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The prediction and realization of topological insulators have
sparked great interest in experimental approaches to the
classification of materials'3. The phase transition between
non-trivial and trivial topological states is important, not only
for basic materials science but also for next-generation tech-
nology, such as dissipation-free electronics®. It is therefore
crucial to develop advanced probes that are suitable for a wide
range of samples and environments. Here we demonstrate
that circularly polarized laser-field-driven high-harmonic
generation is distinctly sensitive to the non-trivial and triv-
ial topological phases in the prototypical three-dimensional
topological insulator bismuth selenide®. The phase transi-
tion is chemically initiated by reducing the spin-orbit inter-
action strength through the substitution of bismuth with
indium atoms®’. We find strikingly different high-harmonic
responses of trivial and non-trivial topological surface states
that manifest themselves as a conversion efficiency and ellip-
tical dichroism that depend both on the driving laser elliptic-
ity and the crystal orientation. The origins of the anomalous
high-harmonic response are corroborated by calculations
using the semiconductor optical Bloch equations with pairs
of surface and bulk bands. As a purely optical approach, this
method offers sensitivity to the electronic structure of the
material, including its nonlinear response, and is compatible
with a wide range of samples and sample environments.

The discovery of three-dimensional topological insulators and
subsequent advances in materials engineering have attracted enor-
mous attention in the materials research community'~. One of the
most salient properties of topological insulators is the presence of a
conducting, gapless surface state that is protected by time-reversal
symmetry, as shown in the inset of Fig. 1a. This state is a conse-
quence of the band inversion in the bulk material from strong spin-
orbit coupling®'°. The surface bands are spin-polarized, which
suppresses backscattering from disorder and non-magnetic impuri-
ties and allows for spin currents®. These properties offer a promising
platform for many applications ranging from dissipation-free charge
transport to spin-based light-wave electronics and fault-tolerant
quantum computing>*'".

Probing topological phase transitions is a major challenge in
materials research'>. Spin- and angle-resolved photoelectron
spectroscopy (or s-ARPES) has long been the workhorse technique
for probing topologically protected surface states of bulk solids'®. In
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this method, the electrons are photo-emitted from the sample, and
their energy, momentum and spin polarization are analysed as they
reach the detector. This requires ultrahigh vacuum conditions and
a clean surface.

Here we demonstrate a novel all-optical approach based on
circularly polarized laser-field-driven high-harmonic generation
(HHG)’ to probe topological phase transitions. This method is
compatible with a wide range of samples and sample environments,
including buried interfaces, heterostructures, microelectronics and
flexible electronics. In our experiments we examine the prototypi-
cal topological insulator bismuth selenide (Bi,Se,), whose electronic
band structure and associated transport properties have been well
characterized (see Extended Data Fig. 1 and refs. *7).

HHG has been studied extensively using atomic and molecular
targets'”. One of its remarkable features is its structural sensitiv-
ity, which arises from the underlying re-scattering mechanism and
enables angstrém-scale probing of the electronic wavefunction of
an aligned target molecule'®. The extension of high-harmonic spec-
troscopy to solid materials presents the important possibility of the
all-optical probing of dngstrom-scale valence charge distributions
in real space'*” and of the electronic band structure in momentum
space”, including signatures of the Berry curvature’”. In terms
of the possibilities of probing topological phase transitions, Bauer
and Hansen** have predicted theoretically, using a one-dimensional
model system, that the topologically protected edge states lead to
highly efficient HHG. Silva et al.”” and Chacén et al.” independently
predicted, using a two-dimensional Haldane model system, that the
topological invariants can be obtained by analysing the helicity of
high-order harmonics.

Recently, HHG has been realized experimentally in three-
dimensional topological insulators, showing even-order harmon-
ics””** as well as an anomalous ellipticity dependence”, which has
been assigned to the contribution of topologically protected surface
states. In the present work we study the high-harmonic response
of chemically substituted (Bi,_JIn,),Se, for different composi-
tions x. According to angle-resolved photoelectron spectroscopy
(ARPES) and transport studies, shown in Extended Data Fig. 1
and in ref. °, at around x~7-10% the phase transition from a topo-
logically non-trivial state to a topologically trivial state occurs. At
around 20% the topological surface states disappear completely.
We find that the crystal-orientation and the laser-ellipticity depen-
dence of the HHG radiation emitted from pristine Bi,Se, and
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Fig. 1| Probing topological phase transitions using HHG. a, Inset:
measured band structure using ARPES, showing the topologically
protected surface state for the pure Bi,Se; sample (left), which vanishes
for high indium concentration (right). The intensity of the fifth harmonic
as a function of the MIR ellipticity is measured for both phases. Strong
high-harmonic enhancement is observed for the topologically non-trivial
sample, especially for circular excitation. Note that intensity of the
topologically trivial sample has been up-scaled by a factor of 8.

b, Measured high-harmonic spectrum for both phases, under linear
excitation (blue: topologically non-trivial, black: topologially trivial).

0Odd- and even-order harmonics are observed for both phases. ¢, Dipole
matrix element d, along the in-plane momentum k; connecting the lower
and the upper part of the Dirac cone. The color quantifies the absolute
magnitude of d_,(k), with an enhanced amplitude in the vicinity of the
Dirac point and the real parts of the x- and the y-components are visualized
as a vector field (white arrows), giving rise to a helical vortex structure.
Both, the enhanced amplitude and the helical vortex structure are related
to an increase of the HHG under circular excitation. See Supplementary
Information for intraband contributions.

(BiygIn,,),Se, are markedly different, including in their elliptical
dichroism.

In our experiments, we use ultrashort laser pulses with a cen-
tral wavelength of 5pm, which corresponds to a photon energy
well below the bulk bandgap of Bi,Se; (~0.3eV). The measure-
ments are performed in transmission geometry with normally inci-
dent laser excitation under ambient conditions. To ensure that our
experiments probe two limits in the topological phase diagram, we
compare two extreme cases: topologically non-trivial (x=0) and
topologically trivial (x=0.2) states of the material. In Extended Data
Figs. 1 and 2 we show the results for intermediate doping concentra-
tions. For a vacuum peak electric field strength of E,=0.21V nm™!
(vacuum peak intensity I[;=5.4x10""Wcm™2), we observe even-
and odd-order harmonics, ranging from the fifth to the eleventh
harmonic order from both samples, as shown in Fig. 1b.

Apart from the higher efficiency for the fifth and sixth har-
monic order, no clear difference between the two distinct topo-
logical phases is observed under linear polarization. In particular,
even-order harmonics are observed for both samples. Our results

suggest that observing even-order harmonics is a consequence of a
broken inversion symmetry at the surface, as depicted in Fig. 2a,b,
but not necessarily a clear signature of non-trivial topology>-*%***.
A robust connection with topological properties can, however, be
demonstrated via the consideration of additional observables, such
as the response of the material to circularly polarized laser fields>*.

Figure la shows the high-harmonic intensity of the fifth har-
monic for various values of the mid-infrared (MIR) ellipticity e.
We find that for the topologically trivial sample, the high-harmonic
intensity is maximized for e=0 (linearly polarized) and drops
monotonically as the ellipticity increases to e==+1. For circular
polarization, we detect no high-harmonic response (grey line). By
contrast, the topologically non-trivial sample shows strikingly dif-
ferent behaviour (blue line): higher absolute high-harmonic yield
(~10), which grows with increasing laser ellipticity. For e=+1 the
high-harmonic yield is about twice as high as for ¢=0. In Extended
Data Fig. 2 we show the ratio of the high-harmonic intensities
generated via circularly polarized (I, ) versus linearly polarized
(I, excitation, which is also denoted as R (see later). In the case
of topologically non-trivial samples (x<0.08), we find that the
high-harmonic response under circular excitation dominates that
under linear excitation.

Systematic measurements of the intensities of the fifth and sixth
harmonics for various MIR ellipticities and sample orientations are
shown for both samples (topologically non-trivial in Fig. 2d and
topologically trivial in Fig. 2e). Owing to the three-fold rotational
symmetry of the crystal (Fig. 2c), we limit our discussion to the
crystal angles ¢ =—30° to +30°. Here, ¢ =+30° corresponds to the
condition when the polarization vector of the laser field is orthogo-
nal to the mirror plane (parallel: ¢ =0°; see Fig. 2).

Again, we observe that under circular MIR excitation, the fifth
harmonic shows the highest high-harmonic intensity, which is in
contrast to the topologically trivial sample. For the sixth harmonic
order, the maximal yield is observed for elliptically polarized exci-
tation £~ +0.4. Based on dynamical symmetries, HHG for exactly
circular polarization for this harmonic order is prohibited™*.

To reproduce the complex pattern of ¢ versus ¢ and understand
the anomalous ellipticity dependence, we extend our model simula-
tions reported previously® to crystal angles from ¢ =—-30° to +30°.
We model the response of the topological surface states using a pair
of gapless (Dirac-like) states, whereas the emission from the trivial
doped compound is calculated based on a pair of gapped valence
and conduction bands. The numerical results are plotted in Fig. 2d
(bottom plots) for the fifth and sixth harmonic orders. Apart from
some deviations around ¢ =0°, our calculations not only reproduce
quantitatively the ratio of the HHG yield under linear and circu-
lar excitation for the fifth harmonic, but also capture the basic fea-
tures of the rather complex ellipticity dependence. For example, the
decreased high-harmonic yield for the fifth harmonic under ellipti-
cal excitation and a crystal axis angle of +30°, as well as the reduced
yield for the sixth harmonic for linear excitation, are reproduced by
the simulations.

By contrast, the calculated harmonic efficiency from the bulk
bands (shown in the Supplementary Information) decreases mono-
tonically with increasing laser ellipticity, which is in agreement with
the experimental results for doped samples, without the topologi-
cally protected surface states.

The good agreement between simulation and measurement
enables us to attribute this enhancement principally to two fac-
tors, as depicted in Fig. lc for the interband harmonics (see
Supplementary Information for intraband contribution). First, in
the low-momentum regime, the transition dipole moment exhibits
a circular vortex pattern with a spin texture around Dirac nodes
(white arrows)'2. The more efficient coupling of circularly polar-
ized fields with these vortex features is used to explain the enhance-
ment of the relatively low-order harmonics.>**. Second, in the
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Fig. 2 | Ellipticity-dependent HHG in topologically trivial and non-trivial materials. a, Crystal structure of Bi,Se, with two quintuple layers. One quintuple
layer (QL) is highlighted by the red box. b, Broken inversion symmetry of the surface layer results in the emission of even- and odd-order harmonics.

¢, Polarization-resolved high-harmonic intensity for the fifth and sixth harmonics. The six-fold pattern directly reflects the symmetry of the interband
dipole matrix element and the group velocity (see Supplementary Information). d, Measured high-harmonic intensity versus the MIR ellipticity & and
sample orientation (A=5pum, E,=0.21V nm™) (top) and the numerically obtained high-harmonic response (bottom). The sample orientation is scanned
from —30° to +30° (see ¢). The ellipticity is changed from e=—1 (left-hand circular) to e=0 (linear) and e =1 (right-hand circular). e, Measured
high-harmonic intensity versus MIR ellipticity and sample orientation using the topologically trivial sample, which shows a one order of magnitude lower
efficiency for linear polarization and no enhancement for circularly polarized excitation.
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Fig. 3 | Intensity- and helicity-dependent HHG generation for the topologically trivial and non-trivial samples. a-d, High-harmonic intensity for various
MIR ellipticities and crystal axes, measured on the topologically non-trivial Bi,Se; sample. Even and odd orders are observed. For decreasing E, from
0.21Vnm~(a) to 017V nm~ (b), 0.12V nm~" (¢) and 0.07 V nm~" (d) we find the peak field strength needed to probe the topologically protected surface
state. At and below this threshold the high-harmonic efficiency is maximized for linear excitation (see d). e, For the topologically trivial samples neither
notable dichroism nor circular enhancement is observed, even for the highest fields strength.
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Fig. 4 | Elliptical dichroism. Inset: top view of the crystal structure.

a,b, High-harmonic yield for two crystal orientations of ¢ =+15° for the
seventh (a) and ninth (b) harmonic orders. ¢,d Strong elliptical dichroism is
observed for both the seventh (¢) and ninth (d) harmonic orders. Positive
ED is shaded in orange, negative ED is shaded in blue.

large-momentum regime, the hexagonal warping, which causes an
out-of-plane spin polarization due to strong spin-orbit coupling,
increases the high-harmonic response under circular excitation.
The out-of-plane component is directly related to the higher-order
(third and above) spin-orbit coupling terms in the Hamiltonian
(see Supplementary Information and ref. ). We note that while the
generation for relatively low intensities is dominated by the inter-
band channel, at higher intensities both inter- and intra-band chan-
nels may contribute’.

To further support the interpretation that the circular enhance-
ment arises from the topologically protected surface state, we show
in Fig. 3 all measured harmonic orders from the fifth to the eleventh
for five field strengths. First, we focus on the fifth harmonic order.
For E,=0.21 Vnm™, the ratio of harmonics obtained under circu-
larly polarized excitation versus linearly polarized excitation that
is, Iy o/ iy, is about R =1.8. Reducing the electric field strength
systematically decreases R towards an ordinary ellipticity depen-
dence with R <0.1. This electric-field-strength dependence is also
expected, since for smaller E, values the electrons are not able to
probe the high-momentum spin-orbit features attributable to the
hexagonal warping (see Fig. 1c for the interband contribution and
Supplementary Information for the intraband contributions). Our
simulations even reproduce this trend quantitatively (Extended
Data Fig. 3). We define an empirically determined threshold field of
around E .4 = 0.14 Vnm™, where both the high-harmonic yield
obtained for linear and circular excitation are equal (R =1). Here,
E\ hreshold 18 @ characteristic material parameter related to the strength
of the spin-orbit interaction and defines the transition from an
ordinary to an anomalous ellipticity dependence in a topologically
non-trivial material. Numerical simulations for different wave-
lengths show that E; .04 i inversely proportional to the driving
wavelength A (see Extended Data Fig. 3). Thus, longer wavelengths
in the mid-infrared and terahertz regions are certainly favourable
for probing a material’s topology without damaging the sample.
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Next, we discuss the observed elliptical dichroism. We find dif-
ferent conversion efficiencies for left- and right-elliptically polarized
laser fields (at a fixed peak intensity), which becomes most obvi-
ous for the seventh and ninth harmonic orders at a crystal angle of
¢ ==15°. For the seventh harmonic, at ¢=—15° we observe the
highest conversion efficiencies for MIR ellipticities of e =—0.25 and
the lowest conversion efficiencies for e =40.25. For the ninth har-
monic, we see the reverse trend with helicity, as indicated in Fig. 4.
Here we define the elliptical dichroism (ED) as

2 (Ip=1150 — Ip=—_150)
max (Iy— 150 + Ip—_150)

ED =

where I,_, s and I,_ ;. represent the spectral intensities at crys-
tal angles ¢p=+15° and ¢p=—15° respectively”. For the highest
applied field strengths a strong ED value of ~75% for the seventh
harmonic is observed in topologically non-trivial samples. The ED
for all measured harmonic orders in the case of the topologically
non-trivial sample is shown in the Supplementary Information. For
the topologically trivial samples we obtain ED values of <5%.

For the topologically trivial samples, as shown in Fig. 3e, no
notable anomalous ellipticity dependence or elliptical dichroism is
observed. Similarly, at lower peak intensities, the elliptical dichro-
ism and anomalous dependence vanish (Fig. 3d). Thus, we conclude
that the observed elliptical dichroism is a signature of the topologi-
cally protected surface state, as also evident in earlier photoemission
spectroscopy studies™.

A particular strength of high-harmonic spectroscopy is its poten-
tial to study topological phase transitions with high time resolution.
Such phase transitions can be induced via ultrafast excitation, such
as with strong terahertz fields, as seen in WTe, (ref. ). Recent theo-
retical developments include the Floquet engineering of topological
states using strong circularly polarized laser fields® and the possi-
bility of transient non-trivial topological states in transition metal
dichalcogenides®. Probing these non-equilibrium states and their
dynamics calls for a high time resolution. This can be achieved even
down to subcycle timescales via the attosecond synchronization of
high harmonics with the driving laser pulses.

In conclusion, we have demonstrated an all-optical method
based on HHG using a circularly polarized strong MIR laser field
to probe distinct topological phases, the non-trivial topologically
protected surface states of pristine Bi,Se;, and the trivial state after
chemical doping. We identify a threshold field strength of the laser
required to probe this phase transition, which motivates the use of
long laser wavelengths. Our interpretation of the enhanced gen-
eration efficiency and elliptical dichroism for the non-trivial topo-
logical phase is corroborated by a theoretical treatment based on
a pair of valance and conduction bands of the topological surface
state. The more conventional and relatively inefficient response
from the doped sample is reproduced by simulating the HHG
process in the bulk bands only. Our results advance the under-
standing of HHG physics in topological materials and lay the foun-
dation for novel strong-field chiral physics, which includes the
possible realization of ultrafast helical currents on the surfaces of
topological materials.
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Extended Data Fig. 1| ARPES measurements. ARPES measurements of Bi,Se, for 5 different indium concentrations.
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Extended Data Fig. 2 | Topological phase transition. Ratio of HH yield for circular vs. linear excitation for various indium concentrations x. Measurements
are performed at peak field E, = 0.15 Vi/nm.
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Extended Data Fig. 3 | Transition from ordinary to anomalous ellipticity dependence. a, b, ¢, Simulations of crystal orientation and MIR ellipticity
dependent HH yield for three different field strength E, = 0.06, 0.14, 0.25 V//nm. d, The ratio between HH obtained under circular and linear excitation for
®= 0 is shown for various field strengths. The blue filled dots are the experimentally obtained values, the red line represents values from the simulation.
The threshold field strength EO,threshold is defined when this ratio becomes 1. e, The threshold field scales inversely with the wavelengths.
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