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Abstract. In this paper we discuss in some detail how the pressures determined from
semi-classical statistical averaging of the energy momentum tensor in the presence of a
uniform background magnetic field are anisotropic with different pressures arising along and
perpendicular to the magnetic field direction. Hence, we analyze how this result can affect two
important characteristics of dense magnetized systems: (i) The hadron-quark phase transition
in the presence of a magnetic field, (ii) The behavior of the speed of sound in dense magnetized
systems. Taking into account that large magnetic fields are expected to be present in the interior
of neutron stars, we will stress the role the pressure anisotropy plays in the physics of these
compact astronomical objects.

1. Introduction
There are many studies in the literature that analyze the behavior of the first-order quark-hadron
phase transition in the presence of a magnetic field [1, 2]. All of these studies were done using
isotropic Maxwell or Gibbs equilibrium conditions, where the pressures in the two phases were
considered to be isotropic. However, it was shown in [3, 4] that in a system of charged fermions
immersed in a background magnetic field the system’s pressures are anisotropic with different
pressures arising in the directions parallel to and perpendicular to the field direction. In [5] the
study of the pressure anisotropy was extended to neutral composite particles (neutrons), where
the particles were taken to interact with the magnetic field through their anomalous magnetic
moments (AMM). Since neutron stars (NS) are known to have strong surface magnetic fields,
with magnetars having surface fields as large as 1014-1016G [6], and potentially even larger
interior fields, with estimates as high as 1018G [7] for hadrons and 1020G for quarks [4], it is
important to understand the significance of the magnetic field induced pressure anisotropy on
NS physics. In what follows we give an overview of the potential significance of the pressure
anisotropy in the context NS and pinpoint some key, model-dependent features of the anisotropy
that are important to take into consideration when modeling NS matter.

2. The Magnetic Field Induced Anisotropy of the Equation of State
In this section we offer a pedagogical overview of the analysis of the magnetic field induced
anisotropy in the equation of state (EOS), which was introduced in [4] for a charged fermion
system in a background magnetic field. The main idea is to determine the stress energy tensor
(SET) semi-classically by taking the quantum-statistical average of the components of the
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symmetrized field-theoretic energy momentum tensor. In this way the EOS can be determined
from the system’s pressures and energy density, which are realized as the diagonal components
of the semi-classical SET.

2.1. Symmetries of a magnetized system
Although the magnetic field induced anisotropy in the EOS can be derived directly from a semi-
classical calculation, it may be helpful to note that the anisotropy might be expected to be
present from pure symmetry considerations. The symmetries of a magnetized matter system
can be expressed through three independent structures in the SET

Tµν = a1η
µν + a2u

µuν + a3F̂
µρF̂ νρ , (1)

where ηµν is the Minkowski metric, uµ is the medium four-velocity, which in the rest frame takes

the form uµ = (1,~0), F̂µρ = Fµρ/B is the normalized field strength tensor, and ai, i = 1, 2, 3 are
scalar coefficients. A system devoid of matter and electromagnetic fields is locally characterized
by complete Lorentz symmetry, which is reflected in (1) by taking a2 = a3 = 0. Under these
conditions the only available structure is the local spacetime structure, which is described by
ηµν . Once a medium is included, the local SO(1,3) symmetry is broken by the introduction of
a preferred direction that is locally aligned with the medium’s four velocity. This corresponds
to the case where a3 = 0, which is concordant with the familiar form of the SET for a perfect
fluid. At this point, O(3) symmetry is still present for frames comoving with the fluid, but once a
uniform background magnetic field is introduced the O(3) symmetry is broken by a new preferred
direction that is locally aligned with the field. The third term in (1), which was originally derived
in [4], is included to reflect this further symmetry breaking. Note that in a local basis where the

magnetic field is aligned with the ẑ direction, diag(F̂µρF̂ νρ ) = (0,−1,−1, 0), which is concordant
with the intuition that there should now be an asymmetry in the SET between the components
along and perpendicular to the local magnetic field direction. It then remains to perform the
semi-classical calculation in order to determine the coefficients ai and to check that (1) indeed
expresses the correct form of the SET.

2.2. Determining the semi-classical SET through quantum statistical averaging
Following considerations made in ([8], Sec. 3.4), the semi-classical SET can be determined in
the context of NS by considering a volume element of the star that is small enough so that the
magnetic field is approximately uniform throughout it and so that general relativistic effects may
be ignored, but large enough so that the element contains enough statistical degrees of freedom,
e.g. particles, lattice sites, etc., to make statistical calculations meaningful. Quantum statistical
averaging of the field theoretic energy momentum tensor, which describes the microphysics on
the volume element, then determines the semi-classical SET as follows

Tµν =
1

βV

Tr[ˆ̃τµνe−β(Ĥ−µN̂)]

Z
, (2)

where β = 1
T is the inverse absolute temperature of the system, V is the volume of the volume

element, Ĥ is the Hamiltonian, N̂ is the particle number operator, µ is the chemical potential,
ˆ̃τµν =

∫ β
0 dτ

∫
V dx

3τ̂µν is the integral of the energy momentum tensor operator τ̂µν over the
system’s Euclidean spacetime region, and Z is the partition function of the grand canonical
ensemble, which is given by

Z = Tr[e−β(Ĥ−µN̂)]. (3)
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In [4], path integral techniques were used to compute (2) for a dense, charged fermion system
in a background magnetic field directed along the ẑ direction to arrive at

Tµν = Ωηµν + (µρ+ TS)uµuν +BMηµν⊥ , (4)

where Ω is the system thermodynamic potential, ρ = −(∂Ω/∂µ)V,T is the average particle-
number density, S = −(∂Ω/∂T )V,µ is the entropy density, M = −(∂Ω/∂B)V,T,µ is the system
magnetization, V is the system volume, and B is the magnetic field. Notice that the result of
the quantum statistical averaging (4) is in agreement with (1), with a1 = Ω, a2 = (µρ + TS),
and a3 = BM .

2.3. The Anisotropic EOS at T = 0
If we consider the case of a old, cold star where µ � T and the T ≈ 0 approximation is
appropriate, then in a frame comoving with the stellar medium, (4) has the following diagonal
components

ε = T 00 = Ω− µρ+
B2

2
, (5)

P⊥ = T 11 = T 22 = −Ω−MB +
B2

2
, (6)

P‖ = T 33 = −Ω− B2

2
, (7)

where ε is the system’s energy density, P⊥ is the system’s pressure along the direction
perpendicular to the field direction, and P‖ is the system’s pressure along the field direction.
The system’s pressures are clearly anisotropic, with the anisotropy manifesting in two important
ways: (i) through a difference in sign between the so called ”Maxwell terms” arising from the
pure electromagnetic contribution to the SET that are quadratic in the field and (ii) through
the presence of the magnetization term in the pressures perpendicular to the field direction.

2.4. Ongoing discussion of the pressure anisotropy
We would like to point out that there is an ongoing discussion of the existence and nature
of the pressure anisotropy. Majority of the discussion has been focused on whether or not
the magnetization term, seen in (6), is present in systems of interest. In this regard, it was
originally conjectured in [9] that the magnetization term is cancelled out by a similar term
resulting from the Lorentz force induced by the system’s self-magnetization. Further arguments
for this position were made in [10] and some counterarguments were made in [11, 12], where it
is argued that any counter-terms appearing in the SET should be derived in a self consistent
way from a microphysical model. We should also say that in [13], the magnetization term is
shown not to appear in the hydrodynamic equations, which is given by the vanishing divergence
of the SET, when magnetic field generating currents determined from reasonable symmetry
considerations are included in the SET. Since the pressures of the system are given by the spatial
diagonal components of the SET, and not by its divergence, we believe that the pressures are
not subject to the same cancellation that occurs in the hydrodynamic equations. Finally, even
if the discussion of the relevance of the magnetization term is set aside for the moment, there is
still the issue of the anisotropy arising from the quadratic terms in (6) and (7), which at strong
magnetic fields may provide a significant contribution to the pressure anisotropy. Given this,
we believe that the pressure anisotropy is likely present in magnetized fermion systems and its
significance on NS physics should be checked.
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3. The Anisotropic First-Order Phase Transition
In this section we provide a brief overview of the techniques developed in [14] for dealing with
phase transitions between magnetized systems where the pressure anisotropy is present. The
analysis that follows will be in principle applicable to various phase constructions, e.g. the
Maxwell construction (MC), the Gibbs construction (GC), etc., but for the purposes of providing
an illustrative example we will focus on the MC for modeling first-order phase transitions, which
for isotropic pressures, is characterized by four equilibrium conditions:

PA = PB, µAb = µBb ,
∑
i

qAi = 0,
∑
i

qBi = 0. (8)

Here A and B denote the different phases, PA/B is the pressure in phase A/B, µ
A/B
b is the

baryonic chemical potential in phase A/B, and q
A/B
i are any charges that may be present in

each phase. Since the MC requires each phase to be separately charge neutral, each phase has an

associated electric chemical potential µ
A/B
e , which are in principle different in value. Formulated

this way, each phase only has one pressure, which arises from the fact that an isotropic pressure
assumption is made when the equilibrium conditions in (8) are derived from first principles.
Then to see how the MC should be modified to handle anisotropic pressures, we must track
down where the isotropic pressure assumption is made in the derivation and determine how it
should be modified to accommodate anisotropic pressures.

3.1. The anisotropic mechanical equilibrium condition
Derivations for the pressure equality relation in (8) typically start by considering an isolated
system of fixed volume V that is divided into two subsystems containing phase A and phase B
respectively, which are allowed to exchange volume and energy. The variation of the entropy of
the total system is given by

dS = dSA + dSB. (9)

Then by introducing the thermodynamic relations: dS = dQ/T , dE = dQ−dW , and dW = PdV
into (9), assuming that dQA = −dQB, dV A = −dV B, and that TA = TB at equilibrium, the
variation of the total entropy becomes

dS =
1

T

(
PA − PB

)
dV A. (10)

Finally, it is argued that at equilibrium a first differential of the entropy must vanish, which
combined with (10) gives the isotropic mechanical equilibrium condition

PA = PB. (11)

Then it is clear that between (9) and (10) the isotropic pressure assumption enters through the
assumption that the pressure doing work on a system is isotropic. However, for a system being
compressed by anisotropic pressures the work relation must be generalized to

dW = P‖dV‖ + P⊥dV⊥, (12)

where dV‖ is the differential volume change occurring from compression in a particular direction
(call it the parallel direction) and dV⊥ is the differential volume change in the direction
perpendicular to the parallel direction. Following the derivation between (9) and (10), using the
anisotropic work expression (12), and taking into account that dV‖ and dV⊥ are independent
variations, we arrive at the anisotropic mechanical equilibrium condition
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PA‖ = PB‖ , PA⊥ = PB⊥ , (13)

which should replace the isotropic pressure condition in (8), to give the equilibrium equations
for the anisotropic MC:

PA‖ = PB‖ , PA⊥ = PB⊥ , µAb = µBb ,
∑
i

qAi = 0,
∑
i

qBi = 0. (14)

3.2. Discontinuity of the magnetic field during first-order phase transitions
The MC for the first-order phase change between two systems A and B imposes the anistoropic
mechanical equilibrium condition (13), which for magnetized fermion systems where the
pressures are described by (6) and (7), takes the explicit form

−ΩA −
B2
A

2
= −ΩB −

B2
B

2
, (15)

−ΩA −MABA +
B2
A

2
= −ΩB −MBBB +

B2
B

2
. (16)

If BA = BB, then (15) and (16) together imply that MA = MB. However, in a first-order
phase transition the magnetizations, which are first-order derivatives of the thermodynamic
potential, are not equal. Then by reductio BA 6= BB for magnetized fermion systems undergoing
a first-order phase change. The discontinuity at the phase boundary indicates that the divergence
of the magnetic field at the boundary is nonvanishing, which further implies the presence of a
surface magnetic charge. An explanation for the surface charge as an accumulation of magnetic
monopoles at the interface between the two phases is discussed more thoroughly in [14].

4. Magnetic Field Effects on the EOS during a Phase Transition
To study the effects of a magnetic field on the anisotropic quark-hadron phase change explicitly,
we consider such a phase change modeled by the MC (14) in a background magnetic field, where
the two-flavor quark phase (QP), including electrons, is described by the MIT Bag model [15]
and the hadron phase (HP), comprised of neutrons, protons and electrons, is described by the
Nonlinear-Walecka (NWL) model. The systems are considered to be beta-equilibriated and at
zero temperature. The thermodynamic potentials, EOS, as well as all the parameters contained
in those models under these conditions are thoroughly studied and specified in [14]. We refer the
reader there for a more detailed treatment. We only point out two components of that study that
are relevant here. First, the magnetic field-anomalous magnetic moment (B-AMM) interaction
is only included in the HP for the neutrons. This is because the B-AMM interaction was found
in [16] to have an insignificant influence on the pressures of charged fermion systems and in [17]
to have a significant influence on the neutron component of the pressure at magnetic fields near
1018G, which is the maximum magnetic field strength considered in this section. Second, we
point out that the calculations done in [14] were done in the weak-field approximation (WFA),
where it was found that the baryonic chemical potential was large enough to justify using the
WFA up to field strengths of 1018G. Using the models developed in [14] and fixing the BHP , the
anisotropic equilibrium conditions (14) can be numerically solved to determine all the parameters
of the system.

4.1. Discontinuity in the magnetization
As discussed in Sec. 3.2, we expect that the first-order phase transition modeled by the
anisotropic MC will impose a discontinuity in both the magnetization and the magnetic field
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Figure 1. (Color online) Magnetization, M , in the HP (red-solid) and QP (blue-dashed) versus
baryonic charge density, ρb normalized against the baryonic saturation density ρ0 = 0.153 fm−3,
at BHP = 1016 G.

between the two phases. The jump in the magnetization can be seen in Fig. 1, where the
magnetization of the HP (lower left-hand corner) increases with baryon density until around 3.2
times the baryonic saturation density. There is then a jump in both the baryon density and the
magnetization before the QP (upper right-hand corner) begins. Both the jump in the baryon
density and the magnetization are compatible with the first-order nature of the phase transition,
since both are first derivatives of the thermodynamic potential. What’s more, the magnetic field
also jumps between the two phases with BHP = 1016G and BQP −BHPG≈ 4.1× 1013G.

4.2. Behavior of the EOS at strong magnetic fields
In Fig. 2, the behavior of the parallel and perpendicular EOS across a wide range of strong
magnetic field values can be seen and the effect of the AMM can be compared. Similar to the
behavior of the magnetization, the EOS increases in the HP (lower left-hand corner) before
jumping in energy density to the QP (upper right hand corner). It is important to notice that
the behavior of the EOS at 1016G (black-solid) before and after the phase transition is the same
for both the parallel and perpendicular pressures. However, at 1018G the parallel pressure shifts
down significantly while the perpendicular pressure shifts up. The cause of the shift can be
determined from (6) and (7). Since the magnetizations (as seen in Fig. 1) and magnetic fields
of both phases are positive, both magnetization terms in (6) are contributing negatively to the
pressure. However, the pure Maxwell, quadratic terms are opposite in sign between (6) and (7)
and are therefore primarily responsible for the shifting in the EOS. It should be noted though
that although the overall direction in shift of the EOS is determined by the Maxwell terms,
the magnetization terms in (6) are likely still exerting some influence, which can be seen by
the fact that the upward shift in Fig. 2 of the perpendicular pressure is less pronounced than
the downward shift in the parallel pressure. This is explained by the fact that the negative
contribution of the magnetization term combines with the negative contribution of the Maxwell
term in the case of the parallel pressure and partially cancels in the case of the perpendicular
pressure where the Maxwell term is positive. Finally, the EOS behave very similarly with or
without the AMM even at 1018G. The reason for this can be seen by considering the neutron
component of the pressure displayed in Fig. 3. The AMM can be seen to significantly effect
the parallel pressure after 1018G when comparing the bare (no AMM and no Maxwell term)
pressure (red-dotted) with the case where the AMM is included (blue-dashed). However, once
the Maxwell term is included (black-solid) the parallel pressure begins to decrease profoundly
shortly after 1017G, completely swamping the effect of the AMM.
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Figure 2. (Color online) Parallel (a) and perpendicular (b) EOS in the MC including (blue-
dashed) the neutron AMM at BHP = 1018G and excluding the neutron AMM at BHP = 1018G
(red-dotted) and at BHP = 1016G (black-solid).

5. The Effects of Strong Magnetic Fields on the SOS
In this section we set aside the issue of the quark-hadron phase transition and focus on the
effects of the magnetic field induced anisotropy on a system’s speed of sound (SOS). In [18], the
SOS2, which for isotropic systems is defined as the derivative of the pressure with respect to the
energy density, was derived for anisotropic, magnetized systems by considering only first-order
perturbations in the vanishing divergence of (4). Analogous to the isotropic case, a set of parallel
and perpendicular SOS2 were found to be given by

(c⊥s )2 =
∂P⊥
∂µ

/
∂ε

∂µ
=
[∂P⊥
∂ε

]
B
, (c‖s)

2 =
∂P‖

∂µ
/
∂ε

∂µ
=
[∂P‖
∂ε

]
B
. (17)

In the previous section it was shown that for the models considered there, the EOS was
primarily influenced through the Maxwell terms. Since (17) is defined through derivatives with
respect to the chemical potential, the influence of the Maxwell terms are eliminated from the
SOS. It is then of interest to determine what effects the system’s anisotropy can have on the
SOS.

5.1. The MDCDW phase
We now consider the MDCDW phase [19, 20], in which the quarks, described by the mean-
field NJL model, form an inhomogeneous chiral condensate characterized by two parameters:
the condensate magnitude m and modulation q = b/2 and having the following scalar and
pseudoscalar components

〈ψ̄ψ〉 = m cos qµx
µ, 〈ψ̄iτ3γ5ψ〉 = m sin qµx

µ, (18)

where the modulation is taking along the field direction, qµ = (0, 0, 0, q), since this
configuration minimizes the system energy [19]. The medium component of the zero-temperature
thermodynamic potential for quark flavor f was determined in [21] to be
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Figure 3. (Color online) Neutron component of the parallel pressure without the AMM and
Maxwell term (red-dotted), with the AMM, but without the Maxwell term (blue-dashed), and
with both the AMM and Maxwell term (black-solid) as a function of the magnetic field.

Ωmed
f =−

|efB|
(2π)2

µfq −
|efB|
8π2

∫ ∞
−∞

dp3
∑

ε∈{+,−}

(|E0,ε − µf | − |E0,ε|)
∣∣∣
reg

−
|efB|
(2π)2

∫ ∞
−∞

dp3
∑

l>0,ξ∈{+,−}

(
µf − Efl,ξ,ε

)
Θ
(
µf − Efl,ξ,ε

) ∣∣∣
ε=+

,

(19)

where the energy spectra are given by

E0,ε = ε
√
m2 + p2 + b, ε = ±, l = 0

Efl,ξ,ε = ε

[(
ξ
√
m2 + p2 + b

)2
+ 2|efB|l

]1/2
, ε = ±, ξ = ±, l = 1, 2, 3, ... (20)

The so called ”anomalous” first term in (19) is then of relevance to the anisotropic SOS for
two reasons. First, it couples B with µf , thus making the magnetization through that term
proportional with µf . Since the chemical potential is typically the largest parameter in NS
physics, it suggests that there may be a large anisotropy in the system that is generated by the
magnetization term in (6). Second, the coupling of B and µf also suggests through (17) that
SOS may be high at large magnetic field strengths.

5.2. Numerical results for the MDCDW phase SOS
We consider a charge-neutral, beta equilibriated, two-flavor magnetized system of quarks and
electrons with the quarks modeled by the MDCDW phase (for a detailed description see [18]).
For the purposes of modeling hybrid NS at intermediate densities, we take (320MeV≤ µf ≤
340MeV). Under these conditions m � µf (see Fig. 2 in [22]) and m can be neglected. Then
the SOS2 of the MDCDW phase under these conditions can be obtained by first determining
the MDCDW EOS through plugging (19) into (5), (6) and (7), and then by plugging that result
into (17).

In Fig. 4, the behavior of the parallel and perpendicular SOS2 for this system can be seen.
Since the magnetic fields being considered are relatively high, the WFA is not being used here.
Rather the full sum over Landau levels (LL) indexed by (l) in (20) has been performed. This is
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Figure 4. (Color online) Parallel (a) and Perpendicular (b) SOS2 in the MDCDW phase
versus baryonic chemical potential corresponding to intermediate densities for different applied
magnetic fields.

responsible for the Hass-van Alphen oscillations seen in the SOS2 at the two lower field values.
The maximum term of the Landau sum is µf dependent and determined by the behavior of the
Heaviside function in (20). Then at fixed values of the field, as µf increases new terms enter
the Landau sum, which results in the oscillations. The parallel and perpendicular SOS2 display
markedly different behavior, with the parallel SOS2 reaching a higher maximum value (roughly
.5c) than its perpendicular counterpart. This is a merit of the MDCDW phase, since it is known
that for hybrid stars where the QP SOS2 is at or below the conformal limit, i.e. c2s ≤ 1/3, it is
impossible to reach stellar masses of ∼ 2M� [23], which are observed in nature. It should also
be noted that the parallel SOS2 in Fig. 4 appears to decrease as the baryonic chemical potential
increases for the two lower magnetic fields considered. However, this is a result of the irregular
behavior of the Has-van Alphen oscillations. On a larger domain the parallel SOS2 exhibits no
apparent decrease.

6. Conclusions
In this paper we reviewed some important effects that are present in magnetized systems. First
we pointed out that the magnetic field induced pressure anisotropy implies a discontinuituity in
the magnetic field between two phases undergoing a first-order phase transition. We then showed
that the Maxwell terms in (6) and (7) are responsible for generating significant anisotropies in
the EOS of magnetized systems undergoing a first-order phase change at fields greater than
1017G . Lastly, we showed that, apart from the Maxwell contributions, the system anisotropy
may significantly affect other properties, e.g. the SOS, through the magnetization term in (6)
and analyzed the case study of the MDCDW phase, which at high magnetic fields was seen to
have SOS2 exceeding the confromal limit. Pronounced anisotropic effects may then occur at
field values close to the upper limit of values applicable to NS.
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