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X-ray absorption spectroscopy on attosecond and femtosecond
timescales is a frontier of modern ultrafast science. For the last two
decades, ultrafast lasers produced ever growing powers that facilitate
implementation of attosecond high-harmonic X-ray sources in compact
equipment. This unique broad-band light source opens the door for
numerous applications; in particular it is ideal for chemical dynamics
studies due to its sensitivity to electronic and vibrational state changes.
Here, we outline briefly the evolution of time-resolved technology and
review several case studies in which extreme ultraviolet and soft X-ray
spectroscopy prove its exclusive sensitivity to the electronic structure of
molecular species.

1 Introduction

Photochemistry is of paramount importance for understanding biological processes
(e.g. formation of vitamin D, photosynthesis, and vision),' atmospheric light-induced
transformations*3 and the engineering of more efficient solar cells.®” Photochemical
reactions, unlike thermally controlled reactions, often proceed through multiple
pathways, which lead to a rich variety of possible mechanisms. Our modern
understanding of such processes has been shaped significantly by advances in
experimental methods. The latest push in this exciting realm is ultrafast X-ray
spectroscopy. First, we give a brief description of the historical premises that brought
about the powerful attosecond and femtosecond X-ray technology available today.
The last century observed a vertiginous technological ascend giving access to ever
shorter timescales. The first attempt to measure rates of chemical reactions down to
millisecond resolution was done by H. Hartridge and F. J. W. Roughton (1923) with
fast mixing of the reagents.® Two decades later, Norrish and Porter ingeniously applied
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gas-discharge flash-lamps, which were initially invented for photography, to trigger
chemical reactions.’ This laid the basis for flash photolysis and relaxation methods and
gave access to intermediates with microsecond lifetimes.'® Undoubtedly, the first laser
engineered by Theodore Maiman in 1960 initiated a new era in experimental physical
chemistry,!! as the next years witnessed the realization of a cornucopia of applications.
Among those, the most significant for ultrafast science are the Q-switching technique,
discovered by Hellwarth in 1961 using the Kerr effect that shortened the laser pulse
duration to nanoseconds,'? and mode-locking (DeMaria, 1966)"® that ultimately
achieved femtosecond resolution (colliding pulse mode-locking invented in 1980 by
Richard Fork et al. produced <100 fs pulses).'*

In a series of seminal works, Zewail applied the femtosecond laser technology to
observations of chemical dynamics at the intrinsic timescale of the molecular
vibration, which gave birth to the field of femtochemistry.!> As a result, a family of
techniques have been elaborated to probe coherences in the visible, !¢ and later in the
infrared (IR)!” and ultraviolet (UV) range.'®2° By the end of the 1980s, laser pulses
from dye lasers could be compressed to a few femtoseconds?! and further amplified to
high powers with chirped-pulse amplification (CPA).?2 The intense laser field rendered
possible the discovery of high-order harmonic generation (HHG) in gases by
McPherson et al. (1987).2 Further augmented by the development of short pulse lasers
based on Nd and Ti ions in solid-state materials, this gave the unprecedented capability
to generate extreme ultraviolet (XUV) and soft X-ray pulses with few-femtosecond to
attosecond duration in table-top setups.

Ultrafast X-ray science also benefited from a parallel development at accelerator
facilities. Since the 1970s, synchrotron light sources paved the way for the application
of X-ray absorption spectroscopy in a pump-probe fashion.?* The synchrotron pulses
were limited initially to 10-100 ps.?>2¢ With a pulse slicing technique, implemented at
the Advanced Light Source (ALS) by Zolotorev and coworkers,?” it became feasible
to extract femtosecond pulses from the storage rings. In the last decade, several X-ray
free electron lasers have been constructed that provide intense few-fs pulses.?®

Nowadays, pump-probe X-ray spectroscopy flourishes with numerous
applications across various fields. In the present contribution, we discuss state-of-the-
art HHG-based X-ray (and XUV) transient-absorption spectroscopy and the recent
achievements in molecular dynamics.

2 High-harmonic extreme ultraviolet probe

X-rays are a highly versatile spectroscopic tool thanks to their ability to excite
electrons from the core to valence orbitals, which leads to element specificity (the core
orbital energy is distinct for each element, see Figure la), charge and chemical
bonding sensitivity, providing an exceptional insight into the nature of electronic
transformations.?®3° In contrast to the multiphoton probing with optical pulses (e.g.
multiphoton ionization), one X-ray photon is involved in the core-to-valence
transition, thus relaxing the requirement and complexity of intermediate resonances.
High-order harmonic generation, or HHG, is the emission of odd harmonics at the
non-perturbative interaction of an intense laser pulse with a target material such as an
atom. This process is a strong-field phenomenon and is qualitatively described by a
semiclassical picture of the three-step model, depicted in Figure 1b.3'-3* First, the
electric field of the intense pulse distorts the Coulomb potential of the atom, such that
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an electron tunnels through the barrier and leaves the ion residue behind. Second, the
electron wave packet is accelerated and, once the electric field switches, the electron
is directed back to the ionized atom. Third, in the subsequent recombination a high
energy photon is emitted. This photon is in phase with the driving laser field and has
the same polarization. Moreover, since the recombination occurs only in a small
fraction of the optical cycle, the emitted high-harmonic pulse is shorter than the driving
laser pulse and can reach attosecond duration. In the spectral range, the harmonics
extend up to a cutoff energy E yrorf = 3.17 - Uy, + I, where U, is the ponderomotive
energy of the electron and /, is the ionization potential of the atom. U, scales
quadratically with the optical wavelength, and depending on the laser wavelength
employed, the high harmonics can cover the XUV and soft X-ray spectral ranges.

A popular method for observing molecular transformations in real time is by
triggering the dynamics with a short pump pulse and interrogating, after a defined
delay, the return of the system to equilibrium with a broadband probe pulse that is
subsequently spectrally dispersed (Figure 1¢). Broadband HHG pulses are an excellent
candidate for utilization in a pump-probe scheme. In a landmark experiment, the
groups at UC Berkeley and Munich developed the method of attosecond transient-
absorption spectroscopy (ATAS), which allowed them to track directly the electron
wave-packet motion in krypton cation.> ATAS offers both time and spectral
resolution by resolving spectrally the attosecond pulse after the interaction with
sample — because the probe pulse is not time-resolved, the width of spectral bands are
limited by the lifetime of the induced polarization in the sample.*® In this sense, the
time—energy uncertainty limitation is circumvented.
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Figure 1. (a) Energy diagram of a heteronuclear diatomic molecule — carbon
monoxide,3”*® core orbitals (red) are localized at the nuclei, while the valence orbitals
(blue) pertain to the entire molecule. Purple arrows represent transitions from carbon
and oxygen cores to a vacant valence orbital. (b) In the HHG process, the atomic
potential well is distorted in the oscillating electric field, an electron wave packet
tunnels through the barrier, is accelerated and recombines with the ion, emitting a
highly energetic photon.*? (¢) Pump-probe scheme with spectral dispersion of the

Document2 Printed 4/22/2021 3



probe pulse onto a camera. Pump-probe angles near zero degrees are chosen for best
time resolution.

Nowadays, CPA pulses are routinely used to generate high harmonics in the XUV
(10-100 eV pulses covering the absorption edges of various heavy elements), and, in
combination with various optical gating schemes, isolated attosecond pulses are
consistently produced.’*** Spectroscopy with ultra-broadband HHG pulses is the
method of choice for probing the coupling of nuclear and electronic dynamics. In the
following examples, bromine and iodine serve as reporter atoms of attosecond
molecular dynamics in XUV transient-absorption experiments.

The Born-Oppenheimer approximation breaks down when electronic states
approach in energy, and the direct observation of the electronic character change has
been a tantalizing task in the ultrafast field.*> One such example is the conical
intersection between the 'Q; and 3Qo+ states in CH3Br. Triggering a valence excited
state with an intense few-fs IR pulse and probing the bromine My s edge allowed
Timmers et al. to successfully monitor the non-adiabatic population transfer in CH3Br.
ATAS exhibits a clear signature of the valence excited state wave packet and its
bifurcation from the initial excitation to the conical intersection and to the ensuing
dissociation (channel 1 in Figure 2). Apart from this, vibrational and electronic
coherences in CH3Br (channels 2 and 3 in Figure 2) initiated by strong-field excitation
are spectrally well resolved from the valence dynamics, thus validating the potential
of ATAS to track simultaneously different processes.* In an analogous system, CH;I,
the group of Zhi-Heng Loh distinguished C-I stretch and CH3 umbrella modes of
coherent vibrational superpositions launched by strong-field ionization initiated
through a bond-softening mechanism.*
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Figure 2. (a) Energy diagram of CH3Br. (b) Attosecond transient-absorption
spectroscopy of CH3Br. Three channels are resolved: (1) neutral excited-state wave
packet, (2) ground-state vibrational wave packet, (3) ionic spin-orbit coupled wave
packet. (Reproduced from ref. 44 under the Creative Commons license.)

Likewise, ATAS readily senses the electronic and vibrational coherences prepared
by an intense IR pulse in deuterium bromide. Kobayashi et al. reported on
identification and characterization of electronic and vibrational coherences in the ionic
DBr" by means of bromine 3d core-level absorption spectra.*® Electronic coherences
occur with a period of 12.6 fs, corresponding to the X I13,, and X °I1;, states of HBr",
and vibrational coherences have a period of 19.9 fs (Figure 3). A clear difference is
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observed in the behavior of the electronic and vibrational coherences: the former
shows dependence on the relative polarization of the pump and probe pulses and
partially decays on a 100-fs timescale due to rotational decoherence. while the latter
is largely independent of the pump/probe polarization and maintains a nearly constant
amplitude in the measured time window.
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Figure 3. (a) Left: Experimental delay-dependent ATAS spectra of strong-field
excited DBr. Right: Fourier transform of the experimental spectra along the delay axis,
the numbers indicating the beat frequencies in units of eV. (b) Comparison between
the parallel polarization (blue) and the perpendicular polarization (yellow) of pump
and probe. The inset is a zoom of the early-time electronic quantum beats. Quantum
beats originating from the vibrational coherences are identical between the two
polarization measurements, whereas those originating from the electronic coherence
show clear contrast. (c¢) Left: Simulated delay-dependent ATAS spectra for the
coherently prepared X “IT3» and X °ITj; states of HBr*. Right: Fourier transform of the
simulated spectra along the delay axis. (Adapted with permission from ref 46,
copyright 2020 American Physical Society.)

Passage through an avoided crossing was monitored in fascinating detail in the
example of the diatomic molecule IBr (Kobayashi et al.).¥ A 8-fs optical pulse was
employed to resonantly excite the B(IIy-) state in the vicinity of the curve crossing
between B(*ITq+) and Y(0%) states (Figure 4a). Both atoms were tracked concomitantly
through iodine 44 and bromine 34 transitions to valence orbitals. Massive changes in
core-to-valence transition energies were observed in the first 100 fs, when the wave
packet traverses the B/Y curve crossing as the bond length increases towards
dissociation (Figure 4b). The dissociation on the B(*IIg-) potential is apparent in the
time window of 0-50 fs. Later, rapid switching of the electronic character at the
avoided crossing (50-80 fs) is vividly portrayed in the transient absorption XUV
spectra of iodine and bromine.
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Figure 4. (a) Adiabatic potential energy curves of IBr. Visible and XUV photon
excitations are indicated with vertical arrows. Red and blue wave packets represent
dissociation from one- and two-photon excitation, respectively. Inset: zoom of the B/Y
avoided crossing. (b) Top: Dissociation products are indicated in the transient
absorption spectrum recorded at long delays. Bottom: Complete map of the time-
resolved transient-absorption spectra recorded in the region of iodine N4 5 and bromine
M, s edges, excited-state signal is shown in a bright color scale. (Adapted with
permission from ref. 47, copyright 2019 AAAS.)

3  High-harmonic soft X-ray probe

Such biologically relevant elements as carbon, nitrogen, oxygen and sulfur absorb X-
rays above 100 eV. For this reason, extending HHG to the soft X-ray range is an
attractive avenue for further development of the XUV ATAS. Efficient up-conversion
of IR photons into soft X-rays can be achieved by driving the HHG process with a
longer wavelength IR pulse, as the maximum HHG photon energy scales quadratically
with increasing wavelength.*® A stepping stone towards ATAS in the soft X-ray range
was achieved by Attar ef al., generating high harmonics in the soft X-ray range with
the output of an optical parametric amplifier (50 fs pulse duration, centered at ~1300
nm).* HHG covering the carbon K-edge (at 285 e€V) allowed Attar et al. to capture
the key intermediate in the ring-opening of cyclohexadiene induced by UV light.
Carbon s spectra underpinned the decay to the linear hexatriene through the pericyclic
minimum, in which the frontier orbitals underwent strong mixing and overlapping.
Similarly, Pertot et al. demonstrated the use of an 1800 nm wavelength driver pulse to
generate X-ray flux at carbon K-edge — they tracked the course of dissociation after
strong-field ionization of SFe and CF4 and the splitting of absorption bands due to
symmetry breaking.>

The sensitivity of soft X-ray transient-absorption spectroscopy to changes in
molecular structure and orbital occupancy was proven in the example of benzene
radical cation (Bz") by Epshtein et al>° The ground state of Bz" was prepared
selectively through resonance enhanced multiple photon ionization REMPI by
excitation with two 267 nm photons. Comparison of the X-ray absorption spectra of
the neutral benzene and the benzene radical cation (Figure 5) shows a splitting of the
two degenerate * orbitals (peak A, and peaks F and G in Bz and Bz, respectively) as
well as an appearance of a new peak (peak E) due to excitation to the partially occupied
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n-subshell. High-level ab inifio calculations®® assign the * orbital splitting of the
cation (peaks F and G) to both the Jahn-Teller geometry distortion and spin coupling
of the unpaired electron in the partially vacant m orbital with the unpaired electrons

resulting from the 1sc—n* transition. The spin coupling was calculated to be the major
contribution to the observed splitting.
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Figure 5. Soft X-ray absorption spectrum of the ground-state neutral benzene (a) and
radical cation (b). (¢) Molecular orbital diagram illustrating the main transitions
responsible for the spectral features in the cation (Bz = benzene). (Reprinted with
permission from ref. 50. Copyright 2020 American Chemical Society.)

Soft X-ray transient absorption of photoexcited pyrazine unraveled the
participation of the elusive optically dark 1A, (nm*) state in deexcitation to the ground
state (Figure 6).°2 The previously characterized By, (n®) (S2) and B3y (n*) (S1)
states are also distinguished. The spectral assignment was aided by a combination of
electronic structure calculations and nonadiabatic dynamics simulations. The optically
dark Ay (nm*) state, differing only slightly from the B3y (n*) state in minimum
energy. is significantly different in core-to-valence transition energies and oscillator
strengths. The 1A, (nm*) state is populated about 200 femtoseconds after electronic
excitation and plays a key role in the relaxation of pyrazine to the ground state. More
examples of soft X-rays exquisite sensitivity to UV-induced ring-opening, intersystem
crossglg and radical formation dynamics can be found in the review by Bhattacherjee
etal.
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Figure 6. Two-dimensional map of the time-resolved transient-absorption spectra in
dependence of the time delay between 267 nm pump and soft X-ray probe.

4 From femtosecond to attosecond X-ray probe

Currently, significant effort in the community is dedicated toward the synthesis of
isolated attosecond pulses that cover larger and larger soft X-ray ranges and allow
compressing the pulse duration to a few tens of attoseconds. The mid-IR laser sources
developed for this purpose were covered in detail by X. Ren et al.*® Here we refer to
several of the latest strides in this direction that lead to sufficient fluxes for
measurements. Li ef al. utilized 1800 nm pulses of an optical parametric chirped-pulse
amplifier (OPCPA) to obtain 53 attosecond pulses that extend out to 300 eV.>*
Compressing a pulse centered at 1600 nm with a large bandwidth allowed Gaumnitz
et al. to obtain a record 43 attosecond pulse reaching 180 eV.% Keller and coworkers
demonstrated the use of 2200-nm driver pulses from an OPCPA to produce harmonics
up to 600 eV. A special differential pumping scheme was engineered to afford up to
70 bar gas pressure in the HHG cell, which was necessary for achieving phase
matching.*® Parallel research in Jon Marangos’ group employed 1800 nm pulses of an
optical parametric amplifier (OPA) to produce photons up to 600 eV.%

The increase of driver wavelength comes at the expense of the detrimental
reduction of the HHG flux as ~A;5,,.%® Barreau ez al.* used the output of an OPA at
1300 nm, which is spectrally broadened in a hollow-core fiber and then compressed
with custom chirped mirrors. 1300 nm wavelength is chosen to increase the photon
energy cutoff to the carbon K-edge while maintaining a high flux. Broadband pulses
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centered at 1300 nm measuring sub-13 fs in duration and attosecond X-ray pulses that
cover up to 370 eV have been achieved.* It was demonstrated that this light source is
suitable to measure high-quality absorption spectra at the carbon K-edge in a few
seconds, sufficient to carry out pump-probe experiments with less than 11 fs temporal
resolution, thus enabling studies of the nonadiabatic dynamics and topology at curve
crossings®® and conical intersections,®'~% electronic wave packet dynamics.**¢°

The technique holds great promise to resolve dynamics at an unprecedented level
of detail in organic molecules, as suggested by the work of Zinchenko et al.®® Strong-
field ionization of ethylene to the lowest electronic excited state (D) of CoHs™ was
found to undergo electronic relaxation to the ground state (Do) in less than 7 f5. Such
an efficient funneling of the electronic energy in less than a vibrational period is
feasible due to the presence of a conical intersection with the ionic ground state that is
reached in a very short time. In particular, the D, and Dy states could be separately
tracked because the 1s—n* transition from the D; state is ~1 eV redshifted from the
corresponding transition from the Dy state. The large shift is explained on the basis of
the electron correlation of the unpaired spins, a similar spin-coupling effect was
observed in the core-to-valence excitation of the benzene radical cation, N,*, CO*, and
NH;".5167-% This is another eloquent example of electronic structure selectivity of the
X-rays.

In conclusion, we have considered the historic context of the ultrafast science, and
analyzed examples of applications to chemical dynamics of high-harmonic sources
with photon energies high enough to access core-to-valence transitions in organic
compounds. Core-level absorption spectroscopy is a universal tool that is sensitive to
electronic structure, electronic character switching at conical intersections and curve
crossings, and nuclear and electronic wave packet dynamics. Amalgamizing the
exceptional attosecond time resolution and the sensitivity of X-rays, the attosecond
soft X-ray probe is a sought-after utensil offering a richer perspective on complex
photochemical questions at the natural timescale of electronic excitation.

Future endeavors in spectroscopic mapping of dynamics through excitations from
core to frontier orbitals are envisioned in the direction of separating the symmetry
breaking effect from the electronic one in Jahn-Teller systems, and observation of
electronic and vibrational coherences with superior time resolution releasing valuable
information about non-adiabatic coupling at conical intersections in complex
molecular systems.
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