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Abstract

This tutorial targets researchers and practition-
ers who are interested in ML technologies for
NLP from indirect supervision. In particular,
we will present a diverse thread of indirect su-
pervision studies that try to answer the follow-
ing questions: (i) when and how can we provide
supervision for a target task 7', if all we have
is data that corresponds to a “related” task 7"?
(i1) humans do not use exhaustive supervision;
they rely on occasional feedback, and learn
from incidental signals from various sources;
how can we effectively incorporate such super-
vision in machine learning? (iii) how can we
leverage multi-modal supervision to help NLP?
To the end, we will discuss several lines of re-
search that address those challenges, including
(i) indirect supervision from 7" that handles T
with outputs spanning from a moderate size to
an open space, (ii) the use of sparsely occur-
ring and incidental signals, such as partial la-
bels, noisy labels, knowledge-based constraints,
and cross-domain or cross-task annotations—
all having statistical associations with the task,
(iii) principled ways to measure and understand
why these incidental signals can contribute to
our target tasks, and (iv) indirect supervision
from vision-language signals. We will con-
clude the tutorial by outlining directions for
further investigation.

1 Introduction

Conventional approaches to NLP rely on task-
specific labeled examples of a large volume. This
does not apply to scenarios where tasks may be
too complicated or costly to annotate, or the sys-
tem is required to handle a new task immediately.
Many people increasingly perceive that pretrained
language models (PLMs) use self-supervision, and
therefore there is no need for supervision anymore.
While this is probably true for Encoder-only mod-
els (e.g., BERT (Devlin et al., 2019)), this does not
hold for Decoder models, where people nowadays
use vast amounts of supervision and reinforcement
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learning signals. Therefore, it is still desirable to
gather supervision that has already existed in re-
lated tasks or is pretty cheap, which is termed “in-
direct supervision” in this tutorial.

Recently, there have been increasing works that
study indirect supervision for a wide range of NLP
tasks. For example, Yin et al. (2019) and Lu et al.
(2022a) respectively leveraged the rich annotation
of a source task (natural language inference or sum-
marization) to address the poorly-annotated target
tasks. To make better use of the natural texts, some
literature (Roth, 2017; Chen et al., 2021; He et al.,
2021) proposed to explore incidental supervision,
e.g., phonetic similarity and similar temporal dis-
tribution for named entity transliteration, to help
downstream tasks. That sort of incidental supervi-
sion is often weak signals that exist in the data and
the environment independently of the tasks at hand,
and is hard to be encoded by PLMs. Furthermore,
when accessing supervision from pure text is chal-
lenging, researchers turned to other modalities for
indirect supervision (Li et al., 2022b).

This tutorial presents a comprehensive introduc-
tion of those lines of frontier research on indirectly
supervised NLP. In particular, it tries to answer the
following questions: (i) Which source task is easier
to be adapted to solve various target tasks and any
constraints there? (ii) What are the limitations of
pretrained language models in discovering supervi-
sion from natural texts, and how can we alleviate
them with incidental signals? (iii) Are there any
theoretical measures that can indicate the benefits
of the incidental signals to a given downstream
task? (iv) How to mitigate the gap between differ-
ent modalities if we want to utilize image/video
knowledge to guide NLP? By addressing those crit-
ical questions, we believe it is necessary to present
a timely tutorial to comprehensively summarize the
new frontiers in indirectly supervised NLP research
and point out the emerging challenges that deserve
further investigation. Participants will learn about

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 6: Tutorial Abstracts, pages 32-40
July 9, 2023 ©2023 Association for Computational Linguistics



recent trends and emerging challenges in this topic,
representative tools and learning resources to ob-
tain ready-to-use models, and how related technolo-
gies benefit end-user NLP applications.

2 Outline of Tutorial Content

This half-day tutorial presents a systematic
overview of recent advancements in indirect su-
pervision methods for NLP. The detailed contents
are outlined below.

2.1 Background and Motivation [15min]

We will begin motivating this topic with a selection
of real-world applications and emerging challenges
of NLP with limited end-task annotations.

2.2 Indirect Supervision from NLU Tasks
[30min]

We start with indirect supervision from a source
task that is efficient to handle a moderate size of
outputs in the target task. For example, in most
zero/few-shot text classification tasks, such as topic
classification, entity typing, relation identification,
etc., the main obstacle is letting systems under-
stand the semantics of labels. In contrast to con-
ventional supervised classifiers, which converted
labels into indices, we introduce NLI (natural lan-
guage inference)-based approaches that take into
account the input semantics as well as label se-
mantics. In specific, we will introduce typical work
that treats different topics (Yin et al., 2019), stances
(Xu et al., 2022), entity types (Li et al., 2022a; Du
et al., 2023), event types (Lyu et al., 2021), en-
tity relations (Xia et al., 2021; Sainz et al., 2021,
2022), and question-answer (Yin et al., 2021) as
hypotheses and the inputs as premises, then makes
use of pretrained NLI system to handle a variety of
classification tasks with a given set of labels.

In addition, we will present extractive question
answering (Ex-QA) based supervision that is uti-
lized for downstream tasks (McCann et al., 2018;
Keskar et al., 2019; He et al., 2020; Wu et al., 2020;
Li et al., 2020). The advantage of Ex-QA based
indirect supervision over the NLI-based one lies
in that Ex-QA can handle sequence tagging and
span detection tasks while NLI-based approaches
primarily work for classification.

2.3 Indirect Supervision from NLG and IR
[30min]

We will introduce methodologies that acquire indi-
rect supervision signals from natural language gen-
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eration (NLG) and information retrieval tasks to
solve more low-resource discriminative tasks. For-
mulating discriminative tasks as generation tasks
can be an efficient way to guide PLMs to lever-
age the semantics of decision labels (Huang et al.,
2021; Lu et al., 2022a; Hsu et al., 2022; Yuan et al.,
2022). A method of this kind typically leads to
a sequence-to-sequence generation process that
emits a verbalization of the decision label given
the input sequence (Zeng et al., 2018, 2020; Ye
et al., 2021; Cao and Ananiadou, 2021). Instead of
predicting classification logits, these models rep-
resent the class as a concise structure and employ
controlled decoding for the generation. In this way,
the model allows cross-task signal transfer from
high-resource NLG tasks, and captures a semanti-
cally rich representation of the discriminative task’s
original decision space. A representative example
is SURE (Lu et al., 2022a), which reformulates the
more expensive relation extraction task into sum-
marization with constrained decoding, leading to
more precise and label-efficient sentence-level re-
lation extraction. We will also introduce methods
that reformulate as a retrieval task (Zhang et al.,
2021a,b; Huang et al., 2022; Chen et al., 2020).
This technique allows using the inductive bias of
a dense retrieval model to handle a discriminative
task with a large decision space, such as entity link-
ing (Zhang et al., 2021a) and fine-grained typing
(Huang et al., 2022).

2.4 Incidental Supervision from Natural Text
[30min]

Both the indirect supervision introduced in the
above sections (§2.2-82.3) relies on transferred
supervision signals from some source task anno-
tations. Natural texts are structured to contain a
large number of incidental signals that can be subse-
quently utilized by downstream tasks with minimal
human effort. Despite the fact that the community
has found that PLMs are capable of providing inci-
dental supervision signals for a wide range of tasks,
they do not provide controls over what kinds of
knowledge exist. To the end, we introduce inciden-
tal relations found in natural text spans. For exam-
ple, certain keywords and linguistic patterns can
provide incidental supervision to downstream tasks
such as relation extraction (Zhou et al., 2022b), tem-
poral reasoning (Zhou et al., 2020, 2021), and affor-
dance reasoning (Qasemi et al., 2022). Moreover,
textual snippets can often be viewed in a structure



by their global information, such as publication
dates, titles, and authors, which establish relations
that helps with complex tasks (Zhou et al., 2022a).
Designing and collecting such linguistic patterns
often require human knowledge; this process of
injecting human knowledge provides signals that
PLMs cannot find and produces diverse automatic
supervision for many tasks.

2.5 Theoretical Analysis of Incidental
Supervision [30min]

§2.4 presents several real-world applications of in-
cidental signals. In this part, we pose the challenge
to define a principled way to measure the benefits
of these signals to a given downstream task, and
the challenge to further understand why and how
these signals can help reduce the complexity of the
learning problem in theory. We will introduce ex-
isting efforts along these two lines, mainly He et al.
(2021) and Wang et al. (2020). Specifically, we in-
troduce (i) a unified theoretical framework (Wang
et al., 2020) for multi-class classification when the
supervision is provided by a variable that contains
nonzero mutual information with the gold label; the
nature of this problem is determined by the transi-
tion probability from the gold labels to the indirect
supervision variables (van Rooyen and Williamson,
2018) and the learner’s prior knowledge about the
transition; and (ii) a unified PAC-Bayesian moti-
vated informativeness measure, PABI (He et al.,
2021), that characterizes the uncertainty reduction
provided by incidental supervision signals. We
share studies in Qasemi et al. (2022) and Ning et al.
(2019) that demonstrate PABI’s effectiveness by
quantifying the value added by various types of
incidental signals to sequence tagging tasks. Fi-
nally, we will highlight the gaps that are yet to be
closed in these lines, and point out future research
directions on this topic.

2.6 Indirect Supervision from
Multi-modalities [30min]

In the previous section, we discuss how to lever-
age indirect supervision from text data. Next, we
will extend our discussion to introduce methods
that leverage indirect supervision in multimodal
data for cross-modality tasks. We will take vision-
language tasks, such as answering complex high-
level question about images (Zellers et al., 2019),
as an example. We will first introduce methods that
learn to align visual tokens and text tokens based
on image caption data (Tan and Bansal, 2019; Li
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et al., 2019; Tan and Bansal, 2020). The cross-
modality knowledge learned from indirect supervi-
sion can be used to solve various text, image, and
mixed modality tasks. We will then introduce ap-
proaches that use only indirect supervision from
object recognition models to learn text-image align-
ment from unaligned language and vision Data (Li
et al., 2021). Finally, we will discuss methods
for learning to ground elements of language to im-
age regions without explicit supervision (Li et al.,
2022b; Zhang et al., 2022).

2.7 Future Research Directions [15min]

Indirect supervision is the key to coping with a
variety of NLP tasks that are not equipped with
enough labeled data. We will conclude the tuto-
rial by presenting further challenges and potential
research topics, such as (i) explaining the model
predictions when the supervision is indirect (Rajani
et al., 2020; Lu et al., 2022b), (ii) injecting inci-
dental signals that express human knowledge but
cannot be learned by pretrained language models
from natural texts (Yu et al., 2022), and (iii) task
instructions as supervision (Wang et al., 2022).

3 Specification of the Tutorial

The proposed tutorial is considered a cutting-edge
tutorial that introduces new frontiers in indirectly
supervised NLP. The presented topic has not been
covered by any *CL tutorials in the past 4 years.

Audience and Prerequisites Based on the level
of interest in this topic, we expect around 150 par-
ticipants. While no specific background knowledge
is assumed of the audience, it would be best for the
attendees to know about basic deep learning tech-
nologies, pre-trained language models (e.g. BERT).
A reading list that could help provide background
knowledge to the audience before attending this
tutorial is given in Appx. §A.2.

Breadth We estimate that at least 60% of the
work covered in this tutorial is from researchers
other than the instructors of the tutorial.

Diversity Considerations This tutorial will
cover indirect supervision from beyond text. We
will also cover content around how indirect supervi-
sion can be applicable to a variety of low-resourced
tasks. Our presenter team has a diverse background
from both academia (including assistant, associate,
distinguished professors, and a senior Ph.D. stu-
dent) and industry (a senior scientist at AWS Al).



Our instructor team will promote our tutorial on so-
cial media to diversify our audience participation.

Material Access Online Open Access
All the materials are openly available at
https://cogcomp.seas.upenn.edu/
page/tutorial.202307

4 Tutorial Instructors

The following are biographies of the speakers. Past
tutorials given by us are listed in Appx. §A.1.

Wenpeng Yin is an Assistant Professor in the
Department of Computer Science and Engineer-
ing at Penn State University. Prior to joining
Penn State, he was a tenure-track faculty mem-
ber at Temple University (1/2022-12/2022), Se-
nior Research Scientist at Salesforce Research
(8/2019-12/2021), a postdoctoral researcher at
UPenn (10/2017-7/2019), and got his Ph.D. de-
gree from the Ludwig Maximilian University of
Munich, Germany, in 2017. Dr. Yin’s research
focuses on natural language processing with three
sub-areas: (i) learning from task instructions; (ii)
information extraction; (iii) learning with limited
supervision. Additional information is available at
WWW.Wenpengyin.org.

Muhao Chen is an Assistant Research Profes-
sor of Computer Science at USC, where he di-
rects the Language Understanding and Knowl-
edge Acquisition (LUKA) Group. His research fo-
cuses on data-driven machine learning approaches
for natural language understanding and knowl-
edge acquisition. His work has been recognized
with an NSF CRII Award, a Cisco Faculty Re-
search Award, an ACM SIGBio Best Student Paper
Award, and a Best Paper Nomination at CoNLL.
Muhao obtained his PhD degree from UCLA De-
partment of Computer Science in 2019, and was
a postdoctoral researcher at UPenn prior to join-
ing USC. Additional information is available at
http://luka-group.github.io.

Ben Zhou is a fourth-year Ph.D. student at the
Department of Computer and Information Science,
University of Pennsylvania. Ben’s research inter-
ests are distant supervision extraction and experi-
ential knowledge reasoning, and he has more than
5 recent papers on related topics. He is a recipient
of the ENIAC fellowship from the University of
Pennsylvania, and a finalist of the CRA outstanding
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undergraduate researcher award. Additional infor-
mation is available at http://xuanyu.me/.

Qiang Ning is currently a senior applied sci-
entist at AWS Al (2022-). Prior to that, Qiang
was an applied scientist at Alexa Al (2020-2022)
and a research scientist at the Allen Institute for
Al (2019-2020). Qiang received his Ph.D. from
the University of Illinois at Urbana-Champaign
in 2019 in Electrical and Computer Engineer-
ing. Qiang’s research interests span in informa-
tion extraction, question answering, and the ap-
plication of weak supervision methods in these
NLP problems in both theoretical and practical
aspects. Additional information is available at
https://www.giangning.info/.

Kai-Wei Chang is an associate professor in the
Department of Computer Science at the Univer-
sity of California Los Angeles. His research in-
terests include designing robust, fair, and account-
able machine learning methods for building reli-
able NLP systems. His awards include the EMNLP
Best Long Paper Award (2017), the KDD Best
Paper Award (2010), and the Sloan Resaerch Fel-
lowship (2021). Kai-Wei has given tutorials at
NAACL 15, AAAI 16, FAccT18, EMNLP 19,
AAAI 20, EMNLP 21, MLSS 21 on different re-
search topics. Additional information is available
athttp://kwchang.net.

Dan Roth is the Eduardo D. Glandt Distin-
guished Professor at the Department of Computer
and Information Science, UPenn, the NLP Lead
at AWS AI Labs, and a Fellow of the AAAS,
ACM, AAAI and ACL. In 2017 Roth was awarded
the John McCarthy Award, the highest award the
Al community gives to mid-career Al researchers.
Roth was recognized “for major conceptual and
theoretical advances in the modeling of natural lan-
guage understanding, machine learning, and rea-
soning.” Roth has published broadly in machine
learning, NLP, KRR, and learning theory, and has
given keynote talks and tutorials in all ACL and
AAAI major conferences. Roth was the Editor-in-
Chief of JAIR until 2017, and was the program
chair of AAAI’11, ACL’03 and CoNLL’02; he
serves regularly as an area chair and senior program
committee member in the major conferences in his
research areas. Additional information is available
at www.cis.upenn.edu/~danroth.
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A Appendix

A.1 Past Tutorials by the Instructors

The presenters of this tutorial have given the follow-
ing tutorials at leading international conferences in
the past.

¢ Muhao Chen:

— NAACL’22: New Frontiers of Information Extrac-
tion.
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— ACL’21: Event-Centric Natural Language Pro-
cessing.

— AAAT’21: Event-Centric Natural Language Un-
derstanding.

— KDD’21: From Tables to Knowledge: Recent
Advances in Table Understanding.

— AAAT’20: Recent Advances of Transferable Rep-
resentation Learning.

* Qiang Ning:

— ACL’21: Event-Centric Natural Language Pro-
cessing.

— AAAT’21: Event-Centric Natural Language Un-
derstanding.

¢ Ben Zhou:

— NAACL22: New Frontiers of Information Extrac-
tion

» Kai-Wei Chang:

— EMNLP’21: Robustness and Adversarial Exam-
ples in Natural Language Processing

— AAAT’20: Recent Advances of Transferable Rep-
resentation Learning.

— EMNLP ’19: A tutorial on Bias and Fairness in
Natural Language Processing.

— ACM FAT*’18: A tutorial on Quantifying and Re-
ducing Gender Stereotypes in Word Embeddings.

— TAAI’17: A tutorial on Structured Predictions:
Practical Advancements and Applications in Nat-
ural Language Processing.

— AAAI‘16: A tutorial on Learning and Inference
in Structured Prediction Models.

— NAACL’15: A tutorial on Hands-on Learning to
Search for Structured Prediction.

¢ Dan Roth:

— NAACL22: New Frontiers of Information Extrac-
tion.

— ACL’21: Event-Centric Natural Language Pro-
cessing.

— AAAT’21: Event-Centric Natural Language Un-
derstanding.

— ACL’20: Commonsense Reasoning for Natural
Language Processing.

— AAAT’20: Recent Advances of Transferable Rep-
resentation Learning.

— ACL’18: A tutorial on Multi-lingual Entity Dis-
covery and Linking.

— EACL’17: A tutorial on Integer Linear Program-
ming Formulations in Natural Language Process-
ing.

— AAATI’16: A tutorial on Structured Prediction.

— ACL’14: A tutorial on Wikification and Entity
Linking.

— AAATI’13: Information Trustworthiness.

— COLING’12: A Tutorial on Temporal Informa-
tion Extraction and Shallow Temporal Reasoning.

— NAACL’12: A Tutorial on Constrained Condi-
tional Models: Structured Predictions in NLP.

— NAACL’10: A Tutorial on Integer Linear Pro-
gramming Methods in NLP.

— EACL’09: A Tutorial on Constrained Conditional
Models.

— ACL’07: A Tutorial on Textual Entailment.

A.2 Recommended Paper List

The following is a reading list that could help pro-
vide background knowledge to the audience before
attending this tutorial:
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rect Supervision for Relation Extraction. EMNLP -
Findings, 2022.

Sarah  Wiegreffe, Jack Hessel, Swabha
Swayamdipta, Mark O. Riedl, Yejin Choi.
Reframing human-AlI collaboration for generating
free-text explanations. NAACL, 2022.

Ben Zhou, Kyle Richardson, Xiaodong Yu, Dan
Roth. Learning to decompose: Hypothetical ques-

tion decomposition based on comparable texts.
EMNLP, 2022.

Hangfeng He, Mingyuan Zhang, Qiang Ning, and
Dan Roth. Foreseeing the Benefits of Incidental
Supervision. EMNLP 2021.

Kaifu Wang, Qiang Ning, and Dan Roth. Learn-
ability with Indirect Supervision Signals. NeurIPS
2020.
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e Rowan Zellers, Yonatan Bisk, Ali Farhadi, and
Yejin Choi. From recognition to cognition: Visual
commonsense reasoning. CVPR 2019.

* Hao Tan and Mohit Bansal. Vokenization: Improv-
ing language understanding with contextualized,
visual-grounded supervision. EMNLP 2020.
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