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Abstract
We address the solution of large-scale Bayesian optimal experimental design (OED) prob-
lems governed by partial differential equations (PDEs) with infinite-dimensional parameter
fields. The OED problem seeks to find sensor locations that maximize the expected informa-
tion gain (EIG) in the solution of the underlying Bayesian inverse problem. Computation
of the EIG is usually prohibitive for PDE-based OED problems. To make the evalua-
tion of the EIG tractable, we approximate the (PDE-based) parameter-to-observable map
with a derivative-informed projected neural network (DIPNet) surrogate, which exploits
the geometry, smoothness, and intrinsic low-dimensionality of the map using a small and
dimension-independent number of PDE solves. The surrogate is then deployed within a
greedy algorithm-based solution of the OED problem such that no further PDE solves are
required. We analyze the EIG approximation error in terms of the generalization error of
the DIPNet and show they are of the same order. Finally, the efficiency and accuracy of the
method are demonstrated via numerical experiments on OED problems governed by inverse
scattering and inverse reactive transport with up to 16,641 uncertain parameters and 100
experimental design variables, where we observe up to three orders of magnitude speedup
relative to a reference double loop Monte Carlo method.
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1 Introduction

In modeling natural or engineered systems, uncertainties are often present due to the lack
of knowledge or intrinsic variability of the system. Uncertainties may arise from sources as
varied as initial and boundary conditions, material properties and other coefficients, external
source terms, interaction and coupling terms, and geometries; for simplicity of exposition,
we refer to all of these as parameters. Uncertainties in prior knowledge of these parameters
can be reduced by incorporating indirect observational or experimental data on the system
state or related quantities of interest into the forward model via solution of a Bayesian inverse
problem. Prior knowledge can be incorporated through a prior distribution on the uncertain
parameters. The data are typically noisy because of limited measurement precision, which
induces a likelihood of the data conditioned on the given parameters. Uncertainties of the
parameters are then reduced by the data and quantified by a posterior distribution, which is
a joint distribution of the prior and the likelihood, given by Bayes’ rule.

Large amounts of informative data can reduce uncertainties in the parameters, and thus
posterior predictions, significantly. However, the data are often sparse or limited due to
the cost of their acquisition. In such cases it is critical to design the acquisition process or
experiment in an optimal way so that as much information as possible can be gained from the
acquired data, or the uncertainty in the parameters or posterior predictions can be reduced
as much as possible. Experimental design variables can include what, when, and where to
measure, which sources to use to excite the system, and under which conditions should
the experiments be conducted. This is known as the optimal experimental design (OED)
problem [1], or Bayesian OED in the context of Bayesian inference. OED problems arise
across numerous fields including geophysical exploration, medical imaging, nondestructive
evaluation, drug testing, materials characterization, and earth system data assimilation, to
name just a few. For example, two notable uses of OED include optimal observing system
design in oceanography [2] and optimal sensor placement for tsunami early warning [3].

The challenges to solving OED problems in these and other fields are manifold. The
models underlying the systems of interest typically take the form of partial differential equa-
tions (PDEs) and can be large-scale, complex, nonlinear, dynamic, multiscale, and coupled.
The uncertain parameters may depend on both space and time, and are often characterized
by infinite-dimensional random fields and/or stochastic processes. The PDE models can be
extremely expensive to solve for each realization of the infinite-dimensional uncertain param-
eters. The computation of the OED objective involves high-dimensional (after discretization)
integration with respect to (w.r.t.) the uncertain parameters, and thus require a large number
of PDE solves. Finally, the OED objective will need to be evaluated numerous times, espe-
cially when the experimental design variables are high-dimensional or when they represent
discrete decisions.

To address these computational challenges, different classes of methods have been
developed by exploiting (1) sparsity via polynomial chaos approximation of parameter-
to-observable maps [4–6], (2) Laplace approximation of the posterior [7–11], (3) intrinsic
low dimensionality by low-rank approximation of (prior-preconditioned and data-informed)
operators [7, 12–16], (4) decomposibility by offline (for PDE-constrained approximation)–
online (for design optimization) decomposition [17, 18], and (5) surrogate models of the
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PDEs, parameter-to-observable map, or posterior distribution by model reduction [19, 20]
and deep learning [21–23].

Here, we consider the Bayesian OED problem for optimal sensor placement governed by
large-scale and possibly nonlinear PDEs with infinite-dimensional uncertain parameters. We
use the expected information gain (EIG), also known asmutual information, as the optimality
criterion for the OED problem. The optimization problem is combinatorial: we seek the
combination of sensors, selected from a set of candidate locations, that maximizes the EIG.
The EIG is an average of the Kullback–Leibler (KL) divergence between the posterior and the
prior distributions over all realizations of the data. This involves a double integral: one integral
of the likelihood function w.r.t. the prior distribution to compute the normalization constant
or model evidence for each data realization, and one integral w.r.t. the data distribution.
To evaluate the two integrals we adopt a double-loop Monte Carlo (DLMC) method that
requires the computation of the parameter-to-observable map at each of the parameter and
data samples. Since the likelihood can be rather complex and highly locally supported in
the parameter space, the number of parameter samples from the prior distribution needed
to capture the likelihood well with relatively accurate sample average approximation of
the normalization constant can be extremely large. The requirement to evaluate the PDE-
constrained parameter-to-observable map at each of the large number of samples leads to
numerous PDE solves, which is prohibitive when the PDEs are expensive to solve. To tackle
this challenge,we construct a derivative-informedprojected neural network (DIPNet) [24–26]
surrogate of the parameter-to-observable map that exploits the intrinsic low dimensionality
of both the parameter and the data spaces. This intrinsic low dimensionality is due to the
correlation of the high-dimensional parameters, the smoothing property of the underlying
PDE solution, and redundant information contained in the data from all of the candidate
sensors. In particular, the low-dimensional subspace of the parameter space can be detected
via low rank approximations of derivatives of the parameter-to-observable map, such as
the Jacobian, Gauss-Newton Hessian, or higher-order derivatives. This property has been
observed and exploited across a wide spectrum of Bayesian inverse problems [27–42] and
Bayesian optimal experimental design [7, 17, 18]. See [43] for analysis of model elliptic,
parabolic, and hyperbolic problems, and a lengthy list of complex inverse problems that have
been found numerically to exhibit this property.

This intrinsic low-dimensionality of parameter and data spaces, along with smoothness
of the parameter-to-observable map, allow us to construct an accurate (over parameter
space) DIPNet surrogate with a limited and dimension-independent number of training
data pairs, each requiring a PDE solve. Once trained, the DIPNet surrogate is deployed
in the OED problem, which is solved without further PDE solution, resulting in very large
reductions in computing time. Under suitable assumptions, we provide an analysis of the
error propagated from the DIPNet approximation to the approximation of the normalization
constant and the EIG. To solve the combinatorial optimization problem of sensor selec-
tion, we use a greedy algorithm developed in our previous work [17, 18]. We demonstrate
the efficiency and accuracy of our computational method by conducting two numerical
experiments with infinite-dimensional parameter fields: OED for inverse scattering (with
an acoustic Helmholtz forward problem) and inverse reactive transport (with a nonlinear
advection–diffusion-reaction forward problem).

The rest of the paper is organized as follows. The setup of the problems includingBayesian
inversion, EIG, sensor design matrix, and Bayesian OED are presented in Sect. 2. Section3
is devoted to presentation of the computational methods including DLMC, DIPNet and its
induced error analysis, and the greedy optimization algorithm. Results for the two OED
numerical experiments are provided in Sect. 4, followed by conclusions in Sect. 5.
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2 Problem Setup

2.1 Bayesian Inverse Problems

Let D ⊂ Rnx denote a physical domain in dimension nx = 1, 2, 3. We consider the problem
of inferring an uncertain parameter fieldm defined in the physical domainD from noisy data
y and a complex model represented by PDEs. Let y ∈ Rny denote the noisy data vector of
dimension ny ∈ N, given by

y = F(m)+ ε, (1)

which is contaminated by the additive Gaussian noise ε ∼ N (0,"n) with zero mean and
covariance "n ⊂ Rny×ny . Specifically, y is obtained from observation of the solution of the
PDE model at ny sensor locations. F is the parameter-to-observable map which depends on
the solution of the PDE and an observation operator that extracts the solution values at the
ny locations.

We consider the above inverse problem in a Bayesian framework. First, we assume thatm
lies in an infinite-dimensional real separable Hilbert space M, e.g., M = L2(D) of square
integrable functions defined in D. Moreover, we assume that m follows a Gaussian prior
measure µpr = N (mpr, Cpr) with mean mpr ∈ M and covariance operator Cpr, a strictly
positive, self-adjoint, and trace-class operator. As one example, we consider Cpr = A−2,
whereA = −γ"+ δ I is a Laplacian-like operator with prescribed homogeneous Neumann
boundary condition, with Laplacian ", identity I , and positive constants γ , δ > 0; see [29,
44, 45] for more details. Given the Gaussian observation noise, the likelihood of the data y
for the parameter m ∈ M satisfies

πlike(y|m) ∝ exp (−%(m, y)) , (2)

where
%(m, y) := 1

2
‖y − F(m)‖2

"−1
n

(3)

is known as a potential function.ByBayes’ rule, the posteriormeasure, denoted asµpost(m|y),
is given by the Radon-Nikodym derivative as

dµpost(m|y)
dµpr(m)

= 1
π(y)

πlike(y|m), (4)

where π(y) is the so-called normalization constant or model evidence, given by

π(y) =
∫

M
πlike(y|m)dµpr(m). (5)

This expression is often computationally intractable because of the infinite-dimensional
integral, which involves a (possibly large-scale) PDE solve for each realization m.

2.2 Expected Information Gain

To measure the information gained from the data y in the inference of the parameter m, we
consider a Kullback–Leibler (KL) divergence between the posterior and the prior, defined as

DKL(µpost(·|y)‖µpr) :=
∫

M
ln

(
dµpost(m|y)
dµpr(m)

)
dµpost(m|y), (6)
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which is random since the data y is random. We consider a widely used optimality criterion,
expected information gain (EIG), which is the KL divergence averaged over all realizations
of the data, defined as

& := Ey
[
DKL(µpost(·|y)‖µpr)

]

=
∫

Y
DKL(µpost(·|y)‖µpr)π(y) dy

=
∫

Y

∫

M
ln

(
dµpost(m|y)
dµpr(m)

)
dµpost(m|y)π(y) dy

=
∫

M

∫

Y
ln

(
πlike(y|m)

π(y)

)
πlike(y|m) dy dµpr(m),

(7)

where the last equality follows Bayes’ rule (4) and the Fubini theorem under the assumption
of proper integrability.

2.3 Optimal Experimental Design

We consider the OED problem for optimally acquiring data to maximize the expected infor-
mation gained in the parameter inference. The experimental of design seeks to choose r sensor
locations out of d candidates {x1, . . . , xd} represented by a design matrixW ∈ Rr×d ∈ W ,
namely, if the i-th sensor is placed at x j , then Wi j = 1, otherwise Wi j = 0:

W :=




W ∈ Rr×d : Wi j ∈ {0, 1},
r∑

i=1

Wi j ∈ {0, 1},
d∑

j=1

Wi j = 1




 . (8)

LetFd : M (→ Rd denote the parameter-to-observable map and εd ∈ Rd denote the additive
noise, both using all d candidate sensors; then we have

F = WFd and ε = Wεd . (9)

Then the likelihood (2) for a specific design W is given by

πlike(y|m,W) ∝ exp
(

−1
2
‖y − WFd(m)‖2

"−1
n

)
, (10)

and the normalization constant also depends on W as

π(y,W) =
∫

Y
πlike(y|m,W)dµpr(m). (11)

From Sect. 2.2, we can see that the EIG & depends on the design matrix W through the
likelihood function πlike(y|m,W). To this end, we formulate the OED problem to find an
optimal design matrix W∗ such that

W∗ = argmaxW∈W &(W), (12)

with the W-dependent EIG given by

&(W) =
∫

M

∫

Y
ln

(
πlike(y|m,W)

π(y,W)

)
πlike(y|m,W) dy dµpr(m). (13)
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2.4 Finite-Dimensional Approximation

To facilitate the presentation of our computational methods, we make a finite-dimensional
approximation of the parameter field by using a finite element discretization. LetMn ⊂ M
denote a subspace of M spanned by n piecewise continuous Lagrange polynomial basis
functions {ψ j }nj=1 over ameshwith elements of size h. Then the discrete parametermh ∈ Mn
is given by

mh =
n∑

j=1

m jψ j . (14)

The Bayesian inverse problem is then stated for the finite-dimensional coefficient vector
m = (m1, . . . ,mn)

T of mh , with n possibly very large. The prior distribution of the discrete
parameter m is Gaussian N (mpr,"pr) with mpr representing the coefficient vector of the
discretized prior mean of mpr, and "pr representing the covariance matrix corresponding to
Cpr = A−2, given by

"pr = A−1MA−1, (15)

where A is the finite element matrix of the Laplacian-like operator A, and M is the mass
matrix. Moreover, let Fd : Rn → Rd denote the discretized parameter-to-observable map
corresponding toFd , we haveF = WFd as in (9). Then the likelihood function corresponding
to (10) for the discrete parameterm is given by

πlike(y|m,W) ∝ exp
(

−1
2
‖y − WFd(m)‖2

"−1
n

)
. (16)

3 Computational Methods

3.1 Double-LoopMonte Carlo Estimator

To solve the OED problem (12), we need to evaluate the EIG repeatedly for each given design
W. The double integrals in the EIG expression can be computed by a double-loop Monte
Carlo (DLMC) estimator &dl defined as

&dl(W) := 1
nout

nout∑

i=1

log
(

πlike(yi |mi ,W)

π̂(yi ,W)

)
, (17)

where mi , i = 1, . . . , nout, are i.i.d. samples from prior N (mpr,"pr) in the outer loop and
yi = F(mi ) + εi are the realizations of the data with i.i.d. noise εi ∼ N (0,"n). π̂(yi ,W)

is a Monte Carlo estimator of the normalization constant π(yi ,W) with nin samples in the
inner loop, given by

π̂(yi ,W) := 1
nin

nin∑

j=1

πlike(yi |mi, j ,W), (18)

where mi, j , j = 1, . . . , nin, are i.i.d. samples from the prior N (mpr,"pr).
For complex posterior distributions, e.g., high-dimensional, locally supported, multi-

modal, non-Gaussian, etc., evaluation of the normalization constant is often intractable, i.e.,
a prohibitively large number of samples nin is needed. As one particular example, when the
posterior of m for data yi generated at sample mi concentrates in a very small region far
away from the mean of the prior, the likelihood πlike(yi |mi, j ,W) is extremely small for most
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samples mi, j , which which leads to a requirement of a large number of samples to evaluate
π̂(yi ,W)with relatively small estimation error. This is usually prohibitive, since one evalua-
tion of the parameter-to-observable map, and thus one solution of the large-scale PDEmodel,
is required for each of nout × nin samples. This nout × nin PDE solves are required for each
design matrix W at each optimization iteration.

3.2 Derivative-Informed Projected Neural Networks

Recent research hasmotivated the deployment of neural networks as surrogates for parametric
PDE mappings [24, 46–53]. These surrogates can be used to accelerate the computation of
the EIG within OED problems. Specifically, to reduce the prohibitive computational cost, we
build a surrogate for the parameter-to-observable map Fd : Rn (→ Rd at all candidate sensor
locations by a derivative-informed projected neural network (DIPNet) [24–26]. Often, PDE-
constrained high-dimensional parametric maps, such as the parameter-to-observable mapFd ,
admit low-dimensional structure due to the correlation of the high-dimensional parameters,
the regularizing property of the underlying PDE solution, and/or redundant information in
the data from all candidate sensors. When this is the case, the DIPNet can exploit this
low-dimensional structure and parametrize a parsimonious map between the most informed
subspaces of the input parameter and the output observables. The dimensions of the input
and output subspaces are referred to as the “information dimension” of the map, which is
often significantly smaller than the parameter and data dimensions. The architectural strategy
that we employ exploits compressibility of the map, by first reducing the input and output
dimensionality via projection to informed reduced bases of the inputs and outputs. A neural
network is then used to construct a low-dimensional nonlinear mapping between the two
reduced bases. Error bounds for the effects of basis truncation, and parametrization by neural
network are studied in [24, 26, 46].

For the input parameter dimension reduction, we use a vector generalization of an active
subspace (AS) [54], which is spanned by the generalized eigenvectors (input reduced basis)
corresponding to the rM largest eigenvalues of the eigenvalue problem

[∫

Mn

∇mFd(m)T∇mFd(m)dµpr(m)

]
vi = λAS

i "−1
pr vi , (19)

where the eigenvectors vi are ordered by the decreasing generalized eigenvalues λASi ,
i = 1, . . . , rM . For the output data dimension reduction, we use a proper orthogonal decom-
position (POD)[55, 56], which uses the eigenvectors (output reduced basis) corresponding
to the first rF eigenvalues of the expected observable outer product matrix,

[∫

Mn

Fd(m)Fd(m)T dµpr(m)

]
φi = λPOD

i φi , (20)

where the eigenvectors φi are ordered by the decreasing eigenvalues λPODi , i = 1, . . . , rF .
When the eigenvalues of AS and POD both decay quickly, the mappingm (→ Fd(m) can be
well approximated whenm and Fd are projected to the corresponding subspaces with small
rM and rF ; in this case approximation error bounds for reduced basis representation of the
mapping are given by the trailing eigenvalues of the systems (19),(20). This allows one to
detect appropriate “breadth” for the neural network via the direct computation of the asso-
ciated eigenvalue problems, removing the need for ad-hoc neural network hyperparameter
search for appropriate breadth. The neural network surrogate F̃d of the map Fd then has the
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Fig. 1 A schematic representation of the derivative-informed projected neural network using ResNet as the
nonlinear mapping between the reduced subspace using active subspaces for input parameters and POD for
output observables

form
F̃d(m, [w,b]) = %rF fr (V

T
rMm,w)+ b, (21)

where %rF ∈ Rd×rF represents the POD reduced basis for the output, VrM ∈ Rn×rM repre-
sents the AS reduced basis for the input, fr ∈ RrF is the neural network mapping between the
two bases parametrized by weights w and bias b. Since the reduced basis dimensions rF , rM
are chosen based on spectral decay of the AS and POD operators, we can choose them to be
the same; for convenience we denote the reduced basis dimension instead by r . The remain-
ing difficulty is how to properly parametrize and train the neural network mapping. While
the use of the reduced basis representation for the approximating map allows one to detect
appropriate breadth for the neural network by avoiding complex neural network hyperparam-
eter searches, and associated nonconvex neural network trainings, how to choose appropriate
depth for the network is still an open question. While neural network approximation theory
suggests deeper networks have richer representative capacities, in practice, for many archi-
tectures, adding depth eventually diminishes performance in what is known as the “peaking
phenomenon”[57]. In general finding appropriate depth for e.g., fully-connected feedforward
neural networks requires re-training from scratch different networks with differing depths.
In order to avoid this issue we employ an adaptively constructed residual network (ResNet)
neural network parametrization of the mapping between the two reduced bases. This adap-
tive construction procedure is motivated by recent approximation theory that conceives of
ResNets as discretizations of sequentially minimizing control flows [58], where such maps
are proven to be universal approximators of L p functions on compact sets. A schematic for
our neural network architecture can be seen in Fig. 1.

This strategy adaptively constructs and trains a sequence of low-rankResNet layers, where
for convenience we take r = rM = rF or otherwise employ a restriction or prolongation
layer to enforce dimensional compatibility. The ResNet hidden neurons at layer i + 1 have
the form

zi+1 = zi + wi,2σ (wi,1zi + bi ), (22)

with zi+1, zi , bi ∈ Rr ,wi,2, w
T
i,1 ∈ Rr×k , where the parameter k < r is referred to as the layer

rank, and it is chosen to be smaller than r in order to impose a compressed representation of
the ResNet latent space update (22). This choice is guided by the “well function” property in
[58]. The ResNet weightsw = [(wi,2, wi,1, bi )]depthi=0 consist of all of the coefficient arrays in
each layer. Given appropriate reduced bases with dimension r , the ResNet mapping between
the reduced bases is trained adaptively, one layer at a time, until over-fitting is detected
in training validation metrics. When this is the case, a final global end-to-end training is
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employed using a stochastic Newton optimizer [59]. This architectural strategy is able to
achieve high generalizability for few and (input–output) dimension-independent data, for
more information on this strategy, please see [26].

By removing the dependence of the input-to-output map on their high-dimensional and
uninformed subspaces (complement to the low-dimensional and informed subspaces), we
can construct a neural network of small input and output size that requires few training data.
Since these architectures are able to achieve high generalization accuracywith limited training
data for parametric PDEmaps, they are especially well suited to scalable EIG approximation,
since they can be efficiently queried many times at no cost in PDE solves, and require few
high fidelity PDE solutions for their construction.

3.3 DLMCwith DIPNet Surrogate

We propose to train a DIPNet surrogate F̃d for the parameter-to-observable map Fd , so that
π̂(yi ,W) can be approximated as

π̃(yi ,W) = 1
nin

nin∑

j=1

exp
(

−1
2
‖yi − WF̃d(mi, j )‖2"−1

n

)
, (23)

where we omitted a constant 1
(2π)nout/2 det("n)1/2

since it appears in both the numerator and
denominator of the argument of the log in the expression for the EIG. To this end, we can
formulate the approximate EIG with the DIPNet surrogate as

&nn := 1
nout

nout∑

i=1

log
(

πlike(yi |mi ,W)

π̃(yi ,W)

)
(24)

= − 1
nout

nout∑

i=1

1
2
‖Wεd,i‖2"−1

n
(25)

− 1
nout

nout∑

i=1

log



 1
nin

nin∑

j=1

exp
(

−1
2
‖yi − WF̃d(mi, j )‖2"−1

n

)

 , (26)

where εd,i are i.i.d. observation noise. Thanks to the DIPNet surrogate, the EIG can be
evaluated at negligible cost (relating to PDE solver cost) for each given W, and does not
require any PDE solves.

3.4 Error Analysis

Theorem 1 We assume that the parameter-to-observable map Fd and its surrogate F̃d are
bounded as

Em∼µpr [‖Fd(m)‖2] < ∞ and Em∼µpr [‖F̃d(m)‖2] < ∞. (27)

Moreover, we assume that the generalization error of the DIPNet surrogate can be bounded
by ε, i.e.,

Em∼µpr [‖Fd(m) − F̃d(m)‖2] ≤ ε2. (28)

Then the error in the approximation of the normalization constant by the DIPNet surrogate
can be bounded by

|π̂(yi ,W) − π̃(yi ,W)| ≤ Ciε, (29)

123



30 Page 10 of 20 Journal of Scientific Computing (2023) 95 :30

for sufficiently large nin and some constants 0 < Ci < ∞, i = 1, . . . , nout. Moreover, the
approximation error for the EIG can be bounded by

|&dl(W) − &nn(W)| ≤ Cε (30)

for some constant 0 < C < ∞.

Proof For notational simplicity,weomit the dependence of π̂ and π̃ onW andwriteF = WFd
and F̃ = WF̃d . Note that the bounds (27) and (28) also hold for F and F̃ since F and F̃ are
selection of some entries of Fd and F̃d . By definition of π̂ in (18) and π̃ in (23), and the fact
that |e−x − e−x ′ | ≤ |x − x ′| for any x, x ′ > 0, we have

|π̂(yi ) − π̃(yi )|,

≤ 1
nin

nin∑

j=1

1
2

∣∣∣∣‖yi − F(mi, j )‖2"−1
n

− ‖yi − F̃(mi, j )‖2"−1
n

∣∣∣∣,

= 1
nin

nin∑

j=1

1
2

∣∣∣∣
(
2yi − F(mi, j ) − F̃(mi, j )

)T
"−1
n

(
F(mi, j ) − F̃(mi, j )

) ∣∣∣∣,

≤ 1
nin

nin∑

j=1

‖"−1
n ‖(2‖yi‖ + ‖F(mi, j )‖ + ‖F̃(mi, j )‖)‖F(mi, j ) − F̃(mi, j )‖,

≤ Ci



 1
nin

nin∑

j=1

‖F(mi, j ) − F̃(mi, j )‖2



1/2

,

where we used the Cauchy–Schwarz inequality in the last inequality with Ci given by

Ci = ‖"−1
n ‖



4‖yi‖2 +



 1
nin

nin∑

j=1

‖F(mi, j )‖2



1/2

+



 1
nin

nin∑

j=1

‖F̃(mi, j )‖2



1/2



 . (31)

For sufficiently large nin, we have that Ci < ∞ by ‖yi‖ < ∞ and the assumption (27).
Moreover, the error bound (29) holds by the assumption (28).

By the definition of the EIGs (17) and (24), we have

|&dl(W) − &nn(W)| ≤ 1
nout

nout∑

i=1

|log(π̂(yi ,W)) − log(π̃(yi ,W))|. (32)

For sufficiently large nin, we have that the normalization constants π̂(yi ,W) and π̃(yi ,W)

are bounded away from zero, i.e.,

π̂(yi ,W), π̃(yi ,W) ≥ ci , (33)

for some constant ci > 0. Then we have

|&dl(W) − &nn(W)| ≤ 1
nout

nout∑

i=1

1
ci
|π̂(yi ,W) − π̃(yi ,W)| ≤ 1

nout

nout∑

i=1

Ci

ci
ε, (34)

where we used the bound (29), which implies the bound (30) with constant
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C = 1
nout

nout∑

i=1

Ci

ci
. (35)

01

3.5 Greedy Algorithm

With the DIPNet surrogate, the evaluation of the DLMC EIG &nn defined in (26) does not
involve any PDE solves. Thus to solve the optimization problem

W∗ = argmaxW∈W &nn(W), (36)

we can directly use a greedy algorithm that requires evaluations of the EIG, not its derivative
w.r.t. W. Let Sd denote the set of all d candidate sensors; we wish to choose r sensors
from Sd that maximize the approximate EIG (approximated with the DIPNet surrogate).
At the first step with t = 1, we select the sensor v∗ ∈ Sd corresponding to the maximum
approximate EIG and set S∗ = {v∗}. Then at step t = 2, . . . , r , with t − 1 sensors selected
in S∗, we choose the t-th sensor v∗ ∈ Sd\S∗ corresponding to the maximum approximate
EIG evaluated with t sensors S∗ ∪ {v∗}; see Algorithm 1 for the greedy optimization process,
which can achieve (quasi-optimal) experimental designs with an approximation guarantee
under suitable assumptions on the incremental information gain of an additional sensor; see
[60] and references therein. Note that at each step the approximate EIG can be evaluated in
parallel for each sensor choice S∗ ∪ {v} with v ∈ Sd \ S∗.

Algorithm 1 Greedy algorithm to solve (36)

Require: data {yi }Ns
i=1 generated from the prior samples {mi }Ns

i=1, d sensor candidates set Sd , sensor budget
r , optimal sensor set S∗ = ∅

Ensure: optimal sensor set S∗
1: for t = 1, . . . , r do
2: S ⇐ Sd \ S∗
3: for v ∈ S do
4: Wv is the design matrix of sensor choice S∗ ∪ {v}
5: evaluate &nn(Wv)
6: end for
7: v∗ ⇐ argmaxv∈S &nn(Wv)
8: S∗ ⇐ S∗ ∪ {v∗}
9: end for

4 Numerical Results

In this section, we present numerical results for OED problems involving a Helmholtz acous-
tic inverse scattering problem and an advection-reaction-diffusion inverse transport problem
to illustrate the efficiency and accuracy of our method. We compare the approximated nor-
malization constant and EIG of our method with 1) the DLMC truth computed by a large
number of Monte Carlo samples; and 2) the DLMC sampled at the same computational cost
(number of PDE solves) as our method using DIPNet training.

Both PDE problems are discretized using the finite element library FEniCS [61]. The
construction of training data and reduced bases (active subspace and proper orthogonal
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Fig. 2 A random sample of the parameter field m (left) and the corresponding solution u with candidate
observation sensor locations marked in circles (right) for the Helmholtz problem

decomposition) is implemented in hIPPYflow [62], a library for dimension reduced PDE
surrogate construction, building on top of PDE adjoints implemented in hIPPYlib [63].
The DIPNet neural network surrogates are constructed in TensorFlow [64], and are adap-
tively trained using a combination of Adam [65], and a Newton method, LRSFN, which
improves local convergence and generalization [26, 59, 66].

4.1 Helmholtz Problem

For the first numerical experiment, we consider an inverse wave scattering problem modeled
by the Helmholtz equation with uncertain medium in the two-dimensional physical domain
, = (0, 3)2

−"u − e2mk2u = f in ,, (37a)

PML boundary condition on ∂, \ .top, (37b)

∇u · n = 0 on .top, (37c)

Fd(m) = [u(xi ,m)] at xi ∈ ,. (37d)

where u is the total wave field, k ≈ 4.55 is the wavenumber, and e2m models the uncertainty
of the medium, with the parameter m a log-prefactor of the squared wavenumber. The right
hand side f is a point source located at x = (0.775, 2.5). The perfectly matched layer (PML)
boundary condition approximates a semi-infinite domain. The candidate sensor locations xi
are linearly spaced in the line segment between the edge points (0.1, 2.9) and (2.9, 2.9),
with coordinates {(0.1 + 2i/35, 2.9)}49i=0, as shown in Fig. 2 . The prior distribution for
the uncertain parameter m is Gaussian µpr = N (mpr, Cpr) with zero mean mpr = 0 and
covariance Cpr = (5.0I −")−2. Themesh used for this problem is uniform of size 128×128.
We use quadratic elements for the discretization of the wave field u and linear elements for
the parameter m, leading to a discrete parameter m of dimension 16, 641. The dimension
of the wave field u is 66049, the wave is more than sufficiently resolved in regards to the
Nyquist sampling criteria for wave problems.

A sample of the parameter field m and the PDE solution u is shown in Fig. 2 with all 50
candidate sensor locations marked in circles.
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Fig. 3 The approximation of the log normalization constant with increasing numbers of samples without (true
MC) and with (DIPNet MC) surrogate at 3 random designs. Green stars indicate 5757 samples (for simple
MC), which is the same computational cost as DIPNet

The network has 10 low-rank residual layers, each with a layer rank of 10. For this numer-
ical example we demonstrate the effects of using different breadths in the neural network
representation, in each case the ResNet learns a mapping from the first rM basis vectors for
active subspace to the first rM basis vectors of POD. In the case that rM > 50 we use a linear
restriction layer to reduce the ResNet latent representation to the 50 dimensional output.
For the majority of the numerical results, we employ a rM = 50 dimensional network. The
neural network is trained adaptively using 4915 training samples, and 1228 validation sam-
ples. Using 512 independent testing samples, the DIPNet surrogate was 81.56% /2 accurate
measured as a percentage by

/2 accuacy = 100

(

1 − ‖F̃d − Fd‖2
‖Fd‖2

)

. (38)

Formore details on this neural network architecture and training, see [26]. The computational
cost of the 50 dimensional active subspace projector using 128 samples is equivalent to the
cost of 842 additional training data; since the problem is linear the additional linear adjoint
computations are comparable to the costs of the training data generation. As we will see in
the next example, when the PDE is nonlinear the additional active subspace computations
are marginal. Thus for fair comparison with the same computational cost of PDE solves, we
use 4915+ 842 = 5757 samples for simple MC.

To test the efficiency and accuracy of our DIPNet surrogate, we first compute the log
normalization constant logπ(y) with our DIPNet surrogate for given observation data y
generated by y = WFd(m) + ε. m is a random sample from the prior. We use in total
60000 random samples for Monte Carlo (MC) to compute the normalization constant as
the ground truth. Figure 3shows the logπ(y) comparison for three random designs W that
choose 15 sensors out of 50 candidates. We can see that DIPNet surrogate converges to a
value close to the ground truth MC reference, while for the (simple) MC with 5757 samples,
the approximated value indicated by the green star is much less accurate than the DIPNet
surrogate using 60000 samples with similar cost in PDE solves. Note that the DIPNet training
and evaluation cost for this small size neural network is negligible compared to PDE solves.

The left and middle figures in Fig. 4 illustrate the sample distributions of the relative
approximation errors for the log normalization constant logπ(y) and the EIG & (nout =
200) with (DIPNet MC with 60000 samples) and without (simple MC with 5757 samples)
the DIPNet surrogate, compared to the true MC with 60000 samples. These results show
that using DIPNet surrogate we can approximate logπ(y) and & much more accurately
with less bias compared to the simple MC. The sample distributions of EIG at 200 random
designs compared to the design chosen by the greedy optimization using DIPNet surrogate
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Fig. 4 Sample distributions for 200 random designs of the relative approximation errors (compared to true
MC) for the log normalization constant logπ(y) (left) and EIG& (middle) byDIPNetMC and simpleMCwith
different number of sensors r . Right: Blue filled areas represent the sample distributions of the true DLMC
EIG &dl for 200 random designs. Pink crosses is the true DLMC EIG &dl of designs chosen by the greedy
optimization using DIPNet surrogates

Fig. 5 EIG of true DLMC (nin = 60000), DIPNet DLMC (nin = 60000), and simple DLMC (nin = 5757)
with increasing number of outer loop samples nout at 3 random designs

Fig. 6 Sample distributions for 200 random designs of the relative approximation errors (compared to true
MC) for the log normalization constant logπ(y) (left) and EIG & (middle) by DIPNet MC and simple MC
with increasing breadth. Right: Sample distributions for 200 random designs of the relative approximation
errors (compared to true MC) against the corresponding DIPNet generalization error at breadth (from left to
right) = 50, 100, 25, 10

for different number of sensors are shown in the right figure, from which we can see that our
method can always chose better designs with larger EIG values than all the random designs.

Figure 5 gives approximate values of the EIG with increasing number of outer loop
samples nout using: the DIPNet surrogate with inner loop nin = 60000, simple DLMC with
inner loop nin = 5757, and the truth computed with inner loop nin = 60000. We can see
that the approximate values by the DIPNet surrogates are almost the same as the truth, while
simple DLMC results are very inaccurate.

To show the effectiveness of truncated rank (breadth) for DIPNet surrogate, we evaluate
the log normalization constant logπ(y) and EIG & with breadth = 10, 25, 50, 100 and
compared with true MC and simple MC in Fig. 6. We can see that with increasing breadth,
the relative error is decreasing, but getsworsewhen breadth reaches 100.With breadth= 100,
the difficulties of neural network training start to dominate and diminish the accuracy. We
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Fig. 7 A random sample of the parameter field m (left) and the corresponding solution u with candidate
observation sensor locations marked in circles (right) for the advection–diffusion-reaction problem

can also see it in the right part of the figure. The relative error of EIG approximation reduces
(close to) linearly with respect to the generalization error of the DIPNet approximation of
the observables with network breadth = 10, 25, 50, which confirms the error analysis in
Theorem 1. However, when the breadth increases to 100, the neural network becomes less
accurate (without using more training data), leading to less accurate EIG approximation.

4.2 Advection–Diffusion-Reaction Problem

For the second numerical experiment we consider an OED problem for an advection–
diffusion-reaction equation with a cubic nonlinear reaction term. The uncertain parameter
m appears as a log-coefficient of the cubic nonlinear reaction term. The PDE is defined in a
domain , = (0, 1)2 as

−∇ · (k∇u)+ v · ∇u + emu3 = f in ,, (39a)

u = 0 on ∂,, (39b)

Fd(m) = [u(xi ,m)] at xi ∈ ,. (39c)

Here k = 0.01 is the diffusion coefficient. The volumetric forcing function f is a smoothed
Gaussian bump located at x = (0.7, 0.7),

f (x) = max
(
0.5, e−25(x1−0.7)2−25(x2−0.7)2

)
. (40)

The velocity field v is a solution of a steady-state Navier Stokes equation with shearing
boundary conditions driving the flow (see the Appendix in [24] for more information on
the flow). The candidate sensor locations are located in a linearly spaced mesh-grid of
points in (0.1, 0.9) × (0.1, 0.9), with coordinates {(0.1i, 0.1 j), i, j = 1, 2, . . . , 9}. The
prior distribution for the uncertain parameter m is a mean zero Gaussian with covariance
Cpr = (I − 0.1")−2. The mesh used for this problem is uniform of size 128 × 128. We use
linear elements for both u andm, leading to a discrete parameter of dimension 16, 641. Figure
7 gives a prior sample of the parameter field m and the solution u with all 100 candidate
sensor locations in white circles.

123



30 Page 16 of 20 Journal of Scientific Computing (2023) 95 :30

Fig. 8 The approximation of the log normalization constant with increasing numbers of samples without (true
MC) and with (DIPNet MC) surrogate at 3 random designs. Green stars indicate 443 samples (simple MC),
having the same computational cost as DIPNet

Fig. 9 Sample distributions of the relative errors (compared to the truth MC) in approximating the log nor-
malization constant logπ(y) (left) and EIG & (middle) by DIPNet MC and simple MC with different number
of sensors r ; Right: Blue filled areas represent the sample distributions of the true DLMC EIG &dl for 200
random designs. Pink crosses are the true DLMC EIG&dl of designs chosen by the greedy optimization using
DIPNet surrogates

The neural network surrogate is trained adaptively using 409 training samples and 102 val-
idation samples. Using 512 independent testing samples the DIPNet network was 97.13%/2

accurate (see equation 38). The network has 20 low-rank residual layers, each with a layer
rank of 10, the breadth of the network is rM = rF = 25. The computational cost of the
25 dimensional active subspace projector using 256 samples is equivalent to the cost of 34
additional training data. As was noted before when the PDE is nonlinear the linear adjoint-
based derivative computations become much less of a computational burden. Thus we use
409+ 34 = 443 samples for simple MC for fair comparison.

We first examine the log normalization constant logπ(y) computed with our 409 PDE-
solve-based DIPNet surrogate compared against the truth computed with 60000MC samples
and the simple MC computed with 443 samples. Figure 8 shows the logπ(y) comparison for
three randomdesigns that select 15 sensors out of 100 candidates.We can see thatDIPNetMC
converges to a value close to the true MC curves, while the simple MC’s green star computed
with the same number of PDE solves (443) as DIPNet MC, has much worse accuracy.

The left figure of Fig. 9 shows the relative errors for logπ(y) computed with the DIPNet
surrogate and simple MC using 443 samples based on the true MC with 60000 samples,
for 200 random designs. We see again that DIPNet gives better accuracy with less bias than
simple MC.

Figure 10 shows the EIG approximations of three random designs with increasing number
of outer loop samples nout using the DIPNet MC with 60000 (inner loop) samples, simple
MC with 443 samples, and true MC with 60000 samples. We can see that the values of
DIPNet MC are quite close to the true MC, while simple MC is far off. Relative errors of the
EIG & (nout = 100) computed with the DIPNet surrogate, the simple MC for 200 random
designs is given in the middle figure of Fig. 9. With the DIPNet DLMC &nn , we can use the

123



Journal of Scientific Computing (2023) 95 :30 Page 17 of 20 30

Fig. 10 EIG of true DLMC (nin = 60000), DIPNet DLMC (nin = 60000) and simple DLMC (nin = 443)
with increasing number of outer loop samples nout at 3 random designs

greedy algorithm to find the optimal designs. The DIPNet greedy designs are presented as
the pink crosses in the right figure of Fig. 9. We can see that the designs chosen by the greedy
algorithm have much larger EIG values than all 200 random designs.

5 Conclusions

We have developed a computational method based on DIPNet surrogates for solving large-
scale PDE-constrained Bayesian OED problems to determine optimal sensor locations (using
the EIG criterion) to best infer infinite-dimensional parameters. We exploited the intrinsic
low dimensionality of the parameter and data spaces and constructed a DIPNet surrogate
for the parameter-to-observable map. The surrogate was used repeatedly in the evaluation of
the normalization constant and the EIG. We presented error analysis for the approximation
of the normalization constant and the EIG, showing that the errors are of the same order as
the DIPNet RMS approximation error. Moreover, we used a greedy algorithm to solve the
combinatorial optimization problem for sensor selection. The computational efficiency and
accuracy of our approach are demonstrated by two numerical experiments. Future work will
focus ongradient-basedoptimization also using the derivative informationof theDIPNetw.r.t.
both the parameter and the design variables, on the use of different optimality criteria such as
A-optimality or D-optimality, and on exploring new network architectures for intrinsically
high-dimensional Bayesian OED problems.
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