
Vol.:(0123456789)

SN Computer Science (2023) 4:543
https://doi.org/10.1007/s42979-023-01881-3

SN Computer Science

ORIGINAL RESEARCH

Real‑Time 3D Object Detection, Recognition and Presentation Using
a Mobile Device for Assistive Navigation

Jin Chen1,2  · Zhigang Zhu1,3

Received: 28 September 2022 / Accepted: 1 May 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
This paper presents an integrated solution for 3D object detection, recognition, and presentation to increase accessibility
for various user groups in indoor areas through a mobile application. The system has three major components: a 3D object
detection module, an object tracking and update module, and a voice and AR-enhanced interface. The 3D object detection
module consists of pre-trained 2D object detectors and 3D bounding box estimation methods to detect the 3D poses and
sizes of the objects in each camera frame. This module can easily adapt to various 2D object detectors (e.g., YOLO, SSD,
mask RCNN) based on the requested task and requirements of the run time and details for the 3D detection result. It can
run on a cloud server or mobile application. The object tracking and update module minimizes the computational power for
long-term environment scanning by converting 2D tracking results into 3D results. The voice and AR-enhanced interface
integrates ARKit and SiriKit to provide voice interaction and AR visualization to improve information delivery for different
user groups. The system can be integrated with existing applications, especially assistive navigation, to increase travel safety
for people who are blind or have low vision and improve social interaction for individuals with autism spectrum disorder.
In addition, it can potentially be used for 3D reconstruction of the environment for other applications. Our preliminary test
results for the object detection evaluation and real-time system performance are provided to validate the proposed system.

Keywords  3D object detection · Assistive technology · ARKit · Blind or low vision · Voice assistance

Introduction

Background and Problem Statements

Visual impairment refers to the loss of vision, whether par-
tial or complete, that cannot be effectively corrected with

glasses, contact lenses, medication, or surgery. The number
of individuals who are blind or have low vision (BLV) has
been steadily increasing over the past three decades, and
is expected to continue to rise as the population ages [1].
According to the IAPB Vision Atlas [2], in 2020, there were
43 million people who were blind and 295 million people
with moderate or severe visual impairment (i.e., with visual
acuity worse than 6/12 to 6/18) globally.

Individuals who have BLV encounter a multitude of chal-
lenges in their daily lives, from navigating indoor spaces to
completing tasks. These difficulties are greatly amplified in
unfamiliar environments where they only have limited assis-
tance tools, such as long canes, guide dogs, hand touches,
and potential help from others. Familiarizing themselves
with their surroundings is not only time-consuming but also
raises safety concerns, particularly in indoor environments
that are constantly changing. The limited space for move-
ment in indoor areas makes it easy for individuals with BLV
to bump into obstacles. According to a survey of 300 legally
blind individuals [3], over 40% of them experienced acci-
dents at head level at least once a month, even with the help

This article is part of the topical collection “Advances on Image
Processing and Vision Engineering” guest edited by Sebastiano
Battiato, Francisco Imai and Cosimo Distante.

 *	 Jin Chen
	 jin@nearabl.com

	 Zhigang Zhu
	 zzhu@ccny.cuny.edu

1	 Visual Computing Laboratory, Computer Science
Department, The City College-CUNY, New York,
NY 10031, USA

2	 Nearabl Inc., New York 10023, NY, USA
3	 PhD Program in Computer Science, The Graduate

Center-CUNY, New York, NY 10016, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01881-3&domain=pdf
http://orcid.org/0000-0003-1810-3828

	 SN Computer Science (2023) 4:543 543   Page 2 of 18

SN Computer Science

of a long cane or guide dog. In addition to safety concerns,
the ability to recognize people and objects would signifi-
cantly improve their understanding of their surroundings,
leading to better interaction with others and a higher quality
of life.

Studies indicate that individuals with autism spectrum
disorder (ASD) have difficulty adjusting their visual atten-
tion, particularly when it comes to dynamic moving objects
or shifting their attention [4, 5]. Recognizing objects can
aid people with ASD in their cognitive development and
enhance their visual attention in complex environments [4,
6]. Additionally, object recognition using AR visualization
can assist individuals with ASD or low vision in performing
tasks, such as providing instructions or information on cor-
responding objects and helping them locate target objects.

Object detection is a fundamental topic in computer
vision, with many techniques developed and applied in real-
world applications, especially in the fields of autonomous
vehicles and robotics. While real-time 2D object detection
techniques are well-established, they do not provide ade-
quate information (e.g., location and size of an object) that
is crucial for individuals to obtain a more complete under-
standing of their environment. On the other hand, real-time
3D object detection and recognition often require expensive
high-end devices (e.g., LiDAR sensors and depth cameras)
and deep learning models that demand significant com-
putational power to ensure real-time performance. These
methods are not suitable for indoor environments and are
not affordable for individuals with BLV or ASD, who typi-
cally have lower incomes. For instance, data shows that 89%
of visually impaired individuals reside in low- or middle-
income countries [7].

Choosing relevant information to report to users is a sig-
nificant challenge when multiple obstacles and objects are
detected, particularly with real-time detection, where infor-
mation constantly evolves over time. This can be especially
challenging for individuals with BLV or ASD who may
become overwhelmed and distracted by the abundance of
data, potentially causing them to miss critical information.

Overview of the Solution

This paper presents a real-time 3D object detection, recog-
nition, and presentation system that is both low-cost and
efficient, designed to enhance accessibility for people with
BLV or ASD, as well as others who require assistance in
indoor spaces. The system is designed to operate on a mobile
device, such as an iPhone or iPad, and can identify a variety
of objects, including obstacles along a user’s path, items the
user is searching for, or persons/humans who may be mov-
ing around. Therefore object detection/recognition includes
obstacle detection, important item detection/recognition, and
human detection/recognition.

This system is an extension and continuation of the earlier
work reported in our IMPROVE conference paper [8]. The
early system is expanded to the current system to (1) accom-
modate different data types from various mobile devices
(e.g., single images, RGB-D images, and 3D point clouds);
(2) allows for the use of customized object detection models,
depending on the desired objects to be detected, levels of
3D detection details, and run-time requirements as well as
specific tasks at hand (i.e., object search or obstacle detec-
tion); and (3) add a voice and AR-enhanced user interface to
facilitate communication with users. Importantly, this sys-
tem can be integrated with other systems, such as our previ-
ously developed indoor navigation system [9], to improve
travel safety for people with travel challenges.

The key components and features of the current system
are:

•	 A portable system for real-time 3D object detection,
recognition, and presentation that works on iOS-based
mobile devices, integrating ARKit, SiriKit, object detec-
tion cloud server, and object tracking. No additional
hardware is needed from the users.

•	 An object detection server with an adaptive 3D object
detection and tracking method based on input data types
and request tasks. The 3D detection and tracking method
can work with any 2D object detectors.

•	 A voice and AR-enhanced interface that improves infor-
mation delivery to people with BLV or other disabilities.
This will lead to hand-free operations for the users.

•	 A data collection and annotation toolkit for constructing
a mobile device based object detection dataset, which can
be used for 3D reconstruction when integrated with the
previously developed modeling app [9]. This will greatly
facilitate modeling and testing by system developers.

The structure of this paper is as follows. "Related Work"
provides a brief overview of the state-of-the-art 2D and 3D
object detection methods. In "Method", we present the pro-
posed 3D object detection, recognition, and presentation sys-
tem. "Experiments" contains the system requirements and
experimental results of the proposed method. Finally, we
conclude the paper by discussing the proposed system and
future work in "Conclusions and Discussions".

Related Work

2D Object Detection

2D object detection predicts the class labels and 2D bound-
ing boxes of objects in an input image. There are two main
types of object detectors: one-stage detectors and two-stage
detectors. Two-stage object detectors first use a regional

SN Computer Science (2023) 4:543 	 Page 3 of 18  543

SN Computer Science

proposal network (RPN) to extract the region of inter-
est (ROI) for each object in the image and then refine the
2D bounding boxes of the objects using regression while
classifying them into different classes. Examples of two-
stage object detectors include R-CNN families, such as Fast
R-CNN [10] and Mask R-CNN [11]. On the other hand,
one-stage object detectors (e.g., YOLO families [12–14],
SSD [15], and RetinaNet [16]) directly detect the 2D bound-
ing boxes of objects from the image with dense sampling of
areas, without performing ROI extraction. Although two-
stage detectors generally offer higher accuracy, they usu-
ally require a longer processing time compared to one-stage
detectors. In contrast, one-stage detectors are faster but may
have lower accuracy.

2D object detection techniques are sufficiently mature
to support real-time performance. However, 2D bounding
boxes with object labels do not provide sufficient informa-
tion (e.g., location and size of each object in the 3D space)
for people with BLV to gain a comprehensive understanding
of their indoor environment and provide them the confidence
to walk around and interact with others. Nevertheless, 3D
object detection can be built on top of 2D detectors.

3D Object Detection

3D object detection is typically performed by estimating
the 3D bounding boxes of objects in a scene, which pro-
vides more detailed spatial information compared to 2D
object detection techniques that use only RGB images. To
achieve this, 3D object detection methods typically incor-
porate additional data sources such as depth images, stereo
images, or point cloud data in order to obtain the necessary
3D information.

Image Based 3D Object Detection

Several studies have applied variations of region segmenta-
tion algorithms for obstacle detection in depth images [17,
18]. Huang et al. [17] utilized morphological closing (dila-
tion and erosion) to remove depth map noise and estimated
the ground curves and height thresholds for obstacles using
the standard least-squares method and V-disparity method
[19]. Stair edges were determined by the difference in the
depth values, and a connected component region growth
method was applied to distinguish different objects. Cheng
et al. [18] used a seeded region growth method with Sobel
edges to detect ground and obstacles at a refreshing fre-
quency of 10 frames per second (fps). In addition to the
region growth method, a deep learning model with semantic
segmentation was applied for obstacle detection in RGB-D
images [20]. This approach achieved real-time performance
at 22Hz with an Nvidia GTX2080Ti GPU.

Obstacle detection using stereo images has also been
explored in research. Chen [21] introduced the deep stereo
geometry network (DSGN) that leverages 2D image features
at both pixel and semantic levels to construct a plane-sweep
volume (PSV) with depth estimation. The PSV is then trans-
formed into 3D space to construct a 3D geometric volume,
which is subsequently used to detect objects with a 3D neu-
ral network. Chen’s method achieved an average processing
time of 0.682 s and an average depth error of 0.55 ms when
detecting objects in an image pair with an NVIDIA Tesla
V100.

Although these methods work in many scenarios, differ-
ent lighting conditions can affect the estimated depth values
and decrease the accuracy of object locations. Additionally,
they are unsuitable for real-time systems combined with nav-
igation due to longer computation times for complex scenes
and difficulties in detecting smaller objects.

Point Cloud Based 3D Object Detection

Object detection using point cloud data is more popular than
depth or stereo images as it contains more information and
has been widely used for scene reconstruction. Pham et al.
[22] utilized color-depth images along with accelerometer
data to reconstruct the point cloud of a scene. They then
applied voxelization and a pass-through filter to remove
noise. The random sample consensus (RANSAC) algo-
rithm [23] was employed to segment planes and detect the
ground plane of the scene. Different algorithms were used
to detect doors, stairs, walls, and other loose obstacles after
the ground plane was removed. Domenech et al. [24] used
a voxel grid clustering approach to cluster the point cloud.
They then computed the fractal dimension for each cluster
and combined them to form a voxelized fractal descriptor.
The fractal dimension was obtained from the slope of the
decrease in the box size value over the number of iterations.
The support vector machine was used with the voxelized
fractal descriptor to classify detected objects, achieving
92.84% accuracy on ModelNet10 [25].

LiDAR (light detection and ranging) utilizes near-infrared
light to create a 3D map of the environment. Due to its low
wavelength of light signals (in the nanometer range), it can
detect smaller objects and provides a more accurate and pre-
cise point cloud than most sensors, making it increasingly
popular for object detection [26, 27]. He et al. [26] used
the American Velodyne-16 line LiDAR to generate 300K
points per second. As the point cloud becomes sparser with
increasing distance, they utilized a pass-through filter and
voxel mesh method to filter out noise data. Similar to [22],
the RANSAC method was used for plane segmentation, fol-
lowed by the use of K-D trees to cluster the remaining points
and group them based on thresholding. Garnett et al. [27]
proposed a unified deep convolutional network with LiDAR

	 SN Computer Science (2023) 4:543 543   Page 4 of 18

SN Computer Science

point cloud for real-time (30 fps) categorical-based and gen-
eral obstacle detection in outdoor environments. For general
obstacle detection, they used a column-based approach with
StixelNet [28] as the base, where the ground truth was deter-
mined by the bottom contour of each obstacle and the clear
columns detected. However, these solutions are primarily
designed for autonomous driving and are not readily appli-
cable for indoor environments.

ARKit is Apple’s augmented reality (AR) platform [29],
which utilizes visual-inertial odometry (VIO) to compre-
hend the relationship between an iOS device and the sur-
rounding environment and track real-world objects. By
analyzing captured 2D video frames and utilizing motion
sensors to determine the camera’s motion, ARKit detects
and tracks visual feature points (i.e., distinctive markers)
and estimates their 3D positions in the world coordinate sys-
tem. Additionally, recent versions of iPhones now include
LiDAR sensors, which allow for obtaining a more precise
point cloud and enhancing detection accuracy. Our proposed
3D object detection system will leverage ARKit’s capabili-
ties and utilize ARKit data as its foundation.

Method

The 3D object detection, recognition, and presentation sys-
tem detects and tracks the objects and people in the user’s
camera views and determines their 3D poses and sizes in real
time, and then provides voice interaction and AR visualiza-
tion to enhance the users’ understanding of the surroundings
based on the requested task.

The system consists of the following three modules
(Fig. 1):

3D object detection: The 3D object detection module
utilizes an adaptive method based on the required task at
hand and the available data (i.e., RGB image, AR depth map
or point cloud, camera intrinsic and extrinsic parameters)

collected from mobile devices to determine the 2D/3D
bounding boxes of the objects and/or people in each camera
frame. This module operates mostly on the cloud server but
can also run on users’ mobile devices in regions with limited
network connectivity.

3D object tracking and updating: The 3D object track-
ing and updating module tracks the 2D bounding boxes
of the detected objects in consecutive camera frames and
obtains new estimated 3D bounding boxes through com-
munication with the 3D object detection module. Next, it
updates the 3D bounding boxes of objects based on the col-
lected data types.

Voice and AR-enhanced user interface: A mobile
application is designed to allow users to search for objects
or explore their surroundings using voice interaction. The
application offers voice guidance and AR visualization
to educate users based on the search or filtered detection
outcomes.

3D Object Detection

The iOS-based ARKit platform utilizes a powerful technique
called world tracking1 to track the position and motion of
the device through scene analysis across camera frames and
motion sensing data comparison. Consequently, it can detect
the horizontal and vertical planes in the scene and retrieve
the AR point cloud—a set of notable 2D/3D feature points
of the corresponding camera frames. Additionally, recent
iOS devices2 with LiDAR sensors can capture 3D data of
nearby scenes and generate a depth map of each correspond-
ing camera frame, with a resolution of 256 × 192.

Fig. 1   The system architecture of the 3D object detection, recognition, and presentation system works on mobile devices

1  https://​devel​oper.​apple.​com/​docum​entat​ion/​arkit/​arfra​me/​28874​49-​
rawfe​ature​points.
2  https://​www.​cubi.​casa/​suppo​rt/​hardw​are/​list-​of-​suppo​rted-​lidar-​
and-​tof-​devic​es.

https://developer.apple.com/documentation/arkit/arframe/2887449-rawfeaturepoints
https://developer.apple.com/documentation/arkit/arframe/2887449-rawfeaturepoints
https://www.cubi.casa/support/hardware/list-of-supported-lidar-and-tof-devices
https://www.cubi.casa/support/hardware/list-of-supported-lidar-and-tof-devices

SN Computer Science (2023) 4:543 	 Page 5 of 18  543

SN Computer Science

As ARKit has the capability to map real-world scenes, we
utilize the data generated by ARKit in our 3D object detec-
tion module. Our proposed object detection method (Fig. 2)
combines 2D bounding boxes and labels estimated by a pre-
trained 2D object detector from each input RGB image with
a point cloud or depth map collected by ARKit. Addition-
ally, we use the horizontal and vertical planes detected by
ARKit to improve the object detection results.

In a typical situation of assistive navigation, the mobile
application needs to obtain the device’s real-time location
to provide navigation instructions. Processing 3D object
detection within the same mobile device can cause battery
drainage due to the significant computational power required
to support multiple functionalities simultaneously. This also
limits the flexibility to customize object detection methods
based on different situations or task requests. To address
these issues, we have created a cloud server to perform
object detection in the cloud. However, since communication
with the cloud server requires a stable network connection
to ensure real-time performance, the general object detec-
tion process is also available in the mobile application as a
backup for areas with poor network connections.

Planar Object Detection

ARKit can detect both vertical and horizontal planes by col-
lecting 3D feature points over time, which can be classified

into various classes such as floor, wall, ceiling, and surfaces
of rectangular objects such as tables. In our system, we con-
sider any detected horizontal plane higher than the floor
plane as an obstacle, as well as any vertical planes that could
be walls or doors. However, the lack of length or width infor-
mation makes it impossible for our system to determine 3D
bounding boxes of detected vertical planes. Therefore, the
system tracks the direction and distance between the user’s
camera location and the vertical plane instead.

To determine the 3D bounding box of an object on a hori-
zontal plane (such as the table with the blue plane in Fig. 3),
our system uses four endpoints (P1, P2, P3, and P4) of the
plane and the y location (Fy) of the detected floor plane (the
green plane in Fig. 3), which in the direction of gravity. The
width and length of the object are computed as the distances
between P1 and P2, and P2 and P3, respectively, ignoring
the y values. The height of the object is calculated as the
difference between the y location of the horizontal plane
(Hy) and that of the floor plane (Fy). The width and length
of the object are updated along with the updated size of the
horizontal plane over time, based on the updated endpoints
P1, P2, P3, and P4.

3D Bounding Box Estimation

Plane detection can only identify objects with large and flat
surfaces. Therefore, we employed a pre-trained image object

Fig. 2   The general workflow of the 3D object detection and 3D bounding box estimation

	 SN Computer Science (2023) 4:543 543   Page 6 of 18

SN Computer Science

detection model to detect other objects that we could fur-
ther classify as obstacles, humans, or targets. We then used
our proposed method to determine the 3D bounding boxes
of these objects. This paper tested several object detection
models, including YOLOv3 [12] and YOLOv5 [13]. How-
ever, the system can be adapted to any pre-trained 2D object
detector based on demand.

The proposed 3D bounding box estimation method used
the point cloud or depth map collected by ARKit with the
2D bounding boxes and labels estimated by a pre-trained 2D
object detector to determine the 3D bounding box of objects
in the corresponding image frame.

Point cloud based 3D bounding box estimation: For
mobile devices without LiDAR sensors, the system esti-
mates 3D bounding boxes of objects using the correspond-
ing frame’s AR point cloud. Typically, each camera frame
detects between 0 and 200 3D feature points. Due to the lim-
ited number of feature points, we only processed frame that
contained the number of feature points above a threshold
(i.e., 30) after removing the points belonging to the detected
planar objects.

To convert the 2D bounding boxes of detected objects
into 3D bounding boxes, first, the 3D raw feature points
are projected into the 2D image coordinate system (Fig. 4).
Second, the projected feature points are grouped based on
the 2D bounding boxes of the detected objects (Fig. 4a, b).
If the object group has a number of feature points below a
certain threshold, the 3D bounding box for that object will
not be computed for the current frame. For example, one

Fig. 3   Estimated 3D bounding box (white rectangular box) of an
object with the detected horizontal plane (blue) using the floor
plane’s (green) y-location (Fy)

Fig. 4   3D bounding box estimation using the AR point cloud and 2D bounding boxes from 2D object detectors

SN Computer Science (2023) 4:543 	 Page 7 of 18  543

SN Computer Science

of the bowls is ignored in this step from Fig. 4b, c due to
insufficient feature points. Next, the 3D bounding box of
the object is calculated using the mean and standard devia-
tion of the x, y, and z values of the corresponding feature
point group (Fig. 4c, d). The resulting 3D bounding box and
its label are then processed by the tracking and matching
method to either update its 3D bounding box or consider
it a new object. More details are discussed in "Point Cloud
Based Tracking".

Depth map based 3D bounding box estimation: The
general pipeline for object detection using a depth map is
shown in Fig. 5. First, start with the 2D object bounding
box detected by the 2D object detector from the RGB image,
then convert the 2D bounding box into a depth map scale
and enlarges by 10% of the detected 2D bounding box, as the
2D bounding box might not fully cover the object. Next, pro-
ject the depth map onto the 3D point cloud using the cam-
era’s intrinsic parameters, where the points of the detected
object are denoted in red (Fig. 5). Subsequently, we estimate
the object’s 3D size and center location based on the object’s
point cloud. A 5 × 5 mask was applied to the center of its 2D
bounding box in the depth map to determine the depth of the
object center, where the object’s center x and y values are
the average values in the object’s point cloud. The object’s
3D size is 1.5 standard deviations of the x, y, and z values of
its 3D point cloud. After that, we refine the 3D size of the
object with the average object’s 3D size computed from the
SUN RGB-D dataset [30] (the object category comes from
the 2D object detector). The estimated 3D size is sorted by
the average size of the precomputed object, and the length
of each object side is updated if it is not within the deviation
threshold of the corresponding average length. Finally, we
convert the object’s pose from the camera coordinates into
world coordinates using the camera’s extrinsic parameters.

Adaptive Detection in Various Environments

When operating in a noisy environment, a large number of
objects could be detected, which can affect the system’s

performance in processing and identifying relevant infor-
mation for users. For object search tasks, the presence of
other objects does not have a significant impact, since the
system can focus on the objects of interest with object rec-
ognition. For obstacle detection tasks, the goal is to help
users avoid hitting obstacles. Therefore, the system only
focuses on objects that are within a specific distance and
exceed a certain size threshold. These thresholds are adap-
tive based on the number of distinct objects detected over
time. User actions can also create noise in object detection.
For instance, frequent changes in camera orientation can
result in objects being repeatedly detected and can make
it difficult to determine the user’s orientation and the posi-
tion of objects with respect to their pose. To mitigate this
issue, the system monitors changes in the user’s camera
orientation and alerts the user when unstable movement
is detected. Additionally, the system will decrease the fre-
quency of information updates and resume them when the
camera movement stabilizes.

In different environments, particularly in a workspace,
such as a shopping mall or an industrial setting where a
user with BLV works, specific objects are present, and it
is crucial to identify those specific objects to follow work
instructions accurately. A general object detection model
is insufficient in such cases and may result in reduced
detection accuracy when attempting to handle numerous
objects with a single model. To address this issue, the
system includes customized object detection models that
correspond to specific objects or locations, in addition to
a general object detection model. If a responsive model for
the target object is available, it will be utilized for object
search tasks. The system also continuously monitors the
user’s location using the GPS sensor of the mobile device.
If the location encompasses several rooms, each having
its own detection model, the system also detect the BLE
beacon signal, which also used in our indoor navigation
system [9], to identify the appropriate detection model to
use. If there are no customized models that correspond to

Fig. 5   3D bounding box estimation using the AR depth map and 2D bounding boxes from 2D object detectors

	 SN Computer Science (2023) 4:543 543   Page 8 of 18

SN Computer Science

the detected location, the system will use a general object
detection model.

3D Object Tracking and Updating

Tracking an object’s 2D bounding box across frames (Fig. 6)
requires less computational power and is more effective than
detecting the objects in each frame. By utilizing Swift’s
vision framework,3 we can track the 2D bounding box of
the detected object across frames. Each tracking result pro-
vided an updated 2D bounding box and confidence score.
We considered the object lost tracking in the new frame if its
tracking confidence score was below a threshold (i.e., 70%).
To obtain the updated 3D bounding box of track objects, we
use the 3D bounding box estimation method (described in
"3D Bounding Box Estimation") with updated 2D bound-
ing boxes, which can be either run on the mobile device or
through the API call. The detection mode will be reactivated
when any of the following requirements are satisfied:

•	 All tracked objects with their tracking confidence score
below the threshold.

•	 The device moved more than a meter away from its latest
detection location.

•	 The device orientation changed for more than 45◦ from
the latest detection orientation.

Point Cloud Based Tracking

The ARKit point cloud is sparse and contains considerable
noise due to various circumstances in the environment, such
as lighting conditions, shadows, and colors. The sparsity
within the ARKit point cloud increases the error in estimat-
ing the 3D bounding box of the object from a single camera

frame. To obtain a more stable and accurate 3D bounding
box (i.e., the validated bounding box), we used the non-
maximum suppression (NMS) method [31] for objects that
have five or more estimated 3D bounding boxes across mul-
tiple frames. The object with the validated bounding box
then undergoes an information filtering process to determine
whether it should be considered for voice notification and
AR visualization.

3D matching: Previously detected/tracked objects might
be detected again when the app switches from tracking mode
to detection mode with the point cloud data. Therefore, we
need to match the objects to avoid creating multiple instances
for the same object. This object matching process compares
the estimated 3D bounding box of a newly detected object
with the 3D bounding boxes of previously detected/tracked
objects with the same label. If the 3D bounding boxes over-
lap, they are considered the same object, and the object’s
3D bounding box is updated. As discussed previously, the
estimated 3D bounding box of an object from a single frame
with point cloud data has low accuracy; therefore, there may
not always be an overlap for the bounding boxes of the same
object. More importantly, the object may move. We must
also compare closely located objects with the same label.
Suppose that the distance between the previous and newly
estimated 3D bounding boxes is under a distance thresh-
old percentage, it will be considered the same object and
updated its 3D bounding box. Otherwise, it is considered a
new object and created a new object instance.

Depth Map Based Tracking

Unlike point cloud data, depth map data provide much higher
accuracy in estimating the 3D bounding boxes of objects.
Therefore, it is not necessary to track all objects across
frames. For the depth map data, we only track dynamic
moving objects. In this case, we assume that only people or
objects with their 3D bounding box overlapping a person’s
bounding box are dynamic moving objects. However, the list

Fig. 6   General workflow of the 3D object tracking and updating process

3  https://​devel​oper.​apple.​com/​docum​entat​ion/​vision/​vntra​ckobj​ectre​
quest.

https://developer.apple.com/documentation/vision/vntrackobjectrequest
https://developer.apple.com/documentation/vision/vntrackobjectrequest

SN Computer Science (2023) 4:543 	 Page 9 of 18  543

SN Computer Science

of dynamic moving object types can expand if needed. The
2D bounding boxes of these objects are tracked using the
vision framework and passed to the object detection module
to obtain its updated 3D bounding box if its tracking confi-
dence score is over the threshold.

Voice and AR‑Enhanced User Interface

Our system is designed to serve different users, including peo-
ple with BLV or ASD and others who have traveling chal-
lenges. The application utilizes ARKit and SiriKit to provide
a voice and AR-enhanced user interface to adapt to each user’s
needs and preferences. Furthermore, to minimize the compu-
tational power required for our user interface application, the
frame rate was set at 30 frames per second (fps), as it is dif-
ficult for the human eye to see differences above 30 fps. Note
that the maximum speed of updating objects’ 3D bounding
boxes is 10 fps in our current implementation, depending on
the object detection and tracking run time.

AR Visualization

The AR mobile application utilizes ARKit to display AR
assets by aligning them with the 3D bounding boxes of
detected objects, thereby providing visual assistance to
individuals with low vision or ASD. Additionally, it can be
used as digital signage for various scenarios, including task
guidance and emergency evacuations.

The current design uses a 3D rectangular box to show the
object’s 3D pose and size, along with a sphere whose radius
depends on the shortest side of the rectangular box. The
color and transparency of display AR assets are determined
by the object label and its confidence score based on the

detection or tracking results. Figure 7 shows some examples
of AR visualization. The detected person is represented in
red, as we feel it is essential to identify the person, especially
for users with the challenge of social interaction.

The AR visualization functionality can be enhanced to
offer users additional assistance in task completion. By utiliz-
ing the object search feature in tandem with the application,
task instructions can be displayed at the appropriate loca-
tion based on the 3D pose of the target object. As illustrated

Fig. 7   Examples of AR visualization of 3D object detection results. Blue represents the chair; red represents the person; purple represents the
cup, bottle, and bowl; and gray represents the unknown object

Fig. 8   AR instruction example. The AR frame displays a video show-
ing the user how to attach the camera to a tripod

	 SN Computer Science (2023) 4:543 543   Page 10 of 18

SN Computer Science

in Fig. 8, the AR instruction is placed in response to the
detected 3D location of the tripod. The availability of object
detection eliminates the need to predetermine the location of
the object or account for potential variations in its position
over time. Additional use cases can be derived based on the
capability of the AR visualization and user studies.

Fig. 9   Information filtering process. Filter the objects within the
angular range ( � ) with respect to the camera orientation ( C�)

4  https://​devel​oper.​apple.​com/​docum​entat​ion/​sirik​it.

Voice Interaction

Individuals with BLV may face challenges with touch-based
interaction, and incorporating voice interaction is crucial
to improve user-friendliness. The voice interaction in the
proposed system consists of two primary components: one
that receives action commands from the user and another
that presents the required information based on the action
command.

Continuous listening to a user’s voice commands not
only consumes additional computational power of a mobile
device but may also result in inaccurate interpretation of
commands due to environmental noise. To address this, we
have opted to utilize the SiriKit library4 to enable users to
provide in-app commands for our application via Siri. This
approach eliminates the need for users to learn a new way
of interacting with the app and avoids the additional power
consumption associated with continuous voice command
processing.

In addition to utilizing SiriKit for initiating app activities,
we also developed our in-app voice interaction to handle
specific commands, reducing the need for users to say “Hi
Siri” each time they want to communicate with our app. This

approach provides us with greater flexibility in creating in-
app actions. Our voice interaction can confirm user actions,
identify target objects that users are looking for, and provide
information about detected objects. A video demonstration
of the voice interaction is available in "Demo".

Information Filtering

With massive objects detected over time, information filter-
ing is necessary to extract essential information for alerting
individuals with BLV or ASD users based on their settings.
First, we filter out objects that do not interfere with the
camera-facing direction of the user’s device for all detected
objects (Fig. 9). Secondly, we sort the remaining objects by
alert priority using Eq. 1. Alert priority is calculated based
on the distance between the user’s camera (C) and the object
(O), as well as the object size, where the distance has more
weight than the object size ( � ≫ � ). Lastly, a voice notifica-
tion is provided only if the alert priority value exceeds a
threshold.

The voice notification includes both the distance and direc-
tion of the alert object. The distance between the object
and camera is calculated using Eq. 2, which considers only
the differences in the x- and z-axes between the object and
camera positions. The object direction (i.e., in front, left, or
right) is determined based on the angle difference between
the y-direction of the current camera orientation and the
object’s position with respect to the device’s location.
Whenever a new object is detected, or any object is within
the dangerous range of the user’s location, the information
filtering process is triggered, and a new voice alert is issued
if necessary.

Experiments

After introducing the hardware and software requirements
of our system, we will discuss several experiments we con-
ducted to evaluate the proposed system’s object detection
accuracy and real-time performance. These experiments
were conducted in public and private residential areas with
the consent of the subjects recorded in the videos. We have
also planned a series of usability experiments, but due to the
limited time and other constraints such as pandemics, they
will be conducted in the future.

(1)AlertPrority(C,O) =
�

distance
(C,O) + � × volume0

(2)Distance(C,O) =

√

(

C
X
−

(

Ocenter
x
−

Owidth

2

))2

+ (C
Z
− (Ocenter

Z
−

Olength

2
))2

https://developer.apple.com/documentation/sirikit

SN Computer Science (2023) 4:543 	 Page 11 of 18  543

SN Computer Science

Hardware and Software Requirements and Cost

Our system is portable and doesn’t have a fixed cost as
it can be customized to suit various devices and setups.
The two primary expenses are the user’s devices and the
cloud server, which can vary depending on the devices
and processing power used for the cloud server. The key
idea is that users will use their existing mobile devices, so
no additional costs are needed, except for possible modest
monthly cloud service fees.

In our system, we use ARKit for image-based localiza-
tion and modeling. The ARKit-based approach can func-
tion on all iOS devices that meet certain specifications,
namely iOS 11.0 or later and an A9 or newer proces-
sor. This includes the iPhone 6 s and subsequent mod-
els (priced between $100 and $1100) as well as the 5th
generation iPad and newer versions (priced between $150
and $1100). Although optional, the iPhone LiDAR sen-
sor can enhance the accuracy of 3D object detection, as
discussed in the previous section. The iPhone’s LiDAR
sensor operates at a wavelength of approximately 800
nanometers (nm) and employs photon counting detectors
and vertical cavity surface emitting lasers [32]. Addition-
ally, its range capability is discussed in "Object Detection
Accuracy Analysis".

According to [32], the LiDAR sensor on the iPhone oper-
ates at a wavelength of approximately 800 nanometers (nm)
and employs photon counting detectors and vertical cavity
surface emitting lasers. Additionally, its range capability is
discussed in "System Performance Evaluation".

The system includes a cloud server to process 3D object
detection, whose storage and processing power can vary
based on the user’s needs. The cloud server can be host
by third party provider with two host options, one is pay
per request and another one is run continuously with fixed
cost. The cost will vary depending on factors such as stor-
age capacity, processing power, and network performance.
For our cloud server, the minimum requirements are 8GB
memory and 2 virtual CPUs (vCPUs), which correspond
to a t3.large instance in AWS, priced at $0.0832 per hour.

"Real-Time System Performance Analysis" includes an over-
view of the real-time performance of our system, using the
aforementioned cloud server settings.

As mentioned in "3D Object Detection", the 3D object
detection approach relies on the output of pre-trained 2D
object detectors and can incorporate several custom object
detection models tailored to different tasks and settings.
By fine-tuning these pre-trained models, the customized
2D detectors can be trained for new object categories with
reduced training costs. The cost of training these models is
largely dependent on the number of training samples and the
desired accuracy. Table 1 provides information on the cost
of several AWS Elastic compute cloud (EC2) instances [33]
with different processing power specifications, serving as a
reference for estimating the cost of training the 2D object
detectors and hosting a more powerful cloud server that can
scale beyond the minimum requirement.

System Performance Evaluation

Our system can easily be adapted to any 2D object detector
and turn its detection results into 3D. Therefore, the perfor-
mance of the 3D detection result highly depends on the 2D
object detector used and the range of objects it can detect.

To evaluate object detection accuracy, we examined sev-
eral datasets of indoor scenes that include 3D object anno-
tation, particularly SUN RGB-D [30] and NYUDv2 [34].
These datasets typically have a depth map resolution of
640 × 480, which is approximately six times larger than
the depth map collected by our mobile device ( 256 × 192 )
and much more substantial than the AR point cloud data
(approximately 200 points per frame). Due to this significant
difference, existing datasets cannot be used to evaluate the
performance of our object detection method. Therefore, we
developed a data collection and annotation toolkit to create
our dataset using the mobile device sensors.

We used YOLOv3 as the 2D object detectors for our sys-
tem with an image resolution of 640 × 480 to evaluate our
system’s object detection accuracy on 13 object categories

Table 1   Amazon elastic compute cloud cost [33]

Instance name GPUs # of vCPUs Memory (GiB) Clock speed
(GHz)

Network perfor-
mance (Gigabit)

On-demand
hourly rate

T3 large – 2 8 3.1 < 5 $0.0832
VT1 3xlarge – 12 24 2.5 3.12 $0.6500
G4DN eight extra large 1 NVIDIA T4

Tensor Core
(16GiB)

32 128 2.5 50 $2.1760

P3DN 24xlarge 8 NVIDIA Tesla
V100 (256
GiB)

96 768 2.5 100 $31.2120

	 SN Computer Science (2023) 4:543 543   Page 12 of 18

SN Computer Science

in our test dataset (Table 2). The YOLOv3 detector is trained
on the COCO dataset [35] and can detect 80 different object
categories, such as people, chairs, and table, among others.

We conducted several experiments to evaluate the real-
time performance of our system using different combinations
of three 2D object detectors (YOLOv3, YOLOv5 Nano, and
YOLOv5 Medium) and two image resolutions ( 640 × 480
and 256 × 192 ). All three object detectors were trained on
the COCO dataset, and we also assessed the impact of adapt-
ing the cloud server to the system’s real-time performance.
We used an iPhone 13 Pro Max as a local processor, while
the object detection server was deployed on AWS Elastic
Beanstalk with a t3 large instance that contained 2 vCPUs
and 8GB of memory.

Data Collection and Annotation Toolkit

The data collection and annotation toolkit comprises an
iOS app for data collection and a data annotation interface
(Fig. 10) for annotating 3D bounding boxes of objects.
The iOS app collects several data for each frame, includ-
ing RGB images, AR point cloud data, depth maps, and
intrinsic and extrinsic camera parameters.

The annotation interface was developed in Python and
is designed to preprocess the data and estimate a set of
3D object bounding boxes, with the ability for annota-
tors to make corrections. First, the RGB image is pro-
cessed with the Mask R-CNN model to obtain the object
segmentation mask, which is then aligned with the depth
map to generate the object’s 3D point cloud. Our proposed
method is then used to pre-label the 3D bounding boxes
of objects based on the object point cloud data. The inter-
face then displays a 3D point cloud and RGB image of the
corresponding frame along with the pre-labeled 2D and
3D bounding boxes of the object. The annotator checks
each object in turn, correcting the bounding boxes and
invalidating the object if necessary. This hybrid approach
reduces the burden of the data labeling process.

This annotation tool enables us to create an object dataset
based on mobile devices, which can be utilized to train deep
learning models for more accurate predictions based on dif-
ferent purposes in the future.

Object Detection Accuracy Analysis

For the experiments, we collected data using our data collec-
tion application from various locations, including residential
houses, public stores, and streets. We obtained the ground
truth 3D bounding boxes of the objects using our annotation
interface. Table 2 provides a breakdown of the collected
objects.

The accuracy of the depth map is crucial for the perfor-
mance of 3D object detection since the depth values play

a critical role in estimating the 3D pose of an object from
its 2D detection results. Incorrect depth values can lead to
inaccurate 3D bounding boxes for the objects. Therefore, we
evaluated the confidence level of the accuracy of depth data
based on the collected experimental data.

The depth map generated by the built-in LiDAR scan-
ner of the selected iOS devices is generally accurate within
a range of 5 ms and can detect up to 15 ms, but the depth
accuracy decreases as the distance increases. The ARKit
framework uses three confidence levels to indicate the accu-
racy of the collected depth data: low, medium, and high.
We divided the distances into four major ranges: less than
3 ms, between 3 and 5 ms, between 5 to 7 ms, and greater
than 7 ms. Objects within 3 ms are particularly important
for people with BLV, as they may bump into these objects
if not notified. It is worth noting that the Microsoft Kinect
sensors used in [22] have the limitation of providing inac-
curate distance information beyond 3 ms.

Based on our preliminary study, we found that the built-
in LiDAR sensor of iOS devices is usually accurate within
5 ms. Thus, we set 5 ms as another threshold for our distance
range. From our experiments, we observed that the farthest
distance detectable in the experimental residential house was
within 7 ms. Therefore, we set 7 ms as the threshold for
object detection between indoor and outdoor environments.
Figure 11 shows the distributions (in percentages) of the
three confidence levels of the depth value accuracy versus
distances based on our experimental data. Table 3 lists the
percentages of the number of points in the three confidence
levels for the accuracy of the AR depth value based on dis-
tance ranges. At each distance, the three percentage values
add up to 100%.

Table 2   Number of objects collected based on the distance range

The distance is calculated based on the camera location and the
object center

< 3 m 3–5 m 5–7 m > 7 m

Chair 34 4 0 0
Bottle 21 4 0 0
Laptop 11 0 0 0
Bags 8 0 0 0
Cup 5 1 0 0
Person 4 0 0 0
Plant 3 0 0 0
Bowl 2 1 0 0
Vase 2 1 0 0
Phone 2 0 0 0
Tv 2 0 0 0
Table 0 2 0 0
Car 0 0 0 8

SN Computer Science (2023) 4:543 	 Page 13 of 18  543

SN Computer Science

To evaluate our object detection method, we used using
YOLOv3 as the 2D object detector for our system with
an image resolution of 640 × 480 . We measured the per-
formance using the intersection over union (IoU) metric,
which compares the predicted 3D object boundaries with
the ground truth. We considered a prediction accurate if the
IoU exceeded 25%. Additionally, we compared our results
with Transferable3D [36], a state-of-the-art semi-supervised

Fig. 10   The data annotation interface displays the current annotated
object’s 3D location, size, and orientation on the top, while the corre-
sponding image frame’s point cloud and RGB image are shown at the

bottom. The green line segments and rectangular box indicate the 2D
and 3D positions of the annotated object, respectively

Fig. 11   Distributions of the three confidence levels for accuracy of
the AR depth values versus distances. At each distance, the three per-
centage numbers add up to 100%

Table 3   Distributions of the three confidence levels for accuracy of
the AR depth value based on distance ranges

Distance range

 Confidence level < 3 m 3–5 m 3–5 m > 7 m

Low confidence 7.66% 18.22% 93.17% 100%
Medium confidence 12.14% 19.22% 4.79% 0%
High confidence 80.20% 62.55% 2.02% 0%

	 SN Computer Science (2023) 4:543 543   Page 14 of 18

SN Computer Science

3D object detection model capable of predicting untrained
objects. However, since our annotated data was relatively
small and insufficient for training Transferable3D, we used
the SUN RGB-D dataset [30] for this comparison.

Table 2 presents the data captured from random scenes
in the experimental areas to test the performance of our sys-
tem in a real-world environment. Hence, the distribution of
each object class is uneven in the annotated data, which can
cause some objects to have a more significant influence than
others. For example, a bad prediction for a vase can dramati-
cally decrease the mAP value. Moreover, our data is much
sparser than the SUN RGB-D dataset, so it is reasonable
that Transferable3D does not perform as well as it did for
the SUN RGB-D dataset (41.8% mAP). Additionally, the
SUN RGB-D dataset contains only indoor objects and lacks
any data for cars, resulting in poor performance of Trans-
ferable3D in predicting cars. However, with more data, we
can refine Transferable3D to achieve better performance.
Despite these limitations, our method achieves an mAP of
63.88% for objects within 3 m (Table 4), where the classes
with low accuracy are smaller objects, particularly vases
with IoU less than 10%.

In addition to the object detection performance based on
distance ranges, we also tested the detection performance for
objects captured from different perspectives. Specifically, we
tested the laptop and chair because both objects have differ-
ent shapes when viewed from different angles.

Based on Table 5, the average IoU for laptops and chairs
does not vary significantly when viewed from different per-
spectives. Additionally, the difference in average precision
(AP) is minimal, likely due to the relatively small sample
size, where a single sample can have a significant impact
on the AP value. Nevertheless, it is worth noting that the

width and length of laptops and chairs are very similar,
which means that the resulting 3D bounding boxes may still
encompass the objects at different angles if they were placed
in the nearby center.

Real‑Time System Performance Analysis

We developed an iOS application to evaluate the real-time
performance of our system, which can perform object detec-
tion on either a mobile device or a cloud server. We tested
three 2D object detectors (YOLOv3, YOLOv5 Nano, and
YOLOv5 Medium) at two image resolutions ( 640 × 480 and
256 × 192 ) using an iPhone 13 Pro Max. The object detec-
tion server was deployed on AWS Elastic Beanstalk with a
t3 large instance containing 2 vCPUs and 8GB of memory.

The experiments were conducted in a residential house,
where a data collector walked along a predetermined path
while using the object detection application. The app
and cloud server collected the run-time data during the
experiments.

Table 6 displays both the run-time and accuracy in object
detection of our system with different combinations of object
detectors (YOLOv3, YOLOv5 Nano, and YOLOv5 Medium)
and image resolutions (640x480 and 256x192), using depth
map data. The performance with the point cloud data has
similar processing times.

The experiments mainly compare the mobile device run
time (MDT) and the cloud server run time (CST). For each
combination of the model size and the image resolution,
more than 200 camera frames have been processed for 3D
object detection. The total cloud server run time (CST-T)
has two components: data transfer time (CST-D), which
is the time from when the API call was initiated in the
mobile app until the cloud server received the API request
and loaded the data, and data computation time (CST-C),
which is the time taken to process the data in the cloud.
The MDT represents the total process time of the object
detection module in the iPhone 13 Pro Max, which uses
the A15 Bionic processor with a 6-core CPU and 5-core
GPU. In fact, this mobile device has more computational
power than the AWS cloud server host, which has only two
vCPUs and 8GB of memory. In real-world applications,
the cloud server can have much more powerful hardware.

Table 4   Object detection performance based on the distance range

Distance range Number of
objects

Our method (mAP) Trans-
ferable3D
(mAP)

< 3 m 94 63.88% 38.13%
3–5 m 13 50.00% 33.33%
5–7 m 0 – –
> 7 m 8 37.50% 0.00%

Table 5   Object detection
performance for objects
captured from different
perspectives

Object class Object perspective

Left Center Right

Avg IoU AP Avg IoU AP Avg IoU AP

Laptop 24.31% 33.33% 28.30% 50.00% 23.04% 50.00%
Chair 27.53% 50.00% 24.14% 44.44% 23.12% 37.50%

SN Computer Science (2023) 4:543 	 Page 15 of 18  543

SN Computer Science

However, data transfer may become a bottleneck unless
the mobile device lacks the power and computational
budget to process object detection/tracking while per-
forming basic localization services. Additionally, the 2D
object detector requires 2–3 s to initialize the model on
the mobile device.

The computation run time was greatly influenced by the
2D object detectors, with a large model (YOLOv3) taking
nearly twice as long to process on the mobile device and
over ten times longer on the cloud server compared to a
small model (YOLOv5 Nano). However, the larger model
was able to detect more objects in the same scenario than
the smaller one. As shown in Table 6, YOLOv3 produces
approximately twice as many detections as YOLOv5 Nano
for images of the same resolution.

The image resolution also affects the computation run
time although it is minor compared to the model type.
However, it becomes an important factor when aiming for
real-time performance using the object detection server.
The 256 × 192 image resolution is usually around 50 KB,
whereas the 640 × 480 image resolution is around 300 KB.
With around 250 KB difference in data size, it took more
than 100 ms to transfer the data to the cloud server. The
difference in the data transfer time for the same image
resolution in Table 6 is due to the fluctuation of the inter-
net speed. Faster internet and edge computing techniques
could reduce data transfer time. Furthermore, a lower
image resolution can also affect the performance of 2D
object detectors, as shown in Table 6, where fewer objects
are detected in the same image frame.

Our system can easily adapt to different 2D object
detectors, image solutions, and the processing power of the
object detector server to meet diverse user requirements in
terms of run time and details for the 3D detection result.
Moreover, the system can deploy multiple cloud servers
to adapt to various user requirements.

System Usability Evaluation

Usability experiments were planned to collect user feed-
back and evaluate the user experience with our applica-
tion. The main target user groups for the experiments were
individuals with BLV or ASD.

The first objective of the experiment was to collect user
feedback on voice interaction and the user interface with
AR visualization. The baseline of the experiment will
establish by asking participants to explore an unfamiliar
environment using their current tools, such as a white cane
or guide dog. Next, we had participants use our application
to explore another similar environment. At the end of each
experiment, we will evaluate participants’ understanding
of the environment and conduct a user survey to learn
about their challenges during exploration and their sug-
gestions for our application.

We also planned to test voice notifications for the
detected objects, including alert frequency, content
delivery, and voice speech. A set of metrics for different
attributes will be tested for all participants in a similar
environment. We will collect data for each combination
of the metrics, including the self-evaluated anxiety level,
the time needed to explore the scene, the number of times
participants hit an obstacle, and time taken to reach the
target object.

After conducting all the experiments, the experimental
data and participants’ feedback will be analyzed and used
to improve the application.

Demo

A video demo can provide better visualization of our sys-
tem’s performance in mobile applications. It can be viewed
by clicking on this link: https://​youtu.​be/​4tj4f​qiCVeE. The
demo takes place in a residential house that shows two pri-
mary use cases:

Table 6   Comparison system performance on both a mobile device and a cloud server, included the mean and standard deviation of the number
of objects detected in a single frame and the system’s run time in milliseconds using various 2D object detectors and image resolutions

RES: image resolution; #OBJ: number of objects detected; MDT: mobile device time (ms); CST-D, CST-C, CST-T: cloud server time (ms)—
data transfer, computation, total

RES YOLOv3 (248.4MB) YOLOv5 Medium (85.1MB) YOLOv5 Nano (7.9MB)

640 × 480 256 × 192 640 × 480 256 × 192 640 × 480 256 × 192

#OBJ 7.4 ± 3.8 5.3 ± 2.1 5.8 ± 3.4 4.4 ± 2.4 3.6 ± 1.9 3.1 ± 1.9
MDT 85 ± 4 80 ± 4 68 ± 13 62 ± 4 54 ± 15 50 ± 7
CST-D 399 ± 130 257 ± 80 394 ± 96 249 ± 91 390 ± 88 262 ± 128
CST-C 2078 ± 48 2035 ± 48 791 ± 26 773 ± 23 188 ± 26 171 ± 22
CST-T 2478 ± 138 2291 ± 97 1185 ± 101 1022 ± 92 578 ± 96 433 ± 131

https://youtu.be/4tj4fqiCVeE

	 SN Computer Science (2023) 4:543 543   Page 16 of 18

SN Computer Science

•	 Object search. The user opens and activates the object
search using Siri commands. The in-app voice interaction
is initialized with an object search command that asks the
user for the target object. In this demo, the user searches
for a laptop. The app starts searching for the laptop after
confirming it with the user. The application provides the
updated location of the laptop as the user moves.

•	 Object detection. The user activates the object detec-
tion through Siri commands. The application continues
to provide the detected object and people’s locations as
the user moves.

Conclusions and Discussions

A Few Concluding Remarks

In this paper, we propose a 3D object detection, recognition,
and presentation system that operates on a mobile device.
The system efficiently works in real-time, does not require
specialized high-end sensors, and contains voice interaction
and AR visualization to assist in delivering information to
individuals with BLV, ASD, or other challenges. Addition-
ally, the system is low cost, with the only requirement being
an iPhone 6 s or subsequent models that a user may already
have, and the real-time performance is adjustable based on
the available budget for hosting the cloud server.

To increase flexibility in adapting to different data input
types and object detectors based on run time requirements
and details for the 3D detection result, we introduced a
3D object detection server. The processing power of the
object detection server can be adjusted by user based on
their budget and desired information update frequency. It
also reduces the computational requirements for the mobile
device and enables integration with other applications, such
as navigation applications. Additionally, the object detection
module is available in the mobile app to handle areas with
poor network connections.

The system’s ability to adapt to any 2D object detector
and turn the 2D detection result into 3D allows for custom-
ization based on the user’s needs. The system can easily
incorporate multiple object detectors and determine which
one to use based on the tasks the user wants to perform or
the locations that the user are in, through GPS sensor or
BLE beacon signal, as each model could correspond to a
specific set of tasks or specific locations. For example, one
detector can be used for detecting doors and knobs to guide
users to reach and open doors, while another one can be used
for general obstacle detection, and a third one for location-
based detection of landmarks or industrial equipment. By
using target-oriented object detectors, the system can have
more focused training data and adaptive computational times
specific to each task, thereby improving its performance.

Furthermore, the location-based object detection models can
be deployed on local machines in their respective locations,
which can reduce the cost of hosting on the cloud server and
decrease data transfer time and cost. Additionally, by utiliz-
ing cloud servers, these models can be employed alternately
based on the actions the user wants to perform.

We developed a data collection and annotation toolkit
to create an object dataset based on mobile device sensors.
This dataset can then be used to train a deep learning model
to improve the accuracy of object detection. Additionally,
the data collection application can be integrated with the
modeling application [9] that we previously developed for
indoor navigation. This integration will enable the creation
of a 3D semantic reconstruction of the scanning environment
that includes static objects’ locations and sizes on top of the
2D floorplan and AR model: During environment scanning,
the modeling application collects data for object detection.
The object detection module will then processes this data to
obtain each object’s 3D pose and size for each frame. After-
ward, a merge module is created to match and refine the 3D
bounding box of the same object using the detected object’s
location in the AR coordinate system. Finally, the 3D loca-
tion and size of the object can be projected onto the 2D
floorplan using the transformation matrices obtained in [9].

Limiations and Future Work

There is much room for future improvement to the current
system. The first and most crucial step was to conduct the
user experiments, as discussed in "System Usability Evalu-
ation", to enhance the mobile application’s usability. This
step is critical in validating whether the system can meet
user needs and identifying its weaknesses as a real-world
application. The primary motivation of this paper was to
integrate this system with our indoor navigation system
ASSIST [9], which has successfully transitioned from a
research prototype at CUNY to a real system by Nearabl.
This integration will improve the situation awareness of
users with BLV, ASD, or other challenges in indoor area
exploration and navigation. Additionally, integrating the data
collection application with the modeling application would
be ideal for constructing a 3D map of the scanned environ-
ment and expanding our dataset. Ultimately, the dataset can
be used to develop a deep learning model to improve object
detection accuracy.

The current system for 3D object detection has a distance
limitations, as the accuracy of depth values captured by
existing mobile devices decreases with increasing distances.
Therefore, the system is only adaptable to indoor scenes.
Additionally, the detection of dynamic moving objects or
persons increases the challenge of accurately detecting an
object’s 3D pose, making the current system unsuitable for
crowded environments such as shopping malls. However,

SN Computer Science (2023) 4:543 	 Page 17 of 18  543

SN Computer Science

we are planning to incorporate several methods into the cur-
rent system to mitigate noise in the future. First, the system
will monitor detected objects and the user’s device motion
to determine if the user is in a crowd environment. If so,
the application will alert the user by asking them to move
slower. Second, incoming sensor data (i.e., point cloud and
depth map) can be filtered using previous timestamp data
and the user’s motion data to handle sensor noise. Finally,
to handle dynamic moving objects, especially humans, a
Kalman-filter-based approach can be used to predict their
movements and prevent collisions with the user.

Based on the user’s actions, the system will handle object
search, obstacle avoidance, and understanding the surround-
ing environment differently. For object search, a target-ori-
ented model will be applied. For obstacle avoidance, the
system will focus on detecting the closest obstacle with-
out the need for obstacle recognition. This can be further
integrated with sensors installed on the user’s cane, such as
ultrasonic sensors.

Furthermore, to help the user to have a full understanding
of the environment, the system can take a longer process
time to capture the scene in 360◦ as the user stands in one
location. The captured data can then be integrated to create
a rough 3D construction and provide information to the user.

Funding  This study was funded by US National Science Foundation
(#2131186, #2118006, #1827505 and #1737533), ODNI Intelligence
Community Center for Academic Excellence (IC CAE) at Rutgers
(#HHM402-19-1-0003 and #HHM402-18-1-0007) and the US Air
Force Office for Scientific Research (#FA9550-21-1-0082).

Data availability  The data that support the findings of this study are
available on request from the corresponding author, JC. The data are
not publicly available due to the potential compromise of personal
privacy.

Declarations 

Conflict of interest  Jin Chen is the CTO from Nearabl Inc. and owns
stock in Nearabl Inc. Zhigang Zhu declares no conflict of interest.

Ethical approval  This article does not contain any studies with human
participants performed by any of the authors.

References

	 1.	 Bourne R, Steinmetz JD, Flaxman S, Briant PS, Taylor HR,
Resnikoff S, Casson RJ, Abdoli A, Abu-Gharbieh E, Afshin A,
Ahmadieh H. Trends in prevalence of blindness and distance and
near vision impairment over 30 years: an analysis for the global
burden of disease study. Lancet Glob Health. 2021. https://​doi.​
org/​10.​1016/​s2214-​109x(20)​30425-3.

	 2.	 Vision Atlas. The International Agency for the Prevention of
Blindness. https://​www.​iapb.​org/​learn/​vision-​atlas. Accessed 15
Aug 2022.

	 3.	 Manduchi R, Kurniawan S. Watch your head, mind your step:
mobility-related accidents experienced by people with visual
impairment. Department of Computer Engineering, University
of California, Santa Cruz, Technical Report 2010;1.

	 4.	 Koldewyn K, Weigelt S, Kanwisher N, Jiang Y. Multiple object
tracking in autism spectrum disorders. J Autism Dev Disord.
2013;43:1394–405.

	 5.	 van der Geest JN, Kemner C, Camfferman G, Verbaten MN,
van Engeland H. Eye movements, visual attention, and autism:
a saccadic reaction time study using the gap and overlap para-
digm. Biol Psychiatry. 2001;50(8):614–9.

	 6.	 Quintana E, Ibarra C, Escobedo L, Tentori M, Object Favela J,
gesture recognition to assist children with autism during the dis-
crimination training. In: Progress in pattern recognition, image
analysis, computer vision, and applications: 17th Iberoamerican
congress, CIARP, Buenos Aires. Argentina. 2012. p. 877–84.

	 7.	 Laser Eye Surgery Hub. Visual impairment and blindness global
data and statistics. https://​www.​laser​eyesu​rgery​hub.​co.​uk/​data/​
visual-​impai​rment-​blind​ness-​data-​stati​stics. Accessed 15 Aug
2022.

	 8.	 Chen J, Zhu Z. Real-time 3D object detection and recognition
using a Smartphone. In: Proceedings of the 2nd international
conference on image processing and vision engineering. 2022.
p. 158–65. https://​doi.​org/​10.​5220/​00110​60600​003209.

	 9.	 Zhu Z, Chen J, Zhang L, Chang Y, Franklin T, Tang H, Ruci
A. iassist: an iphone-based multimedia information system for
indoor assistive navigation. Int J Multimed Data Eng Manag
(IJMDEM). 2020;11(4):38–59. https://​doi.​org/​10.​4018/​IJM-
DEM.​20201​00103.

	10.	 Ren S, He K, Girshick R, Sun J. Faster r-cnn: towards real-time
object detection with region proposal networks. Advances in neu-
ral information processing systems. 2015. p. 28. https://​doi.​org/​
10.​1109/​TPAMI.​2016.​25770​31.

	11.	 He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn. In: Proceed-
ings of the IEEE international conference on computer vision.
2017. p. 2961–9. https://​doi.​org/​10.​1109/​ICCV.​2017.​322.

	12.	 Redmon J, Farhadi A. Yolov3: an incremental improvement. 2018.
arXiv preprint arXiv:​1804.​02767.

	13.	 Glenn J, Ayush C, Alex S, Jirka B, et al. ultralytics/yolov5: v7.0—
YOLOv5 SOTA realtime instance segmentation. 2022. https://​doi.​
org/​10.​5281/​zenodo.​73479​26.

	14.	 Wang CY, Bochkovskiy A, Liao HY. YOLOv7: trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors.
2022. arXiv preprint arXiv:​2207.​02696.

	15.	 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg
AC, Ssd: Single shot multibox detector. In: Computer vision-
ECCV, 14th European conference, Amsterdam, The Netherlands.
2016. p. 21–37. https://​doi.​org/​10.​1007/​978-3-​319-​46448-0_2.

	16.	 Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense
object detection. In: Proceedings of the IEEE international con-
ference on computer vision. 2017. p. 2980–8. https://​doi.​org/​10.​
1109/​ICCV.​2017.​324.

	17.	 Huang HC, Hsieh CT, Yeh CH. An indoor obstacle detection
system using depth information and region growth. Sensors.
2015;15(10):27116–41. https://​doi.​org/​10.​3390/​s1510​27116.

	18.	 Cheng R, Wang K, Yang K, Zhao X. A ground and obstacle detec-
tion algorithm for the visually impaired. In: IET international con-
ference on biomedical image and signal processing. 2015. p. 1–6.

	19.	 Soquet N, Aubert D, Hautiere N. Road segmentation supervised
by an extended v-disparity algorithm for autonomous navigation.
In: 2007 IEEE intelligent vehicles symposium. 2007. p. 160–5.
https://​doi.​org/​10.​1109/​IVS.​2007.​42901​08

	20.	 Sun L, Yang K, Hu X, Hu W, Wang K. Real-time fusion network
for RGB-D semantic segmentation incorporating unexpected
obstacle detection for road-driving images. IEEE Robot Autom

https://doi.org/10.1016/s2214-109x(20)30425-3
https://doi.org/10.1016/s2214-109x(20)30425-3
https://www.iapb.org/learn/vision-atlas
https://www.lasereyesurgeryhub.co.uk/data/visual-impairment-blindness-data-statistics
https://www.lasereyesurgeryhub.co.uk/data/visual-impairment-blindness-data-statistics
https://doi.org/10.5220/0011060600003209
https://doi.org/10.4018/IJMDEM.2020100103
https://doi.org/10.4018/IJMDEM.2020100103
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICCV.2017.322
http://arxiv.org/abs/1804.02767
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926
http://arxiv.org/abs/2207.02696
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.3390/s151027116
https://doi.org/10.1109/IVS.2007.4290108

	 SN Computer Science (2023) 4:543 543   Page 18 of 18

SN Computer Science

Lett. 2020;5(4):5558–65. https://​doi.​org/​10.​1109/​LRA.​2020.​
30074​57.

	21.	 Chen Y, Liu S, Shen X, Jia J. Dsgn: Deep stereo geometry net-
work for 3d object detection. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2020. p.
12536–45. https://​doi.​org/​10.​1109/​CVPR4​2600.​2020.​01255

	22.	 Pham HH, Thi-Lan L, Vuillerme N. Real-time obstacle detec-
tion system in indoor environment for the visually impaired using
microsoft kinect sensor. J Sens. 2016. https://​doi.​org/​10.​1155/​
2016/​37549​18.

	23.	 Fischler MA, Bolles RC. Random sample consensus: a paradigm
for model fitting with applications to image analysis and auto-
mated cartography. Commun ACM. 1981;24(6):381–95. https://​
doi.​org/​10.​1145/​358669.​358692.

	24.	 Domenech JF, Escalona F, Gomez-Donoso F, Cazorla M. A vox-
elized fractal descriptor for 3D object recognition. IEEE Access.
2020;8:161958–68. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30214​
55.

	25.	 Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J. 3d
shapenets: a deep representation for volumetric shapes. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition. 2015. p. 1912–20.

	26.	 He C, Gong J, Yang Y, Bi D, Lan J, Qie L. Real-time track obsta-
cle detection from 3D LIDAR point cloud. J Phys Conf Ser.
2021;1910(1):012002. https://​doi.​org/​10.​1088/​1742-​6596/​1910/1/​
012002.

	27.	 Garnett N, Silberstein S, Oron S, Fetaya E, Verner U, Ayash A,
Goldner V, Cohen R, Horn K, Levi D. Real-time category-based
and general obstacle detection for autonomous driving. In: Pro-
ceedings of the IEEE international conference on computer vision
workshops. 2017. p. 198–205. https://​doi.​org/​10.​1109/​ICCVW.​
2017.​32

	28.	 Levi D, Garnett N, Fetaya E, Herzlyia I. Stixelnet: a deep convo-
lutional network for obstacle detection and road segmentation. Br
Mach Vis Conf. 2015;1(2):4. https://​doi.​org/​10.​5244/C.​29.​109.

	29.	 Apple Inc. Arkit—augmented reality. 2022. https://​devel​oper.​
apple.​com/​augme​nted-​reali​ty. Accessed 15 Aug 2022.

	30.	 Song S, Lichtenberg SP, Xiao J. Sun rgb-d: a rgb-d scene under-
standing benchmark suite. In: Proceedings of the IEEE conference

on computer vision and pattern recognition. 2015. p. 567–76.
https://​doi.​org/​10.​1109/​CVPR.​2015.​72986​55.

	31.	 Rothe R, Guillaumin M, Van Gool L. Non-maximum suppression
for object detection by passing messages between windows. In:
Computer vision-ACCV 2014: 12th Asian conference on com-
puter vision, Singapore. 2015. pp 290–306. https://​doi.​org/​10.​
1007/​978-3-​319-​16865-4_​19.

	32.	 Sabbir R. The iphone 12—LIDAR AT YOUR FINGERTIPS. In
Forbes. 2020. https://​www.​forbes.​com/​sites/​sabbi​rrang​wala/​2020/​
11/​12/​the-​iphone-​12lid​ar-​at-​your-​finge​rtips/?​sh=​3c3b7​2493e​28.
Accessed 25 Apr 2023.

	33.	 Amazon Inc. Amazon EC2 instance types—Amazon Web Ser-
vices. https://​aws.​amazon.​com/​ec2/​insta​nce-​types/. Accessed 25
Apr 2023.

	34.	 Silberman N, Hoiem D, Kohli P, Fergus R. Indoor segmentation
and support inference from rgbd images. Eur Conf Comput Vis.
2012;7576:746–60. https://​doi.​org/​10.​1007/​978-3-​642-​33715-4_​
54.

	35.	 Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár
P, Zitnick CL, Microsoft coco: Common objects in context. In: Com-
puter Vision-ECCV, 13th European Conference, Zurich, Switzerland.
2014. p. 740–55. https://​doi.​org/​10.​1007/​978-3-​319-​10602-1_​48.

	36.	 Tang YS, Lee GH. Transferable semi-supervised 3d object detec-
tion from rgb-d data. In: Proceedings of the IEEE/CVF interna-
tional conference on computer vision. 2019. p. 1931–40. https://​
doi.​org/​10.​1109/​ICCV.​2019.​00202.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/LRA.2020.3007457
https://doi.org/10.1109/LRA.2020.3007457
https://doi.org/10.1109/CVPR42600.2020.01255
https://doi.org/10.1155/2016/3754918
https://doi.org/10.1155/2016/3754918
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/ACCESS.2020.3021455
https://doi.org/10.1109/ACCESS.2020.3021455
https://doi.org/10.1088/1742-6596/1910/1/012002
https://doi.org/10.1088/1742-6596/1910/1/012002
https://doi.org/10.1109/ICCVW.2017.32
https://doi.org/10.1109/ICCVW.2017.32
https://doi.org/10.5244/C.29.109
https://developer.apple.com/augmented-reality
https://developer.apple.com/augmented-reality
https://doi.org/10.1109/CVPR.2015.7298655
https://doi.org/10.1007/978-3-319-16865-4_19
https://doi.org/10.1007/978-3-319-16865-4_19
https://www.forbes.com/sites/sabbirrangwala/2020/11/12/the-iphone-12lidar-at-your-fingertips/?sh=3c3b72493e28
https://www.forbes.com/sites/sabbirrangwala/2020/11/12/the-iphone-12lidar-at-your-fingertips/?sh=3c3b72493e28
https://aws.amazon.com/ec2/instance-types/
https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/ICCV.2019.00202
https://doi.org/10.1109/ICCV.2019.00202

	Real-Time 3D Object Detection, Recognition and Presentation Using a Mobile Device for Assistive Navigation
	Abstract
	Introduction
	Background and Problem Statements
	Overview of the Solution

	Related Work
	2D Object Detection
	3D Object Detection
	Image Based 3D Object Detection
	Point Cloud Based 3D Object Detection

	Method
	3D Object Detection
	Planar Object Detection
	3D Bounding Box Estimation
	Adaptive Detection in Various Environments

	3D Object Tracking and Updating
	Point Cloud Based Tracking
	Depth Map Based Tracking

	Voice and AR-Enhanced User Interface
	AR Visualization
	Voice Interaction
	Information Filtering

	Experiments
	Hardware and Software Requirements and Cost
	System Performance Evaluation
	Data Collection and Annotation Toolkit
	Object Detection Accuracy Analysis
	Real-Time System Performance Analysis

	System Usability Evaluation
	Demo

	Conclusions and Discussions
	A Few Concluding Remarks
	Limiations and Future Work

	References

