
Machine Vision and Applications (2023) 34:8
https://doi.org/10.1007/s00138-022-01356-0

ORIG INAL PAPER

Real-time pedestrian pose estimation, tracking and localization for
social distancing

Bilal Abdulrahman1 · Zhigang Zhu2

Received: 7 July 2021 / Revised: 28 May 2022 / Accepted: 3 November 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The corona virus pandemic has introduced limitations which were previously not a cause for concern. Chief among them
are wearing face masks in public and constraints on the physical distance between people as an effective measure to reduce
the virus spread. Visual surveillance systems, which are common in urban environments and initially commissioned for
security surveillance, can be re-purposed to help limit the spread of COVID-19 and prevent future pandemics. In this work,
we propose a novel integration technique for real-time pose estimation and multiple human tracking in a pedestrian setting,
primarily for social distancing, using CCTV camera footage. Our technique promises a sizeable increase in processing speed
and improved detection in very low-resolution scenarios. Using existing surveillance systems, pedestrian pose estimation,
tracking and localization for social distancing (PETL4SD) is proposed for measuring social distancing, which combines the
output of multiple neural networks aided with fundamental 2D/3D vision techniques. We leverage state-of-the-art object and
pose estimation algorithms, combining their strengths, for increase in speed and improvement in detections. These detections
are then tracked using a bespoke version of the FASTMOT algorithm. Temporal and analogous estimation techniques are
used to deal with occlusions when estimating posture. Projective geometry along with the aforementioned posture tracking is
then used to localize the pedestrians. Inter-personal distances are calculated and locally inspected to detect possible violations
of the social distancing rules. Furthermore, a “smart violations detector” is employed which estimates if people are together
based on their current actions and eliminates false social distancing violations within groups. Finally, distances are intuitively
visualized with the right perspective. All implementation is in real time and is performed on Python. Experimental results are
provided to validate our proposedmethod quantitatively and qualitatively on public domain datasets using only a single CCTV
camera feed as input. Our results show our technique to outperform the baseline in speed and accuracy in low-resolution
scenarios. The code of this work will be made publicly available on GitHub at https://github.com/bilalze/PETL4SD.

Keywords Multiple object tracking · Human pose estimation · Pedestrian localization

1 Introduction

It has been over two years since the initial cases of the
COVID-19 virus surfaced [33]. The world is now still amidst
a global pandemic. Even thoughmultiple vaccines have been
introduced around the world and are being swiftly imple-

B Bilal Abdulrahman
babdulrahman@gradcenter.cuny.edu

Zhigang Zhu
zzhu@ccny.cuny.edu

1 The Graduate Center, The City University of New York, New
York, NY 10016, USA

2 The City College and The Graduate Center, The City
University of New York, New York, NY 10031, USA

mented, new variants which are deadlier and spread faster
keep appearing [11]. The pandemic has introduced limita-
tions which were previously not a cause for concern. Chief
among them are wearing face masks in public and social dis-
tancing measures. In public health, social distancing is a set
of non-pharmaceutical interventions or measures intended to
prevent the spread of a contagious disease by maintaining a
physical distance between people and reducing the number of
times people come into close contact [17]. The CDC (Center
for Disease Control and Prevention) in the USA recommends
6 feet as a safe distance between individuals. Visual surveil-
lance systems, which are common in urban environments,
aim at providing safety in everyday life. High-quality surveil-
lance cameras are already present in most urban streets and
departmental stores. Although they were initially commis-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-022-01356-0&domain=pdf
http://orcid.org/0000-0002-1164-1976
http://orcid.org/0000-0002-9990-1137
https://github.com/bilalze/PETL4SD

 8 Page 2 of 17 B. Abdulrahman, Z. Zhu

Fig. 1 Workflow of the PETL4SD system pipeline: pedestrian pose estimation, tracking and localization for social distancing

sioned for security surveillance, they can be re-purposed to
help limit the spread of COVID-19 and prevent future pan-
demics (Fig. 1).

In this work we propose a novel and systematic approach
to social distancing measurement in a pedestrian setting,
called PETL4SD, which stands for Pose Estimation, Track-
ing and Localization for Social Distancing. This technique
functions as it states in its name. Pose estimates are tracked,
which are then used for localization, and thus, inter-personal
distances are calculated and social distancing violations are
estimated. That being said, this is a high-level overview
and there are many nuances that add to the novelty of our
technique. These will be explained in the coming sections.
Furthermore, although we employ PETL4SD for social dis-
tancing estimation in thiswork, itsmodular nature allows it to
be generalized for a bevy of applications, such as detecting
and tracking human behavior, action estimation, analyzing
pattern of movement (for example in clothing shops), train-
ing pose estimator with labels, etc.

During initialization of the PETL4SD pipeline, we com-
pute homography or a projective transformation between
the ground plane in the real world and ground plane as it
is represented in the image plane of the camera. Homogra-
phy is required to be computed only once and can be done
before hand. We will use the estimated homograph along
with the point of intersection of pedestrians with the ground
plane (i.e., their feet) to localize them. After initial setup,
our technique utilizes a pipeline of tasks that are performed
on each frame of the video feed. These tasks are as follows:

(1) pedestrian detection; (2) pedestrian pose estimation; (3)
pedestrian feature extraction; (4) pedestrian track/tracks cre-
ation/update; (5) pedestrian localization; (6) social distancing
calculation; and (7) visualization of the tracks and social dis-
tance violations.

In the first step, a neural network object detector, in this
case YOLOv5 [19], is used for the detection of pedestrians.
In the second step, the detected bounding boxes of pedes-
trians are resized and then fed to the OpenPifPaf network
[20] for posture estimation. The detections from the object
detector are also used to extract features in step three using
the OSNET REID network [37] for use in tracking and re-
identification. All models used in this paper are pretrained
models; for training parameters and training methodology
please refer to the respective publications. Tracking pro-
cess begins in the fourth step, and the tracking method used
is similar to FASTMOT [36] with modifications made for
this implementation. This technique uses a custom version
of the DeepSORT algorithm [34] complimented with opti-
cal flow estimation. In the fifth step, we update the tracks or
create new ones by matching the detected pedestrian bound-
ing boxes, the optical flow points and the REID template
with the previous frame. Then we employ our temporal and
analogous techniques for pose completion to estimate feet of
pedestrians if not detected due to occlusion. Homography is
then used to project the feet coordinates from the image onto
real-world coordinates and, thus, localize the pedestrians. In
the sixth step, the ground points history of the pedestrians
is used to estimate whether there has been a social distanc-

123

Real-time pedestrian pose estimation, tracking... Page 3 of 17 8

ing violation. Finally, the seventh step is when the distances
between pedestrians are visualized with the right perspective
and occlusion relations using a simple Augmented Reality
(AR) composition of the real scene background, the social
distance marks on the ground and the images of the detected
pedestrians, as if the marks are actually on the ground.

Along with other improvements, the main contribution of
our work is:

(1) We exploit the standard surveillance setting, where peo-
ple appear up-right and this heuristic allows us to
implement a bottom-up approach to pose estimation as
essentially a top-down approach. Using prepossessing
tricks we are able to get a sizeable increase in speed
and improvement in pose estimation, making the system
function in real time on less capable hardware.

(2) We utilize posture tracking history along with localized
meandistributions of humanbodydimensions to estimate
the position of feet even if they are not detected due to
occlusions. Even if the pose detector is unable to detect
any posture, the posture and bounding box history are
used to get a reasonable estimate of the pedestrians feet
position and thus improve localization accuracy.

(3) We created a “smart violations detector” which uses the
track and posture history to infer the pedestrians cur-
rent action and uses this knowledge to group people as
“together.” This is vital for eliminating false social dis-
tance violations between pedestrians in a group.

Furthermore, this approach only requires 4 points of cor-
respondence on the ground visible in the video feed for
estimating the planar homography, which can easily be
sourced from online maps (if the view is outdoors) or floor
plans (if the view is indoors). If correspondence cannot
be established, a camera model with intrinsic and extrinsic
parameters will also suffice. Therefore, after the initial setup,
this approach will work requiring only the video feed. All
tests and implementations are done on Python. All models
are run using the PyTorch library [24], and most of the com-
puter vision tasks are performed using the OpenCV library
[8].

The paper is organized as follows: Sect. 2 discusses some
related work. Section 3 describes the mapping from 2D
images to the ground plane for a foundation of social dis-
tancingmeasures in the metric space. Section 4 discusses our
choice of deep learning model for real-time human bound-
ing box detection. Section 5 presents our integrated solution
for human pose estimation with the YOLO object detector
and the bottom-up pose estimator—OpenPifPaf. Section 6
describes the combination of DeepSORT with optical flow
estimation for human pose tracking. Section 7 presents our
temporal and analogous techniques for pedestrian localiza-
tion and distance calculation. Sections 8 and 9 describe two

final steps—social distancing measurement and visualiza-
tion. Some implementation details and experimental results
(including a video demo) are presented in Sect. 10. Finally
Sect. 11 concludes the work with discussions of some future
directions.

2 Related work

Due to the importance of social distancing measures, a num-
ber of works have appeared since the beginning of the
pandemic. These works tackle problems such as human
detection, human tracking, human localization and combi-
nation of such techniques for social distancing monitoring.
One such work [28] focuses on detecting small and close
by humans from CCTV footage for the purpose of social
distancing monitoring. They propose a SSD architecture for
this task. Although presenting novel techniques, the work
does not highlight its performance when compared to exist-
ing techniques and no posture estimation is performed for
more accurate tracking and localization estimation is trivial.
Another work [2] utilizes transfer learning on YOLOv3 pre-
trained models to better detect human bounding boxes and
then uses tracking to keep track of the violations. This work
again lacks localization accuracy and only bounding boxes
are tracked leading to vague estimations of the humans actual
feet position. Another technique [3] proposes a wearable
smart tag to detect and alert for social distancing violations.
This is helpful for health authorities to implant on a known
COVID patient. However, it can be cause for a privacy con-
cern and large-scale adoption does not seem feasible.A social
distancing monitoring approach [27] that utilizes YOLOv3
andDeepSORTonCCTV footagewas proposed to detect and
track pedestrians followed by calculating a violation index
for non-social distancing behaviors. The way this approach
estimates the position of pedestrians is unclear as there is no
implementation discussion on this part and the work mostly
focuses on the DeepSORT algorithm [34].

Several prototypes utilizing machine learning and AI
along with cameras and sensors have been developed as
commercial solutions for social distancing monitoring and
enforcing. Landing AI [21] has proposed a social distancing
detector using a surveillance camera to highlight social dis-
tancing violations. The work in [26] details a systems that
was deployed in a manufacturing plant to monitor worker
activity. This type of implementation requires knowledge of
a lot more camera parameters and complex transformations
compared to our work.

In addition to surveillance cameras, LiDAR-based [16]
and stereo camera-based [31] systems are also commercially
deployed. These approaches require special hardware made
for the specific applications. A recent work [35] proposes
a non-intrusive warning system with softer omnidirectional

123

 8 Page 4 of 17 B. Abdulrahman, Z. Zhu

Fig. 2 A visual representation of homography and the corresponding
points

audio-visual cues. It evaluates critical social density and
modulates inflow into a region-of-interest.

Another work [12] defines social distancing monitoring
as a visual social distancing problem. This work introduces a
skeleton for a detection-based approach to inter-personal dis-
tance measuring. It also discusses the effect of social context
on people’s social distancing and raises privacy concerns. As
a continuation of this work, [1] uses skeletons detection for
estimating the homography by assuming parameters and esti-
mates scales using average body part dimensions. This work
does not address occlusions or any sort of tracking. It also
does not address false social violations caused by people who
are together such as family or friends. Another technique [7]
localizes human posture estimations using only the intrinsic
camera parameters and a machine learning model. This work
seems to be useful when the camera is moving and not sta-
tionary, i.e., the extrinsic parameters cannot be determined.

3 Planar homography estimation

Homography is a special case of projective geometry. It
enables themapping of points in spaceswith different dimen-
sionality.Apoint x ′ observed in a view (such as an image) can
be mapped into its corresponding point x in another perspec-
tive or coordinate system (such as a ground plane) (Fig. 2).

We can utilize this property to localize the pedestrians in
view and calculate their locations on the ground with respect
to each other. For this purpose, we need to find the homogra-
phy matrix between ground plane in real-world coordinates
and ground plane as it is represented in the image plane. This
can be achieved by finding at least four corresponding points
between the two planes and using them to compute thematrix
elements.

The only restriction is that the four points must be in
a “general position,” which means that no three points are
collinear. One thing to note here is the computation of the

homography matrix H in this way does not require knowl-
edge of any of the camera’s parameters or the pose of the
plane [18]. That being said, if correspondence cannot be
established, but the intrinsic and extrinsic cameras param-
eters are known, the corresponding ground points can be
computed by using a camera model [25].

There are also techniques available for automatic homog-
raphy estimation using scene geometry [1] or machine
learning [7]. These methods do not require any correspon-
dence or extrinsic parameters. However, their reliability
when it comes to accuracy is debatable. Therefore, it is rec-
ommended these techniques can be employed only as a last
resort.

4 Pedestrian detection with YOLOv5

The primary objective in this step is to detect bounding boxes
of pedestrians in the image frame. We chose YOLOv5 [19]
for this task. Yolo is a fast and accurate neural network for
object detection [29]. The Yolo architecture splits the input
image into grids and for each grid generates bounding boxes
and class probabilities for those bounding boxes. This type of
model has several advantages over traditional classifier-based
systems. It looks at the whole image at test time, so its pre-
dictions are informed by global context in the image. It also
makes predictions with a single-network evaluation unlike
systems like R-CNNwhich require thousands of passes for a
single image. This makes it extremely fast, more than 1000x
faster than R-CNN and 100x faster than Fast R-CNN [29].
Yolo has had many improvements done to it over the years
as newer versions come out. The YOLOv5 repository is a
natural extension of the YOLOv3 PyTorch repository by
Glenn Jocher. YOLOv5 is implemented natively in PyTorch,
whereas all prior models in the YOLO family leverage Dark-
net.

The principal motivation behind the choice of YOLOv5
over v4 or v3 is speed. Since this implementation requires
real-time inference, YOLOv5 has an advantage over its com-
petition.YOLOv5alsoprovides uswithflexibility and ease of
use. We can pick and choose between speed and accuracy by
leveraging its different networkmodels (Fig. 3). “YOLOv5s”
is the best when it comes to speed of inference, whereas
’YOLOV5m’ is the optimal middle ground between speed
and accuracy. Each frame is forwarded to the Yolo neural
net as input and it outputs predictions with confidence levels
as to what objects are present in the frame. All predictions
below a threshold confidence level τ (0.5 in our case) are
rejected. The locations of these predictions are returned as
a center point (cx ′ ,cy′) and height (hb) and width (wb) of an
enclosing bounding box. Finally, the detections go through a
process of non-maximal suppression to eliminate duplicates;
Fig. 4 shows the final results of a frame.For our purposes the

123

Real-time pedestrian pose estimation, tracking... Page 5 of 17 8

Fig. 3 Graph showcasing performance of different YOLOv5 models
taken from Yolov5 GitHub repository

Fig. 4 Bounding boxes drawn on an original frame from the result of
the YOLOv5 neural net

pre-trained models provided by the authors are adequate and
perform well without any extra training.

5 Human pose estimation using OpenPifPaf
with detection

For the estimation of poses we use a OpenPifPaf model
pretrained on the COCO dataset. OpenPifPaf is a bottom-
up method for multiperson 2D human pose estimation [20].
OpenPifPaf’s architecture is based on a fully convolutional
singleshot design. The architecture has two head networks.
For each body part or joint, one head network predicts
the confidence score, the precise location and the size
of this joint, namely part intensity field (PIF). The other
head network called the part association field (PAF) pre-
dicts associations between parts to form full human poses.
OpenPifPaf’s strength lies in its exceptional performance at
low resolution and in crowded, and occluded scenes thanks
to composite field PAF encoding fine-grained information
and Laplace loss for regressions. OpenPifPaf specifically

addresses challenges of limited resolution and high-density
crowds where pedestrians occlude each other.

Although OpenPifPaf is meant as a bottom-up approach
to pose estimation (estimating joints without a person detec-
tor), we do not use it standalone. We combine it with the
YOLOv5 object detector to effectively implement it as a
top-down method (i.e., using a person detector first and esti-
mating joints within the detected bounding boxes).The main
motivation behind this change is the methodology of training
the OpenPifPaf model: using square image crops to create
uniform batches and its scale-dependent adaptive regres-
sion loss [20]. Essentially, providing the model with images
similar to training environment should, in theory, improve
performance. This is because OpenPifPaf—despite its supe-
rior performance on low resolution, crowded, and cluttered
scenes and scenes with occlusion—struggles when the res-
olution of the pedestrian is very poor (far away from the
camera), which goes below 40 pixels height in our exper-
iments. Fortunately, YOLOv5 has far better low-resolution
performance and is adequately able to identify these pedes-
trians (Fig. 5). This combination thus results in greater speed
and greater estimation of poses without further training in a
pedestrian setting. Through our testing, we discovered that
resizing the bounding boxes of the pedestrians into an aspect
ratio of 1:1 or 1:2 improved detection of joints by the Open-
PifPaf network on these very low resolutions.

These discoveries led to the following implementation:
Firstly, the pedestrian bounding boxes are detected using
an object detector (YOLOv5). Second, as we are assum-
ing a pedestrian setting, most people are assumed to have an
upright posture, i.e., standing, walking or running (although
other poses perform adequately in our testing as well).
With this heuristic in mind, all detected bounding boxes are
cropped out from the image and then resized to a pixel size
of 50 × 100 as shown in Fig. 6.

We then perform batch inference, using the OpenPifPaf
network, on all these cropped detections as all are the same
resolution. As a by-product of this batch inference the speed
is dramatically increased, which is another major goal of this
work. Thus, not only does this method improve detection of
very low-resolution pedestrians, it also speeds up inference
more than 5 timeswhenmeasuring fps (frame per second). To
demonstrate this, we run OpenPifPaf solo, and combinations
of Yolov5s and OpenPifPaf, and Yolov5m and OpenPifPaf,
on the PETS dataset [13]. The pretrained backbone used
for all testing and implementation is shufflenet. The num-
ber of skeletons detected and average FPS is recorded on the
PETS 2009 s2,L1 View 001 and is displayed in Table 1. To
evaluate the performance on this dataset, the ground truth
is calculated by the manually counting the number of indi-
viduals visible in each frame. Our method results in more
detections and up to 5x higher fps on lower end graphics
hardware. Examples from this test can also be seen in Fig. 5

123

 8 Page 6 of 17 B. Abdulrahman, Z. Zhu

Fig. 5 Two examples of how our system is able to detect very low-resolution skeletons where solo OpenPifPaf fails. In both (a) and (b) results
with solo OpenPifPaf are shown on the left and results with our system on the right

Fig. 6 All detected bounding boxes cropped out (top) and then resized
to 50 × 100 (bottom)

where the pose of women in the background is not detected
when only OpenPifPaf is used. They are, however, detected
when the combination of the two is used. This can also be
used for training the stand-alone OpenPifPaf network, fur-
ther improving its accuracy as manually labeling poses can
be very expensive. As the skeletons were counted manually
frame by frame and there are no ground truth annotations,
thus, accuracy of the labels cannot be judged by this test. We
further evaluate accuracy in validation listed below.

Our system is also validated on 100 images picked ran-
domly from the CrowdPose dataset [22] with the only
limitation being the image should be somewhat similar to a
pedestrian setting, i.e., people are standing, walking or run-
ning. For consistency with OpenPifPaf, evaluation is done
using the COCO API. As CrowdPose annotations use dif-
ferent keypoints for the head and neck when compared to
COCO, to keep the testing consistent, these are not usedwhen
validating. The results are shown in Table 2. As ground truth
labels in the original dataset do not include labels for pedestri-

ans that are farther away from the camera, these annotations
are added by us to the ground truth using COCO annota-
tor [9]. These updated annotations will be released along
side the code of this work. For completeness, we also com-
pare with a SOTA technique DEKR [14]. We use DEKR
with HRNet-W32 backbone pretrained on the COCO dataset
by its authors. The average precision of our technique is
higher when compared with OpenPifPaf solo, whereas aver-
age recall is higher across the board. The higher recall results
from our model being able to estimate poses for pedestrians
very far away from the camera. These are not even predicted
by DEKR despite slower inference speed. Figure 8 shows
an example. Average precision performance with a 50 per-
cent overlap is superior for our model. Lower performance
in the 75 to 95 percent overlap precision could be attributed
to resize losses. Some examples are shown in Fig. 7.

An unwanted side effect of our method is when bound-
ing boxes overlap there can be duplicate pose estimations.
However, this can easily be remedied, with minimal hit to
performance, by comparing the mean of Euclidean distances
between corresponding joints of the estimations in these over-
lapping bounding boxes. If Ani is a set joint coordinates
estimated to be corresponding to a single pedestrian, such
that:

Ani = {(xi,1, yi,1), (xi,2, yi,2), ...(xi,17, yi,17)} (1)

then two annotation sets An j and Ank from overlapping
bounding boxes can be compared as follows:

Table 1 Comparison between
OpenPifPaf solo and our method
on a system with a GTX
1050tiM and core i7-8750H on
the PETS 2009 s2, L1 View 001
[13]

Methods Skeletons Bounding box fps

Total (ground truth) 5020 5020 –

OpenPifPaf solo 4498 4498 4.6

Our method (with YOLOv5s) 4504 4556 22.3

Our method (with YOLOv5m) 4563 4679 15.6

The number of skeletons estimated and average FPS is recorded and displayed
Thebold specifies better detectionof skeletons andboundingboxes from framesbyourmethodwhencompared
with OpenPifPaf. While the last column specifies best FPS

123

Real-time pedestrian pose estimation, tracking... Page 7 of 17 8

Table 2 Validation results on 100 pedestrian setting images from the CrowdPose dataset [22], after revising the validation set to include missed
labels

Method Average precision (AP) Average recall (AR) FPS

IoU=0.50:0.95 IoU=0.75 IoU=0.50 IoU=0.50:0.95 IoU=0.75 IoU=0.50

OpenPifPaf (solo) 0.421 0.451 0.625 0.573 0.613 0.722 2.85

Our method (with YOLOv5x) 0.451 0.470 0.652 0.644 0.676 0.797 2.87

Our method (with YOLOv5l) 0.441 0.467 0.633 0.638 0.677 0.789 3.45

Our method (with YOLOv5m) 0.458 0.491 0.667 0.640 0.680 0.792 4

Our method (with YOLOv5s) 0.455 0.493 0.650 0.623 0.669 0.762 5

DEKR 0.515 0.585 0.652 0.593 0.644 0.680 1.66

Crops are resized to 100 × 200
The bold specifies the best performance in the column

Fig. 7 Two examples (shown in (a) and (b)) of how our system is able to detect very low-resolution skeletons on the CrowdPose dataset [22]. In
(b), an overexposed crop of the pedestrian in the dark tunnel is also shown, which is very hard to see in the regular image

X = 1

n

n∑

i=1

√
(x j,i − xk,i)2 + (y j,i − yk,i)2 (2)

If X is less than a threshold τ (=5 in our case) , the duplicate
with fewer keypoints is discarded. We also implement non-
maximal suppression from [10] as an alternative to remove
duplicates. Users have the option to choose between them.
The resize resolution of 50 × 100 can also be increased,
maintaining aspect ratio, if higher accuracy is preferred over
speed.

6 Tracking using DeepSORTwith optical flow

For tracking we use a system similar to FASTMOT [36],
but with modifications made to the object detector, fea-
ture extractor, tracking system and how the optical flow is
Incorporated. Also changes were made to make the system
compatible with Pytorch library. This system has MOTA
scores close to state-of-the-art trackers (Table 3) while
still being able to run in real time. Multi-Object Tracking
Accuracy (MOTA) is the standard metric used to evaluate

multi-object tracker systems [6]. In this section we will focus
on how the tracking system works, as at the time of writ-
ing there is no paper published to support the work in [36]
and also go in to the detail of the modifications we made to
improve the system for our implementation.

The system core function in [36] is similar to the Deep-
SORT algorithm in [34]. Optical flow is added in order to
improve tracking accuracy, camera motion detection and
increase fps performance by skipping running the detector
on intermediary frames using optical flow prediction to fill in
the gaps.We replace the object detector with YOLOv5which
results in a drastic speed improvement. We also abandon the
camera motion detection as CCTV camera is assumed to be
stationary, and thereforewe avoid this unnecessary overhead.

As stated earlier the tracking system functions similarly
to the DeepSORT algorithm. The bounding boxes from the
object detector are used to initiate tracks and extract features.
Onekeydifference fromDeepSORT is that the feature extrac-
tor neural net is replaced by OSNET REID [37]. Dubbed the
omni-scale network (OSNET) by its authors, its architecture
consists of a residual block composed of multiple convolu-
tional streams, each detecting features at a certain scale. This
type of design allows it to capture features of both homo-

123

 8 Page 8 of 17 B. Abdulrahman, Z. Zhu

Fig. 8 A comparison from the CrowdPose dataset showcasing superior performance of our method on far away pedestrians: a shows output from
our method (YOLOv5 bounding box and OpenPifPaf pose estimation); b shows output from DEKR [14]

Table 3 FASTMOT on MOT20 train set

MOTA IDF1 HOTA MOTP MT MLs

66.8% 56.4% 45.0% 79.3% 912 274

Taken from [36]

geneous and heterogeneous scales. A unified aggregation
gate is employed to then dynamically fuse multi-scale fea-
tures with input-dependent channel-wise weights. By using
point-wise and depth-wise convolutions, the model is able to
efficiently learn spatial correlations and avoid over-fitting. In
addition, OSNET is extremely lightweight. This allows infer-
ence in real time, and despite its small model size, it achieves
state-of-the-art performance outperforming most large-sized
models. In our implementation themodel generates a 512 fea-
ture set from a bounding boxwhich is bespoke to each person
and can be used for tracking along with re-identification after
a track is lost or goes out of frame.

With each successive re-identification of a track, the fea-
ture set is updated fractionally by the newly extracted feature
set by a factor θ . If fold are the old features and fext are the
newly extracted feature from the current frame, then the new
feature set for the track fnew would be:

fnew = fold ∗ (1 − θ) + fext ∗ θ (3)

Now we discuss how optical flow is incorporated into the
algorithm. At initialization, image frame is converted into
gray scale. Then corners inside each bounding box are
detected using OpenCV’s implementation of the Shi-Tomasi
corner detection method [30] to find the strongest corner
points. These points are then passed through an ellipsoid
filter. This filters out all keypoints not inside an ellipsoid
drawn with the bounding box center as its center, and height
and width of the bounding box as its major and minor axes.
This is done to remove points at the edges of the bounding
box. The remaining points are to be used as keypoints for
optical-flow calculation. This step is only performed when
none or too few previously predicted keypoints are present in
the current bounding box. Otherwise the predicted keypoints
are recycled.

After keypoint detection, their motion in the current frame
is predicted using OpenCV’s implementation of the Lucas-
Kanade Optical Flow [23], trying to find their matches in
the current frame. All points without matches or those that
exceed max error threshold (100 in our case) are dropped.
A partial affine transformation matrix between the previous
and current matched points is computed. This matrix is used
to transform the current bounding box to the optical flow
prediction of its position in the next frame. This prediction is
used to update the Kalman filter in the DeepSORT algorithm.

123

Real-time pedestrian pose estimation, tracking... Page 9 of 17 8

Fig. 9 Tracking using our system described in Sect. 6: a paths drawn corresponding to the tracks. b A top-down view

Thus the Kalman filter receives updates twice per frame, one
from the optical flow prediction (giving higher uncertainty
to the optical flow prediction) and the other when the track
is updated with the final match.

The bounding-box matching is done identically to the
DeepSORTalgorithm.First, theMahalanobis distancebetween
the Kalman filter predictions and detected bounding boxes
and Euclidean distance between the feature embeddings are
calculated and then fused together into a single cost using
a weighting metric. The distances are also checked to see
whether they are within the gating region for both metrics. A
linear assignment algorithm is used tomatch detected bound-
ing boxes to the tracks. Then those unmatched are matched
using IOU cost, i.e., how much the bounding boxes overlap
and if it is over a certain threshold (over 40 percent over-
lap in our case), giving priority to those that have previously
beenmatched. Finally the tracks left unmatched are analyzed
for re-identification with previously lost tracks, whether the
extracted feature embeddings distance is below a certain
threshold (0.6 in our case). This works as people exiting and
then reappearing in the frame or coming out of occlusion will
almost always not match with any other track. An example of
our tracking system can be seen in Fig. 9. The visualization
technique used in this figure will be described in Sect. 9.

7 Pedestrian localization and distance
calculation

As previously discussed in Sect. 3, we need to find the
piercing point of the pedestrians with the ground plane in
order to localize them on the ground using homography.
The skeletons of each pedestrian detected inside their respec-

Fig. 10 Left shows the previous frame where the complete leg is
detected. Middle shows the current frame where the lower leg is not
detected by OpenPifPaf. Right shows the lower leg estimation in the
current frame using our pedestrian localization technique

tive bounding boxes are tracked using our tracking method
described in Sect. 6. This allows us to not only infer the pierc-
ing point of each pedestrian, on the image, using their feet
but also if the feet are occluded, we can infer the piercing
point using the dimensions and location of other estimated
body parts or using previous skeleton estimations of the track
(Fig. 10). Note that if only the bounding boxes were detected,
the systemwould be unable to deal with occlusions, or rather
it would be unaware if an occlusion has even occurred. Since
it would have no information as to how much of the body is
captured inside the bounding box. This is the main advan-
tage of our method over other more trivial implementations
[12,27].

In the optimal scenario where there are no occlusions, the
piercing point is estimated as the center point between the
two feet of a pedestrian. As all body parts detected by the
pose estimator are labelled as such, if both or either one of
the feet is occluded, but the thigh is visible and detected,
we assume the rest of the leg to be a natural extension and
thus extract the dimension of the lower leg from the previous

123

 8 Page 10 of 17 B. Abdulrahman, Z. Zhu

Fig. 11 In the case that only torso is detected (for the first person on
the right of the image who is occluded by the person behind), both legs
are reconstructed from previous skeletons of the track

skeleton estimations of the track and add it to the end of the
thigh using the thigh’s slope as the slope for the lower leg.
If there is no previous skeleton, we assume symmetry and
extract the dimension of the other lower leg and append it to
the end of the thigh, thus completing the skeleton. We want
to note here that the machine learning model OpenPifPaf’s
output has labels on which body part is detected. Therefore,
even if the upper body is not detected, the thigh (i.e., the
upper part of the leg) can be identified by the network. If m
is the slope of the thigh and (xt , yt) are the coordinates for
the knee(thigh endpoint) and d is the extracted dimension of
the lower leg, then we can estimate the coordinate for the
corresponding foot F as follows:

F =
(
xt + d.

√
1

1 + m2 , yt + d.m.

√
1

1 + m2

)
(4)

If the complete leg is occluded, i.e., even the thigh is not
detected,we look for the lower end of the torso or correspond-
ing side of the torso as shown in Fig. 11. If it is detected, we
can still infer the leg positions in a similar fashion. Even if
none of the above-mentioned resources are available, we can
still use estimations based on the average human proportion
distributions in the camera feed to infer the piercing point.
As the distribution is localized to each camera, the effect of
the camera angle skewing proportions is minimized. Thus a
piercing point can be established to a reasonable accuracy
even if only the head of the pedestrian is free of occlusions.
If the skeleton cannot be estimated from the image but the
bounding box is detected, we estimate the piercing point as
the mid-point of the bottom side of the bounding box as a
fallback. We also look at the track history to estimate aver-
age size of pedestrian to prevent abrupt changes to bounding
box size and improve piercing point accuracy. Finally, the

piercing point can be transformed into real-world coordi-
nates (px ,py) using the homography matrix H calculated in
Sect. 3.

The knowledge of the coordinates of all pedestrians in
the image with respect to the ground plane in the real world
reduces the problem of calculating distance between them to
Euclidean distance between two points in 2D plane. Regard-
less of the coordinate system selected on the ground plane,
we can find the distance between any two pedestrians by cal-
culating the Euclidean distance [32] between their points of
intersections on the ground plane as

di j =
√

(xi − x j)2 + (yi − y j)2 (5)

where di j is the distance between any two pedestrians having
piercing points (xi , yi) and (x j ,y j) on the ground.

8 Smart violations detector

When calculating whether there has been a social distanc-
ing violation, we also want to take into account detecting
whether two or more pedestrians are together. For example,
family members walking together would not be considered a
social distancing violation. For this reason, we developed a
“smart” social distancing measure technique for estimating
if pedestrians are together.
Walkingor standing.Wefirst detect and segregate pedestrians
into two categories: walking or standing. If the pedestri-
ans are deemed walking, then the Fréchet distance between
their tracks for a predetermined amount of time is computed.
The Fréchet distance is used to measure similarity between
curves taking into account the location and ordering of the
points along the curves [4]. The ordering part is useful as
we measure max distance between pedestrians relative to
time; what position they both were at that specific time or
on that specific frame. If it is less than a certain threshold,
then these two pedestrians are deemed together. We use 1.5
meters as the threshold. Using this technique we are able to
detect even if multiple people are together and assign them
to the same group (family or friends) (Fig. 12). These groups
are assumed together only within the group and any viola-
tion with a pedestrian or group outside the current group is
detected as such. For weeding out crowds, any group of peo-
ple over 6 is automatically removed of its assignment as a
group and considered violating social distancing. This num-
ber can be programmatically altered if desired.The system is
limited in the fact that it lacks semantic understanding.When
people are walking together due to crowded areas or narrow
walkways, in such cases only a semantic understanding of
the scene can help evaluate if two people are together. As no
dataset is currently available for this task, training a model

123

Real-time pedestrian pose estimation, tracking... Page 11 of 17 8

Fig. 12 People walking and having Fréchet distance of their paths less
than a threshold are considered together and have blue circles around
them

Fig. 13 People standing and facing each other are considered together
and have blue circles around them

is not possible. Some fail-safes are put in place to somewhat
remedy this including the crowd limit stated above or the
tweaking the together-distance threshold.

People are estimated as standing if they do not move for
a predetermined amount of time. When standing two peo-
ple are considered to be together only if they are facing
each other. As it makes sense for family or friends stand-
ing together to interact with each other.
Facing each other. Detecting if people are facing each other
without 3D skeletons can be a daunting task. Hence, we use
heuristics to determine whether two people are facing each
other. First, a vector v1 is drawn from the left to the right
foot coordinates localized on the ground plane, of one of the
pedestrians. The slope of v1 is used to draw a rectangle R1

where the v1 is the line passing through the center of the
rectangle as shown in Fig. 14). The width of R1 is equal

Fig. 14 The vector between the legs of each person is obtained (v1, v2)
and the relation between the these vectors is used to figure out if they
are standing in front or behind each other

Fig. 15 People standing in front of each other but not facing each other.
The angle between v1 and v2 is close to 90 degrees

to the width of v1 and length is set to 3m (i.e., 1.5m each
side). We then check if one of the feet of the other pedestrian
lies inside this rectangle or the vector v2 between the feet
(left to right) of the other pedestrian intersects this rectangle
and angle θ1 between v1 and v2 is not close to 90 degrees.
The reason for checking the angle is to see if the person
is standing facing toward or away and not at a 90 degree
angle as shown in Fig. 15. If this check is validated, we can
move to the next step. Nowwe have determined that the other
person is standing in front or behind of the first pedestrian.
When pedestrians are facing each other, they can be viewed
in frame either as one pedestrian facing the camera and the
other facing away or both can be seen from a side view.
An example can be seen in Fig. 13. In the first case, we
check for both or either eyes detected for one person and only
shoulders and/or ear detected for the other to validate if they
are facing each other. To demonstrate this in Algorithm 1,

123

 8 Page 12 of 17 B. Abdulrahman, Z. Zhu

Fig. 16 Limited detection if people are together when complete occlu-
sion occurs

Fig. 17 People seen talking with each other and holding hands are
detected as together by the smart violations detector

we use Booleans el1, er1, el2 and er2 which correspond to
the left and right eyes of the first pedestrian and left and right
eyes of the second pedestrian, respectively. These Booleans
are true when the corresponding eyes are visible in frame.
We also employ two other Booleans ch1 and ch2 to check if
either of the shoulders or ears are visible, one Boolean for
each pedestrian, respectively, to tackle occlusions. If both
eyes for both pedestrians are detected or vice versa thatmeans
they are facing the same direction and thus not facing each
other.

For the second scenario, wemeasure the distance between
the eyes/ear/nose of one pedestrian to the eye/ear/nose of the
other pedestrian. If looking at each other the distance from
the eyes of one pedestrian to the eyes of the other pedestrian
should be smaller than to the ears of the other pedestrian
and vice versa if facing opposite or the same direction. A
final test for robustness is put in which is optional and can
be omitted: we measure the angle θ2 of the vector between
the ears and eyes for both pedestrians. If both are facing the
same direction, it will be less than 90 degrees.

Algorithm 1Check if two people are facing each other when
standing
Require: v2 is inside or intersecting R1
Ensure: θ1 is not close to 90
if any(el1,er1) and (not all(el2,er2) and ch2) then

return True
else if any(el2,er2) and (not all(el1,er1) and ch1) then

return True
else if any(el2,er2) and any(el1,er1) and (not all(el2,er2) or not
all(el1,er1)) then

if θ2 > 90 and dist(eye1,ear2)> dist(eye1,eye2) then � θ2 check
is optional

return True
end if

end if
Return False

Wedo not actually need to knowwhich scenario the pedes-
trians are standing in as the checks are sequenced to work for
both scenarios. The standing methodology is limited in cases
of severe occlusions for example, when one of the pedestri-
ans is completely occluded by the other in the frame as shown
in Fig. 16 .
Evaluation of togetherness. The social distancing together
groups are reevaluated every second. For evaluation of
the system on a real-world scenario we employ Oxford
Town Centre dataset [5]. This dataset is a CCTV video of
pedestrians in a busy downtown area in Oxford. We calcu-
late homography without camera parameters by employing
Google Earth [15] and using bench locations visible in the
camera and on Google Earth to collect corresponding points.
We were able to obtain under 30 cm of error when localizing
pedestrians on the walkway.

As no ground truth is available for people being together
we only look at people holding hands or interacting with
each other (mostly talking to each other) to establish ground
truth, Fig. 17. The smart violations detector is able to cate-
gorize these pedestrians together 81% of the time (17 out of
21), as shown in Table 4. Only 2 times the detector catego-
rized people together which were not picked as convincingly
together in the ground truth. The smart violations detector
misses cases where the object detector fails to consistently
detect a pedestrian due to constant occlusions or the pedes-
trians are not in frame long enough for the necessary amount
of localization data required.

We also loop the dataset and have the system running for
2 hours on our machine to test robustness in a streaming
scenario. The footage is resized from 1920× 1080 to 1280×
720, and a frame skip is employed processing 5 out of the 25
frames a second in order to maintain real-time operation on
ourmachine. A two second buffer is provided. The results are
shown in Table 5. The system is able to maintain consistent
frame rate, and detections remain consistent with frames on
subsequent loops.

123

Real-time pedestrian pose estimation, tracking... Page 13 of 17 8

Table 4 Total together detections from the Oxford TownCentre dataset
[5] that are interacting with each other

Ground truth (GT) Total detected In GT Not in GT

21 19 17 2

9 Social distancing visualization

The distances need to be represented in an intuitive way
that can be easily interpreted and is not overwhelming to
the viewer. Initially, the raw representation was adding green
distance lines between pedestrians if the distance was less
than 5 meters (16.4 feet) and displaying the distance on top
of the lines. These lines would turn red if the distance went
below 2 meters or roughly 6 feet (Fig. 18a). With blue lines
representing pedestrians that were together, this representa-
tion becomes overwhelming and confusing if there are many
pedestrians in view (Fig. 18b).

For an image-based visualization, the best representation
we could come up with was green circles of a 3-foot radius
around each pedestrian.When any two circles intersect it can
be interpreted as the two pedestrians are closer than 6 feet and
the circles turn red alerting the viewer. Similarly blue circles
to represent people that were together. Now the challenge
we faced implementing this was drawing circles in real time
that would correctly reflect the distance in the real world on
the image. As drawing circles of fixed size would not show
the distance accurately. Also, to make it work in real time
transforming each point of a circle before drawing it on the
image was not computationally viable.

Therefore,whatwe ended up creatingwas a separate blank
image which represented a scaled top-down view of the real-
world ground plane. This blank image would act as a buffer
between the ground plane and image. The reasons for scaling
the blank image were twofold: so that all of the ground plane
coordinates visible in the camera feed were represented as
positive pixel values on the blank image and the blank image
size would not be excessive. The circles and themoving aver-
age of the tracks (to smooth them out) were then drawn on
this blank image (Fig. 19) and transformed using homogra-
phy and overlaid on to the original image using the following
relations.

A point Pi on the image of the ground plane could be
represented as:

Pi = Hip.Pp (6)

where Pp is the point on the ground plane in real-world
coordinates and Hip is the projective transformation or
homography between the two planes. The same point on the
blank image Pb can be represented as

Pb = Hbp.Pp (7)

where Pb is the point on the blank image and Hbp is the
projective transformation between real-world ground plane
and blank image (Fig. 20).
Now Eq. (7) can be written as:

Pp = H−1
bp .Pb (8)

Putting value of Pp in Eq. (6) from Eq. (8) we get:

Pi = Hip.H
−1
bp .Pb (9)

Thus, by using this relation each point in the blank image is
mapped onto the camera frame. And since the blank image is
just a scaled representation of the real-world coordinates, this
resulted in circleswhichwere correctly scaled (Fig. 21a). The
blank image in Fig. 21b is also used in the result to represent
the top-down view of the ground plane.

10 Implementation details and results

This work is implemented on the PETS 2009 s2, L1 View
001. We use a calibrated camera with calibration parameters
already provided in the data set to find corresponding points
for the purpose of computing homography. That being said, it
is not necessary for the camera to be calibrated for this work
to be implemented [18]. To compute planar homography
only 4 corresponding points between 2 planes are required
as already explained in Sect. 3.

The application is run on a Intel core i7-8750H CPU and
a Nvidia GTX 1050tiM GPU and 16GB RAM. The CCTV

Table 5 CPU, GPU,RAM
usage and fps reported on the
Oxford Town Centre dataset [5]

Component Average Max

CPU utilization 44% 72%

GPU utilization 18.48% (747MB) 18.48% (747MB)

RAM utilization 2GB 2GB

FPS 5 7

Pedestrians visible in frame 15 24

The specifications of the machine are GPU:GTX 1050tiM and CPU:core i7-8750H

123

 8 Page 14 of 17 B. Abdulrahman, Z. Zhu

Fig. 18 Social distancing initial representation with bounding boxes and lines: a Bounding boxes for pedestrians and lines between them in green
(greater than 6 feet) and red (less than 6 feet). b Dense crowds may overwhelm the viewer in this kind of view

Fig. 19 Scaled blank image top-down view

video feed has 7 fps; our system runs at 9fps on this hardware.
This results in smooth real-time operation. A video demo
of the results of our work can be seen on YouTube at the
following link: https://youtu.be/OUjvAlYy_vs. The videos
show a top-down view and a regular view with overlay of the
system’s results as shown in Fig. 21. The blank image of the
top-down view has the satellite image of the scene added to
it courtesy of Google Earth [15] for visual appeal (Fig. 21b,
Table 6).

11 Conclusion and discussion

Wehave presented a novel system called PETL4SD for track-
ing posture skeletons in real time in a pedestrian setting

Fig. 20 The homography between two images induced by aworld plane
(the concatenation of two homography matrices)

using CCTV cameras. We then employ this technique to
detect and visualize social distancing violations. The pedes-
trian detection was performed using YOLO neural net. The
posture estimation was done using OpenPifPaf. We vali-
dated our pose estimation on the CrowdPose dataset and
the PETS 2009 dataset. Our system demonstrated superior
pose estimation performance with no additional training.
Tracking was performed using a modified implementation
of [36]. The localization, relative distance and realistic cir-
cular overlays are achieved using planar homography and
image composition (background, circles, pedestrians). All
this sophistication leads to better social distance tracking

123

https://youtu.be/OUjvAlYy_vs

Real-time pedestrian pose estimation, tracking... Page 15 of 17 8

Fig. 21 Social distancing final representation. a Social distancing
enhanced visualization with circles around pedestrians. The image is
a real-time composition of background, circles and pedestrian images,

showing the right perspectives, sizes and occlusions. b Top down view
with the social distancing circles added to the corresponding satellite
image

Table 6 Breakdown of the total
time taken by each module
when processing a frame

Module Percentage of total time

Object detector (yolov5) 14 %

Pose estimation (OpenPifPaf) 55 %

Tracking+optical flow (FastMOT) 28 %

Social distancing (smart violations detector) <1 %

Visualization 2 %

and monitoring when compared with more trivial systems,
with no extra infrastructure andminimal requirements for ini-
tial setup. We also introduce a novel technique of detecting
whether pedestrians are together and therefore negating false
violations. We also evaluate this technique on a real-world
CCTVdataset: OxfordTownCentre dataset. Great cares have
been taken to optimize the time and detection performance
of all the components; therefore, this work in its current form
can be implemented for real-world use.

Nevertheless, the performance and tracking can be fur-
ther enhanced by adding multiple camera angles to deal with
occlusions. Using panoptic segmentation of the ground plane
and estimates of average human dimensions and average
walking speedwe can develop a system to estimate homogra-
phy from a video feed, thus eliminating the need for manual
correspondence. With ground positions known we can esti-
mate the homography for multiple imaginary planes with
regular intervals across the video feed using the human body

dimension estimates and, therefore, with some heuristics, be
able to recreate a 3d scene from the CCTV camera feed. We
can also employ the posture tracking data to train an action
recognition neural net for other applications, for example, to
infer fall detection, hostile behavior, etc.

Acknowledgements The work is supported in part by NSF via the
Partnerships for Innovation Program (Award #1827505) and the CISE-
MSI Program (Award #1737533), AFOSR Dynamic Data Driven
Applications Systems (Award #FA9550-21-1-0082) and ODNI via the
Intelligence Community Center for Academic Excellence (IC CAE) at
Rutgers University (Awards #HHM402-19-1-0003 and #HHM402-18-
1-0007).

References

1. Aghaei, M., Bustreo, M., Wang, Y., Bailo, G., Morerio, P., Bue,
A.D.: Single image human proxemics estimation for visual social
distancing. arXiv:1905.00953 (2020)

123

http://arxiv.org/abs/1905.00953

 8 Page 16 of 17 B. Abdulrahman, Z. Zhu

2. Ahmed, I., Ahmad, M., Rodrigues, J.J., Jeon, G., Din, S.: A deep
learning-based social distance monitoring framework for covid-
19. Sustain. Cities Soc. 65, 102571 (2021). https://doi.org/10.
1016/j.scs.2020.102571, https://www.sciencedirect.com/science/
article/pii/S2210670720307897

3. Alhmiedat, T., Aborokbah, M.: Social distance monitoring
approach using wearable smart tags. Electronics (2021). https://
doi.org/10.3390/electronics10192435

4. Alt, H., Godau, M.: Computing the fréchet distance between two
polygonal curves. Int. J. Comput. Geom. Appl. 05(01–02), 75–91
(1995). https://doi.org/10.1142/s0218195995000064

5. Benfold, B., Reid, I.: Stable multi-target tracking in real-time
surveillance video. In: CVPR 2011, pp. 3457–3464 (2011). https://
doi.org/10.1109/CVPR.2011.5995667

6. Bernardin, K., Elbs, A., Stiefelhagen, R.: Multiple object tracking
performance metrics and evaluation in a smart room environment.
In: Sixth IEEE International Workshop on Visual Surveillance, in
conjunction with ECCV, vol. 90. Citeseer (2006)

7. Bertoni, L., Kreiss, S., Alahi, A.: Monoloco: Monocular 3d
pedestrian localization and uncertainty estimation. CoRR (2019).
arXiv:1906.06059

8. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools
(2000)

9. Brooks, J.: COCO Annotator. https://github.com/jsbroks/coco-
annotator/ (2019)

10. Cao, Z., Hidalgo, G., Simon, T., Wei, S., Sheikh, Y.: Openpose:
Realtime multi-person 2d pose estimation using part affinity fields.
CoRR (2018). arXiv:1812.08008

11. CDC: COVID-19 and Your Health (2020). https://www.cdc.gov/
coronavirus/2019-ncov/transmission/variant.html

12. Cristani, M., Del Bue, A., Murino, V., Setti, F., Vinciarelli, A.: The
visual social distancing problem. In: IEEE Access (2020). https://
doi.org/10.1109/ACCESS.2020.3008370

13. Ferryman, J., Shahrokni, A.: Pets2009: Dataset and challenge. In:
2009 Twelfth IEEE International Workshop on Performance Eval-
uation of Tracking and Surveillance, pp. 1–6 (2009). https://doi.
org/10.1109/PETS-WINTER.2009.5399556

14. Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-
up human pose estimation via disentangled keypoint regression.
CoRR (2021). arXiv:2104.02300

15. Google earth. https://earth.google.com/
16. Hall, J.: Social distance monitoring (2020). https://

levelfivesupplies.com/social-distance-monitoring/
17. Harris, M., Ghebreyesus, T., Tu, R.M., Kerkhove, V., Maria,

D., Imogen, C.: Corinne: Covid-19 - world health orga-
nization (2020). https://www.who.int/docs/default-source/
coronaviruse/transcripts/who-audio-emergencies-coronavirus-
press-conference-full-20mar2020.pdf?sfvrsn=1eafbff_0

18. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer
Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

19. Jocher, G., Stoken, A., Borovec, J.: ultralytics/yolov5: v3.1 (2020).
https://doi.org/10.5281/zenodo.4154370

20. Kreiss, S., Bertoni, L., Alahi, A.: Pifpaf: Composite fields for
human pose estimation. CoRR (2019). arXiv:1903.06593

21. Landing AI: Landing AI creates an AI tool to help customers
monitor social distancing in the workplace (2020). https://landing.
ai/landing-ai-creates-an-ai-tool-to-help-customers-monitor-
social-distancing-in-the-workplace

22. Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H.S., Lu, C.: Crowdpose:
Efficient crowded scenes pose estimation and a new benchmark
(2018). https://doi.org/10.48550/ARXIV.1812.00324

23. Lucas, B.D., Kanade, T.: An iterative image registration technique
with an application to stereo vision. In: Proceedings of the 7th
International Joint Conference on Artificial Intelligence - Volume
2, IJCAI’81, p. 674-679. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1981)

24. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,
Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differ-
entiation in pytorch. In: NIPS 2017 Workshop on Autodiff (2017).
https://openreview.net/forum?id=BJJsrmfCZ

25. Sinha, P.K.: Camera Calibration. SPIE. https://doi.org/10.1117/3.
858360.ch8

26. Khandelwal, P., Khandelwal, A., Agarwal, S., Thomas, D.,
Xavier, N., Raghuraman, A.: Using computer vision to enhance
safety of workforce in manufacturing in a post covid world.
arXiv:2005.05287 (2020)

27. Punn, N.S., Sonbhadra, S.K., Agarwal, S.: Monitoring covid-19
social distancing with person detection and tracking via fine-tuned
yolo v3 and deepsort techniques. arXiv:2005.01385 (2020)

28. Qin, J., Xu, N.: Reaserch and implementation of social distanc-
ing monitoring technology based on ssd. Procedia Comput. Sci.
183, 768–775 (2021). Proceedings of the 10th InternationalConfer-
ence of Information and Communication Technology https://doi.
org/10.1016/j.procs.2021.02.127 https://www.sciencedirect.com/
science/article/pii/S1877050921006037

29. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only
look once: Unified, real-time object detection. CoRR (2015).
arxiv:1506.02640

30. Shi, J., Tomasi: Good features to track. In: 1994 Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 593–600 (1994). https://doi.org/10.1109/CVPR.1994.323794

31. STEREOLABS: Using 3D cameras to monitor social distanc-
ing (2020). https://www.stereolabs.com/blog/using-3d-cameras-
to-monitor-social-distancing/

32. Szabo, F.: The Linear Algebra Survival Guide: Illustrated with
Mathematica. Academic Press Inc, Cambridge (2015)

33. WHO: Listings of WHO’s response to COVID-19 (2020). https://
www.who.int/news/item/29-06-2020-covidtimeline

34. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime
tracking with a deep association metric. In: 2017 IEEE Interna-
tional Conference on Image Processing (ICIP), pp. 3645–3649.
IEEE (2017). https://doi.org/10.1109/ICIP.2017.8296962

35. Yang, D., Yurtsever, E., Renganathan, V., Redmill, K.A., Ozguner,
U.: A vision-based social distancing and critical density detection
system for covid-19. arXiv:2007.03578 (2020)

36. Yang, Y.: FastMOT: High-Performance Multiple Object Tracking
Based on YOLO, Deep SORT, and Optical Flow (2020). https://
doi.org/10.5281/zenodo.4294717

37. Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Omni-scale feature
learning for person re-identification. arXiv:1905.00953 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1016/j.scs.2020.102571
https://doi.org/10.1016/j.scs.2020.102571
https://www.sciencedirect.com/science/article/pii/S2210670720307897
https://www.sciencedirect.com/science/article/pii/S2210670720307897
https://doi.org/10.3390/electronics10192435
https://doi.org/10.3390/electronics10192435
https://doi.org/10.1142/s0218195995000064
https://doi.org/10.1109/CVPR.2011.5995667
https://doi.org/10.1109/CVPR.2011.5995667
http://arxiv.org/abs/1906.06059
https://github.com/jsbroks/coco-annotator/
https://github.com/jsbroks/coco-annotator/
http://arxiv.org/abs/1812.08008
https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant.html
https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant.html
https://doi.org/10.1109/ACCESS.2020.3008370
https://doi.org/10.1109/ACCESS.2020.3008370
https://doi.org/10.1109/PETS-WINTER.2009.5399556
https://doi.org/10.1109/PETS-WINTER.2009.5399556
http://arxiv.org/abs/2104.02300
https://earth.google.com/
https://levelfivesupplies.com/social-distance-monitoring/
https://levelfivesupplies.com/social-distance-monitoring/
https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-coronavirus-press-conference-full-20mar2020.pdf?sfvrsn=1eafbff_0
https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-coronavirus-press-conference-full-20mar2020.pdf?sfvrsn=1eafbff_0
https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-coronavirus-press-conference-full-20mar2020.pdf?sfvrsn=1eafbff_0
https://doi.org/10.5281/zenodo.4154370
http://arxiv.org/abs/1903.06593
https://landing.ai/landing-ai-creates-an-ai-tool-to-help-customers-monitor-social-distancing-in-the-workplace
https://landing.ai/landing-ai-creates-an-ai-tool-to-help-customers-monitor-social-distancing-in-the-workplace
https://landing.ai/landing-ai-creates-an-ai-tool-to-help-customers-monitor-social-distancing-in-the-workplace
https://doi.org/10.48550/ARXIV.1812.00324
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1117/3.858360.ch8
https://doi.org/10.1117/3.858360.ch8
http://arxiv.org/abs/2005.05287
http://arxiv.org/abs/2005.01385
https://doi.org/10.1016/j.procs.2021.02.127
https://doi.org/10.1016/j.procs.2021.02.127
https://www.sciencedirect.com/science/article/pii/S1877050921006037
https://www.sciencedirect.com/science/article/pii/S1877050921006037
http://arxiv.org/abs/1506.02640
https://doi.org/10.1109/CVPR.1994.323794
https://www.stereolabs.com/blog/using-3d-cameras-to-monitor-social-distancing/
https://www.stereolabs.com/blog/using-3d-cameras-to-monitor-social-distancing/
https://www.who.int/news/item/29-06-2020-covidtimeline
https://www.who.int/news/item/29-06-2020-covidtimeline
https://doi.org/10.1109/ICIP.2017.8296962
http://arxiv.org/abs/2007.03578
https://doi.org/10.5281/zenodo.4294717
https://doi.org/10.5281/zenodo.4294717
http://arxiv.org/abs/1905.00953

Real-time pedestrian pose estimation, tracking... Page 17 of 17 8

Bilal Abdulrahman received his master’s in Data Science from the
CUNY Graduate Center, in 2022. He is, currently pursuing a PhD
in computer science at the CUNY Graduate Center. He is a mem-
ber of the City College Visual Computing Laboratory since 2020. His
research interests include computer vision, and machine learning, cur-
rently focusing on human interaction and human body reconstruction.

Zhigang Zhu is current Herbert G. Kayser Chair Professor of Com-
puter Science, at The City College of New York (CCNY) and The
CUNY Graduate Center, where he directs the City College Visual
Computing Laboratory (CcvcL). Dr. Zhu is an Associate Editor of
the Machine Vision Applications Journal, Springer (2006 - now), and
was Technical Editor, IEEE/ASME Transactions on Mechatronics
(09/2010 - 09/2014). His research interests include 3D computer vision,
multimodal sensing, human-computer interaction, virtual/augmented
reality, and various applications in assistive technology, robotics,
surveillance and transportation. He has published over 200 peer
-reviewed technical papers in the related fields. His research has been
supported by AFOSR, AFRL, ARO, DARPA, DHS, NSF, ODNI as
well as industry. Dr. Zhu is a senior member of the IEEE, and a senior
member of the ACM.

123

	Real-time pedestrian pose estimation, tracking and localization for social distancing
	Abstract
	1 Introduction
	2 Related work
	3 Planar homography estimation
	4 Pedestrian detection with YOLOv5
	5 Human pose estimation using OpenPifPaf with detection
	6 Tracking using DeepSORT with optical flow
	7 Pedestrian localization and distance calculation
	8 Smart violations detector
	9 Social distancing visualization
	10 Implementation details and results
	11 Conclusion and discussion
	Acknowledgements
	References

