence the "4 terms give

@u2

@t2
= r · (u2rµ2).(6.24)
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GEOMETRIC EVOLUTION OF BILAYERS 1143

Combining (6.22) and (6.24), it turns out that µ2 satisfies a porous medium equation

@µ2

@t2
= r · (µ2rµ2) in ⌦\�.(6.25)

By (6.13), limz!�1 µ̃3z = limz!1 µ̃3z, together with the match condition (3.13), we
get

@nµ
+
2 = @nµ

�
2 , i.e., [[@nµ2]] = 0.(6.26)

We summarize the t2 = "2t evolution in the following model:

@µ2

@t2
= r · (µ2rµ2) in ⌦\�,

[[@nµ2]] = 0 on �,

µ2 is periodic on @⌦,

µ2(x, 0) =  2(x) in ⌦,

and the leading order of the normal velocity is

Vn =

✓
B̃2 +

m2

m1
⌘2

◆
0 +

m2

m1

✓
�s0 �

30
2

� 01

◆
,

where B̃2(s, t2) = limr!0 µ2(�(s, t2) + rn). Hence B̃2(s, t2) = µ2(�(s, t2)) on � if µ2

is continuous across �. By Assumption 1.4 and (6.22), µ2(x, t2) = 16u2(x, t2) � 0, so
the above porous medium equation is well-posed.

6.3. The mass constraint. Even though we cannot get an explicit formula
for B̃2(s, t2), we may extract a bit more information about it by looking into the
conservation of mass. The total mass is

M =

Z

⌦
u(x, t)dx,(6.27)

which is fixed by the initial data. In the outer region ⌦\�l, we have the expansion

u = u0 + "u1 +O("2),(6.28)

where u0 ⌘ 0 and u1 ⌘ 0. In the inner region �l, the inner expansion is

ũ = ũ0 + "ũ1 +O("2),(6.29)

where ũ0 = U(z) and ũ1 = B1(t2)'2(z) ⌘ 0. We insert these expansions into (6.27)
to get

M =

Z

�l

U(z)dx+O("2).(6.30)

Assuming that |�| = O(1), changing to whiskered coordinates, and using the local
integral formula (2.11) and the Jacobian expansion (2.7), we get

Z

�l

U(z)dx =

Z

Q

Z l/"

�l/"
U(z)J(s, z)dzds = "

Z

Q

Z l/"

�l/"
U(z)dzds.(6.31)
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1144 SHIBIN DAI, TOAI LUONG, AND XIANG MA

Substituting (6.31) into (6.30) we get

M = "

Z

Q

Z l/"

�l/"
U(z)dzds+O("2).(6.32)

We expand M = "M1 + "2M2 + O("3) and the surface area |�| = �0 + "�1 + O("2).
Since U(z) � O(") with |z| large enough, then

Z 1

�1
U(z)dz =

Z l/"

�l/"
U(z)dz +O(").(6.33)

Hence
Z

Q

Z l/"

�l/"
U(z)dzdx = |�|

Z 1

�1
U(z)dz +O("2) = m1|�|+O("2),(6.34)

where m1 =
R1
�1 U(z)dz. Then we obtain M1 = m1�0, so �0 = M1/m1, and hence

d�0/dt2 = 0. On the other hand, when subject to a normal velocity Vn, measured in
time unit t2, the interfacial surface area grows at the rate

d|�|
dt2

=

Z

�
0(s)Vn(s)ds.(6.35)

Combining with (6.21), the interfaces �(t) have the leading order growth

d

dt2
�0(t2) =

Z

�

✓
B̃2 +

m2

m1
⌘2

◆
20 +

m2

m1

✓
�s0 �

30
2

� 01

◆
0ds.(6.36)

Since d�0/dt2 = 0, B̃2(s, t2) satisfies the identity
Z

�

✓
B̃2 +

m2

m1
⌘2

◆
20 �

m2

m1

✓
|rs0|2 +

40
2

+ 201

◆
ds = 0.(6.37)

7. Discussion. We formally derive the sharp interface models for di↵erent time
scales for the FCH equation with the cuto↵ di↵usion mobility M(u) that is degenerate
for u  0. Even with a degenerate mobility, we still get porous medium equations in
the regions away from the interface, and that influences the evolution of the interface.
The interface motion occurs in the t = O("�1) time scale and is determined by porous
medium di↵usion processes in both phases with no jumps on the interface. In the
longer O("�2) time scale, the interface motion is a complex combination of porous
medium di↵usion processes in both phases and the property of mass conservation.
The FCH equation with a degenerate mobility is more complicated than the one with
a constant mobility, and is unlikely to obtain simple models. We have shown that
the two phases of a degenerate FCH model communicate through a porous medium
process in both phases, not by a common mean field on the interface like constant
mobility ones (for example, see [10]). With a degenerate di↵usion mobility, the long-
range communication of the two phases becomes weaker through the di↵usion process,
but it is still connected. This means just the degenerate mobility itself is not enough to
cut o↵ the long-range communication. We need some other mechanism, such as some
singularity in the double-well potentialW (u) as studied in [12], for the communication
to be cut o↵ completely.

In the process of self-assembly of vesicles, the existence of intermolecular interac-
tions between vesicles makes the system di�cult to reach equilibrium. Indeed, there
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GEOMETRIC EVOLUTION OF BILAYERS 1145

are several types of noncovalent interactions, such as hydrophobic, electrostatic, hy-
drogen bonding, and van der Waals interactions [21, 24]. However, the structures
eventually become stable once the system reaches equilibrium. To understand and
explain this process mathematically, other strategies will be explored in our future
studies.
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[23] A. A. Lee, A. Münch, and E. Süli, Sharp-interface limits of the Cahn–Hilliard
equation with degenerate mobility, SIAM J. Appl. Math., 76 (2016), pp. 433–456,
https://doi.org/10.1137/140960189.

[24] J.-M. Lehn, Supramolecular chemistry—scope and perspectives molecules, supermolecules, and
molecular devices (Nobel lecture), Angew. Chem. Int. Ed., 27 (1988), pp. 89–112.

[25] S. Mann, Self-assembly and transformation of hybrid nano-objects and nanostructures under
equilibrium and non-equilibrium conditions, Nat. Mater., 8 (2009), pp. 781–792.

[26] P.-A. Monnard and D. Deamer, Membrane self-assembly processes: Steps toward the first
cellular life, Anat. Rec., 268 (2002), pp. 196–207.

[27] K. Promislow and Q. Wu, Existence of pearled patterns in the planar functionalized Cahn-
Hilliard equation, J. Di↵erential Equations, 259 (2015), pp. 3298–3343.

[28] J. Szostak, D. Bartel, and P. Luisi, Synthesizing life, Nature, 409 (2001), pp. 387–390.
[29] V. Torchilin, Micellar nanocarriers: pharmaceutical perspectives, Pharm. Res., 24 (2007), pp.

1–16.
[30] Y. Won, H. Davis, and F. Bates, Molecular exchange in PEO-PB micelles in water , Macro-

molecules, 36 (2003), pp. 953–955.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

2/
23

 to
 1

30
.1

60
.2

24
.1

33
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y


	Introduction
	The whiskered coordinates and inner expansion
	The whiskered coordinates
	Inner expansion

	Outer expansion
	Time scale t=O(1)
	Time scale t_1="026E30F varepsilon t
	Outer expansion
	Inner expansion

	Time scale t_2="026E30F varepsilon94 2t
	Outer expansion
	Inner expansion
	The mass constraint

	Discussion
	References

