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GEOMETRIC EVOLUTION OF BILAYERS UNDER THE
DEGENERATE FUNCTIONALIZED CAHN-HILLTIARD EQUATION*

SHIBIN DAI', TOAI LUONG', AND XIANG MA?

Abstract. Using a multiscale analysis, we derive a sharp interface limit for the dynamics of
bilayer structures of the functionalized Cahn—Hilliard equation with a cutoff diffusion mobility M (u)
that is degenerate for u < 0 and a continuously differentiable double-well potential W (u). We show
that the bilayer interface does not move in the ¢ = O(1) time scale. The interface motion occurs
in the t = O(a’l) time scale and is determined by porous medium diffusion processes in both
phases with no jumps on the interface. In the longer O(e~2) time scale, the interface motion is a
complex combination of porous medium diffusion processes in both phases and the property of mass
conservation.
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1. Introduction. Natural and synthetic amphiphilic materials, such as phos-
pholipids, detergents, and block copolymers, play an essential role in biological and
medical sciences [1, 18, 26, 29], and in engineering of new materials and devices
[25]. These amphiphiles contain both hydrophobic and hydrophilic segments. When
dispersed in aqueous solutions at a concentration higher than the critical micelle con-
centration, they self-assemble into aggregates with various structures and sizes, such
as bilayer vesicles, micelles (spheres and tubes), and multilamellar compounds [17, 19].
The system must have defined boundaries that separate it from the environment [26,
28]. Tt is, therefore, of mathematical interest to understand the geometric evolution
of amphiphilic structures during the self-assembly. The functionalized Cahn-Hilliard
(FCH) equations,

(L1) =V - (M(w)Vp),
(1.2) i= (=M + W (u) — 22 (—2Au + W' (u)),

was introduced to study phase-separated mixtures with an amphiphilic structure [16].
This equation is usually subject to periodic or zero-flux boundary conditions on 912,
where 2 is an open subset of R™. The initial data should be taken as

(1.3) u(z,0) = &(x),
(1.4) w(z,0) = U(z) = (—e?A + W (®) — %n2)(—2AD + W' (D))

in Q, where ® € H(Q).
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The function g in equation (1.2) is the chemical energy which is defined by the
variational derivative of the FCH free energy

(1.5) F(u) = 5_2/ %(—ezAu + W' (u)? — %y (&—22|Vu|2 + W(u)) dz,
Q

and M (u) in denotes the diffusion mobility. W (u) represents the double-well potential
with two unequal depth local minima b_ < by for which W(b_) > W (b;), and W’
has exactly three zeros b_ < by < b;.. The phase u = b_ with the higher self-energy
is the majority phase, while the phase u = b4 is the minority phase. In this paper we
take

(1.6) W(u) = u?(u —1)(u —2),

which has two local minima b_ = 0 < b;. In this paper, we choose the diffusion
mobility M (u) to be

0, u<0,
(1.7) M(u)—{ v u>0,

which is degenerate at u = 0. This corresponds to an attempt to model the elimina-
tion of exchange of amphiphilic molecules between disjoint morphologies; see [30] for
experimental descriptions.

The FCH free energy (1.5) is a phenomenological model describing the free energy
of amphiphilic mixtures that supports codimension-one bilayer interfaces separating
two identical phases u = b_ by a thin region of another phase u = by [4, 10, 11, 13, 14,
15, 20]. Using asymptotic analysis, we will derive sharp interface models of the system
with respect to different scales of time ¢. In this paper we use a periodic boundary
condition on 99 for (1.1)—(1.2). It was established in [9] that the FCH equations (1.1)—
(1.2) with W(u) and M (u) defined by (1.6) and (1.7), along with periodic boundary
condition on 02, have a nonnegative weak solution that is not identically zero in €.
So in this paper we make the following assumptions. Specifically, we assume the initial
data are compatible with these assumptions.

Assumption 1.1. There exists a solution v > 0 to (1.1)—(1.2) that is smooth
enough to carry out the formal calculation.

Assumption 1.2. There is a smooth, codimensional-one initial interface I'g C R™
that splits 2 into the interior 2 and the exterior 2_, which is parametrized by

(1.8) To={¢0(s):5=(51,...,8n_1) € Qo C R" 1},

where ¢g : Qo — R™ is a smooth function.

In section 3, we define the outer expansion
(1.9) u(z,t) = ug + euy + e2ug + Sug + - - - .

Throughout this paper we assume u =~ ug = b_— = 0 in the bulk phase Q4. Since
u > 0, we assume the following.

Assumption 1.3. wuq(z,t) > 0. Specifically we require the initial data to also
satisfy this assumption.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/12/23 to 130.160.224.133 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

GEOMETRIC EVOLUTION OF BILAYERS 1129

In subsection 6.2, we show that in the to = €2t time scale, u1 (x,t2) = 0, and since
u > 0, we assume the following.

Assumption 1.4. In the ty = £t time scale, uz(x,t2) > 0.

It is important to point out that the stability of codimension-one solutions is
an important and nontrivial problem, even for the relatively simpler case when the
diffusion mobility M (u) is constant [3, 13, 20, 27]. To the best of our knowledge there
is no result about the stability of solutions when M (u) depends on u. In this paper
we concentrate on formal asymptotic analysis, assuming that the parameters in our
equations are in a range where meandering or pearling instabilities do not occur.

We will describe the motion of the bilayer interfaces I'(¢), which is parametrized
by

(1.10) T(t) = {o(s,t) : 5= (51,...,80_1) € Q(t) C R" ™1},

as time ¢ changes. The parametrization ¢(s,t) is chosen so that s; corresponds to the
arc length along the ith coordinate curve, and the coordinate curves are curvature
lines. Then the tangent vectors

_9¢
- 331-’

(1.11) T i=1,...,n—1,

form an orthonormal basis for the tangent space to I' at the point ¢(s,t). Let n(s,t)
be the outer normal vector of I' pointing toward 2_; then we have the relations

oT! on ;
1.12 = ki, =T, i=1,....n—1,
( ) Js; n 0s; ! "
where k; = ki(s) (i =1,...,n — 1) are principal curvatures of I at ¢(s,t). Our main

result is the following statement about the quasi-equilibrium evolutions.

MaiN REsuLT 1.5. With the choice of W(u) and M(u) in (1.6) and (1.7), the
nontrivial interface motion under the FCH equations (1.1)—(1.2) with the initial data
(1.3)—(1.4) starts to occur in the time scale t; = et, or t = O(e~'). The normal
velocity Vi, of the interface in the t; = et time scale is determined by the following
free boundary problem:

(1.13) % =V (1Vp1) in Q\L,
1

(1.14) [Onp1] =0 onT,

(1.15) 11 is periodic on OS2,

(1.16) p1(z,0) = Uy (z) inQ,

(1.17) Vo =piko onl,

where kg = k1 + -+ + kn—1 is the mean curvature, and V1(zx) is a given function
defined by (3.4).

In the ty = €2t time scale, i.e., t = O(e~2), the normal velocity Vy of the interface
1s determined by the following free boundary problem:
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(L18) W2 G (4sVs) in O
2
(1.19) [Onpe] =0 onT,
(1.20) H2 s periodic on 0§,
(1.21) pa(z,0) = Uy(z) inQ,
3

(1.22) Va = <M2 + m2772) Ko + T2 (Asﬁo ~ o Holﬁ) onT,

my mi 2
where k1 = —(k¥ + -+ + k2_,), Ua(x) is a given function defined by (3.4), and

my = ffooo Udz, my = fjooo U2dz. Here, U(z) is the homoclinic solution to the
codimensional-one bilayer equation

(1.23) —U"(2) + W'(U(2)) =0, U(0) =1, lim U(z) = 0.

z—+o0

By Assumption 1.3 and equality (3.8), u1 = 16u; > 0. Hence the porous medium
equations (1.13)—(1.6) are well-posed, and the mean-curvature flow (1.17) is also well-
posed. By Assumption 1.4 and equality (6.22), ps(x,t2) = 16us(z,t2) > 0. So the
porous medium equations (1.18)—(1.21) are also well-posed.

Remark 1.6. Our main results show a few interesting things.

1. When the double-well potential W is smooth, the degeneracy in the diffusion
mobility is not enough to completely cut off the diffusion in the bulk phase.
This is similar to what happens in the degenerate Cahn—Hilliard (CH) equa-
tions [6, 5, 7, 8, 22, 23]. However, rather than a quasi-stationary porous
medium diffusion in the degenerate CH equation, we have a porous medium
diffusion in the bulk phase.

2. Similar to the FCH equation with constant mobility [10, 11], the ¢;-dynamics
of the degenerate FCH is still a quenched mean curvature flow with a variable
coefficient. However, the coefficient is determined by the porous medium
diffusion. In comparison, for the FCH equation with constant mobility, the
coefficient in the quenched mean curvature flow is a spatial constant that
varies with time.

3. Similarly to the FCH equation with constant mobility, the t;-dynamics is
still a Willmore-type flow, but with some coefficient determined by a porous
medium diffusion. For the constant mobility case, the corresponding coefli-
cient in the Willmore-type flow is again a spatial constant.

4. Based on these observations, we conjecture that in order to completely sup-
press diffusion in the bulk phase, we should consider a combination of de-
generate mobility and a nonsmooth potential, as suggested in [12], or maybe
some completely different approaches.

2. The whiskered coordinates and inner expansion.

2.1. The whiskered coordinates. By the implicit function theorem, for each
7 on T, there exists a neighborhood Nz C T of Z such that the map = — (s,r) defined
by
(2.1) x = @(s,t) +rn(s,t)
is locally and smoothly invertible for each fixed time ¢. The thickness of the bilayer

interfaces is of order €, so we rescale the normal local coordinate r(z) by z = r/e.
Lemma 2.1 below summarizes the properties of the local coordinate system [2].
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LEMMA 2.1. Let T' = T'(t) be a smooth interface of the form (1.10) with curvatures
{k; Y= uniformly of order 1. The normal velocity of T at ¢(s,t) is Vi = —%(s,t)7
which is positive when T' moves in the direction of n, and the tangential coordinates
(r, s) satisfy the formulae

1 ; r 8kZ
2.2 Vs = TZ; A:c i T 1 . 1.8N3 0. _17 i) 717
( ) 5 1+ rk; 5 (1 + Tk/‘i)?’ 0s; "
and
n—1 k.
— _ J
(2.3) Ver=mn, Ayr= JE::I T4k

In the scaled local coordinates (z,s), the Cartesian-Laplacian A, can be represented
in terms of the Laplace—Beltrami operator Ay and the curvatures

(2.4) Ay =720, + e koD, + 2k10, + Ay + A1 + 0(52),

where ko = k1 + -+ + ky_1 is the mean curvature, k1 = —(k? + -+ + k2_,), ko =
k3 +- -+ k3_,, and

(2.5) Z g%i + 22K90, — 22K .
j

The Jacobian matriz J of the transformation x — (z,s) has the form
(2.6) J= ((1—|—Ezk’1)T1,...,(1+Ezkn,1)T"_1,5n) ,

and the Jacobian J = |detJ| satisfies

n—1
(2.7) J(s,2) = [[ (1 +ezki) = £ + 2219 + O(%).
=1

For a given constant [ > 0, we define the so-called “whiskers” at every point on
the interface I" along the normal direction as [10]:

(28) wls) = {ote) +on(e) sz e |12 ).

[SINS

The interface T is called far from intersection if there exists [ > 0 such that none of
the whiskers of length [ intersect each other or 0f2.

DEFINITION 2.1. Let T be far from self-intersection and let
(2.9) I, = U w(s)
sEQ

be the subset of §) consisting of all points x € Q with dist(z,I') < . A function
f € LY(Q) is called localized on T if there exist positive constants M and «, not
depending on €, such that

(2.10) If(z(z,5))| < Me™o)l

for all x € Ty
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Lemma 2.2 below shows the relation between the integral with respect to the
global variable z and the integral with respect to the scaled local variables (z, s) [10].

LEMMA 2.2. If T is far from self-intersection and f is localized on T, then the
following integral formula holds:

(2.11) /f dzf/ /l:s )J(z, 8)dzds + O(e /%),

where J is the Jacobian associated with the immersion ¢ : Q = Q(t) — I'(t) C R™.
Let U = U(z) be the homoclinic solution to the codimensional-one bilayer equa-
tion

(2.12) —U"(2) + W'(U(2)) =0

representing the standard transition layer profile. We assume that the initial data
® of u is close to a bilayer interface, that is, for some interface I', ® is close to the
T'-extension Ur of U. Lemma 2.3 below establishes the existence of the maximum of
the homoclinic solution U and some properties of the associated linearization [10].

LEMMA 2.3. Let U be the solution of equation (2.12) which is homoclinic to b_,
and even in z, that is, U(z) = U(—=z), then U attains its mazimum value Ups at
z = 0, where Uy is the unique zero of W in (b_,by). Moreover, there exists v > 0
such that the linearization £ on H?*(R) defined by

(2.13) L=-0..+W"U)
has the spectrum satisfying
(2.14) a(L) C {ho, A1 =0} U [v,0),

where Ny < 0 is the ground-state eigenvalue. The corresponding eigenfunctions of
Ao and Ay are Wy > 0 and V1 = U,, respectively. Also, L satisfies the following
identities:

(2.15) L (gU) = —U.,
(2.16) L(U..)=-W"(U)UZ.

Finally, there exist even functions 1, p2 € L (R) that satisfy
(2.17) Lor=1, Loz =1,

and ;s are orthogonal to the kernel of L which is spanned by U.,.

With the choice of W (u) = u?(u — 1)(u — 2), the maximum value of U is Uy = 1
attained only at z = 0, and U is homoclinic to 0, that is, lim, , 1., U(z) = 0.

2.2. Inner expansion. At a time scale 7, we have the inner spatial expansions

(s, 2,7) = tig + ety + €2y + -+ - ,
fils,2,7) = fio + efin + €% fig + -+

(2.18) z,t
(2.19) u( ) =
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Using (2.4) we get

(2.20)  Agu=e 0o, + & Nligss + Kolloz) + (llgzz + Kolins + K1 2lios + Agiio)
+ e(U322 + Kolias + K1201, + Agily + A1dig) + O(e?).

From (1.2), we write u = PA, where P = —c2A + W' (u) — &?n9 and A = —e2Au +
W'(u). Expanding P and A in local coordinates we get

(2.21)
= [0 + W"(T0)] + e[—r00> + W' (o )]
1
+ g2 —zK10, — Ag — 10 + W/I/(a0>ﬂ2 + §W(4) (ao)ﬂfil

3= A1 + Gyt + W' (ig)as + W (o)t 2] + O(e?),
(2.22)
A = [~igs. + W' ()] + e[~Ti12 — Kotios + W' (Tig)d1] + € {—am — Koli1, — zR1o;
— Agtig + W (o) tg + W(4)(uo) ] +€ [ U3z, — Kolla, — 2K1U12 — Nyl
— Ayt + W (to)as + W' (o)t 2 + éw( )(UOU1)] +O(e*).

Grouping the orders of u we get
(2.23)

0. + WH( )] 0z2 + W/ (UO)]

= [- [~a
= [~8zx + W' (@h0)][~i122 — Kotloz + W (o)1)
(2-24) + [=k00: + W (o) ][0z + W (t0)];

(i
fig = [0z + W' (1) [— Uz — Kol — 2R1Uoz — Astio + W' (o)t
+ %WM) (ﬁo)ﬂl} + [=ko0z + W' (o)1) [~ i1 — Kotloz + W' (To )]
229) 4| -omi0. = A, W in)ia + W o) | [ + ()
iz =[=0.. + W' ()] [ﬁszz — Kollg; — 2R1l1, — Aty — Agtig + W' (1o )t
W )i + WO 0)i8 | + [ + W o)l i — o
— 2Kl — Agtig + W' (o) o + W(4)( 0)a 1] + [—Zlﬁaz —Ag—mp

. 1 . - - .
+ W (ag)as + 2W(4)(uo)uﬂ [—TU122 — Kollor + W' (o) U]

(2.26)  + [~Ay + W (ig)tiz + WP (i) ity din) [—il0- + W (il0)).
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Also,

Am,“/ = 5_2/10,2,2 + 5_1(/]/1zz + K/O/]/Oz) + (/122,2 + 50/112 + Zﬁl/jOZ + ASﬂO)
(227) + E(ﬁ3zz =+ Iﬁ:oﬁgz =+ Zﬁlﬂlz + Asﬂl + Al/lO) + 0(52).

Since we are interested in the quasi-equilibrium long-time behavior of the system, we
will assume that the leading order transition profile @iy reaches its equilibrium state,
which is the homoclinic solution U(z) of (2.12) satisfying 0 < U(z) < 1,U(0) = 1,
and lim, 4., U(2) =0.

Since W’(0) = 0 and W' (0) > 0, U exponentially approaches 0 as z — =oo0.
Assuming that 4g(z) ~ e~1*I/# as z — 400, then by taking n = Bln(L) we have

0(1), |z| <n,
0(5)’ ‘Z| >,
(2.28) Uo(z) <4 O(e?), |2 =2,
O(e), |z[ = n*,
O(e), Izl = 0.

So it’s reasonable to split (—oo, c0) into subsets
{z:lz]l <nh{z:n <zl <2n},{z:2n < |z| < 3n},{z : 3n < |z| < 4n},{z : |2| = 4n}.

Letting X0, X1, X2, X3, X4 be the characteristic functions of these sets, we have the
following expansion of ug:

(2.29) Ug = UgXo + 6’(]0)(15_1 + 62’&0)(26_2 + 83110)(36_3 + 54’110)(46_4.

The first four terms on the right-hand side are, respectively, of orders 1,¢,£2,¢3, and
the last one is a residual term of order e* and higher.

Since ug, decays exponentially to 0 as z — oo at the same rate as ug, we have
a similar expansion for g,:

(2.30) Qo> = U2 X0 + El0X1E L + €2U0s X262 + 30, x36 > + e g, xae 2.

By the choice (1.7) of M (u) we obtain

0, u<0,
(2.31) V- (M(u)Vu) = { wAp+ V-V, u> 0.
By Assumption 1.1, u > 0, so we have
(2.32) V- (Muw)Vu) =ulAp+ Vu- V.

Using Lemma 2.1 and (2.29), (2.30), we expand

(2.33) V- (Mu)Vp) = 2P g4 e 1P| + Py +eP, + 2Py + O(e?),
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P_9 = tgfioz2 X0 + fozUoz X0,
P_y = Ggxo(fi1z= + Kofioz) + fioz= (Tox1e™ " + @)
(2.35) + 102 (To-X18 " + T12) + fi12T02 X0,
Py = digXo(fizz= + Kofirz + 261 fio= + Asflo) + (Gox1e™ " + @1) (22 + Kofioz)
+ (tigx2e ™2 + U2)fioz» + fios (TiozX2e 2 + di2s) + firz (Gox16 ™" + T12)

n—1

(2.36) + 122 Uoz X0 + Z Uos, [os, 5
j=1

Py = Goxo(fi3z= + Koflze + zk1fi1. + Asfin + Aifio)
+ (Gox1e™ " + @) (fizzz + Koflrz + 2K1fio: + Asflo)
+ (o X282 + U2) (fi12> + Kofioz) + (Giox3e™> + U3)fioz»
+ o (o x3E > + U32) + fi1z(Tosx2e ™2 + 2z) + fizs (GozXx16 " + @12)

n—1 n—1 n—1
(237) + /13Z'L~LOZXO -2z Z ﬂOSj ,aOsJ- Rj + Z 'LNLOSj/lesj + Z ,&’15_7'/108]"
j=1 j=1 j=1

3. Outer expansion. Away from I';, we have the outer expansion

31) u(xat) = ug + €uy —|—821L2—|—53u3_|_... ,

(3.2) () = po +epn +pp + s + -
where u ~ ug = 0 in the bulk phase 2. We also expand the initial data

(3-3) ®(z) = Do +ePy +°Py + 7Py + -+,
(34) U(x) = Wo+ely + Wy + g+ -

Using Taylor series to expand W’ (u) and W' (u) about ug, we have

(3.5)  W'(u) = W'(ug) + eus W' (ug) + €* |:U2W”(UO) + ;ufW”’(uo)] + 0(e?),

(3.6) W' (w) = W"(ug) + eus W' (ug) + & [UQW”'(UO) + ;ufW(‘l)(uO)} +O(ED).

Then from (1.2) we obtain

(3.7) po = W' (ug)W'(ug) = 0,

(3.8) p1 = [W"" (ug) W' (ug) + W' (uo)?|uy = 16u;.
Hence

(3.9) V- (M(u)Vy) = 2V - (u1 Vup) + O(e%).
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The following match condition connects the inner and outer expansions:

(3.10) 1y = ZEIEOO o,
(3.11) ui + 20 = i1 4 o(1) as z — Fo0,
(3.12) pE 4 20apE + z282 £ = fiz +0(1) as z — o0,
(3.13) uE 4 20t + zzanul + 2383 £ = i3 +o0(1) as z — oo,
and
+ . -

(3.14) uy = zglinoo o,
(3.15) uf + 20quf = @y + o(1) as z — +o0,

1
(3.16) uf + 20pui + 52282% =y +o(1) as z — +o0.

4. Time scale t = O(1). In this time scale, the outer solution satisfies d;ug = 0
and dyu; = 0. For the inner solution, we have
0 0 0
(4.1) wp = iy + Vit - a% + g—lait"az = 5—1X0a023fz
Expanding the normal distance r = 7 + er; + O(g?) and matching (2.33) and (4.1),
also recalling that g = U(z) and jip = 0, the e ! terms give

+0(1).

87“0 0 ~

4.2 U,— =P_1 = xo=—(Uft1,).
(4.2) Xo ot 1 Xoaz( f1z)
Hence

0 8’1”'0 ~
4. — — — {1, =0 f —-n,n).
(4.3) az(U<at u1>) 0 forze (—n,n)
So there is a; independent of z € (—n,7) such that U(aT0 fi1z) = ai. Since
U — O(e) as z — +n and % — fi1. = a,U ™1, the only way for % — [i1, to remain
O(1) is that a; =0 for z € ( 7,m). So

or

(4.4) 870 =i, forze (=n,n).

To find %2, let £ := —0,. + W' (U). Since g = U(z) and —U,, + W' (U) = 0, (2.24)

at
implies
d
(45) = —RoL(Ux) + L2(W) = —to - (=Usz + W/(U)) + L2(@1) = L2 ().

By Lemma 2.3, equation (4.5) has a solution @; € L?(R) if and only if i; 1 U,. Using
integration by parts and the solvability condition, we get

n 00
/ U[ledz :/ Uﬂlzdz - / U/llzdz
-n —00 [2]>n

(4.6) =— /OO U.fudz 4+ O(e) = O(e).

—0o0
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Combining (4.4) and (4.6) we get d’"" " Udz = O(¢), and since the left-hand side is

of order 1, then 6”) nn Udz = 0. Thus g”’ = 0, and hence the interface I'(t) doesn’t
move to the leadmg order in this time scale

By (4.4), fi1, = % =0 for z € (—n,n). ThlS is also consistent with the behavior
of fiy as z — +o0, Wthh is im, 400 fl1, = nHo = 0 by the match condition (3.11).
So we expect the equilibrium state of fi; to be independent of z in the whole transition
layer. Thus there exists Bj (s, t) independent of z such that ji, (2, s,t) = By (s, t), which
is determined by matching the inner expansion fi; with the outer expansion u; using

1111’1 /J/l((b( ) + ’I“Il) = Zliglooﬂl(zasat) = Bl(svt)

r—0%

Recalling the function ¢ in Lemma 2.3, we find the solution to equation (4.5):
(4.7) iy = Bi(s,t)pa(2),
where we assume that @y L Ker(L) on each whisker w(s).

5. Time scale t; = «t.

5.1. Outer expansion. Since 0; = £0y,, we have
(5.1) Uy = eugy, + 2uy, + 3ugy, + O(eh).
Matching (3.9) and (5.1), the £? terms give

6u1

(5.2) o

=V (u1Vu1).

Combining (3.8) and (5.2), it turns out that p; satisfies a porous medium equation

0 .
(5.3) % =V (V) in Q.
t1

5.2. Inner expansion. We have u; = (g, + Vi - 6‘9751) + g’—;az. Combining
with (2.27) we have

" dosx0 + O(e).

Expanding the normal distance r = 7o + er; + O(£?), and matching (2.33) and (4.1),
the order 1 terms give

8r0 0

5.5 —U.x0=PFPo = xo=—(Ufiz,).
(5.5) oty X0 0 Xoaz( f2z)
Hence

0 87“()
5.6 — U fio, =0 f —n,n).
(5.6) 6z( <6t1 m)) or z € (=n,m)
Using an argument similar to that in section 6, we get

0
(57) a:o - /142,2 for z S (_77777)
1

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/12/23 to 130.160.224.133 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1138 SHIBIN DAI, TOAI LUONG, AND XIANG MA

Hence fi5 = %‘fz + Cs(s,t1) for z € (—n,n). It is reasonable to assume that fip is
linear in terms of z in the whole transition layer, i.e.,
0
(5.8) fio = 8—?2 + Cs(s,t1) for z € (—o0, 00),
1

provided we have already waited long enough for the whole transition profile to equi-
librate.

To find g—:‘f, we recall the form of fip in (2.25). From (4.7) we deduce that
L = Blcpl, where ¢ is the function in Lemma 2.3. Then we can simplify (2.25) to
get

1
fio = L(—g.. — kol — 261U, + W (Ui + 5W’“(U)ai)

(59) + (—Hoaz + W//I(U)Bl('OQ)(Bl(pl — HoUz).
The solvability condition for (5.9) gives
o0
(510) / [ﬂg — (—Iioaz + W”/(U)Bl(pg)(Bupl - K,QUZ)]UZdZ =0.
—00

Since U, 1, 2 are even functions and B; is independent of z, we simplify the left-hand
side of (5.10) to get

(5.11) / iz + Bimolgr! + W' (U)paU)|Usdz = 0.

— 00

Using Lemma 2.3, we rewrite the last term of (5.11) as

/oo WH/(U)UZQ()QQCZZ _ /00 QOTC(UZZ)dZ = _<§02,£(Uzz)>

— 0o —00

(512) = *<£902, Uzz> = 7<‘P17 Uzz>~
And since L(3U.) = —U.., we get

z z
= P2 = o 271
(3000) = (301)
z

Using (5.13), the second term of (5.11) is simplified to

(5.13)

I
—
2 3
N |

o

QL

™

I

I
—
2 3
o] S

ISH

N

B oo B ) B oo
(5.14) Bmo/ 01'Usdz = —Bmo/ 1U,dz = — 12“0/ Udz.
By (5.8), the first term of (5.11) is
o0 o0 8 oo
(5.15) / fioU,dz = —/ fi2.Udz = —ﬂ/ Uds.
—00 —00 oty —00
Substituting (5.13), (5.14), and (5.15) into (5.11) we get
8 - oo
(5.16) <r° - B1n0> / Udz = 0.
ot .
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Since [*°_Udz # 0, we get

(97‘0 ~
5.17 — = —DBjko.
( ) Ot 1Ko
Finally, since fio, = g—:? = —Bl Ko is independent of z, then lim,_, o fiz, = lim,_, _ fia,,
and together with the match condition (3.12) we get
(5.18) Onpt = Onpy, ie., [Onp] = 0.

We summarize the t; = et evolution in the following model:

0 .
S =V (V) O\
1

[Onp1] =0 onT,
(1 is periodic on 012,
pa(z,0) = ¥q(z) inQ,
and the leading order of the normal velocity is
37'0

Va = —2=2 = Bk,
ot, o

where By (s, t1) = lim,_o pt1(¢(s, 1) +rn). Hence By (s, t1) = p1(d(s,t1)) on T if py is
continuous across I'. By Assumption 1.3 and equality (3.8), u1(z,t1) = 16u;(x,t1) >
0, so the above porous medium equation is well-posed.

6. Time scale ty = £2t.
6.1. Outer expansion. Since 9; = ¢29;, and ug = 0, we have u; = 3uyy, +
O(e*). Matching with (3.9), the €2 terms give
V- (u1Vu1) =0 in Qi.

Combining with (5.18) and recalling that p; = 16wy, we obtain that u; satisfies a
quasi-stationary porous medium equation

(6.1) V- (u1Vur) =0 in Q\I,
[Onp1] =0 onT,
(1 is periodic on 0.

Using integration by parts with periodic boundary condition, equation (6.1) implies
that A(p2) = 0 in Q. Since p; = 16u; > 0, and with periodic boundary condition, it
follows from the maximum principle that u; is a spatial constant uq(z,ts) = Bi(t2)
for all z € Q. Consequently, 01 = 0 on I', and by the continuity of the inner and
outer expansions of p, we have ji; = Bl(s, to) = Bi(t2). Hence @3 = Bi(t2)pa(2).

6.2. Inner expansion. We have
. . Os or _ or _
(6.2) up = 2 (ut2 + Vst - 3252) + ga—buz = 6872UOZXO + 0(62).
Matching with (2.33), the order 1 terms give

a ,. .
(6-3) Py = XO&(U/‘LZZ) =0.
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Hence

0, .
(64) E(UNQZ) =0 forze (_77777)

So there is ay independent of z € (—n,n) such that Ufiz, = ag. Since U — O(e)
as z — +n and fiz, = axU !, the only way for fio, to remain O(1) is that ay = 0,
and thus fio, = 0 for z € (—n,n). This is also consistent with the behavior of fi as
2 — %00, which is lim,_,4o fiz. = Ouui = 0 by the match condition (3.12). So we
expect the equilibrium state of jis to be independent of z in the whole transition layer.
Thus there exists By(s,t2) such that fia(z,s,t2) = Ba(s, ts), which is determined by
matching the inner expansion jio with the outer expansion us using

lmpo(¢(s, t2) +rn) = lim fio(z,s,t2) = Ba(s,ta).

Then using Lemma 2.3 and (2.25), with 41 = By, we get

By = E(ﬁﬁz — KkoBipa' — zr1 U, + ;W(4)(U)B%<P§)
+ [~ k00, + W' (U)Byp2][B1 Lpa — koU,)
— £2(i1y) — Ko BrL(s) + 2k1 Use + %W<4>(U)ch(¢g) ~ woBigy/
(6.5) + kgUs + W' (U)Bi o192 — koW (U)B1gpaU..

By the solvability condition, to solve for 1o, we need
[Bg + koB1L(p2") — 261U, — %W«%U)Bfﬁ(ga%) + koB1pr’
—kgUs. — W (U)Bi o102 + koW (U)BypoUs | L U..

Simplifying the solvability condition integral, we get

(o)
(6.6) Bmo/ (1" + W (U)pU,)U.dz = 0.

—00

Since (o1 + W' (U)p2U.)U. is even, we assume that [* (o1 + W' (U)poU.)U.dz #
0. Thus By =0, and hence

1
(67) ﬂl = O, M1 = 0, and Uy = Eul = 0,

and (6.5) is simplified to

(6.8) By = Liig + (261 + K2)U...

And since U,, and By are orthogonal to Ker(L), we can solve for us:
(6.9) iy = Bos — (2k1 + K3) o,

where 1; L U, are even functions that satisfy Ly = U,, and L = 1.
Expanding the normal distance r = g + &7 + O(¢?), and matching (2.33) with
(6.2), the £ terms give
87“0

0 .
(6-10) %UZXO =P = XO&(U,USz)-
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Hence
0 8’/"0

6.11 (U ((ZE s, for z € (—n,n).
(6.11) az( (&52 m)) or z € (=1,7m)
Using an argument similar to that in section 6, we get

or .
(6.12) =2 = fi5, forz € (—n,n).

Oty
Hence fi3 = %gz + C5(s,ta) for z € (—n,n). Again, it is reasonable to assume that

i3 is linear in terms of z in the whole transition layer, i.e.,

(6.13) fl3 = %z + Cs(s,ta) for z € (—o0, 00),
2

provided we have already waited long enough for the whole transition profile to equi-
librate.

To find g—:g, we recall the form of fig in (2.26), and since 4y = U, 41 = 0, we

simplify (2.26) to get
/NL3 = E(Eﬂg - Hoﬁgz - Z2K2UZ) - Koaz(ﬁﬂg - ZlilUZ)
(6.14) + (—Z/ﬁlaz + W///(U)ﬂg — AS — ’172)(—;‘{0(]2).

Using (6.9), we rewrite (6.14) as
(6.15) £(£ﬂ3 — Iioﬂgz - ZQHQUZ) = RQ,
where

Ry = fiz + koBa(r' + W' (U)oU) — (261 + K3)ko(1’ + W (U)oU)
- K/OHI(Uz + 2ZUZZ) - (As + 772)50Uz'

By the solvability condition, to solve for ug, we require Ry 1 U,. We examine the
terms of the integral ffooo RyU.dz one by one. From (6.13), using integration by parts
we get

(6.16) / ﬁgUzdz=—/ ﬂgszz:—%/ Ude.
oty

— 00 — 00 — 00

Using Lemma 2.3 and integration by parts, we get

o0

/ (o1 + W (U)poU,)U,dz = —/ 01 U,.dz — (LU, p2)

—0o0 —00

= —<UZZ,<P1> - <Uz27£<p2>
= —-2(U.., 1) = (L(2U,), 1)

o0

= (zU,, Ly1) :/ 2U,dz

—00

(6.17) = 7/0@ Udz.

— 00
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Similarly, we have
/ ("/}1/ + W///(U)wQUz)Ude = <ZU27 &/)1> = <ZU27 UZZ>

o0 1 o0
:/ zUZUzzdz=§/ zd(U?)

7100 o — 00
(6.18) =5 / UZdz.
Using integration by parts, it is easy to see that
(6.19) / (U, + 2:U..)Undz = 0.

Substituting (6.16), (6.17), (6.18), and (6.19) into the solvability condition integral
ffooo RyU.dz, we get

a o0 ~ o0 o0
—ﬂ/ Udz — KOBQ/ Udz + (2k1 + ng)@/ UZdz
8t2 —o0 —o0 2 —o0

(6.20) — (A + nz)no/ U?dz = 0.

— 00

Hence the leading order of the normal velocity is
~ 3
(6.21) Vo= Bo+ 205 ) kg + —2 ( Agkio — 0 — kgy |,
my my 2

where we have introduced the constants

(oo} (oo}
m1:/ Udz and mgz/ Uzgdz.

—0Q0 — 00

To determine By = fia, we need to find o and then determine fi; by matching with
Lo using

Tl_lgli p2((s,t2) +rn) = lim fio(2,5,12) = Ba(s, ta).
To find pz2, we need the €2 terms in the outer expansions on both sides of (1.2). Since
U, U1, o, and gy are both 0, we simplify (1.2) to get

(6.22) pa = W' (ug)*ug = 16us.

Substituting u = 2us + O(e3) and u = e2us + O(3) into (1.1) then simplifying, we
get
48“2

(6.23) ST +0(%) =V - (uaVpg) + O(£%).

Hence the £* terms give

uz

(6.24) .

=V (’LLQV,UQ).
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Combining (6.22) and (6.24), it turns out that uo satisfies a porous medium equation

Oz

(6.25) e

=V (u2Vpe) in Q\I.

By (6.13), im,_, o fi3, = lim,_, o fi3:, together with the match condition (3.13), we
get

(6.26) Onfty = Onpty , ie., [Onpa] = 0.
We summarize the ¢, = 2t evolution in the following model:

0 .
S =V (12Vh) O\
2
[Onp2] =0 onT,
o is periodic on 012,

p2(2,0) = ¥a(z) inQ,

and the leading order of the normal velocity is

. m m K
Va = (Bz + 2772) Ko+ — (Asfio -2 ﬁo'ﬁ) ,
mq mq 2
o
1

where Bg(s, to) = lim,_,0 p2(@(s,t2) + rn). Hence Bg(s to) =
is continuous across I'. By Assumption 1.4 and (6.22), ps(z, to
the above porous medium equation is well-posed.

(¢(s,t2)) on I' if pg
6UJ2($,t2) Z 0, SO

6.3. The mass constraint. Even though we cannot get an explicit formula
for Ba(s,ta), we may extract a bit more information about it by looking into the
conservation of mass. The total mass is

(6.27) M= / u(zx,t)dx
Q
which is fixed by the initial data. In the outer region Q\I';, we have the expansion
(6.28) u = ug + euy + O(e?),
where ug = 0 and u; = 0. In the inner region I';, the inner expansion is
(6.29) o = 1 + ety + O(e?),

where g = U(z) and @; = Bi(t2)p2(z) = 0. We insert these expansions into (6.27)
to get

(6.30) M= [ U(z)dx + O(e%).
I

Assuming that |[I'| = O(1), changing to whiskered coordinates, and using the local
integral formula (2.11) and the Jacobian expansion (2.7), we get

l/e l/s
(6.31) / z)dx —/ / J(s,2)dzds = 5/ / z)dzds.
l/e l/e
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Substituting (6.31) into (6.30) we get

(6.32) M = 5/ /ll//i z)dzds + O(?).

We expand M = eM; + €2 My + O(g3) and the surface area |['| = 7o + ey1 + O(e?).
Since U(z) > O(e) with |z| large enough, then

oo l/e
(6.33) / U(z)dz:/ U(2)dz + O(e).
—o0 —l/e
Hence
l/e
(6.34) / U dzdx—|l“|/ U(2)dz + O(2) = m 1| + O(=2),
—l/e

where m; = ffooo U(z)dz. Then we obtain M; = mi~g, so y0 = Mi/mq, and hence
dvo/dta = 0. On the other hand, when subject to a normal velocity V5, measured in
time unit ¢9, the interfacial surface area grows at the rate

@:Aﬁo(s)vn(s)ds.

Combining with (6.21), the interfaces I'(¢) have the leading order growth

(6.35)

d - mao 9 M2 /{8
6.36 —o(t2) = B — — [ A - — — ds.
( ) dtQ’YO( 2) /F ( 2+ m1772) Ko + - < sk0 = % Kok | Kods

Since dvg/dts = 0, Bs (s,t2) satisfies the identity

~ m m :‘434
(6.37) /F <B2 + Tnjn2) /{(2) — mij <|Vs/@0|2 4 ?0 + Iﬁ}%,‘il) ds = 0.

7. Discussion. We formally derive the sharp interface models for different time
scales for the FCH equation with the cutoff diffusion mobility M (u) that is degenerate
for u < 0. Even with a degenerate mobility, we still get porous medium equations in
the regions away from the interface, and that influences the evolution of the interface.
The interface motion occurs in the ¢ = O(e™!) time scale and is determined by porous
medium diffusion processes in both phases with no jumps on the interface. In the
longer O(¢72) time scale, the interface motion is a complex combination of porous
medium diffusion processes in both phases and the property of mass conservation.
The FCH equation with a degenerate mobility is more complicated than the one with
a constant mobility, and is unlikely to obtain simple models. We have shown that
the two phases of a degenerate FCH model communicate through a porous medium
process in both phases, not by a common mean field on the interface like constant
mobility ones (for example, see [10]). With a degenerate diffusion mobility, the long-
range communication of the two phases becomes weaker through the diffusion process,
but it is still connected. This means just the degenerate mobility itself is not enough to
cut off the long-range communication. We need some other mechanism, such as some
singularity in the double-well potential W (u) as studied in [12], for the communication
to be cut off completely.

In the process of self-assembly of vesicles, the existence of intermolecular interac-
tions between vesicles makes the system difficult to reach equilibrium. Indeed, there
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are several types of noncovalent interactions, such as hydrophobic, electrostatic, hy-
drogen bonding, and van der Waals interactions [21, 24]. However, the structures
eventually become stable once the system reaches equilibrium. To understand and
explain this process mathematically, other strategies will be explored in our future

studies.
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