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Abstract: This paper proposes a computer vision-based workflow that analyses Google 360-degree street views to 
understand the quality of urban spaces regarding vegetation coverage and accessibility of urban amenities 
such as benches. Image segmentation methods were utilized to produce an annotated image with the amount 
of vegetation, sky and street coloration. Two deep learning models were used -- Monodepth2 for depth 
detection and YoloV5 for object detection -- to create a 360-degree diagram of vegetation and benches at a 
given location. The automated workflow allows non-expert users like planners, designers, and communities 
to analyze and evaluate urban environments with Google Street Views. The workflow consists of three 
components: (1) user interface for location selection; (2) vegetation analysis, bench detection and depth 
estimation; and (3) visualization of vegetation coverage and amenities. The analysis and visualization could 
inform better urban design outcomes.

1 INTRODUCTION 

Urban vegetation in public spaces can mitigate the 
heat island effect, provide shade for visitors, and 
serve as habitats for urban wildlife. Analyzing and 
evaluating urban vegetation coverage and 
accessibility to amenities such as benches could 
inform better design decisions. Such analyses are 
typically done via geospatial information systems 
(GIS) and publicly available datasets, such as NYC 
OpenData. However, these datasets are not frequently 
updated to reflect the most up-to-date conditions. 
This paper explores vegetation coverage mapping and 
amenity detection using Google Street View (GSV). 
The goal is to use computer vision techniques to 
analyze 360-degree panoramic photos to create 
comprehensible visualization of vegetation coverages 
and accessibility to amenities with a web-based 
interface.   

Google Street View imagery in urban analytics 
became a promising area of research over the past few 
years (Biljecki and Ito 2021). Researchers often use 
the green color to proximate urban plants coverage; 
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thus, many works use the term "greenery" to refer to 
urban vegetation coverage. We use vegetation 
coverage and greenery interchangeably in this paper. 
Yang, et al. (2009, 2020) use GSV to study the 
correlation between the amount of or greenery in a 
street and building values. Li, et al. (2015) developed 
image processing algorithms to automate the 
greenery index assessment. Qiu, et al. (2019) 
integrated crowdsourcing, computer vision and 
machine learning to create a correlation index 
between urban design qualities and residents’ 
satisfaction of the area by analyzing GSV images. 
Qiu, et al. (2021) used a Pyramid Scene Parsing 
Network (PSPNet) to calculate the pixel ratios of 
individual features as view indices from GSV images 
and constructed a machine learning model capable of 
recognizing 35 kinds of streetscape elements.  

We also include real-time 3D analysis and 
detection of important urban amenities (e.g., park 
benches) to provide further information for urban 
design analysis. Many methods have been proposed 
for object detection in urban scenes. These includes 
text detection and recognition (Du et al., 2012; Zhu et 



 

al., 2016), zebra crossing detection (Ahmetovic et al., 
2015), curb detection (Cheng et al., 2018; Sun and 
Jacobs, 2017) and storefront accessibility detection 
(Wang et al., 2022). Du et al. (2012) and Zhu et al. 
(2016) focus on detecting text in a street environment. 
Cheng et al. (2018) propose a framework to detect 
road and sidewalk using stereo vision in the urban 
regions. Sun and Jacobs (2017) aim to find missing 
curb ramps at street intersections in the city by using 
the pairwise existence of the curb ramps. In a recent 
work, Wang et al. (2022) propose a multi-stage 
context learning framework for storefront 
accessibility detection, by using the specific relations 
between categories. 

Most of these analytical tools are developed by 
and for experts with knowledge in artificial 
intelligence (AI) and machine learning (M/L) and 
skills programming. In this paper, we propose a web 
application that allow any users, including non-
experts, to analyze a panoramic image with an 
interface similar to Google Maps, without relying on 
an AI/ML research team with coding skills. In 
addition, the users conduct analysis at a local scale, 
which is useful for site-specific designs. Our project, 
with automated analytic tools and a user-friendly 
interface, could open a path for more designers and 
community members to take part in utilizing 
computer vision and machine learning techniques to 
democratize and exploit GSV images as a public 
dataset in urban design and analytics. 

The main contributions of this study are as 
follows: 
• A user-friendly interface: the web interface is 

similar to Google Maps. Users can zoom in and 
out, move around, and analyze vegetation and 
amenities by dropping the Google Maps Pegman 
onto a location of interest. 

• Automated content analysis: the web interface 
integrates (1) an image segmentation algorithm 
detecting vegetation, sky, and street within GSV 
images; (2) a YoloV5 deep neural network 
machine learning model to detect amenities such 
as benches; and (3) construction of a diagram of 
tree coverage and benches using Monodepth2, a 
depth estimation algorithm, and image 
segmentation pixel-mapping. 

• Adaptive content visualization with real-time map 
marker SVG (scalable vector graphics) creation 
and colorized GSV images indicating vegetation 
and sky pixels, with various levels of image 
resolutions. 
The paper is organized as the following. After we 

have introduced our work and discussed related work 
on vegetation mapping and amenity detection in 
Section 1, Section 2 will provide a brief overview of 
the overall system. Section 3 lays out the user 
interface for journey and navigation. Section 4 
focuses on content analysis including vegetation 
analysis, bench detection and depth estimation. 
Section 5 discusses various aspects in visualizing the 
detected contents, in terms of generating vegetation 
images of very resolution levels, and bench markers. 
Section 6 concludes the work with some future 
research directions. 

2 SYSTEM OVERVIEW  

The most important characteristic of our web 
application is the ease of use and accessibility of the 
data gathered. For this, we constructed an application 
model whose user journey is as easy as possible. 
Figure 1 shows the workflow, including a user 
 

 
Figure 1: System workflow: user journey & interface, content analysis, and content visualization. 



journey and interface component, a content analysis 
component, and a content visualization component. A 
video showing the pilot web greenery app can be 
accessed by following the link here3 and the code can 
be found at the project’s GitHub page4. 

When the user selects the preferred point on 
Google Maps with the user journey and interface, the 
coordinates of that spot will be sent to a server. The 
server will download a GSV panorama and perform 
several analyses in the content analysis component. 
The vegetation coverage analysis (“Greenery 
Analysis”) module using color cues will generate 
vegetation, sky, and street layout within the 
panorama. The urban amenity detection (“Object 
Detection”) module utilizing pre-trained YoloV5 
models (Ultralytics, 2020) can detect various desired 
objects; in this project, it detects urban amenities such 
as benches in a park. Finally, the depth estimation 
module using MonoDepth2 pre-trained model 
(Nianticlabs, 2019) provides a meter estimation of 
how far the detected objects are from the center of the 
panorama, offering more accurate location 
information to annotate the vegetation coverage and 
amenities on the map with scalable vector graphics 
(SVG).  

The content visualization component contains two 
other features: Greenery Intensity Pano shows the 
percentage of vegetation the panorama contains and 
other metrics on vegetation distribution; and Object 
Detection Pano shows the detected amenities 
(benches) on the panorama. 

In the following three sections we will detail each 
of the three components: user journey and interface, 
with results of visualization, automated content 
analysis, and additional discussions on adaptive 
content visualization. 

3 USER JOURNEY & 
INTERFACE 

The user journey would be as follows. Users enter the 
website and see Google Maps spanning their whole 
browser with an empty Google Maps (Figure 2). Just 
like a regular Google Maps, users can zoom in/out, 
move around, and explore the world through our 
website. 

If users want to retrieve vegetation information or 
just see the GSV image at a certain location, they 
would right-click on a location on the map or drop a 
Google Pegman onto the map. The dashboard would 
then direct users to the specific panorama chosen, 
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exactly as done in Google Maps. In our user journey 
interface, users see a heads-up display, or HUD, in the 
lower left corner as shown in Figure 3, which allows 
the user to retrieve the “greenery intensity pano” of 
the current panorama, and to use two sliders to set the 
“object detection font size” for user-friendly amenity 
annotation viewing, and set the “greenery pano 
resolution”, for selecting the GSV image resolution 
used in the vegetation and object detection analyses, 
respectively. 

 
Figure 2: Opening dashboard of web application. 

 
Figure 3: Opening panorama of web application. 

 
Figure 4: Dashboard after retrieval of vegetation data, with 
an enlarged compass. 

3.1 Input and Output Interface 

The user sets these two sliders before pressing the 
blue button that runs the analyses on the backend 
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server. After the user retrieves the “Greenery Details” 
from the server, the HUD updates (Figure 4). In this 
updated HUD, we can now see added a “Toggle 
Greenery Details” button above the lower left HUD 
as well as a compass on the lower right. In Figure 4, 
we can also see an enlarged compass, which can be 
toggled upon clicking of the compass. This compass 
shows the locations of the vegetation coverage around 
the user. Based on the depth mapping of the 
vegetation intensity panorama and objects 
(amenities) found in the GSV image, which will be 
described in Section 4, we can recreate a 360-degree 
map of the user’s surroundings. As the user pans 
across the GSV image, the arrow in the middle of the 
compass moves to match the view so the user knows 
what part of the GSV image is displayed.  

Moreover, if the user toggles Greenery Details, a 
3-tabular modal appear in the center of the screen 
(Figure 5). This modal has three tabs: Panorama 
Details, Vegetation Intensity Pano and Object 
Detection Pano. In the Panorama Details tab, we have 
a panorama analysis run in Matlab using Python’s 
Matplotlib as well as the panorama’s data like its 
color analysis and object detection. A later section 
will describe how these details are fetched. This tab 
is default on opening, so that a user can retrieve all 
the details as soon as possible.  

 
Figure 5: Vegetation details modal toggled. 

Figure 6 shows how the “Greenery Intensity 
Pano” tab looks when active. The intensity panorama 
tab shows a miniature GSV image that can be 
expanded to full screen or even possibly viewed in 
VR mode if a headset or motion & orientation 
controls are activated on a mobile device when 
pressing the VR button in the bottom right. This 
greenery intensity panorama shows all detected 
vegetation highlighted in green and all detected sky 
coloration as blue (street coloration is also analyzed 
but not highlighted in this GSV image).  

 

 
Figure 6: Greenery Details - Greenery Intensity Pano. 

Figure 7 shows the Object Detection Pano Tab 
highlighted, and is similar to the Greenery Intensity 
Pano tab in every aspect besides the panorama, being 
that of the object detection program being run. In the 
main map screen (Figure 8), a marker appears on each 
analyzed location. The user can click on these 
markers to return to the GSV image with the 
vegetation details and panoramas. 

 
Figure 7: Greenery Details - Object Detection Pano Tab 
with benches detected. 

 
Figure 8: Markers shown on the main map screen. 

3.2 Implementation Details 

The vegetation details were generated through three 
steps: vegetation analysis, marker generation, and 
vegetation intensity image generation. Our backend 
server receives requests from the web application 
through a Node.js server, which  can process HTTP 



 

requests and compute results before returning a 
response back to the web application. The five 
variables sent to the server were the latitude and 
longitude of a location, the GSV image ID (the way 
that Google Maps tracks the GSV image), the chosen 
resolution level (from 1-5), the chosen font size (from 
1-3), and the photographer’s heading when taking the 
GSV image (This important parameter will be 
explained later in Section 5 ). Our Python and 
JavaScript code in the server uses these five variables 
to perform the three functions mentioned. 

4 AUTOMATED SCENE 
ANALYSIS 

Automated scene analysis includes vegetation 
analysis, object detection and depth estimation. We 
will detail these three modules in the following 
subsections. 

4.1 Greenery Analysis 

For obtaining an analysis of the vegetation coverage 
in Google Street View Images, we have a Python 
script that utilizes the OpenCV library for image 
processing and MatPlotLib for plotting our results 
and visualizing our data using Matlab’s plot UI 
elements. Both of these libraries make our 
development easier and are optimized for speed so the 
computation time is very reasonable. 

For obtaining an analysis of the vegetation 
coverage in Google Street View Images, we use a 
Python script that utilizes the OpenCV library for 
image processing and MatPlotLib for plotting our 
results and visualizing our data using Matlab’s plot 
UI elements. Both of these libraries make our 
development easier and are optimized for speed, 
therefore a user can select a very high resolution and 
most of the time is actually spent to construct the 
GSV image from the Google Maps API. 

After our server fetches and pieces together the 
tiles of a panoramic image retrieved from Google, the 
image segmentation algorithm analyzes the GSV 
image to identify vegetation. First, we convert our 
RGB image to an HSV image, so we can easily work 
with the color values of the GSV image pixels. HSV 
stands for Hue, Saturation, and Value, which means 
that we can find the color green by finding its range 
in hue and getting all green values by including every 
possible saturation and value. We use this “green” 
range to create the green color mask and we construct 
a mask image by applying this mask to the original 

image where all pixels within the range become value 
1 (white) and every other becomes 0 (black). Then, 
we highlight the image area with value  1 by replacing 
every mask pixel coordinate in our original image 
with [75, 255, 75] RGB value, representing green. We 
then save this image to be used by our web 
application (as shown in Figure 6).  

Finally, we want to find the amount of vegetation 
by the horizontal axis in our image, which represents 
the panning angles of the GSV panorama within 360o. 
To find out how much vegetation is present 
horizontally in the image, we make an array that will 
store all of our green pixels by horizontal coordinate 
and then we count how many green pixels are in each 
column of our image. We then plot this array as the 
vertical-axis values and 0 to number_of_columns to 
be the horizontal-axis. We also make a polar plot of 
this same data ranging from 0o to 360o which will 
then be used to create a marker to display in our web 
app (as shown in Figure 5). 

4.2 Object Detection 

To efficiently detect amenities such as benches in a 
park in our current implementation, we decided to use 
the state-of-the-art recognition software – YoloV5 
(Ultralytics, 2020). YoloV5 pre-trained models 
already include benches. YoloV5 offers multiple pre-
trained models, based on the amount parameters, their 
speed and accuracy. If users do not need to analyze 
panoramas in real-time, they can choose the slowest 
model that provides the highest accuracy, which is the 
YoloV5x model. If processing speed is a concern, 
then the users can select a faster model.  

Once the pre-trained model is selected, we will 
need to modify the inference parameters. Due to the 
nature of our project and how benches are usually 
situated, we had to adjust a few parameters to get the 
best possible result. We reduced the Confidence 
Threshold from 0.25 default to 0.2. Some benches are 
hard to detect due to their positions on the panorama 
and many of them have people sitting on them which 
further complicates the detection. At this moment, we 
only want YoloV5 to detect benches, so the Classes 
parameter has been set to an array containing 13, 
which is the code for benches. Lastly, IoU Threshold 
has been reduced from default 0.45 to 0.15. Here IoU 
(Intersection over Union) is a value used to measure 
the overlap of a predicted versus actual bounding box 
for an object. Such low value improves the chances 
that benches with various situations can be detected.  

 



 

 
Figure 9: Results of bench detection. 

Figure 9 shows the results of applying a pre-
trained YoloV5x model. All visible benches were 
identified but the second bench from the left was 
identified twice. We believe this model provides 
adequate accuracy for the needs of our project.  

 
Figure 10: Depth map (bottom) of a panoramic image (top), 
which is the same as the one in Figure 9. 

4.3 Depth Estimation 

In order to properly display the bench icon on the 
SVG, we will need to know how far the bench is from 
the center of the projection (i.e., the viewpoint) of the 
panorama. To accomplish this, we use the 
Monodepth2 pre-trained models (Nianticlabs, 2019).  

The difference between modes is in their trained 
resolution and whether it was trained on mono or 
stereo images. For the purpose of our project, we need 
actual depth data, which requires a stereo model. We 
also chose the best resolution available, as running 
time may not be of high importance to us. Our model 
was stereo_1024x320, which was run with a special 
parameter -pred_metric_depth.  

Monodepth2 also generates a file with estimated 
meter depth for each pixel. Now, we know the 
bounding box of a bench from YoloV5 detection. We 
can retrieve depth information of each pixel of the 
bench, and the average will be our final estimated 
depth of the bench.  

To put the bench in the proper spot on SVG we 
also need to know the direction of the bench with 
respect to the true north. We already know the 
panorama's original heading, which is exactly in the 
middle. For example, in Figure 10, the middle of the 
panorama is the road which is 160° heading. Then we 
find the middle of the bench’s bounding box to 
calculate how far it is from the viewpoint of the 
panorama. 

5 ADAPTIVE CONTENT 
VISUALIZATION 

Content visualization of vegetation and amenity 
object detection includes two considerations: 
generation of vegetation and object (bench) markers 
on the main map screen, and greenery image 
generation with different resolution levels.  

5.1 Marker Generation 

To create our markers, we use the same concept of 
our polar plot described in Section 3 but create an 
SVG, an icon that can be interpreted by Google maps 
to be a marker in our web app. Furthermore, since 
every GSV image is taken at different perspectives 
and we want all of our markers to display on our 
Google Maps, we would want our polar graph to have 
the vegetation coverage shown at true north of our 
image when placed on our map. To do this, we will 
need to rotate the SVG to take in consideration the 
direction the photographer faced when taking the 
GSV image. Luckily, Google Maps allows us to get 
the photographer’s point of view (POV) when taking 
the GSV image, meaning we can send this POV, or 
heading as we shall call it from now on, to the server 
where it can help us rotate our SVGs (Figure 11).  

 
Figure 11: Example of SVG rotation. 



 

 
Figure 12: Example of polar graph output from vegetation 
analysis. 

To place the marker on the map, not just oriented 
properly, we also add depth detection to our analysis. 
This depth detection allows us to know the distance 
from the photographer to every point in the GSV 
image and with this information, we can judge how 
far away our vegetation and objects are. All these 
nodes on the marker give us a heat map of the 
vegetation within the image, its proper thickness and 
distance away (Figure 12). Lastly, we map our 
detected benches onto the image using the same 
method, together with the vegetation plot to be 
displayed on the main map (as shown in Figure 8).  

5.2 Greenery Intensity Image at 
Different Resolution Levels 

Section 4.1 has described how to generate vegetation 
distribution and greenery intensity panorama (Figure 
6). We can also take a look at the difference in the 
output the greenery intensity image based on 
resolution levels. A resolution level of 1 takes the 
least amount of time in computation but is very low 
in resolution, while a resolution level of 5 takes 
significantly longer time in computation but is much 
higher in resolution and shows finer details.  

 
Figure 13: Example of part of output GSV image with a 
resolution of 3. 

 
Figure 14: Example of part of output GSV image with a 
resolution of 1. 

Figure 13 (level 3)  was able to differentiate more 
details than Figure 14 (level 1). Depending on users’ 
time constraint, objective, or internet connection, 
they will can  choose between higher resolution and 
shorter processing time. 

6 CONCLUSION AND FUTURE 
WORK 

Overall, our real-time analysis web application 
proved to be effective in both vegetation and amenity 
detection. The website can detect vegetation in any 
GSV images and then effectively display our data and 
results to the users. A large proponent of our project 
was to allow  non-expert communities without 
knowledge and skills in programming and machine 
learning to access the application and analyze any 
area where google street view is available. Advancing 
the accessibility of computer vision products can 
increase social awareness of urban issues. Our web 
application could become a powerful community 
engagement tool and merits further research. 

Many improvements can be made to the 
application, such as improving the dashboard user 
interface/experience, adding more features like newly 
planted tree vs. established tree detection, and 
improving the vegetation detection algorithm. Our 
project went through many phases before its current 
stage of implementation. The first challenge was to 
download the GSV images automatically. This was 
solved by connecting Google Maps API using a 
python script, which allowed us to automate the 
process: fetching the GSV images, analyzing the 
GSV images and returning them to the browser . 
Future work may include the batching of GSV image 
analyses to ease the process for users who want to 
analyze a larger area with many GSV images.  

For a better user experience, the speed of the 
application should be improved. For larger resolution 
panoramas, the time of analysis increases 
exponentially. Shortening the run-time or stream the 



 

data to the client as the analysis goes on would 
increase the odds of repeated use by the same user. 
Another possibility for future work is scenic route 
selection. Based on the vegetation levels detected in 
multiple consecutive GSV images, users could ask for 
directions from one location to another, but instead of 
choosing the fastest or shortest route, they can choose 
the most scenic route. This can be especially useful 
for tourists of landscape attractions or hiking trails.  

Finally, in the current implementation, we use 
green colors to index vegetation coverage. This 
method will not work if a Google Street View image 
is collected in winter when deciduous trees shed their 
leaves. Also, this method does not account for urban 
plants that are not green. However, using green colors 
as a proxy for vegetation coverage can result in an 
estimate representative enough in urban design 
analytics. In the future, a deep learning model like 
Mask R-CNN (Abdulla, 2017) for semantic 
segmentation can be applied to improve vegetation 
segmentation accuracy. In addition, we use benches 
as one example of urban amenities. Future works can 
include other types of urban amenities in public 
spaces. 
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