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ABSTRACT
Accurately accounting for spectral structure in spectrometer data induced by instrumental chromaticity on scales relevant for
detection of the 21-cm signal is among the most significant challenges in global 21-cm signal analysis. In the publicly available
EDGES low-band data set, this complicating structure is suppressed using beam-factor based chromaticity correction (BFCC),
which works by dividing the data by a sky-map-weighted model of the spectral structure of the instrument beam. Several
analyses of this data have employed models that start with the assumption that this correction is complete. However, while BFCC
mitigates the impact of instrumental chromaticity on the data, given realistic assumptions regarding the spectral structure of
the foregrounds, the correction is only partial. This complicates the interpretation of fits to the data with intrinsic sky models
(models that assume no instrumental contribution to the spectral structure of the data). In this paper, we derive a BFCC data
model from an analytic treatment of BFCC and demonstrate using simulated observations that, in contrast to using an intrinsic
sky model for the data, the BFCC data model enables unbiased recovery of a simulated global 21-cm signal from beam-factor
chromaticity corrected data in the limit that the data is corrected with an error-free beam-factor model.
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1 INTRODUCTION

After the first stars and proto-galaxies formed at Cosmic Dawn (CD)
and suffused the intergalactic medium (IGM) with photons at the Ly𝛼
resonance of hydrogen, their absorption and spontaneous re-emission
is expected to have coupled the hydrogen spin and kinetic temper-
atures via the Wouthuysen–Field effect. The associated decoupling
of the hydrogen spin temperature from the background radiation
temperature imprints a spectral distortion in the sky-averaged radio
spectrum that should be observable today in the frequency range
𝜈CD ≤ 𝜈 . 220 MHz, where 𝜈CD = 𝜈21/(1 + 𝑧CD) is the redshifted
frequency of 21-cm hyperfine line radiation emitted at the onset of
CD, 𝑧CD is the corresponding redshift, and 𝜈21 = 1420.4057 MHz
is the rest frequency of the 21-cm emission.

Multiple experiments are underway to measure the evolution of
this sky-averaged ‘global’ redshifted 21-cm signal, including: the
Experiment to Detect the Global Epoch of Reionization Signature
(EDGES; Bowman et al. 2018a), the Large-aperture Experiment to
Detect the Dark Ages (LEDA; e.g. Bernardi et al. 2016), the Mapper
of the IGM Spin Temperature (MIST; e.g. Singal et al. 2022), Prob-
ing Radio Intensity at High-Z from Marion (PRIZM; Philip et al.
2019), the Radio Experiment for the Analysis of Cosmic Hydrogen
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(REACH; de Lera Acedo et al. 2022) and the Shaped Antenna meas-
urement of the background RAdio Spectrum (SARAS3; Nambissan
T. et al. 2021). Additionally, space- and lunar-based global 21-cm ex-
periments, which eliminate observational challenges associated with
the ionosphere and mitigate or remove those associated with human-
made Radio Frequency Interference (RFI), are also planned to begin
operation in the next few years. These include: Discovering Sky at
the Longest wavelength (DSL; Chen et al. 2021), the Lunar Surface
Electromagnetic Experiment (LuSEE - Night; Bale et al. 2023) and
Probing ReionizATion of the Universe using Signal from Hydrogen
(PRATUSH).

In 2018, analysing data in the 50–100 MHz range, the EDGES
experiment presented evidence for a first detection of the global 21-
cm signal (Bowman et al. 2018a; hereafter B18). A best fitting flat-
bottomed absorption trough was recovered centred at 78 ± 1 MHz
(𝑧 = 17.2 ± 0.2), with a width of 19+4

−2 MHz and with a depth
of 500+500

−200 mK, where the uncertainties correspond to 99 per cent
confidence intervals, accounting for both thermal and systematic
errors.

The depth of this absorption trough exceeds the ∼ 165 mK max-
imum depth predicted in this redshift range by fiducial models (e.g.
Reis, Fialkov, & Barkana 2021). Assuming that the absorption para-
meters derived with this model are accurate and that the recovered
21-cm absorption trough is interpreted as physical, its large depth
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2 Sims et al.

implies an increased differential brightness between the hydrogen
21-cm spin temperature and the radio background temperature than
is predicted by standard models. The large absorption depth can be
explained astrophysically by positing a new contribution to the ra-
dio background temperature at CD, which raises it in excess of the
CMB temperature (e.g. B18; Feng & Holder 2018; Fraser, et al.
2018; Ewall-Wice, Chang, Lazio, Doré, Seiffert & Monsalve 2018;
Mirocha & Furlanetto 2019; Fialkov & Barkana 2019; Reis, Fialkov,
& Barkana 2020), or by assuming a kinetic temperature of the hy-
drogen gas reduced below the adiabatic cooling limit, which could
occur due to interactions between cold dark matter and baryons (e.g.
B18; Barkana 2018; Muñoz & Loeb 2018; Fialkov, Barkana, & Co-
hen 2018; Liu et al. 2019). However, non-astrophysical explanations
have also been put forward, with re-analyses of the EDGES data
raising concerns about the original data analysis and potential pres-
ence of unmodelled systematics (e.g. Hills et al. 2018; Bradley, et
al. 2019; Singh & Subrahmanyan 2019; Sims & Pober 2020; Bevins
et al. 2021; Murray et al. 2022). Additionally, a recent attempt by
SARAS3 to verify this absorption trough in a radiometer measure-
ment of the spectrum of the radio sky in the 55-85 MHz band rejected
with 95.3% confidence the best-fitting profile reported in B18 (Singh
et al. 2022); however, analysing the same data, Bevins et al. (2022)
find that when defining a prior that spans models drawn from as-
trophysical simulations of the 21-cm signal with similar depths and
central frequencies to the absorption feature reported in B18, 60%
of this physical EDGES-like parameter space is consistent with the
SARAS 3 data.

The primary challenge to unbiased 21-cm signal recovery from
spectrometer data is the mixing, through instrumental chromaticity,
of bright, spectrally smooth foreground emission into the narrower
spectral scales relevant for 21-cm signal detection. The frequency-
dependent weighting of the sky by the instrument beam is a primary
source of instrument chromaticity which can introduce this mixing.
In the EDGES low-band data analysed in B18, a procedure called
beam-factor based Chromaticity Correction (BFCC) is used to mit-
igate the impact of the spectral structure introduced to the data by
beam chromaticity. This involves dividing the calibrated autocorrel-
ation spectrometer data by an integrated sky-map weighted model of
the instrument beam, acting as a proxy for beam chromaticity (see
Section 2 for details).

If BFCC were able to completely eliminate the spectral structure
introduced to the data by beam chromaticity, one would be able to
recover unbiased estimates of the global 21-cm signal from a fit of
accurately calibrated BFCC data with a model for the intrinsic spec-
tral structure of the sky. The analyses of the data, thus far, have taken
such a perfect correction as a starting point for the modelling of the
data, with the foregrounds, after propagation through the ionosphere,
being modelled by low-order or derivative-constrained polynomials.

Building on such intrinsic models, potential systematics resulting
from imperfections in the BFCC correction have been fit in a data-
driven manner (e.g. B18; Hills et al. 2018; Bradley, et al. 2019; Singh
& Subrahmanyan 2019; Sims & Pober 2020; Bevins et al. 2021; Ma-
hesh et al. 2021; Murray et al. 2022). However, the extent to which
these models are necessary or sufficient to model these systematic
effects has not been studied from a first-principles perspective. This
absence of detailed characterisation of the systematic structure in
the data resulting from BFCC introduces unnecessary epistemic un-
certainty into astrophysical inferences from data fitted with these
models. This hinders the drawing of firm conclusions regarding the
21-cm signal.

A comprehensive theoretical study of the efficacy of BFCC and of
models with which one should expect to recover unbiased estimates

of the global 21-cm signal from BFCC spectrometer data is required
to mitigate this uncertainty. It is essential both for assessing the results
of previous analyses of the EDGES low-band data and to provide a
route towards obtaining a more theoretically principled model for
BFCC data. The series of papers of which this is the first is designed
to provide this.

In this first paper, we address the extent to which BFCC can elimin-
ate the spectral structure introduced to the data by beam chromaticity
under realistic assumptions regarding the spectral structure of the sky,
in the limit that one has an error-free model for the beam-factor. We
demonstrate that, in this limit, while BFCC mitigates the impact of
instrumental chromaticity on the data, given realistic assumptions
regarding the spectral structure of the foregrounds, the correction is
only partial. However, we show that an analytic treatment of BFCC
nevertheless provides a strong foundation for derivation of an ac-
curate approximate model for BFCC data. We demonstrate using
simulated observations that, in contrast to using an intrinsic model
for the data, the BFCC data model derived from this treatment en-
ables unbiased recovery of a simulated global 21-cm signal from
beam-factor chromaticity corrected data.

In subsequent papers in this series we plan to: (i) quantify the
impact of uncertainties associated with one’s a priori knowledge of
the instrument beam and sky on the model complexity required to
describe BFCC data; (ii) examine the relation between 21-cm signal
amplitude and the degree to which one can recover unbiased astro-
physical inferences using; (iii) carry out Bayesian model comparison
between the BFCC model and extensions to the intrinsic sky model
incorporating systematic models.

The remainder of this paper is organised as follows. In Section 2
we detail the BFCC procedure and derive the general form of BFCC
data. In Section 3 we explore a simplified scenario in the limit that the
spectral structure of the foreground emission is spatially independ-
ent1 and demonstrate that in this limit BFCC can perfectly chromati-
city correct spectrometer data, yielding a closed-form2 expression
for the data model and unbiased 21-cm signal estimates. In Section 4
we will show that for foregrounds with realistic spatially dependent
spectral structure no such closed-form expression for the data model
exists but that a perturbed version of the BFCC model derived in
Section 3 provides a well motivated basis for describing the data.
In Section 5, we determine the preferred complexity of the BFCC
model for EDGES low-band data using fits to simulated data. We ad-
ditionally compare the preferred BFCC model to an alternate model
designed to accurately describe the intrinsic spectral structure of the
sky. In Section 6, we discuss the relative merits of the BFCC model
and intrinsic model for describing BFCC EDGES low-band data. We
also compare the difference in 21-cm signals recovered from simu-
lated data with the two models to the difference between the 21-cm
signal recovered in the B18 analysis and that recovered in the Hills
et al. (2018) analysis of the publicly available EDGES low-band data
with an intrinsic sky model. In Section 7, we provide a summary and
conclusions.

1 Throughout the text, we use spatially invariant and isotropic spectral struc-
ture synonymously. Both denote a situation in which the spectral structure of
the emission in question does not vary as a function of celestial coordinate.
This is in contrast to emission with spatially-dependent or anisotropic spectral
structure in which the reverse is true.
2 A general expression for spectrometer data can be written in terms of
the integral of the instrument-response-weighted sky brightness temperature
over integration time and solid angle (see Section 2). Here, by closed-form
we mean that, after beam-factor chromaticity correction one’s model for the
data can be written free of integral terms or infinite sums.
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2 BEAM-FACTOR CHROMATICITY CORRECTION

Working in the reference frame of the antenna, a calibrated auto-
correlation spectrum derived from a zenith-pointing antenna, such
as EDGES, integrated over a short time interval Δ𝑡 = (𝑡end − 𝑡start)
centered on a time, 𝑡 = 𝑡start +Δ𝑡/2, where 𝑡start and 𝑡end are the start
and end of the observation, respectively, can be written as,

𝑇data (𝜈, 𝑡) =
1
Δ𝑡

𝑡end∫
𝑡start

4𝜋∫
0

𝐵(𝜈,Ω)𝑇sky (𝜈,Ω, 𝑡 ′)dΩd𝑡 ′ + 𝑛 . (1)

Here, Ω is a position coordinate on the celestial sphere in the
reference frame of the antenna3, 𝑇sky (𝜈,Ω, 𝑡) describes the time-
dependent sky brightness temperature distribution above the antenna,
𝐵(𝜈,Ω) = 1

4𝜋 𝐷 (𝜈,Ω), describes the antenna beam, where 𝐷 (𝜈,Ω)
is the antenna’s directivity pattern, and 𝑛 is instrumental noise. As-
suming the data is calibrated such that 𝑇data (𝜈, 𝑡) is an absolute
temperature measurement, we have

∫ 4𝜋
0 𝐵(𝜈,Ω)dΩ = 1.

For an instrument such as EDGES, incorporating a ground plane
below the antenna, the dominant contribution to the integrated an-
tenna directivity derives from the skyward hemisphere, Ω+ (in a
zenith angle, 𝜃, and azimuth, 𝜙, horizontal celestial coordinate sys-
tem, the hemisphere with 𝜃 ≤ 90). In the limit of an infinite and
perfectly electrically conducting (hereafter, PEC) ground plane the
integrated antenna directivity derives exclusively from Ω+ (i.e. the
beam is entirely skyward), and Equation 1 reduces to,

𝑇data (𝜈, 𝑡) =
1
Δ𝑡

𝑡end∫
𝑡start

2𝜋∫
0

𝜋/2∫
0

𝐵(𝜈,Ω)𝑇sky (𝜈,Ω, 𝑡 ′) sin(𝜃)d𝜃d𝜙d𝑡 ′ + 𝑛

(2)

≡ 1
Δ𝑡

𝑡end∫
𝑡start

∫
Ω+

𝐵(𝜈,Ω)𝑇sky (𝜈,Ω, 𝑡 ′)dΩd𝑡 ′ + 𝑛 ,

Absorption by the ground of some fraction of the radiation that
would have been received by an antenna on an infinite PEC ground
plane means the response to the sky signal of an antenna on a finite
ground plane is proportionately lower. Equation 2 provides an ap-
proximation for𝑇data (𝜈, 𝑡) measured by an antenna on a finite ground
plane, but neglects this small fractional loss due to the ground. This
fractional loss can however be simulated and corrected with a ground
loss correction procedure (e.g. Rogers & Bowman 2012; Monsalve et
al. 2017). For the EDGES low-band instrument4, 1−Ω+/Ω ' 10−3;
thus, any chromatic effects introduced into the data through imper-
fections in ground-loss correction are expected be subdominant to
those introduced through imperfect beam-factor chromaticity correc-
tion. As such, in this paper we focus on the latter and assume that
ground loss correction has been performed sufficiently accurately for
negligible bias to be introduced by using Equation 2 to describe the
calibrated and ground-loss corrected spectrometer data.

It can be seen from Equation 2, that the spectral structure of the
measured data, 𝑇data (𝜈, 𝑡), is a function of the product of the antenna
chromaticity and the spectral structure of the emission incident on the

3 We use this notation for brevity and generality. In a zenith angle, 𝜃 , and
azimuth, 𝜙, horizontal celestial coordinate system, dΩ = sin(𝜃)d𝜃d𝜙, and
𝑇 (Ω) = 𝑇 (𝜃, 𝜙) , where 𝑇 is a scalar field defined on the celestial sphere.
4 We specifically consider the H2 configuration of the EDGES low-band
instrument with a 30 m × 30 m sawtooth ground plane, the data from which
was used for the primary analysis in B18 (see B18 for alternate configurations
and Section 3.3.1 for details of the instrument simulation in this work).

antenna. Thus, if the antenna has chromatic structure on scales relev-
ant for detection of the 21-cm signal, then the chromaticity imparted
to the foregrounds by the beam will complicate or potentially pre-
clude unbiased estimation of the 21-cm signal even if the foreground
component of the brightness distribution incident on the antenna is
intrinsically spectrally smooth.

In previous work, the EDGES collaboration has taken the ap-
proach of mitigating beam chromaticity by dividing the calibrated
autocorrelation spectrum by a beam chromaticity correction factor
(hereafter, beam-factor) that describes the average spectral structure
of the beam weighted by the brightness temperature distribution of
the sky at a given reference frequency. In general, such a correction
is given by,

𝐵factor,general (𝜈, 𝑡) =

𝑡end∫
𝑡start

∫
Ω+

𝐵m (𝜈,Ω)𝑇m
fg (𝜈c,Ω, 𝑡 ′)dΩd𝑡 ′

𝑡end∫
𝑡start

∫
Ω+

𝐵m (𝜈c,Ω)𝑇m
fg (𝜈c,Ω, 𝑡 ′)dΩd𝑡 ′

, (3)

where, 𝜈c is a reference frequency, which going forward we will
define to be the center of the band observed by the instrument, and
𝐵m (𝜈,Ω) and 𝑇m

fg (𝜈c,Ω, 𝑡 ′) are models for the frequency-dependent
beam over the frequency range of the data and foreground sky bright-
ness temperature distribution at reference frequency 𝜈c, respectively.

For a sufficiently short integration time5, Equation 3 is well ap-
proximated by (e.g. Mozdzen et al. 2017, 2019),

𝐵factor (𝜈, 𝑡) =

∫
Ω+

𝐵m (𝜈,Ω)𝑇m
fg (𝜈c,Ω, 𝑡)dΩ∫

Ω+
𝐵m (𝜈c,Ω)𝑇m

fg (𝜈c,Ω, 𝑡)dΩ
. (4)

A correction of this type has also been used for some applications by
other global signal experiments including LEDA (e.g. Spinelli et al.
2021) and REACH (e.g. Shen et al. 2021; Anstey et al. 2022).

In Monsalve et al. (2017), an alternate chromaticity correction
formulation incorporating additional foreground spectral information
is employed. In Appendix A we describe the dependence of the
relative efficacy of the Monsalve beam-factor formulation and that of
the Mozdzen beam-factor formulation described by Equation 4 on the
accuracy of one’s foreground spectral model. As the nominal form of
beam-factor chromaticity correction used in B18, in the remainder
of this work we focus on BFCC using the Mozdzen beam-factor
formulation.

In the short-integration ‘snapshot’ limit considered in Equation 4,

5 Single-dish integrations are time-averaged measurements. The spectrum for
a given integration can be reasonably approximated by a snapshot at the center
of the time step if the beam crossing time for a source is 𝑡 ≈ Θbeam/𝜔E � 𝜏,
with 𝜏 the integration time, Θbeam the angular scale of spatial structure in the
beam and 𝜔E ≈ 7.3 × 10−5 rad s−1 the maximum rotation rate of a source
through the beam. To zeroth order, the EDGES beam has a characteristic width
of 10s of degrees, for which this is a reasonable approximation on timescales
of 10s of minutes. Scattering effects, associated with placing the antenna on a
finite ground-plane on top of a realistic soil layer, introduce low-level spatial
structure in the beam on smaller scales, implying a corresponding reduction
in time for which a snapshot approximation is valid at the level required for
21-cm cosmology. Realistic simulations of the EDGES low-band antenna,
ground plane and soil suggest a snapshot approximation is reasonable for
integration times less than approximately 10 m, with statistically consistent
results recovered in this limit for simulated data sets with a comparable
signal-to-noise level to the publicly available data from B18.

MNRAS 000, 1–25 (2021)
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the chromaticity corrected spectrum for the observation has the form,

𝑇corrected (𝜈, 𝑡) (5)

=


∫
Ω+

𝐵(𝜈,Ω)𝑇sky (𝜈,Ω, 𝑡)dΩ + 𝑛


×

∫
Ω+

𝐵m (𝜈c,Ω)𝑇m
fg (𝜈c,Ω, 𝑡)dΩ∫

Ω+
𝐵m (𝜈,Ω)𝑇m

fg (𝜈c,Ω, 𝑡)dΩ
.

From Equation 5, it can be seen that BFCC scales the instrumental
noise in addition to the sky-signal. Thus, in principle, when defin-
ing a data likelihood, the covariance matrix of 𝑇corrected (𝜈, 𝑡) should
be scaled by 1/𝐵2

factor. However, in practice, the EDGES low-band
𝐵factor deviates from unity by a maximum of∼ 10% when the Galaxy
is overhead, and less than ∼ 5% when the Galaxy is low in the beam
in the ∼ 0−12 h Local Sidereal Time- (LST-)range that the spectrum
is averaged over in the B18 publicly released data (see Figure 1).
As a result, the impact of this scaling of the noise is approximately
an order of magnitude smaller than the effect of data-weighting as-
sociated with RFI flagging in the same data set, which varies by
approximately a factor of two between data inside vs outside the FM
band above 87 MHz (B18). With a more chromatic instrument, with
a larger 𝐵factor spread, the impact of correctly accounting for this
re-weighting of the noise will increase. In either case, if one wishes
to recover unbiased signal estimates with accurate uncertainty es-
timates at high precision, this re-weighting of the noise should be
accounted for when defining a data likelihood for 𝑇corrected (𝜈, 𝑡).

A phenomenological model for the effect of errors on 𝐵m as ap-
plied to EDGES low-band data was presented in Sims & Pober
(2020). Additionally, in the context of the LEDA experiment, Spinelli
et al. (2022) showed that errors in simulated properties of the soil
below the ground plane degrade the effectiveness of BFCC. In either
case, accounting for residual chromaticity resulting from imperfect
BFCC is found to affect 21-cm signal recovery when not accounted
for in the analysis.

Here, we focus on the effectiveness of BFCC when one has an
accurate model for 𝐵m (𝜈,Ω) and 𝑇m

fg (𝜈c,Ω, 𝑡). Errors in the beam
model (e.g. Spinelli et al. 2022; Rogers et al. 2022) and the base-map
foreground model (e.g. Pagano et al. 2022) have potential to intro-
duce additional spectral structure into the BFCC data, necessitating
additional model complexity to accurately describe the foregrounds
and prevent biased recovery of the 21-cm signal. In future work we
will consider the impact of additional chromatic structure in the spec-
trum due to realistic deviations from the assumption of an error-free
model for 𝑇m

fg (𝜈c,Ω, 𝑡) and 𝐵m (𝜈,Ω), deriving from uncertainties in
the base-map model and perturbations to the parameters of electro-
magnetic simulations of the beam within realistic thresholds, respect-
ively. Additionally, we will explore the extent to which the flexible
complexity of the non-21-cm component of the BFCC data model
derived in this work can be used absorb this structure and reduce
or eliminate bias in 21-cm signal recovery that it would otherwise
affect.

3 CHROMATICITY CORRECTION APPLIED TO
FOREGROUNDS WITH SPATIALLY-INDEPENDENT
SPECTRAL STRUCTURE

In this section, we begin by examining the impact of BFCC in a
scenario in which the data is derived from observations of fore-
grounds with spatially-independent spectral structure. We use these

‘toy model foregrounds’ to build intuition for the impact of BFCC
in the more complex scenario that the spectral structure of the fore-
grounds in the data is spatially dependent, and we examine this latter
scenario, in detail, in Section 4.

Starting with the toy model foregrounds scenario, one can show
that a ‘perfect’ correction for instrumental chromaticity can be
achieved under the following definition (see Appendix B):

• Perfect BFCC definition - a correction for which, in the limit of an
error-free model for 𝐵m (𝜈,Ω) and 𝑇m

fg (𝜈c,Ω, 𝑡), a closed-form solu-
tion for 𝑇corrected (𝜈) can be derived in terms of the (assumed known)
intrinsic spectral structure of the sky observed by the instrument and
the calculated beam-factor.

In Section 3.1, we begin by deriving the expected spectrum of BFCC
data in this regime.

3.1 Perfect BFCC

To illustrate the effectiveness of BFCC on data derived from obser-
vations of foregrounds with spatially-independent spectral structure
it is useful to divide the sky brightness into the two components of
interest for 21-cm cosmology,

𝑇sky (𝜈,Ω, 𝑡) = 𝑇fg (𝜈,Ω, 𝑡) + 𝑇21 (𝜈) . (6)

Here 𝑇21 (𝜈) is the global 21-cm signal, which we assume is well
approximated as isotropic on the scale of the EDGES beam.

𝑇fg (𝜈,Ω, 𝑡) = 𝑇𝛾 + 𝑇plfg (𝜈,Ω, 𝑡) (7)

is the anisotropic, foreground sky brightness temperature distribu-
tion above the antenna at a given time, and is composed of two
components, (i) 𝑇𝛾 , an approximately isotropic CMB temperature
and (ii) 𝑇plfg (𝜈,Ω, 𝑡), an anisotropic power-law foreground bright-
ness temperature distribution (comprised of the sum of anisotropic
Galactic and approximately isotropic extragalactic foregrounds). In
this section, we assume the foregrounds have isotropic spectral struc-
ture and that the Galactic and extragalactic foreground brightness
temperature distribution is described by a single spatially independ-
ent power law (in preparation for generalising our foreground spectral
structure model to a realistic spatially dependent spectral index dis-
tribution in Section 4); however, the result also holds for a foreground
with arbitrary spatially independent spectral structure.

With the above definitions and assuming in this section that

𝑇plfg (𝜈,Ω, 𝑡) = (𝑇fg (𝜈c,Ω, 𝑡) − 𝑇𝛾)
(
𝜈

𝜈c

)−𝛽0

, (8)

we can rewrite 𝑇sky (𝜈,Ω, 𝑡) as,

𝑇sky (𝜈,Ω, 𝑡) = (𝑇fg (𝜈c,Ω, 𝑡) − 𝑇𝛾)
(
𝜈

𝜈c

)−𝛽0

+ 𝑇𝛾 + 𝑇21 . (9)

Substituting Equation 9 into Equation 5, the BFCC spectrum is given

MNRAS 000, 1–25 (2021)
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by,

𝑇corrected (𝜈, 𝑡) (10)
= 𝑇data/𝐵factor

=

[ ∫
Ω+

𝐵(𝜈,Ω)

×
(
(𝑇fg (𝜈c,Ω, 𝑡) − 𝑇𝛾)

(
𝜈

𝜈c

)−𝛽0

+ 𝑇𝛾 + 𝑇21

)
dΩ + 𝑛

]

×

∫
Ω+

𝐵(𝜈c,Ω)𝑇fg (𝜈c,Ω, 𝑡)dΩ∫
Ω+

𝐵(𝜈,Ω)𝑇fg (𝜈c,Ω, 𝑡)dΩ

= 𝑇m0 (𝑡)
(
𝜈

𝜈c

)−𝛽0

+
(1 −

(
𝜈
𝜈c

)−𝛽0
)𝑇𝛾

𝐵factor (𝜈, 𝑡)

+ 𝑇21
𝐵factor (𝜈, 𝑡)

+ 𝑛

𝐵factor (𝜈, 𝑡)
.

Here, 𝑇m0 is the beam weighted average foreground brightness at
reference frequency 𝜈c, the simplification between lines 2 and 3
relies on the spatial and spectral separability of the components of
Equation 9, and we have made use of the fact that 𝑇𝛾 and 𝑇21 are
spatially independent to move them outside the integral. We have
arranged the terms to highlight those which, in the BFCC data,
are inversely scaled by the beam-factor relative to their intrinsic
expectations.

We note that the purpose of BFCC is to suppress beam-
chromaticity-induced spectral structure in the foreground component
of the data that, if unaccounted for, will bias recovery of the 21-cm
signal. The scaling of the latter three terms in Equation 10 by the
beam chromaticity correction factor is a side effect of BFCC rather
than its intended purpose. This scaling must be accounted for when
fitting the corrected data, but is not otherwise an impediment to re-
covery of unbiased estimates of the 21-cm signal (as will be shown
in Section 3.3).

Equation 10 provides a closed-form solution for𝑇corrected (𝜈) para-
metrised in terms of the intrinsic spectral structure of the sky, ful-
filling perfect BFCC definition 2, without requiring condition (iv).

For a sky described by Equation 9, the spectrum measured by a
hypothetical spectrometer with a uniform achromatic beam has the
form,

𝑇data,uniform (𝜈, 𝑡) = 𝑇fg (𝜈c, 𝑡)
(
𝜈

𝜈c

)−𝛽0

+ (1 −
(
𝜈

𝜈c

)−𝛽0

)𝑇𝛾

+ 𝑇21 + 𝑛 , (11)

where 𝑇fg (𝜈c, 𝑡) =
∫
Ω+

𝑇fg (𝜈c,Ω, 𝑡)dΩ.

Comparing Equation 10 and Equation 11, we see that:

• the spectral structure of the power-law component of the fore-
grounds is identical. Due to the relative amplitudes of 𝑇fg (𝜈c, 𝑡)
and the remaining signal components, by performing perfect chro-
maticity correction of 𝑇fg (𝜈c, 𝑡), BFCC has eliminated the majority
of the non-sky-based chromatic structure in 𝑇data (𝜈, 𝑡).
• The remaining components differ by factors of 𝐵factor. Thus, one
should expect Equation 11 to provide a biased fit to BFCC data;
however, since the largest source of unmodelled spectral structure
has been eliminated, the level of bias will be significantly mitigated
relative to fitting uncorrected data with the same model.

3.2 Time-averaging

In the limit of data derived from observations of foregrounds with
spatially-independent spectral structure corrected using BFCC with
an error-free beam-factor model, Equation 10, derived in the pre-
ceding section, is an accurate model for a chromaticity-corrected
snapshot observation at a given time. In practice, to achieve suffi-
cient signal-to-noise6 to detect the cosmological 21-cm signal, one
must fit either:

• time-dependent data, comprised of multiple spectra, where each
spectrum is the average of data falling in a given time-bin (potentially
over a number of sidereal days); or,
• a single spectrum averaged in time (and potentially over a number
of sidereal days).

A fit to time-dependent data enables one to leverage angular, in ad-
dition to spectral, information to distinguish between the foregrounds
and 21-cm signal (e.g. Liu et al. 2013; Tauscher, Rapetti, & Burns
2020a,b; Anstey, de Lera Acedo, & Handley 2022). This provides
more stringent constraints on ones instrument weighted sky model
and correspondingly enables the placement of stronger constraints
on the cosmological signal when one has a sufficiently high fidelity
model of the instrument and foregrounds.

In contrast and for the same reason, one expects averaging the
data to a single spectrum to mitigate time-dependent systematics
arising from imperfect sky and instrument modelling, if they are
uncorrelated or weakly correlated on the time-scales being averaged
over. Correspondingly, this enables a reduction in the bias of the
signal estimates, at the expense of having a less well constrained
estimate of the 21-cm signal. Since in this case the requirements
on the precision of knowledge of the sky and instrument are lower
and because this is the case applicable to modelling the publicly
available EDGES low-band data, here we focus on modelling time-
averaged data and, thus, on defining the appropriate model for BFCC
data described by Equation 10 averaged over time to form a single
spectrum.

Assuming the noise in the data is uncorrelated between frequen-
cies7, the optimal, with respect to signal-to-noise, inverse-variance
weighted average, over time, of BFCC data described by Equation 10
is given by,

𝑇corrected (𝜈) (12)

=
1

𝑊 (𝜈)

𝑁𝑡∑︁
𝑖=1

1
𝜎2
𝑖
(𝜈)

[
𝑇m0 (𝑡𝑖)

(
𝜈

𝜈c

)−𝛽0

+
(1 −

(
𝜈
𝜈c

)−𝛽0
)𝑇𝛾

𝐵factor (𝜈, 𝑡𝑖)

+ 𝑇21
𝐵factor (𝜈, 𝑡𝑖)

+ 𝑛

𝐵factor (𝜈, 𝑡𝑖)

]
,

where 𝑁𝑡 is the number of snapshots in the time-range being aver-
aged over, 𝜎2

𝑖
(𝜈) is the expected variance of the noise on the data

at frequency 𝜈, and 𝑊 (𝜈) = (∑𝑁𝑡

𝑖=1 (1/𝜎
2
𝑖
(𝜈))). Defining the time-

and sky-averaged beam weighted foreground brightness at reference
frequency, 𝜈c, as,

𝑇m0 =
1
𝑊

𝑁𝑡∑︁
𝑖=1

1
𝜎2
𝑖
(𝜈)

𝑇m0 (𝑡𝑖) , (13)

6 Throughout this work, we use signal-to-noise to denote the ratio between
the amplitude of the 21-cm signal and noise in the data.
7 This is a good approximation in the publicly-available EDGES low-band
data (Murray et al. 2022)
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the time-averaged beam-factor as,

𝐵̄factor (𝜈) =
[

1
𝑊

𝑁𝑡∑︁
𝑖=1

1
𝜎2
𝑖
(𝜈)𝐵factor (𝜈, 𝑡𝑖)

]−1

, (14)

and the time-averaged noise on the BFCC data as,

𝑛̄(𝜈) = 1
𝑊

𝑁𝑡∑︁
𝑖=1

𝑛(𝜈, 𝑡𝑖)
𝜎2
𝑖
(𝜈)𝐵factor (𝜈, 𝑡𝑖)

, (15)

Equation 12 can be rewritten as,

𝑇corrected (𝜈) (16)

= 𝑇m0

(
𝜈

𝜈c

)−𝛽0

+
(1 −

(
𝜈
𝜈c

)−𝛽0
)𝑇𝛾

𝐵̄factor (𝜈)
+ 𝑇21
𝐵̄factor (𝜈)

+ 𝑛̄ .

If we uniformly weight snapshots when averaging over time8, Equa-
tions 13–15 simplify to,

𝑇m0 =
1
𝑁𝑡

𝑁𝑡∑︁
𝑖=1

𝑇m0 (𝑡𝑖) , (17a)

𝐵̄factor (𝜈) =
[

1
𝑁𝑡

𝑁𝑡∑︁
𝑖=1

1
𝐵factor (𝜈, 𝑡𝑖)

]−1

, (17b)

𝑛̄(𝜈) = 1
𝑁𝑡

𝑁𝑡∑︁
𝑖=1

𝑛(𝜈, 𝑡𝑖)
𝐵factor (𝜈, 𝑡𝑖)

. (17c)

To match the processing of the publicly available EDGES low-band
data, we assume uniformly weighted averaging of the data and cor-
respondingly apply the latter set of definitions in the analyses carried
out in the remainder of this paper.

3.3 Demonstration of perfect BFCC in simulated data with
spatially-independent foreground spectra

To understand the impact of BFCC on 21-cm signal recovery from
spectrometer data in the simplifying limit that the foregrounds in
the data have spatially-independent spectral structure, we construct
simulated EDGES low-band data, in this approximate regime, and
analyse it in three scenarios:

(i) Fitting the uncorrected data, 𝑇data (𝜈), incorporating a flattened
Gaussian 21-cm absorption trough, averaged over time in the same
manner as described above, with a model based on the intrinsic spec-
tral structure of the foreground and 21-cm emission in the simulations
(Equation 11).

(ii) Fitting 𝑇corrected (𝜈) (the data above after BFCC has been applied)
with a model based on the intrinsic spectral structure of the emission
in the simulations.

(iii) Fitting 𝑇corrected (𝜈) using Equation 16 - the correct analytic model
for BFCC data derived from intrinsic emission on the sky described
by Equation 9. This scenario illustrates unbiased recovery of the
21-cm signal when one constructs and fits the correct model for the
BFCC data.

8 Uniformly weighting snapshot spectra when averaging over time is optimal,
with respect to signal-to-noise on the averaged data, only if the noise in each
snapshot can be reasonably approximated as constant, in which case Equations
13–15 and Equations 17a–17c are equivalent.

3.3.1 Simulated data

Starting with scenario (i), we construct 𝑇data (𝜈) over a 50−100 MHz
spectral band, assuming a 1 MHz channel width and integration over
a short time interval (Δ𝑡 = 6 minutes) such that we can work with
Equation 1 in the snapshot limit (see Section 2),

𝑇data (𝜈, 𝑡) =
∫
Ω+

𝐵(𝜈,Ω)𝑇sky (𝜈,Ω, 𝑡) dΩ + 𝑛 . (18)

For these simulations, 𝑛 is zero-mean Gaussian random noise and to
illustrate the relatively subtle differences between the fits of models
(ii) and (iii) in this simplified foreground scenario, we inject noise
such that the resultant noise in the BFCC data after time-averaging
is Gaussian and white, with an RMS amplitude of 1 mK; finally,
𝑇sky (𝜈,Ω, 𝑡) = 𝑇fg (𝜈,Ω, 𝑡) + 𝑇21 (𝜈), with,

𝑇fg (𝜈,Ω, 𝑡) = (𝑇fg (408 MHz,Ω, 𝑡) − 𝑇𝛾)
( 𝜈

408 MHz

)−𝛽0
+ 𝑇𝛾 .

(19)

Here, 𝑇fg (408 MHz,Ω, 𝑡) is given by the Haslam 408 MHz all-sky
map (Haslam et al. 1981, 1982) reprocessed by Remazeilles etal.
(2015), 𝑇𝛾 = 2.725 K is the CMB temperature and 𝑇21 is a flattened
Gaussian model for the 21-cm signal of the form,

𝑇21 (𝜈) = −𝐴
(
1 − e−𝜏e𝐵21

1 − e−𝜏

)
, (20)

where,

𝐵21 =
4(𝜈 − 𝜈0)2

𝑤2 log
[
−1
𝜏

log
(
1 + e−𝜏

2

)]
, (21)

and 𝐴 = 100 mK, 𝜈0 = 75 MHz, 𝑤 = 10 MHz and 𝜏 = 4 describe the
amplitude, central frequency, width and flattening of the absorption
trough included in the simulated data, respectively.

For our beam model, 𝐵(𝜈,Ω), we use a FEKO EM simulation
of the EDGES low-band blade dipole antenna, with a 30 m × 30 m
sawtooth ground plane on top of soil with a conductivity of 𝜎c =

0.02 S m−1 and relative permittivity of 𝜖r = 3.5, consistent with the
soil properties reported by Sutinjo et al. (2015) for the Murchison
Radio-astronomy Observatory, where EDGES is located. For further
details regarding this beam model, see Mahesh et al. (2021).

We construct our time-dependent beam-factor model, 𝐵factor (𝜈, 𝑡),
using Equation 4, with 𝐵m (𝜈,Ω) ≡ 𝐵(𝜈,Ω) and 𝑇m

fg (𝜈c,Ω, 𝑡) ≡
𝑇fg (𝜈c,Ω, 𝑡). Here, 𝐵m (𝜈,Ω) and 𝑇m

fg (𝜈c,Ω, 𝑡) are, respectively,
the EM simulation of the EDGES low-band beam, and the time-
dependent foreground sky above the antenna used for construction
of the simulated data described above (Equation 19), evaluated at
𝜈c = 75 MHz. The resulting beam-factor model is shown in Figure 1.
Using our simulated data, 𝑇data (𝜈, 𝑡), and beam-factor, 𝐵factor (𝜈, 𝑡),
we derive the BFCC data, 𝑇corrected (𝜈, 𝑡), using Equation 5.

We calculate the corresponding time-averaged 𝑇data (𝜈) (used in
analysis scenario (i)) and 𝑇corrected (𝜈) (BFCC data used in analysis
scenarios (ii) and (iii)) by averaging 𝑇data (𝜈, 𝑡) and 𝑇corrected (𝜈, 𝑡)
over the 120 simulated snapshot spectra derived at 6 minute intervals
in the LST range 0 ≤ 𝐿𝑆𝑇 < 12 h. This range is selected to match
the LST window of the publicly available EDGES low-band data,
when the Galactic plane is relatively low in the beam.

MNRAS 000, 1–25 (2021)



Bayesian analysis of BFCC spectrometer data - I 7

3.3.2 Instrumentally induced chromaticity

We define 𝑃𝐵f (𝜂, 𝑡), the power spectrum of the mean-subtracted,
windowed beam-factor, as:〈�𝐵′

factor (𝜂, 𝑡)�𝐵′
factor

∗
(𝜂′, 𝑡)

〉
(Δ𝜈)2 ≡ 𝛿K (𝜂 − 𝜂′)𝑃𝐵f (𝜂, 𝑡) . (22)

This provides a simple metric to describe the level of instrumental
chromaticity imparted by the beam to the time-dependent spectrum
measured by the instrument. Here, 𝐵′

factor = 𝑊𝛿𝐵factor, with 𝑊 a
Blackmann-Harris window function to prevent spectral leakage of
power on scales in excess of the bandwidth of the data into the spectral
scales of interest and 𝛿𝐵factor (𝜈, 𝑡) = 𝐵factor (𝜈, 𝑡) − 𝐵factor (𝑡), with
𝐵factor (𝑡) the average of 𝐵factor (𝜈, 𝑡) over frequency; 𝜂 measures
inverse spectral scale, �𝐵′

factor (𝜂, 𝑡) is the Fourier transform of the
mean-subtracted, windowed beam-factor with respect to frequency,
Δ𝜈 = 1 MHz is the channel width and 𝛿K is the Kronecker delta
function.

A plot of 𝑃𝐵f (𝜂, 𝑡) for the EDGES low-band beam is shown in
Figure 2. The 105 − 106 : 1 dynamic range between the order 103–
104 K foregrounds in the spectral range of interest and the order
of magnitude 10 mK noise level in the publicly available EDGES
low-band data correspond to a requirement that, for unbiased 21-cm
signal inference in the absence of BFCC, 𝑃𝐵f (𝜂, 𝑡) � 10−10 MHz2

on spectral scales relevant for recovery of the 21-cm signal. From
Figure 2 it can be seen that there is no LST range where this condition
is met for 𝜂 < 0.15 MHz−1 and only in limited LST windows for
𝜂 & 0.15 MHz−1.

Figure 3 shows 𝑃𝐵̄f
(𝜂), the power spectrum of 𝐵̄factor (𝜈), the

mean-subtracted, windowed, simulated beam-factor, time-averaged
over the LST range 0 ≤ 𝐿𝑆𝑇 < 12 h, matching the LST window of
the publicly available EDGES low-band data. The reduction in power,
particularly on large spectral scales (low-𝜂) results from averaging
down of beam-factor fluctuations uncorrelated on 12 h time-scales.
Nevertheless, power in 𝐵̄factor (𝜈) remains sufficiently high on the
vast majority of spectral scales (𝜂 . 0.2 MHz−1, or frequency scales
larger than 5 MHz) to bias recovery of the 21-cm signal unless one
employs a high complexity foreground model capable of absorbing
this structure or accurately chromaticity corrects the data prior to
estimating the 21-cm signal.

3.3.3 Bayes’ Theorem

Bayesian inference provides a consistent approach to estimate a set of
parameters, 𝚯, from a model, 𝑀 , given a set of data 𝑫 and, through
the use of the Bayesian evidence, Pr(𝑫 |𝑀𝑖) ≡ Z𝑖 , and model priors,
Pr(𝑀𝑖), to estimate from a set of models, the ones that are the most
probable given the data. Bayes’ theorem states that,

Pr(Θ|𝑫, 𝑀) = Pr(𝑫 |Θ, 𝑀) Pr(Θ|𝑀)
Pr(𝑫 |𝑀) . (23)

Here, Pr(Θ|𝑫, 𝑀) is the posterior probability distribution of the
parameters, Pr(𝑫 |Θ, 𝑀) is the likelihood, and Pr(Θ|𝑀) is the prior
probability distribution of the parameters.

The Bayesian model evidence (BME; the factor required to norm-
alise the posterior over the parameters), is given by,

Z =

∫
Pr(𝑫 |Θ, 𝑀) Pr(Θ|𝑀)d𝑝Θ , (24)

where 𝑝 is the dimensionality of the parameter space.
Given samples from the posterior distribution of the parameters,

Pr(Θ|𝑫, 𝑀), one can estimate Pr(𝑦 |𝜈, 𝑫, 𝑀), the predictive pos-
terior of a function 𝑦 = 𝑓 (𝜈,Θ) by calculating the corresponding
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Figure 1. Simulated beam chromatic correction factor 𝐵factor (𝜈, 𝑡) (Equa-
tion 4) derived using a model of the EDGES blade antenna 𝐵m (𝜈,Ω) and
for the time-dependent foreground sky above the antenna at 𝜈c = 75 MHz.
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Figure 2. Power spectrum, 𝑃𝐵f (𝜂, 𝑡) , of the mean-subtracted, windowed
beam-factor, 𝐵′

factor (𝜈, 𝑡) , shown in Figure 1. 𝑃𝐵f (𝜂, 𝑡) provides a simple
metric of the level of instrumental chromaticity imparted by the beam to the
time-dependent spectrum measured by the instrument. Since the beam-factor
is real and, thus, its Fourier transform is symmetric, we display the power
spectrum only for positive 𝜂.
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Figure 3. Power spectrum, 𝑃𝐵̄f
(𝜂) , of 𝐵̄factor (𝜈) , the mean-subtracted, win-

dowed, simulated beam-factor, time-averaged over the LST range 0 ≤ 𝐿𝑆𝑇 <

12 h, matching the LST window of the publicly available EDGES low-band
data. The dashed red line displays the power in fluctuations in 𝐵̄factor (𝜈)
above which coupling between flat-spectrum foregrounds and the beam will
induce spectral structure in excess of the noise level in the publicly available
EDGES low-band data.

set of samples from Pr(𝑦 |𝜈, 𝑫, 𝑀). When analysing data in Sec-
tion 3.3.5, and later in Section 5.5, we sample from the posteriors on
the model parameters given the data using nested sampling as imple-
mented by the polychord algorithm (Handley, Hobson & Lasenby
2015a,b), and derive contour plots of functional posterior probability
distributions using the fgivenx software package (Handley 2018).

3.3.4 Data likelihood

In each of our three analysis scenarios, we assume zero-mean un-
correlated Gaussian random noise, 𝑛, on our data, with covariance
matrix N given by,

𝑁𝑖 𝑗 =

〈
𝑛𝑖𝑛

∗
𝑗

〉
= 𝛿𝑖 𝑗𝜎

2
𝑗 , (25)

where 〈..〉 represents the expectation value and 𝜎𝑗 is the RMS value
of the noise term for spectral channel 𝑗 . In the frequency range of
interest, the intrinsic noise in EDGES low-band data is expected
to be dominated by power law sky noise, with a smaller ∼ 200 K
contribution from the receiver (see B18, Extended Data Figure 5).
However, the reduced data volume resulting from RFI flagging due
to FM radio (𝜈 & 85 MHz) increases the effective noise level in the
upper end of the band, such that the effective noise is roughly flat.
In this paper, for simplicity, we simulate the noise as flat across the
band and model it as such when fitting the data.

Writing our data vectorised over frequency as d, a vectorised model
for the data constructed from a set of parameters Θ as m(𝚯), and the
residuals between the data and model as r = d−m(𝚯), we can write
a Gaussian likelihood for r as,

Pr(d|𝚯) = 1√︁
(2𝜋)𝑁chan )det(N)

exp
[
−1

2
r(𝚯)𝑇 N−1r(𝚯)

]
. (26)

When fitting the data in analysis scenario (i) d = vec(𝑇data (𝜈)) and in
scenarios (ii) and (iii) d = vec(𝑇corrected (𝜈)); here, for a function 𝑋 ,
we define vec(.) such that for a frequency-dependent measurement
𝑋 , vec(𝑋 (𝜈)) = [𝑋0, 𝑋1, · · · , 𝑋𝑁chan ]𝑇 , where 𝑋𝑖 is the value of
𝑋 in frequency channel 𝑖 and 𝑁chan is the number of channels in
the data set. We define our models for the data in the three analysis
scenarios and their fits to the data in Section 3.3.5.

Table 1. Priors on the parameters of the 21-cm signal model component fit
in Section 3.3.5.

Parameter Model component Prior

𝑇̄m0 foreground 𝑈 (103, 104) K
𝐴 21-cm signal 𝑈 (0, 1000) mK
𝜈0 21-cm signal 𝑈 (55, 95) MHz
𝑤 21-cm signal 𝑈 (5, 30) MHz
𝜏 21-cm signal 𝑈 (0, 20)

3.3.5 Data models and fits

We construct our data model for scenarios (i) and (ii) as the time-
average of Equation 11 (the spectrum obtained by observing a sky
brightness temperature distribution given by Equation 9 with an
achromatic beam),

𝑇m
sky (𝜈) = 𝑇m0

(
𝜈

𝜈c

)−𝛽0

+ (1 −
(
𝜈

𝜈c

)−𝛽0

)𝑇𝛾 + 𝑇21 . (27)

Here, 𝜈c = 75 MHz is a reference frequency which we set to
the center of the spectral band of the data, 𝑇m0 is a free parameter
with an expected value equal to the average, over the time-range
of the data, of the observed CMB-subtracted foreground brightness
temperature at frequency 𝜈c, 𝛽0 = 2.5 is the foreground temperature
spectral index, which, here, we assume is known, 𝑇𝛾 ' 2.725 K is
the CMB temperature, and 𝑇21 is a model for the flattened Gaussian
absorption profile described by Equation 20, with free parameters 𝐴,
𝜈0, 𝑤, and 𝜏 as described below Equation 21. For scenario (iii), we
use Equation 16 (minus the noise) as our data model and fit as free
parameters 𝑇m0 and the four flattened Gaussian absorption profile
parameters.

We note that Equations 16 and 27 have similar parametrisations
but the latter lacks explicit accounting for the beam-factor scaling
of the non-power-law foregrounds components of the data present in
Equation 27. The (shared) priors on the parameters of the two models
are listed in Table 1.

Functional posterior distributions resulting from the fits in scen-
arios (i)–(iii) are shown in Figure 4. The time-averaged BFCC cor-
rected data, 𝑇corrected (𝜈), and beam-factor, 𝐵̄factor (𝜈), are displayed
in the top and bottom subpanels of subfigure (a). 𝑇corrected (𝜈) and
𝑇data (𝜈) would be visually indistinguishable on the scale shown, so
we show only the former. Subplots (b)–(d) show the results for scen-
arios (i)–(iii), respectively. The means and 1-𝜎 uncertainties of the
21-cm signal parameter estimates associated with subplots (b)–(d)
(as well as the input 21-cm parameter values in the simulated data)
are listed in Table 2.

3.3.5.1 The results for scenario (i), of fitting the uncorrected
data, with a model based on the intrinsic spectral structure of
the emission in the simulations, shown in subplot (b), demonstrate
that the incoherent averaging over time of instrumentally induced
foreground systematics alone does not reduce their amplitude suffi-
ciently for recovery of unbiased estimates of the underlying 21-cm
signal in the data in the simplified foreground scenario considered in
this section. The fractional bias,

θinput − θrecovered
θinput

, (28)

where θinput and θrecovered are the input value and mean of the pos-
terior distribution of the parameter θ, respectively, exceeds 100%
for all of the 21-cm signal parameter estimates barring the central
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Figure 4. Subplot (a) shows the time-averaged, BFCC corrected data (𝑇corrected (𝜈); top) and beam-factor (𝐵̄factor (𝜈); bottom). On the scale shown 𝑇corrected (𝜈)
and 𝑇data (𝜈) are visually indistinguishable, so we plot only the former. Subplots (b)–(d) show results for scenarios (i) – fitting the uncorrected data, 𝑇data (𝜈) ,
with a model based on the intrinsic spectral structure of the foreground and 21-cm emission in the simulations, (ii) – fitting 𝑇corrected (𝜈) with a model based on
the intrinsic spectral structure of the emission in the simulations and (iii) – fitting 𝑇corrected (𝜈) using the correct analytic model for BFCC data, respectively. In
each, the black dashed line in the top subfigure shows the input 21-cm signal, 𝑇21, and they are overlaid with coloured iso-probability contours of the recovered
functional posteriors for the signal. The bottom subplots show the recovered functional posteriors on the residuals Δ𝑇 = (𝑑 − 𝑚) , where 𝑑 and 𝑚 are the data
analysed and model fit in the relevant analysis scenario, respectively - the uncorrected data fit with the intrinsic sky model in scenario (i), the BFCC corrected
data fit with the intrinsic sky model in scenario (ii), and the BFCC corrected data fit with the analytic BFCC model in scenario (iii). The dotted lines display the
1-𝜎 noise level in each case.
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Table 2. Input values of the parameters of the 21-cm signal in Section 3.3.5
and the recovered means and 1-𝜎 uncertainties of the parameters as a function
of the analysis scenario considered.

Parameter Scenario Mean 1-𝜎 uncertainty

𝐴 input value 100 mK -
(i) 1000 mK 4 × 10−5 mK
(ii) 88 mK 1 mK
(iii) 100 mK 1 mK

𝜈0 input value 75 MHz -
(i) 69.386 MHz 0.001 MHz
(ii) 75.04 MHz 0.02 MHz
(iii) 74.99 MHz 0.02 MHz

𝑤 input value 10 MHz -
(i) 25.0 MHz 10.0 MHz
(ii) 9.7 MHz 0.1 MHz
(iii) 10.1 MHz 0.1 MHz

𝜏 input value 4 -
(i) 10.0 8 × 10−6

(ii) 6.5 0.6
(iii) 4.4 0.3

frequency which has a fractional bias of ∼ 7%. Additionally, the
amplitude and flattening parameter are both prior-limited such that
more biased values would have been recovered if their priors had been
extended. Furthermore, the inaccuracy of the foreground component
of the model leads to spurious high precision constraints on the sig-
nal parameters as the signal component of the model attempts to fit
high significance foreground systematics. This results in recovered
parameter estimates that are highly inconsistent with the true values
of the 21-cm signal in the data ((θinput − θrecovered)/𝜎θ � 1, where
𝜎θ is the 1-𝜎 uncertainty on θ). Finally, the recovered functional
posteriors on the residuals Δ𝑇 = (𝑑−𝑚), where 𝑑 and 𝑚 are the data
analysed and model fit, respectively, demonstrate that in this scenario,
the inadequacy of the intrinsic foreground model for describing the
non-chromaticity corrected data combined with our prior on the sig-
nal amplitude preventing the fitting of foreground systematics with
very deep (𝐴 > 1 K) amplitude 21-cm signal models, means that
significant (> 1 K) residuals remain for the best fitting model and the
data.

3.3.5.2 The results for scenario (ii), of fitting the corrected data
with a model based on the intrinsic spectral structure of the emis-
sion in the simulations, shown in subplot (c), illustrate that BFCC
is successful at significantly mitigating bias in recovered estimates
of the 21-cm signal, relative to scenario (i), when fitting the same
data model, despite that model neglecting the residual non-intrinsic
chromaticity in the BFCC data and the impact of BFCC on the 21-cm
signal component of the data. However, this mitigation is partial and
recovered estimates of the 21-cm signal remain biased in this analysis
(albeit at a lower level).

The fractional biases on the recovered parameters are now re-
duced to order-10% on the amplitude and flattening factor, and they
are smaller still on the position and width. Additionally, the overall
fit to the data shown in the bottom panel is greatly improved, with the
> 1 K residual features present when analysing the non-chromaticity
corrected data in scenario (i) reduced by nearly three orders of mag-
nitude to ∼ 10 mK when analysing the BFCC data with the same
model. However, this residual structure still exceeds the 1 mK RMS
noise level in the data by an order of magnitude. This illustrates the
limitations of this model in the high signal-to-noise regime, even
if the foregrounds are simulated in the limit of having spatially in-

dependent spectral structure. Furthermore, despite the significantly
improved fractional errors, which are useful only as a rough measure
of the performance of the analysis, the level of statistical consistency
of the recovered estimates and the true underlying signal is the more
fundamentally important metric for the purposes of unbiased astro-
physical and cosmological inference. In this respect, we find that
even with the simplified foreground spectral structure in the simu-
lated data analysed in this section, in the high signal-to-noise regime
significant statistical inconsistency between the input and recovered
amplitude and flattening of the 21-cm signal is still apparent. In par-
ticular, while the mean recovered estimates of the central frequency
and width of the absorption feature are in agreement with the inputs to
within 2- and 3-𝜎, respectively, the recovered estimates of the mean
amplitude and flattening of the 21-cm signal are inconsistent with
the input values of these parameters in the simulated data at 12- and
4-𝜎, respectively. These offsets will translate to comparably statist-
ically significant biases in any inferences regarding the astrophysics
of CD derived from the signal; making them more problematic than
one may otherwise infer from the moderate fractional errors.

This problem would be ameliorated in the lower signal-to-noise
regime applicable to current data sets; however, as will be shown
in Section 4, this bias is further compounded when modelling fore-
grounds with more realistic spectral structure and, as a result, remains
statistically significant even at more moderate signal-to-noise levels.

3.3.5.3 The results for scenario (iii), of fitting the corrected data
with the correct analytic model, shown in subplot (d), illustrate
that the 21-cm signal is perfectly recovered, free from bias, even in
the high signal-to-noise regime, when the foregrounds in the data
have simple spatially-independent spectral structure. In particular,
all 21-cm signal parameters are recovered consistent with the input
parameters to within 1.5−𝜎 or better and the functional posteriors on
the residuals between the full model and the data are fully consistent
with the 1 mK RMS noise level in the data.

3.3.6 Realistic foreground spectral structure

Despite the excellent performance of the analytic model for the BFCC
data demonstrated in scenario (iii), its derivation relied on the separ-
ability of the spatial and spectral structure of the foreground com-
ponent of the data. When the foregrounds have spatially dependent
spectral structure, this is not possible. However, by subdividing the
spatially dependent spectral structure of the foregrounds into spa-
tially dependent spectral perturbations on top of a spatially isotropic
background (i.e. small spectral index perturbations to an isotropic
power law spectrum), a similar approach can be taken to derive
a closed-form model that accurately approximates the data in this
more realistic scenario. We explore this in more detail in the next
section.

4 A GENERAL MODEL FOR AUTOCORRELATION
SPECTRA CHROMATICITY CORRECTED USING
BEAM-FACTORS

In this section, we will show that, when the spectral structure of the
foregrounds in the data is spatially dependent, one can model the
data to arbitrary precision with a closed-form expression9 building

9 While there is no closed-form expression for the data, an exact solution can
be obtained with a full forward model of the data (e.g. Vedantham et al. 2014;
Anstey, de Lera Acedo, & Handley 2021)
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on the analytic BFCC data model derived in Section 3, preventing
foreground bias in recovered estimates of the 21-cm signal. How-
ever, unlike in the case considered in Section 3, here, modelling
higher signal-to-noise data requires an increasingly complex fore-
ground model that is increasingly correlated with models for the
21-cm signal, reducing the significance with which the signal can be
recovered from the data. Nevertheless, we find, using Bayesian model
comparison to select for a preferred set of models for the data, that
the highest evidence BFCC data model enables unbiased recovery of
the 21-cm signal at the signal-to-noise level of the publicly available
EDGES low-band data.

4.1 Foreground emission with spatially-dependent spectral
structure

As in Section 3.1, we divide the sky brightness into two components,
𝑇sky (𝜈,Ω, 𝑡) = 𝑇fg (𝜈,Ω, 𝑡)+𝑇21 (𝜈), where𝑇21 (𝜈) is the global 21-cm
signal and 𝑇fg (𝜈,Ω, 𝑡) = 𝑇𝛾 + 𝑇plfg (𝜈,Ω, 𝑡) is the anisotropic, time-
dependent, foreground sky brightness temperature distribution above
the antenna and is composed of two components: (i) an isotropic
CMB temperature, 𝑇𝛾 , and (ii) an anisotropic spectral power law
foreground brightness temperature distribution (comprised of the
sum of anisotropic Galactic and isotropic extragalactic foregrounds),
𝑇plfg (𝜈,Ω, 𝑡).

4.1.1 Spatially varying spectral structure

Here, we assume that the spectrum of 𝑇plfg is a spatially varying
power law with a temperature spectral index distribution that can be
modelled as a Gaussian random field (GRF) characterised by a mean
temperature spectral index over the sky, 𝛽0, and a variance, 𝜎2

𝛽
(e.g.

Sims et al. 2016; Sims & Pober 2019). We also assume that𝜎𝛽 � 𝛽0,
which at the resolution of EDGES is an excellent approximation (e.g.
Mozdzen et al. 2017, 2019). Thus, 𝛽 varies across the sky and, in
our topocentric coordinate system, with Ω and time. However, at any
given Ω and time, 𝛽 is a random draw from the GRF and thus has no
functional dependence on those parameters (we discuss deviations
from this assumption in Section 4.1.2).

By Taylor expanding 𝑇fg about 𝛽 = 𝛽0, along a given line of
site and frequency, one can separate the spectral structure into a
dominant component that can be perfectly chromaticity corrected, as
in Section 3, and smaller, spatially dependent spectral perturbations,
which can be fit with a parametric model as detailed below. With the
above definitions and labelling the temperature spectral index in a
given direction, Ω, and time, 𝑡, as, 𝛽Ω,𝑡 = 𝛽0 +Δ𝛽Ω,𝑡 , we can rewrite
𝑇sky (𝜈,Ω, 𝑡) as,

𝑇sky (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) = 𝑇fg (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) + 𝑇21 , (29)

with,

𝑇fg (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) = (𝑇fg (𝜈c,Ω, 𝑡) − 𝑇𝛾)
(
𝜈

𝜈c

)−𝛽Ω,𝑡

+ 𝑇𝛾 . (30)

Taylor expanding 𝑇fg (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) about 𝛽0 (for fixed 𝜈, Ω, and 𝑡),

we have,

𝑇fg (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) (31)

=

∞∑︁
𝑚=0

𝑇
(𝑚)
fg (𝜈,Ω, 𝑡, 𝛽0)

𝑚!
(Δ𝛽Ω,𝑡 )𝑚

= 𝑇𝛾 + 𝑇plfg (𝜈c,Ω, 𝑡)
(
𝜈

𝜈c

)−𝛽0

+
∞∑︁

𝑚=1

𝑇
(𝑚)
fg (𝜈,Ω, 𝑡, 𝛽0)

𝑚!
(Δ𝛽Ω,𝑡 )𝑚 .

Here, ! is the factorial operator, 𝑇 (𝑚)
fg (𝜈,Ω, 𝑡, 𝛽0) denotes the 𝑚th

derivative of 𝑇fg with respect to 𝛽, evaluated at 𝛽 = 𝛽0, and Δ𝛽Ω,𝑡 =

𝛽Ω,𝑡 − 𝛽0.
In the limit that Δ𝛽Ω,𝑡 tends to zero everywhere on the sky, Equa-

tion 31 simplifies to Equation 7, and we recover the spatially inde-
pendent spectral structure foreground model used in Section 3. For
non-zero Δ𝛽Ω,𝑡 , Equation 31 allows us to express foregrounds with
spatially dependent spectral structure as the sum of two parts that are
impacted differently by BFCC:

(i) the foregrounds with spatially independent spectral structure con-
sidered in Section 3, and

(ii) a smaller, spatially dependent spectral perturbation given by the
third term in the final line of Equation 31.

Part (i) has separable spatial and spectral structure and is perfectly
chromaticity correctable using BFCC. Part (ii), in contrast, does not
have separable spatial and spectral structure and thus the instrument-
ally induced chromaticity in the contribution to the spectrometer data
of this component will be imperfectly corrected by BFCC.

To see this, we can rewrite Equation 5 using Equation 31 as,

𝑇corrected (𝜈, 𝑡) (32)

=

[ ∫
𝐵(𝜈,Ω)

(
𝑇𝛾 + (𝑇fg (𝜈c,Ω, 𝑡) − 𝑇𝛾)

(
𝜈

𝜈c

)−𝛽0

+ 𝑇21 +
∞∑︁

𝑚=1

𝑇
(𝑛)
fg (𝜈,Ω, 𝑡, 𝛽0)

𝑚!
(Δ𝛽Ω,𝑡 )𝑚

)
dΩ + 𝑛

]
×

∫
𝐵(𝜈c,Ω)𝑇fg (𝜈c,Ω, 𝑡)dΩ∫
𝐵(𝜈,Ω)𝑇fg (𝜈c,Ω, 𝑡)dΩ

= 𝑇m0 (𝜈c, 𝑡)
(
𝜈

𝜈c

)−𝛽0

+
(1 −

(
𝜈
𝜈c

)−𝛽0
)𝑇𝛾

𝐵factor
+ 𝑇21
𝐵factor

+ 1
𝐵factor

∫
𝐵(𝜈,Ω)

∞∑︁
𝑚=1

𝑇
(𝑛)
fg (𝜈,Ω, 𝑡, 𝛽0)

𝑚!
(Δ𝛽Ω,𝑡 )𝑚dΩ

+ 𝑛

𝐵factor
.

4.1.2 An accurate low expansion-order approximation

The penultimate term in Equation 32 marks a departure from the
simple closed-form description of 𝑇corrected (𝜈), free from direction
dependent integrals found in Section 3. Nevertheless, progress can be
made with respect to deriving a compact finite-term approximation
for the data by analysing the expansion orders for a given choice of
beam model.

We start by rewriting this term as,𝑇pert/𝐵factor, where we define the
perturbation spectrum, resulting from the beam-weighted spatially
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dependent fluctuations of the spectral index distribution about its
mean, as,

𝑇pert =
∞∑︁

𝑚=1

[
1
𝑚!

(
ln

(
𝜈

𝜈c

))𝑚 ∫
𝐵(𝜈,Ω)𝑇plfg (𝜈c,Ω, 𝑡)

(
𝜈

𝜈c

)−𝛽0

× (Δ𝛽Ω,𝑡 )𝑚dΩ

]
. (33)

The power law component of the spectrum is common to all expan-
sion orders; thus, we can write,

𝑇pert
𝐵factor

=

(
𝜈

𝜈c

)−𝛽0

𝑓pert (𝜈, 𝑡) , (34)

where,

𝑓pert (𝜈, 𝑡) =
∞∑︁

𝑚=1

1
𝑚!

(
ln

(
𝜈

𝜈c

))𝑚
𝑎𝑚 (𝜈, 𝑡) , (35)

with,

𝑎𝑚 (𝜈, 𝑡) = 1
𝐵factor

∫
𝐵(𝜈,Ω, 𝑡)𝑇plfg (𝜈c,Ω, 𝑡)Δ𝛽(Ω)𝑚dΩ . (36)

To derive an accurate finite-term closed-form approximation for
𝑓pert (𝜈, 𝑡), we first make use of the fact that for an arbitrary choice
of 𝜈, the prefactor to 𝑎𝑚 (𝜈, 𝑡),

1
𝑚!

(
ln

(
𝜈

𝜈c

))𝑚
,

tends to zero for large𝑚 and thus 𝑓pert (𝜈, 𝑡) is dominated by relatively
low-order terms of the summation in Equation 35. Additionally, for
ratios of observation frequency and chromaticity correction reference
frequency in the range 1/e < 𝜈/𝜈c < e, where e is Euler’s number,
the absolute value of the logarithm alone, as well as the full prefactor,
exponentially tends to zero with increasing 𝑚 and both are less than
unity for all 𝑚 > 1. EDGES low data, with 50 < 𝜈 < 100 MHz and
𝜈c = 75 MHz, falls within this band and thus the error associated
with a finite-term approximation of the summation in Equation 35
decreases rapidly10 with increasing 𝑚.

In addition to the prefactor downweighting higher order terms in
the summation, for a spatially uncorrelated GRF description of 𝛽Ω,𝑡 ,
𝑎𝑚 (𝜈, 𝑡) has an expectation value of zero for odd values of𝑚 (regard-
less of the specific form of the beam). A spatially uncorrelated GRF
is a reasonable description for spectra along lines of sight for which
the emission is dominated by independent unresolved objects, such
as extragalactic point sources. However, in practice, there will also
be spatial correlations in the spectral structure of 𝑇plfg due to emis-
sion from astronomical objects dispersed over larger solid angles or
physically-connected emission regions such as the observed steep-
ening of the synchrotron spectrum of the Galaxy with increasing
distance from the Galactic plane. The large-scale gradient in the SI
distribution away from the Galactic plane shifts the expected amp-
litudes of 𝑎𝑚 (𝜈, 𝑡) for odd 𝑚 to non-zero values. However, these

10 Despite the rapid reduction with increasing 𝑚 of modelling error associ-
ated with a finite-term approximation of the summation in Equation 35, the
huge dynamic range between the foregrounds and the order of magnitude
10 mK noise level associated with the publicly available EDGES low data
means a simple first-order approximation is insufficient to model the fore-
grounds without leaving statistically significant foreground systematics. In
simulated EDGES low data, depending on the intensity of the foregrounds in
the field observed, we find an expansion including terms up to 𝑚 ∼ 5 − 6 is
necessary to recover residuals at a sub-1 mK level.

amplitudes remain suppressed relative to even expansion order coef-
ficient due to the cancellation of Δ𝛽(Ω)𝑚 on scales smaller than the
characteristic size of the beam.

4.1.3 Maximally smooth polynomial model

In principle, this knowledge of the expected trend in relative amp-
litude of 𝑎𝑚 (𝜈, 𝑡) with increasing 𝑚 enables one to place more in-
formative priors on fitted values of 𝑎𝑚 via constraints on the hyper-
parameters of a function designed to fit the spectral structure of 𝑎𝑚
in the data.

Due to the oscillation of 𝑎𝑚 between non-convexity and convexity
for odd and even 𝑚, respectively, there is no guarantee of a monoton-
ically decreasing contribution to 𝑓pert (𝜈, 𝑡) from subsequent terms
in the expansion, despite what one may expect from examining the
prefactor alone. However, we do expect a monotonically decreasing
contribution to 𝑓pert (𝜈, 𝑡) from subsequent terms in the odd-𝑚 and
even-𝑚 terms of the expansion, respectively. One way this informa-
tion could be incorporated into an analysis of the data would be to
describe each 𝑎𝑚 (𝜈, 𝑡) with a maximally smooth (MS) polynomial
(e.g. Sathyanarayana Rao et al. 2015, 2017) or derivative-constrained
function (e.g. Bevins et al. 2021) and place priors enforcing a con-
strained and decreasing upper limit on the amplitude coefficient of the
MS polynomials as a function of increasing 𝑎𝑚even and 𝑎𝑚odd , where
𝑚even = (2𝑚) and 𝑚odd = (2𝑚 + 1). In practice, setting these priors
would require estimation of the expected distribution of 𝑎𝑚 values.
These estimates could be derived from simulated data using realistic
models for the beam and 𝛽(Ω) derived from low-frequency sky sur-
veys. However, even with realistic estimates for 𝑎𝑚, this approach
results in a model for 𝑓pert (𝜈, 𝑡) parametrised by a large number of
MS polynomial coefficients that are computationally expensive to fit
for.

Testing with EDGES low simulations we find this requires simul-
taneously fitting 𝑁T ∼ 6 MS polynomials, where 𝑁T is the Taylor
expansion order required to fit 𝑇pert to a sub-1 mK RMS-residual
threshold and where, individually, each MS polynomial is of between
2nd and∼ 10th order, resulting in an∼ 40 parameter fit for 𝑓pert (𝜈, 𝑡).

4.1.4 Log-polynomial model

The arithmetic increase, with Taylor expansion order, of the num-
ber of parameters necessary to model an amplitude constrained se-
quence of 𝑎𝑚 can be improved on by fitting the 𝑎𝑚 with coefficient-
constrained log-polynomial models,

𝑎model
𝑚 (𝜈, 𝑡) =

𝑁𝑚∑︁
𝛼=1

𝑝𝑚,𝛼 ln
(
𝜈

𝜈c

)𝛼
. (37)

In this case, since the product of log-polynomials leaves the func-
tional form of the model unchanged and Equation 34 is linear with
respect to 𝑎𝑚, at the cost of a less constrained prior on the amp-
litudes of individual 𝑎𝑚, the

∑𝑁T
𝑖=1 𝑁𝑖 coefficients of our MS poly-

nomial models, that would be necessary if we were to fit each 𝑎𝑚
individually, can be condensed into∼ max𝑚 (𝑚+𝑁𝑚) �

∑
𝑚 𝑁T𝑁𝑚

coefficients11 of a composite log-polynomial, significantly reducing
the dimensionality of our parameter space. Here, (𝑚 + 𝑁𝑚) is the

11 max𝑚 (𝑚+𝑁𝑚) is an upper limit on the necessary number of coefficients
because interference between the spectra corresponding to the different ex-
pansion orders can decrease the number of coefficients required to fit the sum
over expansion orders.
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log-polynomial order required to fit the 𝑚th component of 𝑓pert to a
prescribed precision and the operator max𝑚 (.) denotes the maximum
over Taylor expansion order 𝑚.

Following this approach, we write our final model for 𝑇pert/𝐵factor
as,

𝑚pert (𝜈, 𝑡) = 𝑇m0 (𝜈c, 𝑡)
(
𝜈

𝜈c

)−𝛽0 𝑁pert∑︁
𝛼=1

𝑝𝛼 (𝑡) ln
(
𝜈

𝜈c

)𝛼
. (38)

Here, we have included 𝑇m0 (𝜈c, 𝑡) as a prefactor and specify 𝑝𝛼 (𝑡)
as fractional perturbations about the mean brightness temperature
at the reference frequency 𝜈 = 𝜈c, and we define 𝑁pert as the log-
polynomial order necessary to fit 𝑇pert/𝐵factor to within the level
of the noise in the data. In practice, we will use Bayesian model
selection to determine the preferred 𝑁pert for describing the data (see
Section 5.4 for details).

4.1.5 BFCC data model

Since, as a linear operation, time-averaging of 𝑚pert (𝜈, 𝑡) leaves
the functional form unchanged, our model for the contribution of
𝑇pert/𝐵factor to time-averaged data can be trivially derived from Equa-
tion 38 as,

𝑚pert (𝜈) = 𝑇m0

(
𝜈

𝜈c

)−𝛽0 𝑁pert∑︁
𝛼=1

𝑝𝛼 ln
(
𝜈

𝜈c

)𝛼
. (39)

Time-averaging the remaining terms in Equation 32 and substi-
tuting for 𝑇pert/𝐵factor using Equation 39, our model for BFCC data
including foregrounds with spatially dependent spectral structure be-
comes,

𝑇model
corrected (𝜈) (40)

=𝑇m0

(
𝜈

𝜈c

)−𝛽0

(1 +
𝑁pert∑︁
𝛼=1

𝑝𝛼 ln
(
𝜈

𝜈c

)𝛼
) +

(1 −
(
𝜈
𝜈c

)−𝛽0
)𝑇𝛾

𝐵̄factor (𝜈)

+ 𝑇21
𝐵̄factor (𝜈)

.

4.2 Ionospheric effects

Equation 29 is a description of the intrinsic brightness temperature
of the emission on the celestial sphere in the radio frequency range
of interest for measurement of redshifted 21-cm emission from CD
and the EoR, prior to propagation of the emission through the Earth’s
ionosphere. However, this emission is refracted and absorbed by the
ionosphere in a frequency-dependent manner (e.g. Vedantham et al.
2014; Shen et al. 2021), prior to its measurement by an antenna
on Earth. Furthermore, the ionosphere radiates thermal emission,
which contributes to the total emission arriving at our instrument
(e.g. Rogers et al. 2015).

Of these three ionospheric radiative transfer effects, here we will
focus on the latter two. The former, ionospheric refraction, acts as
a lens that shifts the apparent positions of sources on the celestial
sphere in a zenith angle-dependent manner. This can be modelled
as a transfer function that can be absorbed as a component of our
effective instrument beam model (e.g. Vedantham et al. 2014).

In detail, the ionosphere is non-uniform and non-stationary. To
account for this, and in particular for varying ionospheric refraction
during turbulent ionospheric conditions, the transfer function, and
correspondingly the effective instrument beam, can be estimated in
a time-dependent manner (e.g. Shen et al. 2022). The cadence with

which the transfer function must be estimated can be reduced, and
the ionospheric radiative transfer effects can be better approxim-
ated by a uniform and stationary ionospheric model, by restricting
one’s analysis to periods of low solar activity and nighttime data
when the ionosphere has greater temporal stability and uniformity.
This approximation will further be improved upon by restricting
one’s analysis to data that has been averaged over a number of sider-
eal days such that systematic structure associated with uncorrelated
ionospheric fluctuations about a mean ionospheric model is averaged
down. If this procedure is carried out, we do not expect ionospheric
refraction to otherwise impact our conclusions, and we do not con-
sider it further here.

Assuming the above data cuts and a uniform and stationary ap-
proximation for the ionosphere, we can account for ionospheric ab-
sorption and emission by writing the intrinsic spectral structure of
the emission incident on the antenna as,

𝑇sky (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) =
[
(𝑇fg (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) + 𝑇21

]
e−𝜏ion (𝜈)

+ 𝑇e (1 − e−𝜏ion (𝜈) ) . (41)

Here, the first term on the RHS of the expression is the fraction of as-
trophysical emission passing through the ionosphere and the second
is the unabsorbed component of thermal emission by electrons in the
ionosphere; 𝑇e and 𝜏ion are the temperature of electrons and opacity
of the ionosphere, respectively, and, 𝑇fg (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) is as defined
in Equation 30.

Assuming the ionospheric opacity scales as 𝜈−2 (e.g. Rogers et al.
2015), we can write,

𝜏ion = 𝜏0 (𝜈/𝜈c)−2 . (42)

Here, 𝜈c = 75 MHz is the reference frequency for 𝜏0 and for the
simulations considered in this section.

Accounting for the ionospheric effects described above, the as-
sumption of stationarity and uniformity in our ionospheric model
allows us to generalise our BFCC model for the data, Equation 40,
to incorporate them, as,

𝑇model
BFCC (𝜈) =

[
𝑇m0

(
𝜈

𝜈c

)−𝛽0

(1+
𝑁pert∑︁
𝛼=1

𝑝𝛼 ln
(
𝜈

𝜈c

)𝛼
)+

(1 −
(
𝜈
𝜈c

)−𝛽0
)𝑇𝛾

𝐵̄factor (𝜈)

+ 𝑇21
𝐵̄factor (𝜈)

]
e−𝜏ion (𝜈) + 𝑇e

𝐵̄factor (𝜈)
(1 − e−𝜏ion (𝜈) ) . (43)

4.3 Can residual instrumental chromaticity be mitigated with a
revised form of the BFCC formalism?

Equation 43 is an accurate model for autocorrelation spectra chro-
maticity corrected using an error-free beam-factor model formulated
as described in Equation 4. In Appendix C we describe how, if
one has sufficiently accurate knowledge of the spatially dependent
spectral structure of the foregrounds, the number of terms, 𝑁pert,
required to model 𝑇pert/𝐵factor can be reduced using the alternate
beam-factor formulation described in Monsalve et al. (2017). Addi-
tionally, in Appendix D, we describe an approach to mitigating the
impact of uncertainties in the sky and beam models used to construct
the beam-factor.
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5 DEMONSTRATION ON SIMULATED BFCC DATA WITH
SPECTRALLY COMPLEX FOREGROUNDS

To understand the impact of the choice of data model on our abil-
ity to recover unbiased estimates of the 21-cm signal from BFCC
EDGES low-band spectrometer data deriving from observations of
more realistic sky-emission, we construct simulations incorporating
the following sky-model components:

• foregrounds with realistic spatially dependent spectral structure,
• spectrally-dependent absorption by the ionosphere,
• ionospheric emission,
• a flattened Gaussian 21-cm absorption profile.

We analyse the simulated data using the BFCC model derived in
Section 4 (Equation 43) as well as a data model describing the in-
trinsic spectral structure of this more complex sky model but omitting
the impact of imperfect correction for instrumental chromaticity. In
both analyses, we impose priors on the parameters of the flattened
Gaussian 21-cm absorption profile as listed in Table 1.

We describe the construction of the simulated data in Section 5.1,
the physically-motivated priors we impose on the BFCC model when
fitting the data in Section 5.2, the comparison intrinsic spectral struc-
ture data model in Section 5.3, the Bayesian inference framework in
which we analyse the data in Section 5.4, and the results of the
analyses in Section 5.5.

5.1 Simulated data

We construct simulations following the procedure described in Sec-
tion 3.3.1 with modifications as detailed below. We construct𝑇data (𝜈)
over a 50−100 MHz spectral band, assuming a 1 MHz channel width
and integration over a short time interval, Δ𝑡 = 6 minutes, such that
we can work with Equation 1 in the snapshot limit,

𝑇data (𝜈, 𝑡) =
∫
Ω+

𝐵(𝜈,Ω)𝑇sky (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) dΩ + 𝑛 . (44)

For the simulations considered here, we add noise to the data at a level
such that the resultant noise in the BFCC data, after time-averaging,
is Gaussian and white, with an RMS amplitude of 20 mK that is com-
parable to estimates of the noise in the publicly available EDGES
low-band data (e.g. Singh & Subrahmanyan 2019). Since the BFCC
data model that we will fit to the simulations constructed in this sec-
tion are approximate, and thus the Bayesian evidence maximising
model complexity for describing it will be signal-to-noise depend-
ent, this noise level is chosen to simplify comparison between the
preferred model complexity for describing the simulated data here
and that required to describe the publicly available EDGES low data
in upcoming work (Sims et al. in prep.). We define𝑇sky (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 )
via Equation 41. For the 21-cm signal we use a flattened Gaussian ab-
sorption profile described by Equation 20. We simulate an absorption
profile with parameters: 𝐴 = 500 mK, 𝜈0 = 78 MHz, 𝑤 = 19 MHz
and 𝜏 = 8, consistent12 with the best-fit parameters recovered in B18,
within their estimated uncertainties.

12 In B18 a best fitting flat-bottomed absorption trough was recovered centred
at 𝜈0 = 78 ± 1 MHz, with a width of 𝑤 = 19+4

−2 MHz, a flattening factor of
𝜏 = 7+5

−3 and with a depth of 500+500
−200 mK, where the uncertainties correspond

to 99% confidence intervals, accounting for both thermal and systematic
errors.

We construct the intrinsic foreground component of our simula-
tions via,

𝑇fg (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) =

(𝑇fg (408 MHz,Ω, 𝑡) − 𝑇𝛾)
( 𝜈

408 MHz

)−𝛽Ω,𝑡

+ 𝑇𝛾 . (45)

Here, 𝑇fg (408 MHz,Ω, 𝑡) and 𝑇𝛾 = 2.725 K are the Haslam all-sky
map and CMB temperature, respectively. We assume𝑇e = 450 K and
𝜏0 = 0.014 at 𝜈c = 75 MHz, consistent with nighttime ionospheric
electron temperatures and opacity, at the location of EDGES, inferred
in Rogers et al. (2015). We calculate 𝛽(𝑙, 𝑏), from which we derive
𝛽Ω,𝑡 , as the spectral index distribution between the sky brightness
temperature distribution at 408 MHz and 45 MHz, encompassing our
50 − 100 MHz spectral band of interest, as13,

𝛽(𝑙, 𝑏) =
log

(
𝑇45 (𝑙,𝑏)−𝑇𝛾
𝑇408 (𝑙,𝑏)−𝑇𝛾

)
log

(
45
408

) . (46)

Here, 𝑙 and 𝑏 are Galactic longitude and latitude, respectively. For
𝑇45 (𝑙, 𝑏) and 𝑇408 (𝑙, 𝑏) we use the global sky model (GSM; Zheng
et al. 2017) evaluated at 408 MHz and 45 MHz, respectively, and
in both cases we smooth the resulting maps to a common resolu-
tion of 5 degrees to remove structure on scales below the angular
resolution of the 45 MHz data used in the derivation of the GSM
model. Our resulting model for the intrinsic foreground brightness
temperature, evaluated at the center of our simulated spectral band,
𝑇fg (75 MHz, 𝑙, 𝑏), and 𝛽(𝑙, 𝑏), are shown in Figure 5.

For our beam model, 𝐵(𝜈,Ω), we use the FEKO EM simulation of
the EDGES low-band blade dipole antenna with a 30 m × 30 m
sawtooth ground plane on top of soil with properties described
in Section 3.3.1. We construct our time-dependent beam-factor
model, 𝐵factor (𝜈, 𝑡), and BFCC data, 𝑇corrected (𝜈, 𝑡), in the same
manner described in Section 3.3.1, with 𝐵m (𝜈,Ω) ≡ 𝐵(𝜈,Ω) and
𝑇m

fg (𝜈c,Ω, 𝑡) ≡ 𝑇fg (𝜈c,Ω, 𝑡). Here, 𝑇m
fg (𝜈c,Ω, 𝑡) is given by Equa-

tion 45, evaluated at 𝜈c = 75 MHz. We calculate the corresponding
time-averaged BFCC data, 𝑇corrected (𝜈), by averaging 𝑇corrected (𝜈, 𝑡)
over the 120 simulated snapshot spectra derived at 6 minute inter-
vals in the LST range 0 ≤ 𝐿𝑆𝑇 < 12 h, matching the LST window
of the publicly available EDGES low-band data, when the Galactic
plane is relatively low in the beam. The resulting time-averaged data,
𝑇corrected (𝜈), and beam-factor, 𝐵̄factor (𝜈), are shown in Figure 6.

5.2 BFCC priors

Considering the parameters of Equation 43, one can define physical
priors for 𝑇m0 , 𝛽0, 𝑇e and 𝜏ion based on existing observations. The
EDGES beam weighted sky brightness temperature at 𝜈c = 75 MHz
varies with time between ∼ 1500 K and ∼ 5000 K and the tem-
perature spectral index varies between approximately 2.45 and 2.6
(e.g. Mozdzen et al. 2019). Typical nighttime attenuation through the
ionosphere at 150 MHz is 0.015 dB (which, via Equation 42, yields
𝜏0 ' 0.014), with the average magnitude of perturbations in 𝜏ion,
as measured over 16 days of observations from 18 April to 6 May
2014, at night and over 24 h in time, of order Δ𝜏ion = 0.001 and
0.01, respectively. Nighttime average electron temperatures inferred
by EDGES in the same timeframe were of order a few hundred kelvin
(e.g. Rogers et al. 2015). The parameters of 𝑚pert (𝜈) correspond to

13 For the spectral index sign convention we assume 𝑇plfg (𝜈) =

𝑇plfg (𝜈c) (𝜈/𝜈c)−𝛽 (𝑙,𝑏)
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Figure 5. [Left] Intrinsic foreground brightness temperature distribution model, evaluated at the center of our simulated spectral band, 𝑇fg (75 MHz, 𝑙, 𝑏) , and
[right] spatially-dependent foreground spectral index distribution 𝛽 (𝑙, 𝑏) used when constructing simulated observational data.
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Figure 6. Simulated time-averaged spectrum and beam-factor resulting from
time-averaging simulated BFCC EDGES low-band data and beam-factors,
respectively, over 120 simulated snapshot spectra derived at 6 minute intervals
in the LST range 0 ≤ 𝐿𝑆𝑇 < 12 h, matching the LST window of the publicly
available EDGES low-band data.

the temperatures of individual perturbation spectral model vectors at
reference frequency 𝜈c = 75 MHz. The fraction of the antenna tem-
perature described by 𝑚pert is expected to be small relative to 𝑇m0
(see Section 4.1.1). For the simulated observations considered in
Section 5.1, we find that conservatively limiting individual perturba-
tion model vectors to 10% absolute fractional perturbations provides
sufficient flexibility for Equation 43 to accurately model simulated
foreground-only BFCC data, without adding a significant degree of
superfluous flexibility. We incorporate this information when fitting
Equation 43 to the simulated data in Section 5.5, in a conservative

Table 3. Priors on the parameters of the BFCC foreground model defined in
Section 4 and fit in Section 5.5.

Parameter Model component Prior

𝑇̄m0 foreground 𝑈 (1000, 6000) K
𝛽0 foreground 𝑈 (2.0, 3.0)
𝑝𝛼 foreground 𝑈 (−0.1, 0.1)
𝑇e ionosphere 𝑈 (100, 800) K
𝜏0 ionosphere 𝑈 (0.005, 0.025)

manner, using broad14 physical priors on the parameters of the model
as listed in Table 3.

5.3 Intrinsic data model

In Section 5.5, we will analyse the simulated BFCC data constructed
in Section 5.1 using the analytic BFCC model derived in Section 4
(Equation 43) and we will compare it to a data model describing
the intrinsic spectral structure of the sky but omitting the impact of
imperfect correction for instrumental chromaticity. For both models,
we use the flattened Gaussian signal model used in B18 as a model for
the global 21-cm absorption trough. For the foreground component
of the latter model, we use the physically motivated parametrisation
of the foreground component of the sky signal after propagation
through the ionosphere given in B18. We provide a first-principles
derivation of this model in Section E. Here, we quote the form of the
model given in B18 and used in Section 5.5:

𝑇model
Intrinsic,fg (𝜈) = 𝑏0

(
𝜈

𝜈c

)−2.5+𝑏1+𝑏2 log
(
𝜈
𝜈c

)
e−𝑏3

(
𝜈
𝜈c

)−2

+𝑏4

(
𝜈

𝜈c

)−2
.

(47)

Here, 𝑏𝑖 with 𝑖 ∈ [0, · · · , 4] are foreground and ionospheric para-
meters to be determined in the fit of the model to the data. The

14 In principle, one could consider contracting the priors on 𝑇̄m0 and 𝛽0 and
𝜏ion; however, we find that such a contraction does not lead to a qualitative
change in our conclusions and this conservative choice of priors benefits
from being more general - enforcing physicality while being sufficiently
uninformative to be applicable also to smaller temporal-subsets of the data and
instruments with narrower beams for which the variation of these quantities
will be larger.
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Table 4. Priors on the parameters of the Intrinsic foreground model defined
in Section 5.3 and fit in Section 5.5.

Parameter Model component Prior

𝑏0 foreground 𝑈 (1000, 6000) K
𝑏1 foreground 𝑈 (−0.5, 0.5)
𝑏2 foreground 𝑈 (0, 0.2)
𝑏3 ionosphere 𝑈 (0.005, 0.025)
𝑏4 ionosphere 𝑈 (0.5, 20.0) K

factor of -2.5 in the first exponent is the typical power-law spectral
index of the foreground, 𝑏0 is an overall foreground scale factor, 𝑏1
allows for a correction relative to the typical spectral index of the
foreground, for the power-law index in the field being analysed, and
𝑏2 models the contribution to the foreground spectral structure from
spatial variation in the spectral index distribution. The amplitude
of ionospheric effects is described by 𝑏3 and 𝑏4, which model the
strength of ionospheric absorption of the foreground and emission
from hot electrons in the ionosphere, respectively (see Section E for
the detailed relations between the parameters of Equation 47 and
physical parameters from which they derive.).

Going forward, we refer to this model (and its foreground com-
ponent) as the ’Intrinsic’ (foreground) model, and use the notation
𝑇model

intrinsic to describe the sum of 𝑇model
intrinsic,fg and 21-cm signal model

components. When fitting this model to the simulated data in Sec-
tion 5.5, we impose physically motivated priors on the parameters
of 𝑇model

intrinsic. The priors we use are listed in Table 4, and they are set
such that they are equivalent to the priors on 𝑇m0 , 𝛽0, 𝑇e and 𝜏ion in
the BFCC model listed in Table 3.

5.4 Bayesian model comparison

In Section 5.5, we will analyse the realistic simulated BFCC cor-
rected EDGES data derived in Section 5.1 using the closed-form
model for BFCC data derived in Section 4 and the Intrinsic data
model described in Section 5.3. Since the number of components of
the 𝑚pert (𝜈) component of the BFCC model required to adequately
describe the component of the foregrounds imperfectly corrected for
chromatic effects by BFCC is field- and signal-to-noise-dependent
and a priori unknown, in order to optimally use the BFCC model, one
requires a means to determine the preferred number of components
of 𝑚pert (𝜈) to fit for when analysing a given data set. Comparison
of the posterior odds in favour of models for the data with differ-
ing numbers of components, within a Bayesian framework, provides
a statistically robust means to determine the preferred number of
model components. We outline below the quantities necessary for
the calculation of the posterior odds between two models.

5.4.1 Model comparison

Bayesian inference addresses model comparison between two pos-
sible models for a data set, 𝑀𝑖 and 𝑀 𝑗 , via consideration of R𝑖 𝑗 , the
posterior odds in favour of 𝑀𝑖 over 𝑀 𝑗 ,

R𝑖 𝑗 =
Pr(𝑀𝑖 |𝑫)
Pr(𝑀 𝑗 |𝑫) =

Pr(𝑫 |𝑀𝑖)Pr(𝑀𝑖)
Pr(𝑫 |𝑀 𝑗 )Pr(𝑀 𝑗 )

= B𝑖 𝑗
Pr(𝑀𝑖)
Pr(𝑀 𝑗 )

. (48)

Here, the ratio of posterior and prior odds in favour of 𝑀𝑖 over 𝑀 𝑗 is
called the ‘Bayes Factor’, B𝑖 𝑗 , Pr(𝑫 |𝑀𝑖) ≡ Z𝑖 and Pr(𝑫 |𝑀 𝑗 ) ≡ Z 𝑗

are the BME of 𝑀𝑖 and 𝑀 𝑗 , respectively, and Pr(𝑀𝑖)/Pr(𝑀 𝑗 ) is the
prior odds in favour of the 𝑀𝑖 over 𝑀 𝑗 , set before any conclusions
have been drawn from the data set.

The Bayes factor is a summary of the evidence provided by the data
for one model, as opposed to another. Different classification schemes
exist for interpreting the significance that is implied by a given Bayes
factor. In this paper, when comparing models for the data, we follow
Kass & Raftery (1995), who, in the limit that the different models
are a priori equally likely, consider ln(B𝑖 𝑗 ) = ln(Z𝑖) − ln(Z 𝑗 ) ≥ 3,
corresponding to a ratio of the marginal probability of the data given
𝑀𝑖 relative to 𝑀 𝑗 of better than ∼ 20, to constitute strong evidence
in favour of 𝑀𝑖 over 𝑀 𝑗 and 1 ≥ ln(B𝑖 𝑗 ) ≥ 3 to constitute positive
evidence.

In this work, when analysing the data, we estimate model evidences
using nested sampling as implemented by the polychord algorithm
(Handley, Hobson & Lasenby 2015a,b). Additionally, we assume a
priori that the different models we consider are equally likely, in
which case, 𝑅 = 𝐵.

5.4.2 Model priors

For the data analysis and models considered here, we find that using
the Bayes factor to compare between models is sufficient to arrive at
reasonable conclusions regarding the preferred model for the data.
However, in general, for models with correlated components, in ad-
dition to the model as a whole being able to fit the data, to recover
unbiased parameter estimates with a model requires that the model
components accurately describe the components of the data they are
designed to model. If this is a priori poorly quantified, one can en-
counter situations in which models can accurately fit the data despite
being comprised of one or more components that are inaccurate de-
scriptions of the components of the data they are intended to model.
Such a situation will occur when the error associated with the poor
modelling of particular components can be absorbed by the others,
leading to good fits to the data but with biased component models
and biased estimates of the corresponding model parameters. If the
extent to which a subset of the components of the model can be ex-
pected to describe the components of the data that they are designed
to model is better understood than the remaining components, in-
formative priors on the better understood components can be used to
inform the prior on models that contain them. In the context of 21-
cm cosmology, this is true of the foreground component of the data,
which is far more stringently constrained by existing observations
than the 21-cm signal. In upcoming work, in the context of a wider
comparison of foreground models and data sets, we will demonstrate
that, when one requires both that the model as a whole is an accurate
fit to the data and the model components are accurate models for the
respective components of the data they describe, model priors can
be essential for deriving robust conclusions with respect to preferred
models for the data; however, this is most important when the true
amplitude of the 21-cm signal absorption trough is smaller than the
21-cm absorption trough reported in B18 and considered here (Sims
et al. in prep.).

5.5 Results

In this section, we analyse the simulated data described in Section 5.1
with the BFCC model derived in Section 4 and the Intrinsic model
described in Section 5.3. In total, we analyse 9 models including the
Intrinsic model and 8 BFCC models with numbers of foreground
terms of between 𝑁 = 3 and 10. When discussing summary statistics
we use the median posterior solutions and uncertainties defined by the
68% credibility interval about the median. These estimates match the
mean and standard deviation in the limit that the posterior distribution
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Figure 7. Bayes-factors (B𝑖max) of model 𝑀𝑖 over 𝑀max for data described
by Equation 44 and incorporating a flattened Gaussian 21-cm absorption
trough with an amplitude 𝐴 = 500 mK. Here, 𝑀max is the highest evidence
model for the data. For the BFCC model, the number of foreground terms
included in the model that yields the maximum evidence total model for the
data is indicated by the blue dashed line.

is Gaussian and more informatively characterise the distributions
when they are not. We use 1-𝜎 as a shorthand when referring to
these uncertainty estimates and 𝑁-𝜎 to refer to deviations from the
median parameter estimates 𝑁-times larger.

5.5.1 BFCC model complexity

Figure 7 shows the Bayes-factors (B𝑖max) of the 9 models considered
in this section relative to the highest evidence model for the simulated
EDGES low-band BFCC data, derived from the sky simulations in-
cluding foregrounds with realistic spatially dependent spectral struc-
ture described in Section 5.1. The highest evidence model for the data,
𝑀max, is the BFCC model with 𝑁 = 5 foreground terms. There is
positive evidence in favour of 𝑀max over the two next most probable
BFCC models with 𝑁 = 4 and 6, respectively, and strong evidence in
favour of 𝑀max over the remaining BFCC models, as well as the In-
trinsic model. Additionally, we find that with all models tested, there
is strong evidence in favour of including the 21-cm signal component
of the models. This implies that there is statistically significant level
of structure in the data that is not described by the foreground model
but which can be described with the 21-cm signal component of the
full model. However, this does not necessarily imply a 21-cm signal
has been detected. Rather, it implies either a detection of a signal
in the data or a detection of systematic structure fit by the 21-cm
model (e.g. Sims & Pober 2020). In practice, separation of these two
scenarios requires additional evidence in favour of one scenario or
the other, such as LST-independence of the detected signature, as ex-

pected if the structure results from an isotropic cosmological signal
(e.g. see B18).

When assessing the model posteriors in the next section we use the
highest Bayesian evidence BFCC model (using 𝑁 = 5 foreground
terms), and compare the results recovered with it to those recovered
with the Intrinsic model. In principle one could extend the analysis
to use a weighted combination of multiple models using Bayesian
model averaging and weighting the models by the posterior odds in
their favour (equal to the Bayes factors relative to a reference model
in the limit that the models are a priori equally likely). This would
not qualitatively change the conclusions arrived at here; however, we
explore this approach further, in the context of lower amplitude input
21-cm signals, in upcoming work.

5.5.2 21-cm signal recovery

The top, middle and bottom subplots, of the top row of Figure 8 show
functional posterior probability distributions of:

• the residuals in a fit of the foreground-and-ionosphere-model com-
ponents of the models to the data,
• the residuals in a fit of the full models to the data, and
• the recovered 21-cm absorption trough in the fit of the full models
to the data, respectively,

for the 𝑁 = 5 foreground term BFCC model (left) and Intrinsic model
(right).

The RMS residual of the maximum a posteriori models derived in
fits of the foreground-and-ionosphere-model components of the mod-
els to the data are equal to 92 and 122 mK, for the BFCC and Intrinsic
models respectively, relative to the 20 mK RMS expectation value of
the noise on the data. In both cases, the significant excess RMS over
the expectation for the noise is demonstrative that the spectrometer
data including the simulated 21-cm signal can not be well described
by only the foreground-and-ionosphere-model components of either
model. In contrast, the RMS residual of the maximum a posteriori
models derived in fits of the full models to the data are equal to 21
and 25 mK, for the BFCC and Intrinsic models respectively.

Kolmogorov-Smirnov tests for consistency between the residuals,
in the fits of these models to the data and the 20 mK standard deviation
Gaussian distribution, which describes the expected noise on the data,
yield 𝑝-values less than 10−5 for both the BFCC and Intrinsic models
in the former case and greater than 0.7 for both models in the latter
cases. Thus, from this comparison, one arrives at the same conclusion
as from the comparison of the Bayesian evidences in Section 5.5.1,
that including a 21-cm signal component yields preferred models for
the data over excluding it.

Looking at the functional posteriors on the recovered 21-cm ab-
sorption trough in the data, shown in the bottom subplots, for the
BFCC model the recovered signal is consistent at ∼ 1-𝜎 with the
underlying signal across the full 50 − 100 MHz spectral band of the
data. In contrast, the 21-cm absorption trough recovered with the In-
trinsic model is consistent with the underlying signal only at ∼ 3-𝜎
in the ∼ 75− 85 MHz spectral range and inconsistent at > 3-𝜎 in the
∼ 85 − 90 MHz spectral range.

The corresponding consistency and bias in the recovered 21-cm
absorption trough with the BFCC and Intrinsic models, respectively,
can be seen in the posteriors for the parameters15 of the signal shown

15 The marginalised posterior probability distributions plot is generated using
adaptive kernel density estimates (with corrections for boundary conditions
and smoothing biases) with the getdist software package (Lewis 2019a,b).
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Figure 8. Signal recovery plots for the BFCC with 𝑁 = 5 foreground terms model (top left) and Intrinsic model (top right). In both cases, subplots show the
functional posterior probability distributions of the residuals in a fit of the foreground-and-ionosphere-model component of the model to the data (top), the
residuals in a fit of the full models to the data (middle) and the recovered 21-cm signal in the fit of the full models to the data (bottom). The dotted lines in the
top and middle subplots denote the noise level in the simulated data. The dashed black line shows the input 21-cm signal in the simulated data. The bottom plot
shows one- and two-dimensional marginal posterior probability distributions of the 21-cm signal parameters in the two full models. The dashed red lines show
the true values of the flattened Gaussian absorption trough parameters in the simulated data.
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in bottom plot of Figure 8. The 21-cm signal parameters recovered
with the BFCC model are consistent with the input parameters of
the 21-cm absorption trough in the simulated data at 1-𝜎 for all
parameters other than 𝜈0, which is consistent at 1.5-𝜎 (see Table 5).
In contrast, a signal biased moderately high in both amplitude and
central frequency (2.3- and 3.5-𝜎 biases, respectively) relative to the
underlying absorption trough in the simulated data is recovered with
the Intrinsic model.

5.5.3 Ionospheric effects

The median posterior values and 68% credible regions (centered on
the medians) for the beam-weighted and time-averaged foreground
temperature and mean spectral index, as well as for the electron
temperature and opacity of the ionosphere at 𝜈 = 75 MHz (𝑇m0 , 𝛽0,
𝑇e and 𝜏0, respectively) in both the Intrinsic and BFCC model are
listed in Table 6, along with the underlying values of the parameters in
the simulated data. The underlying value of𝑇m0 quoted in the caption
of Table 6 is calculated as the time-averaged and beam-weighted
temperature of the power-law foregrounds at reference frequency 𝜈 =

𝜈c, where 𝜈c = 75 MHz and the power-law foreground temperature
is given by (𝑇fg (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) − 𝑇𝛾) with 𝑇fg (𝜈,Ω, 𝑡, 𝛽Ω,𝑡 ) given by
Equation 45. The underlying value of 𝛽0 is calculated as the time-
averaged and apparent sky temperature weighted spectral index in
the simulated data. Here, the apparent sky temperature weighting is
given by the normalised product of the beam16 and foreground sky
temperature.

The BFCC model recovers solutions for 𝑇m0 , 𝛽0 and 𝑇e consistent,
to within 1-𝜎, with the underlying values of the parameters in the
simulated data. The Intrinsic model recovers solutions for 𝛽0 and 𝑇e
consistent to within∼ 1-𝜎 with the underlying values of the paramet-
ers in the simulated data17. In contrast, the median posterior values
for 𝜏0 recovered with the BFCC and Intrinsic models are biased at
2.4- and 7.4-𝜎, respectively. In the case of the BFCC model, the
difference between the median posterior value for 𝜏0 and the under-
lying value in the simulation corresponds to differential ionospheric
absorption across the band in the model of ∼ 1% relative to the
data. This differential absorption scales the 21-cm signal model,
but this has negligible direct impact at the signal-to-nose level con-
sidered here. However, by indirectly providing an additional degree
of freedom to the approximate 𝑚pert model for the contribution of
the imperfectly BFCC corrected component of foreground emission
resulting from the interaction between the chromatic structure of
the beam and the component of foreground emission correspond-
ing to spatially dependent spectral variations about the mean of
the foreground spectral index distribution, the mild bias in 𝜏0 en-
ables the composite foreground-and-ionosphere model to better fit
the foreground-and-ionosphere component of the data. As shown in
the preceding section, this results in a sufficiently accurate model for

16 The effective mean spectral index of the region of sky observed by the
instrument, calculated in this manner, evolves with frequency due to the
change in the apparent sky temperature weighting of the underlying spectral
index distribution. In practice, the variation with frequency is small (∼ 2 parts
in 1000); therefore, for simplicity, in Table 6 we quote the time-averaged and
apparent sky temperature weighted spectral index averaged over the band of
the data.
17 Nominally, the Intrinsic model recovers 𝑇̄m0 consistent with the underlying
value in the data to within 1.5-𝜎. However, if we subtract, from 𝑇̄m0 , the CMB
temperature, which is not explicitly modelled as an independent foreground
component in the Intrinsic model fit here, this parameter would also agree
with the underlying value in the data to within its 1-𝜎 uncertainty.

the composite foreground-and-ionosphere component of the data to
enable unbiased recovery of the 21-cm signal at the 1-𝜎 level.

In contrast, in the case of the Intrinsic model, even with biased
𝜏0, the foreground-and-ionosphere model has insufficient degrees
of freedom to describe the data and the maximum a posteriori
foreground-and-ionosphere model remains an inaccurate model for
the foreground-and-ionosphere component of the data. Additionally,
in combination with this, the systematic error resulting from this
inaccuracy summed with the underlying 21-cm signal in the data is
reasonably well described by a biased fit of the 21-cm absorption
trough component of the Intrinsic model. This, in turn, leads to a
reasonably accurate fit of the full Intrinsic model to the data but only
with biased recovery of the 21-cm signal.

6 DISCUSSION

The primary goal of global 21-cm signal experiments is to obtain
unbiased measurements of, or constraints on, the redshifted 21-cm
signal. Our results with respect to this goal have been described
in Section 5.5.2, with the BFCC model, in contrast to the Intrinsic
model, found to enable unbiased recovery of the 21-cm absorption
trough in the simulated BFCC EDGES low-band data.

Beyond deriving a data model capable of realizing this primary
goal, all other things being equal, employing physical models for
the emission with physical prior ranges on the model parameters
(e.g. Hills et al. 2018; Anstey, de Lera Acedo, & Handley 2021) has
the advantage of providing improved interpretability over more gen-
eral alternative models, as well as reducing the level of correlation
between the model components relative to an equivalent model with
less constrained priors. However, the more constrained the non-21-
cm component of the model, in general the less capable that model
will be of absorbing low-level systematic effects in the data, neces-
sitating explicit characterisation and modelling of such effects, if
present in the data.

6.1 Efficacy of the Intrinsic model

The foreground and ionospheric parameters of the Intrinsic model
correspond to the amplitudes of physically interpretable parameters,
and our priors on those parameters (see Table 4) ensure that their pos-
teriors are within physically plausible ranges. However, they do not
ensure that the posterior distributions of the parameters are unbiased
relative to their underlying values in the data (see Section 5.5).

The bias in the 21-cm signal estimates recovered with the Intrinsic
model results from the following two conditions being present in the
analysis of the data:

(i) the non-21-cm component of the Intrinsic model is unable to ac-
curately model the corresponding component of the data,

(ii) a significant fraction of the resulting systematic structure introduced
by the inaccuracy of the non-21-cm component of the Intrinsic model,
summed with the underlying 21-cm absorption trough in the simu-
lated data, is modellable with a flattened Gaussian absorption trough
that is biased relative to the cosmological signal in the data (i.e. the
sum of foreground systematic and signal can be well fit by the signal
model).

We consider these properties to make the Intrinsic model a poor data
model, for the purposes of modelling BFCC EDGES low-band data.
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Table 5. Summary of 21-cm parameter inference for the BFCC and Intrinsic models. The 50th quantile posterior parameter estimates and uncertainties
corresponding to the 16th and 84th quantiles of the posterior distributions are quoted. The input parameters of the 21-cm absorption trough in the analysed data
are: 𝐴 = 500 mK, 𝜈0 = 78 MHz, 𝑤 = 19 MHz and 𝜏 = 8. Consistency (or not) of the recovered 21-cm signal with the true signal in the data is noted in the
comments.

Model 𝐴 (mK) 𝜈0 (MHz) 𝑤 (MHz) 𝜏 Comment

BFCC 0.47+0.03
−0.04 78.20+0.18

−0.14 18.97+0.32
−0.37 8.56+3.44

−1.99 Consistent with input

Intrinsic 0.57+0.03
−0.03 78.49+0.15

−0.14 19.51+0.35
−0.34 5.44+1.48

−1.05 Biased

Table 6. Summary of common foreground and ionosphere parameters
between the BFCC and Intrinsic models. The 50th quantile posterior para-
meter estimates and uncertainties corresponding to the 16th and 84th quantiles
of the posterior distributions are quoted. The underlying values of the para-
meters in the analysed data are: 𝑇̄m0 = 1627.8 K, 𝛽0 = 2.583, 𝑇e = 450 K
and 100𝜏0 = 1.4.

Model 𝑇̄m0 (K) 𝛽0 𝑇e (K) 100𝜏0

BFCC 1624.8+3.2
−2.4 2.562+0.074

−0.061 302+193
−127 0.832+0.241

−0.146

Intrinsic 1634.0+4.2
−4.1 2.582+0.002

−0.002 460+234
−242 1.704+0.040

−0.042

6.2 Efficacy of the BFCC model

The physical parameters of the Intrinsic model comprise a subset
of the BFCC model parameters. With the BFCC model, as with the
intrinsic model, we employ priors on those parameters (see Table 3)
that ensure their posteriors are within physically plausible ranges.
The BFCC model additionally accounts for the inverse beam-factor
scaling of all emission components of BFCC data and includes the
𝑚pert component designed to model structure in 𝑇corrected (𝜈, 𝑡) that
is imperfectly corrected by the beam-factor-based chromaticity cor-
rection of the data. If 𝑚pert were a sufficiently accurate standalone
description of the component of the data it is designed to model,
one would expect to recover accurate 21-cm signal parameters, and
not only physically plausible but also unbiased values for the physic-
ally interpretable foreground and ionospheric parameters relative to
those in the simulated data. We term a model fulfilling this condition
a perfect data model18 of BFCC EDGES low-band data.

In contrast, an intermediate scenario can also occur if, in combin-
ation, the foreground-plus-ionosphere model is an accurate model
for the foreground-plus-ionosphere model component of the data
without either being perfect data models for their respective com-
ponents of the data. In such a situation one would still expect to
recover unbiased estimates of the 21-cm signal but to recover biased
estimates for some or all of the foreground-plus-ionosphere-specific
model parameters. Such a model achieves the primary goal of 21-cm
signal experiments but falls short of the condition for a perfect data
model, defined above. Despite this, our primary analysis goal is re-

18 In practice, such a model is perfect insofar as it is unbiased, and models
with 𝑚pert components of varying complexity, and correlations with the other
model components, can in principle fall in this category. In this case, models
with minimal correlation between 𝑚pert and other model components will
enable more precise parameter constraints and, thus, are preferred. However,
since such models will naturally have less flexibility for absorbing systematics
they necessitate meticulous care that such systematic structure is not present
in any new data being analysed.

covery of unbiased estimates of the 21-cm signal, and such a model
nevertheless constitutes an excellent data model for this purpose.

The variant of the BFCC model (Equation 43) tested in Section 5.5
enables reliable 21-cm signal inference from realistic simulated
BFCC EDGES low-band data in addition to recovering unbiased re-
covery of𝑇m0 , 𝛽0,𝑇e. In this sense, it approaches a perfect data model
of BFCC EDGES low-band data, as defined above. However, further
refinement of the model for 𝑇pert, the imperfectly BFCC corrected
component of foreground emission resulting from the interaction
between the chromatic structure of the beam and the component of
foreground emission corresponding to spatially dependent spectral
variations about the mean of the foreground spectral index distribu-
tion, would be necessary to eliminate bias in the recovered estimates
of 𝜏0. Thus, the variant of the BFCC model using the power law-
damped log-polynomial parametrisation for 𝑚pert tested here falls
under our classification for an excellent data model of BFCC EDGES
low-band data. Recovery of 𝜏0 is not of principle importance in the
application of the BFCC model developed in this paper, we therefore
leave further consideration of models with additional optimisation
for recovery of this parameter to future work.

6.3 Comparison to Intrinsic model results in Hills et al. (2018)

In Hills et al. (2018) (hereafter, H18), a number of models are fit to
the publicly available BFCC EDGES low-band data. Of these, the
one of interest for comparison here is the analysis using a model
equivalent to the Intrinsic model considered here, with restrictions
to the fit, comparable to the priors on the model parameters imposed
in this paper, to ensure recovery of physically plausible posteriors
on the foreground and ionospheric parameters of the model. In this
fit, the amplitude and central frequency of the recovered signal are
increased relative to the solution recovered with a model substituting
foreground-plus-ionosphere component of the Intrinsic model with
the less constrained and more flexible variant of that model employed
in B18. Comparing the 21-cm absorption trough recovered with the
BFCC and Intrinsic model, we find qualitatively the same behaviour
here as that found in the above comparison, with the amplitude and
central frequency of the recovered 21-cm absorption trough biased
high (here, at 2.3- and 3.5-𝜎 significance, respectively) relative to
the 21-cm signal posteriors recovered with the BFCC model.

While the foreground models fit in B18 are not equivalent to
the BFCC model considered here, they share the trait of being more
flexible foreground models relative to the Intrinsic model. As a result,
it is of interest to compare the difference between the signal recovered
in the B18 analysis and that recovered in the analysis of the same
data with the Intrinsic model in H18 to the difference in the signals
recovered with the BFCC model and Intrinsic model here19. We leave

19 In upcoming work, focussed on model priors, we find that qualitatively
the same result holds with respect to the 21-cm signal recovered with the
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to upcoming work analysis of the publicly available data from B18
with the BFCC model, enabling a more direct comparison.

Despite the qualitative agreement in the parameters and direction
of bias with the intrinsic model, in the two cases, the results of
the H18 analysis of the publicly available BFCC EDGES low-band
data and the analysis of the simulated BFCC EDGES low-band data
considered here differ quantitatively in two ways of interest:

(i) While the bias in the amplitude and central frequency of the ab-
sorption trough recovered with the Intrinsic model are statistically
significant, the absolute values of the offsets are smaller than the off-
sets between those model parameters for the 21-cm signals recovered
when fitting the Intrinsic model in H18 relative to the 21-cm signal
found in B18. In particular, here, the median posterior value of the
absorption trough recovered with the Intrinsic model is∼ 100 mK lar-
ger than both that recovered with the BFCC model and the amplitude
of the true signal in the simulated data, while the central frequency
is approximately 300 kHz high than in the BFCC model. In contrast,
it is shown in H18 that the absorption trough recovered with the In-
trinsic model is approximately 1.5 K larger in amplitude and with an
order 10 MHz higher in central frequency than the absorption trough
recovered with a more flexible foreground model in B18.

(ii) While the 21-cm signal recovered using the Intrinsic model to fit the
simulated BFCC EDGES low-band data in this work is biased, the
overall fit of the intrinsic model to the data leaves residuals with an
RMS amplitude of ∼ 25 mK, comparable to the 20 mK expectation
value of the noise in the simulated data. In contrast, H18 find that the
fit of the Intrinsic model to the publicly available EDGES low-band
data yields residuals with an RMS of 121 mK, significantly larger
than the 24 mK RMS residuals found when jointly fitting the data with
a 21-cm absorption trough and the more flexible linearised form of
the Intrinsic foreground-and-ionosphere model with uninformative
priors, applied in B18.

Both of the above points are suggestive of additional structure
present in the publicly available BFCC EDGES low-band data re-
lative to the simulated BFCC EDGES low-band data in this work.
In this paper we assumed no uncertainty on the base-map and beam
model used in beam-factor chromaticity correction of the data. In
practice both of these assumptions will be violated at some level.
Correspondingly, imperfections in the beam and base-map models
used to derive the beam-factors which were applied to the publicly
available BFCC data are a candidate for this additional structure. We
plan to explore this possibility further, as well as assess the efficacy
of the BFCC model for accounting for such structure and mitigating
its impact on 21-cm signal recovery in simulations and in the analysis
of EDGES data in upcoming work.

7 SUMMARY AND CONCLUSIONS

Accurately accounting for spectral structure in spectrometer data
induced by instrumental chromaticity on scales relevant for detection
of the 21-cm signal is among the most significant challenges in global
21-cm signal analysis. In the publicly available EDGES low-band
data set, this complicating structure is suppressed using beam-factor
based chromaticity correction (BFCC), which works by dividing the
data by a sky-map-weighted model of the spectral structure of the
instrument beam.

linearised form of the Intrinsic model fit with uninformative priors on the
effective foreground and ionosphere parameters, as used in B18.

BFCC perfectly corrects for chromatic effects20 only in the hypo-
thetical scenario that the foregrounds contributing to the measured
spectrometer data have spatially independent spectral structure. In
this case, we have shown that the correction is perfect in the sense
that, in the limit that one has an error-free model for the beam and
of the sky at a given reference frequency from which a beam-factor
model is constructed, one can write down a closed-form solution
for BFCC data in terms of the intrinsic spectral structure of the sky
observed by the instrument and the calculated beam-factor (Equa-
tion 10). However, even in this simplified scenario, it is not the case
that BFCC produces data that is proportional to the autocorrela-
tion spectrum that would be measured if the spectrometer had an
achromatic beam, 𝑇sky (𝜈, 𝑡).

For realistic foreground spectral structure dominated by Galactic
diffuse synchrotron emission and synchrotron emission from ex-
tragalactic sources, with a smaller contribution from Galactic
free-free emission, the intrinsic foreground spectrum is spatially-
dependent. In this case, we have shown that there is not an exact
closed-form expression for the resulting BFCC data. However, by
writing the spectral structure of the foregrounds in terms of spa-
tially dependent spectral perturbations on top of a spatially isotropic
background (corresponding to small spatially-dependent spectral in-
dex perturbations to an isotropic power law spectrum), we derive a
physically-motivated approximate model for the foregrounds com-
prised of two components:

(i) the dominant spatially isotropic power law component of the fore-
grounds, and

(ii) the subdominant contribution of the spatially dependent spectral
perturbations, about a spectrally isotropic background.

We have shown that in the limit that one has an error-free beam-
factor model, the first component can be perfectly corrected for in-
strumental chromaticity via BFCC. However, the second component
is not exactly describable with a finite-term closed-form expression.
Nevertheless, we show that it can be accurately approximated with a
moderate number of terms and that the optimal complexity for this
component of the model when describing a given data set can be
ascertained via Bayesian model comparison. Furthermore, we show
that recovery of unbiased estimates of the underlying 21-cm signal
in the data is possible when using the maximum Bayesian evid-
ence BFCC models to analyse realistic simulated observations of the
BFCC EDGES low-band data incorporating:

• foregrounds with realistic spatially dependent spectral structure,
• spectrally-dependent absorption by the ionosphere,
• ionospheric emission,
• a flattened Gaussian 21-cm absorption profile with parameters con-
sistent with those found in B18.

In contrast, even in the limit of an error-free beam-factor model,
fitting BFCC data with an Intrinsic model, which neglects the residual
effects of beam chromaticity on BFCC data, recovers biased estimates
of the underlying 21-cm signal in the data.

Comparing the difference between the 21-cm signal recovered
with the Intrinsic model and the BFCC model from simulated BFCC
EDGES low-band data using a realistic foreground model and error-
free beam-factor model to the difference between the 21-cm signal

20 Here, by perfectly correct we mean that in the limit of an error-free model
for the instrument beam, 𝐵m, and𝑇 m

fg , a closed-form solution for𝑇corrected (𝜈)
can be derived in terms of the (assumed known) intrinsic spectral structure
of the sky observed by the instrument and the calculated beam-factor.
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recovered with the Intrinsic model component of the H18 analysis of
the publicly available EDGES low-band data and the signal recovered
in B18 with a more flexible foreground model, we find qualitatively
the same behaviour, with the amplitude and central frequency of the
recovered 21-cm absorption trough biased high. However, the size
of the difference in these two quantities is substantially larger in the
latter case, and the overall fit of the model to the data is worse. Both
of the above points are suggestive of additional structure present in
the publicly available BFCC EDGES low-band data relative to the
simulated BFCC EDGES low-band data in this work.

An important caveat to the simulated results derived here is that
errors in the beam-factor model have the potential to reduce the ef-
ficacy of BFCC, introducing an additional source of the systematic
structure in observational data, relative to the simulated data analysed
here. Such systematic structure is expected to contribute to the above
difference. In future work in this series, to answer this question we
plan to explore the impact of realistic deviations from the assumption
of an error-free model for the beam-factor used in BFCC, due to un-
certainties in the base-map sky model and beam model. Additionally,
we will assess the efficacy of the BFCC model at accounting for such
structure and for mitigating its impact on 21-cm signal recovery in
simulations and in the analysis of EDGES data.
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APPENDIX A: MONSALVE BEAM-FACTOR
CHROMATICITY CORRECTION

In Monsalve et al. (2017), an alternate chromaticity correction for-
mulation is employed with a similar form to Equation 4 but with a
model of the foreground brightness temperature distribution across
the observing band replacing the foreground sky brightness temper-
ature distribution at reference frequency 𝜈c,

𝐵′
factor (𝜈, 𝑡) =

∫
Ω+

𝐵m (𝜈,Ω)𝑇m
fg (𝜈,Ω, 𝑡)dΩ∫

Ω+
𝐵m (𝜈c,Ω)𝑇m

fg (𝜈,Ω, 𝑡)dΩ
. (A1)

A correction of this form requires accurate knowledge of the spa-
tially dependent spectral structure of the foregrounds in addition to
the accurate knowledge of the beam in the frequency range being
corrected and an accurate foreground model at reference frequency
𝜈c, required by Equation 4.

If the spectral structure of the foreground model is approximated as
isotropic, the foreground spectrum can be factored out of the numer-
ator and denominator of Equation A1, and one recovers Equation 4.
Thus, the corrections provided by 𝐵factor and 𝐵′

factor differ only when
one models spatially dependent foreground spectral structure.

In this work, we focus on the effectiveness of Mozdzen BFCC
as defined in Equation 4, both because it is the nominal form of
beam-factor chromaticity correction used in B18 and because, by
not requiring an a priori fixed model of the spatially dependent
spectral structure of the foregrounds to generate the beam-factor,
Mozdzen BFCC eliminates the potential for introducing spurious
spectral structure into the data through errors in this model. However,
we return to the question of the relative merits of the Monsalve
versus Mozdzen formulations of beam-factor chromaticity correction
in Appendix C.

APPENDIX B: DEFINITIONS OF PERFECT BFCC

When constructing models for BFCC data that assume that its spectral
structure is well described by physical models for the intrinsic spectral
structure of the emission components (see e.g. B18; Hills et al. 2018,
for examples), one is implicitly assuming that the BFCC has perfectly
corrected the data as follows:

• Perfect BFCC definition 1 - a correction that produces data that is
proportional to the autocorrelation spectrum that would be measured
if the spectrometer had an achromatic beam21, 𝑇sky (𝜈, 𝑡) (such that
an accurate analytic model for the intrinsic spectral structure of the
sky alone can be used to model the chromaticity corrected data).

To assess the validity of assuming perfect BFCC definition 1, it is
of interest to understand the requirements on the spectral structure
of the sky and the instrument under which it is valid.

From Equation 5, we will verify shortly that perfect BFCC ac-
cording to definition 1 is achieved under the following conditions,

(i) One has an error-free model for the instrument beam:

𝐵m (𝜈,Ω) ≡ 𝐵(𝜈,Ω) , (B1)

for use in constructing 𝐵factor (𝜈, 𝑡).
(ii) One has an error-free model for the foreground brightness temperat-

ure distribution overhead as a function of time, at reference frequency
𝜈c:

𝑇m
fg (𝜈c,Ω, 𝑡) ≡ 𝑇fg (𝜈c,Ω, 𝑡) , (B2)

also for use in constructing 𝐵factor (𝜈, 𝑡).
(iii) The measured sky brightness distribution has spatially independent

spectral structure:

𝑇sky (𝜈,Ω, 𝑡) = 𝑇sky (𝜈c,Ω, 𝑡) 𝑓 (𝜈) . (B3)

where 𝑓 (𝜈) is spatially isotropic but can be an arbitrary function of
frequency.

21 In the limit of a beam that is achromatic and uniform across the sky,
in each channel of the data one recovers a uniformly weighted average of
the sky temperature above the horizon, 𝑇data,uniform (𝜈, 𝑡) , at time 𝑡 . For
an achromatic but spatially non-uniform beam and spatially non-uniform
and spectrally isotropic brightness temperature distribution, the recovered
spectrum 𝑇data,non−uniform (𝜈, 𝑡) ∝ 𝑇data,uniform (𝜈, 𝑡); thus the models for the
two data sets are identical up to a scale factor.
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(iv) The sky brightness distribution is proportional to the foreground
brightness distribution,

𝑇sky (𝜈,Ω, 𝑡) ∝ 𝑇fg (𝜈,Ω, 𝑡) . (B4)

That the above conditions are sufficient for deriving BFCC data
which is proportional to the autocorrelation spectrum that would
be measured if the spectrometer had a uniform achromatic beam,
can be verified by substituting Equations B1–B4 into Equation 5.
Defining 𝛾 = 𝑇sky (𝜈,Ω, 𝑡)/𝑇fg (𝜈,Ω, 𝑡) as the constant of propor-
tionality between the sky and foreground brightness distributions,
such that 𝑇sky (𝜈,Ω, 𝑡) = 𝛾𝑇fg (𝜈,Ω, 𝑡) = 𝛾𝑇fg (𝜈c,Ω, 𝑡) 𝑓 (𝜈), and
𝑇m0 (𝑡) =

∫
𝐵(𝜈c,Ω)𝑇fg (𝜈c,Ω, 𝑡)dΩ as the beam weighted average

foreground brightness at reference frequency 𝜈c, we have,

𝑇corrected (𝜈, 𝑡) = 𝑇data/𝐵factor (B5)

=


∫
Ω+

𝐵(𝜈,Ω)𝛾𝑇fg (𝜈c,Ω, 𝑡) 𝑓 (𝜈)dΩ + 𝑛


×

∫
Ω+

𝐵(𝜈c,Ω)𝑇fg (𝜈c,Ω, 𝑡)dΩ∫
Ω+

𝐵(𝜈,Ω)𝑇fg (𝜈c,Ω, 𝑡)dΩ

= 𝛾𝑇m0 (𝑡) 𝑓 (𝜈) +
𝑛

𝐵factor (𝜈, 𝑡)
.

Here, 𝛾 and 𝑇m0 are frequency-independent constants and, corres-
pondingly, 𝑇corrected (𝜈) ∝ 𝑓 (𝜈). Additionally, from Equation B3,
𝑇sky (𝜈, 𝑡) ∝ 𝑓 (𝜈); as such, 𝑇corrected (𝜈) ∝ 𝑇sky (𝜈) and BFCC fulfils
perfect BFCC definition 1.

Nevertheless, conditions (iii) and (iv) limit the usefulness of per-
fect BFCC definition 1. In practice, each of the conditions (i)–(iv)
is violated at some level; however, conditions (i) and (ii) can, in
principle, be approached with arbitrary precision given sufficiently
accurate measurements of the beam and sky. This is not true of con-
ditions (iii) and (iv). Rather, in reality, the spectral structure of the
foreground brightness distribution on the sky is not isotropic, viol-
ating condition (iii) and the 21-cm and foreground brightness tem-
perature distributions are uncorrelated, violating condition (iv).The
impact of spatially dependent foreground spectral structure on mod-
elling BFCC data is discussed in Section 4. For condition (iv) to hold
would require that the foregrounds and signal have the same spec-
tral structure. This latter point, in particular, limits the usefulness of
perfect BFCC definition 1 in the context of 21-cm signal estimation,
given that the spectral distinctiveness of the 21-cm signal from the
foregrounds provides a primary means of separating the two signal
components.

Given this, we consider the following redefinition of perfect BFCC,
which, we will show in Section 3.1, allows condition (iv) to be
eliminated:

• Perfect BFCC definition 2 - we take our second and final definition
of perfect BFCC to be a correction for which, in the limit of an error-
free model for 𝐵m (𝜈,Ω) and 𝑇m

fg (𝜈c,Ω, 𝑡), a closed-form solution
for 𝑇corrected (𝜈) can be derived in terms of the (assumed known)
intrinsic spectral structure of the sky observed by the instrument and
the calculated beam-factor.

While perfect BFCC definition 2 provides no guarantee that
𝑇corrected (𝜈) will be proportional to 𝑇sky (𝜈) (and in general it will
not be), it nevertheless fulfils the more important attribute that un-
der conditions (i)–(iii), and as long as one has an accurate model
for 𝐵factor (𝜈, 𝑡) and the intrinsic spectral structure of the individual
signal components comprising 𝑇sky (𝜈), one can fit in an unbiased
manner 𝑇corrected (𝜈) derived from data violating condition (iv).

APPENDIX C: REDUCING THE COMPLEXITY OF 𝑀PERT
USING MONSALVE BFCC

In Section 4, we demonstrated that when writing the spectrum of
the power law component of the foreground emission as a spatially
varying power law and dividing the contribution of this emission to
BFCC data into a subcomponent with spatially independent spectral
structure and a smaller spatially dependent spectral perturbation, as-
suming an error-free model for the beam-factor, it is only the latter
subcomponent that is not perfectly corrected for instrumental chro-
maticity using Mozdzen BFCC. We proceeded to derive a compact
and constrained model for this subcomponent; however, it is of in-
terest to consider whether an alternate form of BFCC could correct
for both the spectrally isotropic and anisotropic contributions of the
foreground to the data.

In the hypothetical limit that one has accurate knowledge of the
spatially dependent spectral structure of the foregrounds in addition
to accurate knowledge of the beam in the frequency range of the
data and an accurate foreground model at reference frequency, 𝜈c,
Monsalve BFCC has this potential. In fact, in the limit of perfect
knowledge of these components22, if one were to chromaticity cor-
rect the data using 𝐵′

factor (𝜈, 𝑡), the correction would be perfect by
definition 2 in Appendix B.

However, in contrast, in the realistic scenario of an imperfect model
for the spatially dependent spectral structure of the foregrounds, the
numerator of 𝐵′

factor is no longer equal to the foreground component
of the spectrometer data. In this case, dividing by 𝐵′

factor will at-
best provide a partial correction for true instrumental chromaticity
while simultaneously introducing new foreground model-dependent
spurious spectral structure into the corrected spectrum. The level of
spurious spectral structure introduced into the corrected spectrum by
𝐵′

factor in this scenario is a function of the accuracy of the model for
the spatially dependent spectral structure of the foregrounds. As the
accuracy of the model decreases, the correction for true instrumental
chromaticity in the spectrum will deteriorate and the level of spuri-
ous spectral structure will increase, eventually becoming a dominant
source of foreground systematic structure.

Between these two extremes, there will be a transition regime
in which residual instrumental chromaticity when using 𝐵factor or
𝐵′

factor are comparable. We leave to future work the investigation
of the level to which the spatially dependent spectral structure of
the foregrounds must be known for chromaticity correction using
𝐵′

factor to match or improve on chromaticity correction using 𝐵factor.
Nevertheless, we note that, with either correction, some level of
residual instrumental chromaticity in the spectrum is inevitable given
realistic uncertainties on the beam and the sky, thus a BFCC model
with an 𝑚pert (𝜈) component, such as Equation 39, will be necessary
in either case.

22 In the hypothetical limit of perfect knowledge of the spatially dependent
spectral structure of the foregrounds, in addition to accurate knowledge of
the beam in the frequency range of the data and an accurate foreground
model at reference frequency 𝜈c, the numerator of the Monsalve beam-factor
(𝐵′

factor (𝜈, 𝑡); see Equation A1) is equal to the foreground component of
the data. Thus, it could simply be subtracted from 𝑇data (𝜈, 𝑡) to recover the
underlying 21-cm signal, rendering the beam-factor chromaticity correction
unnecessary.
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APPENDIX D: A PARAMETRIC BEAM-FACTOR
EXTENSION TO THE BFCC FORMALISM

In principle, one could extend BFCC, with either the Mozdzen or
Monsalve formulations of the beam-factor, to use a parametric rather
than fixed beam-factor model. In this case, one would fit the paramet-
ers of the beam-factor model jointly with those of the model for the
BFCC data, such that uncertainties on the inputs to the beam-factor
(the beam and base-map models for Mozdzen BFCC and the beam,
base-map and spectral structure models for Monsalve BFCC) are
directly accounted for. If the uncertainties associated with the com-
ponents of the beam-factor are sufficiently low for residual spectral
structure imparted to the BFCC data, due to errors in the beam-factor
components, to be small relative to the noise in the data, such a joint
fit is unnecessary. The computational expense of evaluating the integ-
rals associated with calculating the beam-factor (e.g. Equation A1)
greatly exceeds (by > 6 orders of magnitude for the beam-factor and
BFCC model considered in this work) that of evaluating a closed-
form model for BFCC data (Equation 39). Thus, in this regime, the
computational efficiency of one’s analysis is significantly enhanced.
If residual spectral structure imparted to the BFCC data, due to errors
in the beam-factor components, is statistically significant, jointly fit-
ting for a model of the residual structure with the existing parameters
of the BFCC model provides a computationally efficient alternative
to jointly fitting for a parametric beam-factor model with the model
for the BFCC data. In fact, noting that the Monsalve formulation
of the beam-factor reduces to the Mozdzen formulation in the limit
that one assumes that the foreground component of the beam-factor
model has spatially independent spectral structure, one way to view
𝑚pert (𝜈) (see Section 4.1.5) is as exactly such a model component. In
this case, 𝑚pert (𝜈) describes the residual spectral structure resulting
from neglecting spatial fluctuations in the spectral structure of the
foregrounds in the beam-factor model. As is shown in Section 5.5,
the structure due to this approximation can be accurately absorbed
by 𝑚pert (𝜈), preventing bias in the recovered 21-cm signal.

APPENDIX E: INTRINSIC FOREGROUND MODEL
DERIVATION

If one describes the intrinsic sky brightness with Equation 41 and
assumes that it is observed with a hypothetical uniform achromatic
antenna with beam 𝐵u (or, similarly, data taken with a chromatic
beam was perfectly corrected for instrumental chromaticity ex post
facto)23, substituting these into Equation 1, an unbiased model for
the spectrum of the non-21-cm component of the resulting data set
at a given time is given by,

𝑇sky (𝜈, 𝑡) = 𝑇e (1 − 𝑒−𝜏ion (𝜈) ) + 𝑇𝛾𝑒
−𝜏ion (𝜈)+∫

Ω+

𝐵u

[
𝑇plfg (𝜈c,Ω, 𝑡)

(
𝜈

𝜈c

)−𝛽Ω,𝑡

𝑒−𝜏ion (𝜈)
]
dΩ , (E1)

where we have used the direction-independence of the first two
terms to take them outside the integral. If we assume that 𝛽Ω,𝑡 and

23 In practice, a uniform achromatic antenna is not physically realisable and
spectrometer data cannot be perfectly corrected for instrumental chromaticity
ex post facto with BFCC (see Section 5.3), so these assumptions are ap-
proximate and not necessarily sufficiently accurate for unbiased 21-cm signal
recovery, as will be shown in Section 5.5.

𝑇plfg (𝜈c,Ω, 𝑡) are uncorrelated random fields with 𝛽Ω,𝑡 drawn from
a Gaussian distribution,

Pr(𝛽) = 1√︃
2𝜋𝜎2

𝛽

exp

[
−1

2

(
𝛽 − 𝛽0
𝜎𝛽

)2
]
, (E2)

where 𝛽0 and 𝜎𝛽 are the mean and standard deviation of the dis-
tribution, respectively, and noting that the only spatially-dependent
quantities on the RHS of Equation E1 are 𝑇plfg (𝜈c,Ω, 𝑡) and 𝛽Ω,𝑡 ,
we can rewrite the final term on the RHS of Equation E1 as (e.g. Liu
& Tegmark 2012),

∞∬
−∞

𝐵u

[
Pr(𝑇)Pr(𝛽)𝑇

(
𝜈

𝜈c

)−𝛽
𝑒−𝜏ion (𝜈)

]
d𝑇d𝛽 . (E3)

Here, Pr(𝑇) describes the probability distribution from which the
sky brightness temperature at frequency, 𝜈c, is drawn. Evaluating the
integral with respect to 𝑇 and substituting,

Pr(𝛽)
(
𝜈

𝜈c

)−𝛽
=

1√︃
2𝜋𝜎2

𝛽

exp

[
−1

2

(
𝛽 − 𝛽0
𝜎𝛽

)2
− 𝛽 log

(
𝜈

𝜈c

)]
,

(E4)

we can rewrite Equation E3 as,

∞∫
−∞

[
𝑇√︃

2𝜋𝜎2
𝛽

exp

[
−1

2

(
𝛽 − 𝛽0
𝜎𝛽

)2
− 𝛽 log

(
𝜈

𝜈c

)]
𝑒−𝜏ion (𝜈)

]
d𝛽 ,

(E5)

where 𝑇 is the mean of 𝑇plfg (𝜈c,Ω, 𝑡).
Evaluating Equation E5, and substituting it back into Equation E1,

we have,

𝑇sky (𝜈, 𝑡) = 𝑇e (1 − 𝑒−𝜏ion (𝜈) ) + 𝑇𝛾𝑒
−𝜏ion (𝜈)

+ 𝑇𝑒−𝜏ion (𝜈)
(
𝜈

𝜈c

) 𝜎2
𝛽

2 log
(
𝜈
𝜈c

)
−𝛽0

. (E6)

Using Equation 42 for 𝜏ion, linearising the first term in Equation E6,
neglecting24 𝑇𝛾 , averaging over time, and defining,

𝑏0 = 𝑇𝑒−𝜏ion (𝜈) , (E7)
𝑏1 = 2.5 − 𝛽0 ,

𝑏2 =
𝜎2
𝛽

2
,

𝑏3 = 𝜏0 ,

𝑏4 = 𝑇e𝜏0 ,

we recover the Intrinsic foreground model considered in B18,

𝑇model
Intrinsic,fg (𝜈) = 𝑏0

(
𝜈

𝜈c

)−2.5+𝑏1+𝑏2 log
(
𝜈
𝜈c

)
e−𝑏3

(
𝜈
𝜈c

)−2

+𝑏4

(
𝜈

𝜈c

)−2
.

(E8)

Here, 𝑏𝑖 with 𝑖 ∈ [0, · · · , 4] are foreground and ionospheric para-
meters to be determined in the fit of the model to the data.

24 This was found to have only a small effect on recovery of the 21-cm
signal in Hills et al. 2018 (producing an order of magnitude 1% change in the
amplitude).

MNRAS 000, 1–25 (2021)



26 Sims et al.

From the definitions in Equation E7, for Equation E8 to provide
a physical model for the emission components requires that 𝑏𝑖 with
𝑖 ∈ [1, 2, 3] are restricted to small values and 𝑏𝑖 with 𝑖 ∈ [2, 3, 4] are
strictly positive, given that, (i) 𝛽0 ∼ 2.5 is a reasonable estimate for
the mean spectral index in the frequency range relevant for CD (e.g.
Mozdzen et al. 2019), (ii) 𝜎𝛽 � 1 (e.g. Mozdzen et al. 2019), and,
(iii) 𝜏0 � 1 (e.g. Rogers et al. 2015). We incorporate this information,
when fitting Equation E8 to the simulated data in Section 5.5, using
priors on the parameters of the model as listed in Table 4.

When deriving Equation E8, we assumed that 𝛽Ω,𝑡 and
𝑇plfg (𝜈c,Ω, 𝑡) are uncorrelated random fields. In practice,
𝑇plfg (𝜈c,Ω, 𝑡) and 𝛽Ω,𝑡 have a non-zero correlation coefficient,
with the temperature spectral index steepening with decreasing sky-
brightness temperature away from the Galactic plane. Additionally,
𝛽Ω,𝑡 is only approximately Gaussian. In combination, this reduces the
accuracy with which the foreground component of Equation E8 can
model the foreground component of Equation E1 (in simulations us-
ing an 𝑁side = 512 resolution healpix sky model, from the 𝜇K to mK
level). Nevertheless, in the absence of instrumental chromaticity, in
terms of absolute error, the foreground component of Equation E8 re-
mains an excellent model the foreground component of Equation E1
relative to the order of magnitude 10 mK noise level associated with
the publicly available EDGES low data. Systematic errors above this
level when fitting realistic simulated BFCC corrected EDGES data
with Equation E8 can be attributed to the compounding effect of
instrument-induced chromaticity imperfectly-corrected by BFCC.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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