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Abstract. We develop a fast and scalable computational framework to solve Bayesian optimal experimental
design problems governed by partial differential equations (PDEs) with application to optimal sensor
placement by maximizing expected information gain (EIG). Such problems are particularly challeng-
ing due to the curse of dimensionality for high-dimensional parameters and the expensive solution
of large-scale PDEs. To address these challenges, we exploit two fundamental properties: (1) the
low-rank structure of the Jacobian of the parameter-to-observable map, to extract the intrinsically
low-dimensional data-informed subspace, and (2) a series of approximations of the EIG that reduce
the number of PDE solves while retaining high correlation with the true EIG. Based on these prop-
erties, we propose an efficient offline-online decomposition for the optimization problem. The offline
stage dominates the cost and entails precomputing all components that require PDE solves. The
online stage optimizes sensor placement and does not require any PDE solves. For the online stage,
we propose a new greedy algorithm that first places an initial set of sensors using leverage scores
and then swaps the selected sensors with other candidates until certain convergence criteria are met,
which we call a swapping greedy algorithm. We demonstrate the efficiency and scalability of the
proposed method by both linear and nonlinear inverse problems. In particular, we show that the
number of required PDE solves is small, independent of the parameter dimension, and only weakly
dependent on the data dimension for both problems.
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1. Introduction. In many scientific and engineering fields that employ mathematical mod-
eling and computational simulation to predict the behavior of physical systems, uncertainties
are ubiquitous. These uncertainties may arise from model coefficients, initial or boundary
conditions, external loads, computational geometries, etc. It is crucial to quantify and reduce
such uncertainties for more accurate and reliable computational predictions and model-based
system optimization. Bayesian inference provides an optimal framework for quantifying the
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uncertainties with suitable prior probability distribution based on domain knowledge or ex-
pert belief and reducing the uncertainties characterized by their posterior probability distri-
bution through fusing noisy experimental or observational data with the model using Bayes’
rule. However, it is challenging to acquire enough data if the experiment is expensive or
time-consuming. In this situation, only limited data can be acquired given budget or time
constraint. How to design the experiment such that the limited data can reduce the uncertain-
ties as much as possible becomes a very important question and the central task of optimal
experimental design (OED) [11, 56, 2, 38].

OED problems can be generally formulated as minimizing or maximizing certain criterion
that represents the uncertainty, e.g., the trace (A-optimality) or determinant (D-optimality)
of the posterior covariance. In the Bayesian framework, a common choice is the expected
information gain (EIG) or mutual information, where the information gain is measured by
Kullback—Leibler divergence between the posterior distribution and the prior distribution, and
the expected value is taken as an average of this measure over all realizations of the data.
Consequently, two integrals are involved in evaluating the EIG, one w.r.t. the posterior distri-
bution and the other w.r.t. the data distribution. Several computational challenges are faced
in evaluating the EIG, including (1) evaluation of the double integrals, with one involving in-
tegration w.r.t. the posterior distribution, which may require a large number of samples from
the posterior distribution, especially if the uncertain parameters are high-dimensional; (2) the
parameter-to-observable map at each sample is expensive to evaluate, and thus only a limited
number of map evaluations can be afforded, which is often the case when the map evaluation
involves the solution of large-scale models, e.g., represented by partial differential equations.
For example, in modeling underground fluid flow, one needs to infer the infinite-dimensional
permeability field from observations of the fluid velocity or pressure at some locations, or
in contaminant diffusion and transportn one needs to infer its source or infinite-dimensional
initial concentration field from observations of the concentration at certain locations and time
instances. Both of the examples feature large-scale models with high-dimensional parameters
after (high-fidelity) discretization. Moreover, when the space of the possible experimental
design is also high-dimensional, e.g., the number of candidate sensor locations for the obser-
vation is high, one faces the challenge of solving high-dimensional optimization problems, i.e.,
maximizing the EIG w.r.t. the high-dimensional design variable.

Related work. OED problems with the above computational challenges have attracted
increasing attention in recent years. An infinite-dimensional version of the Kullback—Leibler
divergence involved in the EIG is studied in [1]. For linear problems (i.e., the parameter-
to-observation map is linear in the parameter) the EIG is equivalent to what is called the
D-optimal design, which measures the log-determinant of the prior-covariance preconditioned
misfit Hessian, whose computation depends on its dominant eigenvalues. Fast decay of the
eigenvalues has been proven for some model problems and numerically demonstrated for many
others. These include ice sheet dynamics [54, 53, 41, 69]; shape and medium acoustic and
electromagnetic scattering [18, 19, 20, 30, 8, 51, 26]; seismic wave propagation [49, 17, 21,
68]; mantle convection [63]; viscous incompressible flow [66]; advection-diffusion [33, 2, 64,
61]; ocean dynamics [43]; turbulent combustion [28]; poroelasticity [37, 6, 7]; infectious disease
spread [24, 29]; tumor growth modeling [60]; joint inversion [31]; and subsurface flow [3, 4,
27, 23, 25].
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Based on this property, efficient methods have been developed to evaluate the D-optimality
criterion for infinite-dimensional Bayesian linear problems [57, 58]. In [5], the authors exploited
this property and proposed a gradient-based optimization method for D-optimal design, which
was extended in [12] for goal-oriented OED. For nonlinear problems, a direct statistical estima-
tor of EIG involves a double-loop Monte Carlo (DLMC) [14], which approximates the EIG via
inner and outer Monte Carlo sample average approximations (double loops). Both loops need
to generate a large number of samples requiring multiple PDE solves for each sample. Polyno-
mial chaos expansion was employed in [38, 39, 40] as a surrogate for the expensive PDE model,
which is, however, not suitable for solving OED problems with high-dimensional parameters.
The authors of [46, 47] proposed to approximate the EIG by a Laplace approximation of
the posterior distribution, which involves optimization for finding the maximum-a-posterior
(MAP) point and eigenvalue decompositions of the prior-preconditioned data misfit Hessian.
The optimal design is obtained by an exhaustive search over a prespecified set of experimen-
tal scenarios. The authors of [44] considered D-optimal design for quasi-linear problems and
used a greedy algorithm to sequentially select observation locations. In [67], the authors used
Laplace approximation and investigated two criteria (total flow variance and A-optimal de-
sign) with a sparsity-inducing approach and a sum-up rounding approach to find the optimal
design. In [48], problems of sensor placement for signal reconstruction with the D-optimality
criterion are considered and the accuracy and efficiency between convex optimization and QR
pivoting with the greedy method are compared to find the optimal design. However, in all
these papers, many expensive PDEs have to be solved in each of the optimization iterations,
which may lead to a prohibitively large number of expensive PDEs to solve, especially when
the parameter dimension or the data dimension is large. Preliminary work using reduced order
models [10, 9] and neural networks [65] has been performed to reduce the computational cost.

Contributions. To address the computational challenges for Bayesian OED problems of
maximizing EIG with large-scale models and high-dimensional parameters, we propose a fast
and scalable computational framework: fast in that only a limited number of the large-scale
models are solved, and scalable in that the computational complexity is independent of both
the parameter dimension and the data dimension. These advantages are made possible by
(1) using a sequence of approximations of the posterior including Laplace approximation, low-
rank approximation of the posterior covariance, and replacement of the design-dependent MAP
point by a fixed MAP point, and further by a prior sample point; (2) exploiting an efficient
offline-online decomposition of the computation, offline solving all the large-scale models and
online solving the model-independent optimization problem; and (3) proposing a swapping
greedy algorithm used in the online stage to find the optimal design, with computational
complexity dependent only on the dimension of the subspace informed by the data, not on
the nominal parameter and data dimensions. More specifically, for linear problems we derive
a new approximate form of the D-optimal criterion, whose evaluation at different designs does
not involve any PDE solve. Moreover, we propose a swapping greedy algorithm to search
for an optimal design. It exploits the dominant data subspace information quantified by
the Jacobian of the parameter-to-observable map. For nonlinear problems, we use Laplace
approximation and exploit the high correlation of the approximate EIGs with the Laplace
approximation centered at different points. Furthermore, we propose an efficient offline-online
decomposition of the optimization problem, where the key information is extracted in the
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offline stage by solving a limited number of PDEs, which is then used in the online stage to
find the optimal design by the swapping greedy algorithm. We demonstrate the effectiveness
and scalability of our computational framework by two numerical experiments, a linear inverse
problem of inferring the initial condition for an advection-diffusion equation and a nonlinear
inverse problem of inferring the diffusion coefficient of a log-normal diffusion equation, with
both the parameter and data dimensions ranging from a few tens to a few thousands.

Paper overview. In section 2, we review an infinite-dimensional Bayesian inverse prob-
lem with finite-dimensional approximation. We also review the EIG optimality criterion,
including the specific formulation for sensor placement problems. In section 3, we introduce
OED for nonlinear inverse problems with Laplace approximation and its finite-dimensional
discretization. We formulate a new framework with several further approximations, employ
an online-offline scheme, and introduce a new swapping greedy algorithm to solve the op-
timization problem. We also discuss the application to linear problems with detailed error
analysis. Section 4 presents numerical results for both linear and nonlinear Bayesian inverse
problems, followed by the last section 5 for conclusions.

2. Bayesian optimal experimental design. In this section, we present a general formula-
tion of the Bayesian inverse problem for an abstract forward model and an infinite-dimensional
parameter field. The Bayesian inverse problem is discretized by the finite element method,
yielding a finite-dimensional problem. We present the optimal experimental design problem
as an optimal selection of sensor locations chosen from candidate sensor locations, based on
a commonly used design criterion: EIG.

2.1. Bayesian inverse problem. We consider a PDE model in an abstract form given by
(2.1) R(u,m)=0 in)’,

where u is the state variable defined in a physical domain D C R™ with Lipschitz boundary
0D, where n, = 1,2,3, which belongs to a separable Banach space V with dual V’; m is the
parameter field to be inferred, which is assumed to belong to a Hilbert space M defined in
D; and R(-,-): ¥V x M — V' represents the strong form of the PDE, whose weak form can be
written as follows: find u € V such that

(2.2) r(u,m,v) = V(U,R(u,m»v/ =0 Yve),

where (-, '>V’ denotes the duality pairing.
We assume a data model with additive Gaussian noise, given as

(2.3) y =B(u) +¢,

where u satisfies the forward problem (2.2) for a given m, and B:V — R™ is an observation
operator that maps the state variable to the data y € J = R" at n, observation points.
The observations are corrupted with an additive Gaussian noise € ~ N (0,T',) with symmetric
positive definite covariance matrix I';, € R™*™ _ For notational convenience, we denote the
parameter-to-observable map as

(2.4) F(m) = B(u(m)).
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We take m to have a Gaussian prior measure jip = N (myr,Cpr) with mean my,, € M
and covariance operator Cp, : M — M’ from M to its dual M’; Cp, is a strictly positive self-
adjoint operator of trace class. Let A be a Laplacian-like operator equipped with homogeneous
Neumann boundary condition along the boundary 9D, as in [59, 21]. We take Cp, =A™ for
sufficiently large o > 0, such that 2o > n,, to guarantee that Cp, is of trace class. This
choice of prior guarantees a bounded pointwise variance and a well-posed infinite-dimensional
Bayesian inverse problem [53].

With the assumption of Gaussian additive noise for e, the likelihood function 7 (y|m)
satisfies

(25) 71'like(yhn) mexp(—@(m,y)),

where the potential ®(m,y) is given by ®(m,y) := 1 || F(m) — y||%;1, and HvH%,l =vIT v
for any v € R™. By Bayes’ rule, the posterior measure fipost(m|y) of the parameter m
conditioned on the observational data y is given by the Radon—Nikodym derivative as

d,upost (mb’) 1

(2.6) due(m) Eﬂ'like(}"m)a
pr

where Z is a normalization constant given by

(2.7) 7 = /M Tiike (¥ [) dptpr (M)

2.2. Expected information gain. To quantify the information gained from the observa-
tional data, different information criteria have been used, e.g., the A-optimal or D-optimal
criterion, which use the trace or determinant of the covariance of the posterior [1], respectively,
to measure the uncertainty. Here we choose to use the EIG, which is the Kullback—Leibler
(KL) divergence between the posterior and the prior, averaged over all data realizations. The
KL divergence measures the information gained from data y, which is defined as

dp ost(mb’)
2.8 Dxr(ppost (-|y Nr::/ ln(p dptpost (M]y).
(238) ot () 1= | (T P ) ditps mly)
The EIG, WU, takes all possible realizations of the data y € ) into account and is defined as
(2.9a) V=K, [DKL(Npost('|Y)||Npr)]
(2-9b) :/yDKL(Mpost('IY)”Mpr)W(Y) dy
(2.9¢) - /y . D s A9 ) e () e (o)
(2.90) -/ /y Dict (tpost (1) 1190) e (1) dy dpige(m).

In the second equality, 7(y) is the density of the data y, which follows a Gaussian distribution
N(F(m),T},) conditioned on the parameter m, i.e., 7(y) = fM Tike (¥ |m) dpipr(m), which is
used in the third equality. The fourth equality is obtained by switching the order of integration
under the assumption that Dxr,(fpost ([y)||tpr) is integrable by the Fubini theorem. Efficient
algorithms for evaluation of the KL divergence and the EIG are presented in section 3.
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2.3. Optimal experimental design for sensor placement. We consider an important sub-
set of OED problems, the sensor placement problem, in which we have a set of candidate sensor
locations {x;}%_, in the physical domain D, from which we need to choose r locations (due to
a limited budget) to optimally place the sensors for data acquisition. To represent the selected
sensor locations, we use a design matrix W, which is a Boolean matrix W € R"*¢ such that
W;; =1 if the ith sensor is placed at the jth candidate sensor location, i.e.,

d r
(2.10) WeW:=qWeR™:W;;c{0,1}, Y W;=1,> W,;;c{0,1}
j=1 i=1

We consider the case of uncorrelated observational noise with covariance matrix
(2.11) ¢ = diag(o?,...,03)

corresponding to d candidate sensor locations, where ajz indicates the noise variance at the jth
candidate sensor location. Let B; denote the observation operator at all d candidate sensor
locations. For a specific design W, we have the observation operator B = W By, so that the
EIG (W) depends on the design matrix through the observation operator B. To this end,
the OED problem can be formulated as follows: find an optimal design matrix W* € W such
that

(2.12) W* = arg max ¥(W).
Wew

2.4. Discretization of the Bayesian inverse problem. We present a discretization of the
Bayesian inverse problem here to facilitate the presentation of our computational algorithms
and complexity analysis in the following sections. The parameter field m in the Hilbert space
M is infinite-dimensional. We use a finite element discretization to numerically approximate
it in a subspace M,, C M of dimension n, which is spanned by piecewise continuous Lagrange
polynomial basis functions {¢; }?:1 defined over a mesh with elements of size h and vertices
{x;}j_1, such that ¢;(x;) = dj, 3,5 = 1,...,n, where d;; denotes the Kronecker delta. The
approximation of the parameter m € M in M,,, denoted as my,, can be expressed as

(2.13) mh:ij¢j.
j=1

Here we denote m = (my,...,m,)? € R" as the coefficient vector of my,.
Let M denote the finite element mass matrix whose entries are given by

(214) Mij:/D¢i(X)¢j(X)dX, i,jzl,...,n.

Let A denote the finite element matrix corresponding to the elliptic differential operator A,
ie.,

(2.15) Aij:M/<.A¢j(x),gZ5i(l’)>M7 i,jZl,...,n.
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With the specification of the parameter o = 2, which satisfies 2a > d for d < 3, we obtain a
discrete covariance matrix I'p, = A~ corresponding to the covariance operator Cp,, given by

(2.16) T, =A""™MA™
Then, the prior density for the coefficient vector m, also called the discrete parameter, is given
by
1 2
(2.17) Tpr(M) o< exp —§||m — my,| rt o

where mp, € R" is the coefficient vector of the approximation of the prior mean my, in the
finite element space M,,. Correspondingly, the posterior density of m follows the Bayes’ rule

1
(2.18) 7Tpost(rnb’) = Eﬂ'like(Y|m)7Tpr(m)7

where Tike(y|m) is the likelihood function for the discrete parameter m given by

(2.19) Tike (¥ |m) o< exp (—@(m, y)) ,

with the potential
1
(2.20) (m,y) = 5|[F(m) — v},

where F : R" — R"™ denotes the discrete parameter-to-observable map corresponding to (2.4).
The application of F involves the solution of the forward model (2.2) by a finite element
discretization in a subspace V,,, C V spanned by basis functions {¢;}7*,, in which the finite

=

element state up =" uj1h; with coefficient vector u= (u1,...,un,)".

3. Method description. We consider the Bayesian nonlinear inverse problem for which
the parameter-to-observable map F(m) is nonlinear w.r.t. the parameters. For such problems,
we do not have the data-independent EIG as in linear problems, and instead must use a data-
averaged KL divergence computed by a sample average approximation as

N
1 s
(3.1) U~ FZDKL(Npost("Yi)”Npr),
S =1
where the data y; are given by
(3.2) yi=F(m;) +e;

with Ny independent and identically distributed (i.i.d.) samples m; ~ pipy and &; ~ N (0,T'y),
i=1,...,Ns. This involves the significant challenges of (1) computation of the posterior for
each data realization, (2) a high-dimensional integral for the KL divergence, and (3) a complex
and implicit dependence of the EIG on the design matrix through the solution of the Bayesian
nonlinear inverse problem. To tackle these challenges, beyond the low-rank approximation of
the Hessian introduced in the last section, we propose a sequence of further approximations
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including (1) a Laplace approximation of the posterior for each data realization, which leads
to an efficient computation of the posterior, (2) an approximation of a varying MAP point for
each configuration of the sensors by a fixed MAP point obtained with data from all candidate
sensors, thereby avoiding solution of the nonlinear inverse problem for each configuration of
the sensors, and (3) an approximation of the fixed MAP point by a synthetic sample drawn
from the prior, which further obviates the need to find the MAP point for the nonlinear
inverse problem. We demonstrate the accuracy and efficiency of the proposed approximations
and derive an optimization problem that can be divided into an “offline” phase that involves
expensive solutions of the forward PDE model and an “online” phase that optimize w.r.t. the
design matrix and that does not involve PDE solves. We introduce two greedy algorithms for
the online phase for scalable and efficient optimization of the design matrix.

3.1. Laplace approximation. The Laplace approximation replaces the nonlinear Bayesian
posterior pipest for given data y by a Gaussian distribution fipest = ,u%é*st, with the mean given
by the MAP point mmap as

(33) Mmap ‘= argn/an (%Hf(m) - yH%gl + %Hm - mer(QZ;rl) ’

me

and the covariance Cpost given by
(3.4) ;olst 1= M (Mmap) + C;rl?

where H, (Mmap) is the Hessian of the data misfit term § || F(m) — y||%_1 w.r.t. the parameter
m, evaluated at the MAP point my,p. For efficient computation of the EIG, we employ a
Gauss—Newton approximation of the Hessian as (with overloading notation)

(3.5) 7'[m(mmap) = j*(mmap) I‘El j(mmap)7

where J (mmap) is the Jacobian of the parameter-to-observable map F(m) w.r.t. m evaluated
at Mmap, i.€.,

(36) j(mmap) = Dm]:(m)’mzmmap‘

Using the Laplace approximation of the posterior, the analytical form of the KL divergence
is given as

1 ~ 1 1
(3.7)  Drce(binllinpe) = 5 [1ogdet (Z+ Hin ) = 00(Cose HonClse) + [mmap = mpel |3 |

where H,, = Cj Hm Ci [1]. Employing a finite-dimensional discretization as in subsection 2.4,
we obtain the discrete Laplace approximation with mean my,,, as the coefficient vector of the
finite-dimensional basis for mmap, and the inverse of the covariance matrix

(3.8) I‘;:olst = H,;, (Mumap) + F;rl = JT(mmap)FglJ(mmap) + F;rl-

Here J is the discretization of the Jacobian J in (3.6). Algorithms for its efficient computation
are deferred to subsection 3.6. Moreover, we have the discrete KL divergence corresponding
to (3.7) given by

(3.9)

Dt (pinelltor) = 5 [1ogdet (T+ Fln(Minap)) = 66T s Hn (00mp) T ) + [ My — mipel 2.,

1
2
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where ﬁm(mmap) is the prior-preconditioned (Gauss—Newton) Hessian given by

(310) Hm(mmap) = Fngm(mmap)Fgr'

3.2. Low-rank approximation. Using the Laplace approximation of the Bayesian poste-
rior for given data y;, ¢ = 1,..., Ns, we can compute the EIG similar to that for the linear
inverse problem by first computing a low-rank approximation of the prior-preconditioned Hes-
sian (3.10). More specifically, we need to compute the eigenvalues of ﬁm at the MAP points
mﬁnap foreachi=1,..., Ns. Letting J; denote the Jacobian for all d candidate sensor locations

evaluated at rn’;map, we have J = WJ; and J7 = JTWT. Then by introducing J=T,"7,
Ji= (I‘g)féJd with T'¢ defined in (2.11), we have

(3.11) J=T. =T, W, =W (T 2J,=WJ,.
Hence
(3.12) H, =T33 T, U2 =270 =TI WIWJ, T,

To compute the eigenvalues of fIm, we use the following linear algebra fact that, for matrices
A e R™*™ and B € R"*™, AB and BA have the same nonzero eigenvalues.

Then, the nonzero eigenvalues of H,, = I‘f,rdeWTWde‘gr are the same as the nonzero
eigenvalues of WJ I, JTWT := WH,WT. Let

(3.13) Hy=J,0,J] ~H;=U,%, UL

The low-rank approximation H, can be efficiently computed by a randomized singular value
decomposition (SVD) algorithm. The randomized SVD given in Algorithm 3.1 is a flexible
and robust method that requires only Hessian action in a limited number (2(k 4 p)) of given
directions instead of forming the full Hessian matrix [35]. This is particularly useful for large-
scale problems.

The matrix-free nature of the algorithm is clear in steps 2 and 4, which requires 2(k + p)
independent data-space Hessian matrix-vector products. Each data-space Hessian matrix-
vector product involves a pair of forward and adjoint PDE solves. When the rank £ is small
and independent of the parameter and data dimensions, as shown in our numerical test, the

Algorithm 3.1 Randomized SVD to compute (3.13).
1: Generate i.i.d. Gaussian matrix Q € R>#+P) with a small oversampling parameter
p (e.g., p=10).
Compute Y = H;Q2.
Compute the QR factorization Y = QR satisfying QT Q =1I.
Compute B = QTH,Q.
Solve an eigenvalue problem for B such that B=ZXZ".
Form Uy =QZ[1: k] and ¥, =X[1:k,1:k].
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dominant computational cost, i.e., the number of PDE solves, becomes independent of the
parameter and data dimensions. Therefore, the eigenvalues of ﬁm can be efficiently computed
by first computing the truncated SVD of H,, then forming a small matrix WH W7 of size
r x r, and finally computing the eigenvalues of WH,WT.

Note that both the MAP point my,, and the Hessian H,,(m map) depend on the design
matrix W, with the former depending on W' through the optimization problem (3.3), and
the latter through its definition in (3.8), where the Jacobian J(m. ) depends on the design
matrix. As a result, the eigenvalues of H,, (m map) depend on W. With these eigenvalues
AL AL of WHy(m map)WT for each experimental data generated from m’, we obtain the

approximations for the quantities in (3.9) as in [61],

(3.14) .
OX(W)

logdet (I + H map Zln 1+ )\1 W)) and tr(I‘pOStH (m map)l"gost) Z e,
( ) TN (W)

which leads to a Laplace approximation (with Gauss—Newton Hessian and low-rank approxi-
mation) of the EIG (3.1) as

) AL(W
(3.15) T(W - Z ]2: (ln 14+ (W) — %) + M, (W) — |

3.3. Fixed MAP point approximation. To evaluate the Laplace approximation of the
EIG in (3.15) for each design matrix W, one has to solve the optimization problem (3.3) for
the MAP point mmap(W) for each data y;, ¢ = 1,..., N, which is usually very expensive.
Rather than solve the optimization problem for each design W and each data y,, we consider
the MAP point mmap(Wau) at data y, observed from all c'andidate sensors Wy, which is
fixed w.r.t. the design W. Consequently, the eigenvalues )\} of the Hessian depend only on
W through the Jacobian J, not on the MAP point. With such a fixed MAP approximation,
we can define the approximate EIG as

(3.16)
N, r i
- 1 g (W) .
=N Z 5 Z <1n (1+ X( ) — m + My (Wan) — mer%l;_l
=1 7j=1 J
Since [[mf,,,(Wan) —mp]f||%,1 is independent of W, maximizing ¥ is equivalent to maximizing

(W
(3.17) : NZ Z(lnHX( ))—M)

3.4. Prior sample point approximation. With the fixed MAP point approximation, one
still needs to solve the optimization problem (3.3) to generate the MAP points mmap(Wan)
from the observation data y;, ¢ = 1,...,Ns. Note that the observation data y; in (3.2) are
provided by first solving the forward model at a sample m,; drawn randomly from the prior, and
then extracting the observations from all the candidate sensors. As the number of candidate
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sensors becomes large, the fixed MAP point mfnap(Wau) can recover or approximate the prior
sample m; well if the inverse problem is not severally ill-posed. This provides a rationale to
replace the fixed MAP point mfnap(WaH) by the prior sample m;. Using this prior sample
point approximation, one can completely avoid solving the optimization problem (3.3).

Now we can form our optimization problem as follows: find an optimal design matrix

W* € W such that

(3.18) W (W) ! il Z In(1 1 2wy — W)
) = arg max =argmax — » — n » -2,
Wow Wew Ny &2 | & I 1+ N (W)

where A%, ..., Al are the eigenvalues of WHg(m,;)W7.

3.5. Greedy algorithms. With the new optimization object QZ)(W), we can develop an
online-offline scheme to solve the optimization problem. For the offline stage, we use the
randomized SVD in Algorithm 3.1 to compute the low-rank approximation Hy(1m;) of Hg(m;)
for each data y; generated by prior sample m;. For the online stage to choose r sensors out
of d candidates that maximize ¢ in (3.18), we can treat it as the optimization of set functions
under a cardinality constraint set as each design matrix W represents a choice of a subset of
candidate sensor location. The set functions usually exhibit properties, such as submodularity
(Definition 3.1), that allow for efficient optimization methods [34]. It is well-known that the
log-determinant function is a submodular function [36] with the definition of submodularity
given as follows.

Definition 3.1. Let f be a set function on V, i.e., f:2Y —R. Then f is submodular if for
every A, B CV with A C B and every v € V\ B, we have f(AU{v})—f(A) > f(BU{v})—f(B).

Submodularity is a useful property of set functions with deep theoretical results and
applications in combinational optimization and machine learning [13, 45, 62, 50]. The problem
of submodular function maximization is a classic NP-hard problem. A general approach to
solving it with cardinality constraints is a greedy algorithm. A celebrated result by [50]
proves that greedy algorithms can provide a good approximation to the optimal solution of
the NP-hard optimization problem despite its simplicity.

The standard greedy algorithm has theoretical guarantees for maximizing submodular
functions. Recent work aims to provide theoretical support for its performance for nonsub-
modular functions [15]. The greedy algorithm enjoys strong empirical performance and pro-
vides near-optimal solutions in practice for many submodular and nonsubmodular functions
as shown in [15, 42]. Yet the repeated function evaluations required to compute the objective
function in each greedy step may be prohibitive if each function evaluation is expensive.

The following Algorithm 3.2 is the standard greedy algorithm that starts with the empty
set SV, and at each iteration t, the element maximizing the function is added to the chosen
sensor set St. We denote it as the “standard greedy” algorithm here.

We can see that with each sensor selection, we apply W on the eigenvector matrix Uy to
actually select the rows of Uy. This can be treated as a row-selection problem to find a subset
of rows that captures U as much as possible. This quantity has a natural interpretation in
terms of statistical leverage (Definition 3.2) [52], and it has been used extensively to identify
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Algorithm 3.2 Standard greedy algorithm.

1: Input: data {yz}f\il generated from the prior samples {mz}fil, d sensor candidates
set S, sensor budget r, initial set SY = 0.

:fori=1,...,Ns; do
Compute low-rank approximation Ui X (U4)T of Hy = jd(mi)l"prde(mi) by
Algorithm 3.1.

end for

:fort=1,...,r do

V¥ ¢ argmax,c g\ g1 Dy, W, {UL, 321 ) defined in (3.18),

W, is the design matrix for the sensor choice S~ U {v}.

7. St Stlu{vt).

end for

: Output: optimal sensor choice S”.

W N

AR

L >

“outlying” or more “informative” data points [22, 42]. Employing this leverage score as a bias
toward more informative rows provides a “nice” starting point for the selection in the greedy
algorithm [16].

Definition 3.2. Let U, € R¥™F contain the eigenvectors corresponding to the k dominant
eigenvalues of a d x d symmetric matrix A with rank(A) > k. Then the (rank-k) leverage
score of the ith row of A is defined as I¥ =||[Uy];.||? fori=1,...,n, where [Uy];. denotes the
ith row of Ug.

Instead of choosing the sensors one-by-one as in Algorithm 3.2, we propose to use the
leverage score information from Uy as a criterion to select the sensors. We first choose the r
rows that have the top-r leverage scores of U}, as the initial sensor set SY. At each iteration
t=1,...,7, we swap the tth sensor in S* with one from S\ S? that maximizes the leverage
score. Then we set the resulting sensor set S” as SY and repeat the whole process of swapping
sensors until it converges such that no sensor is changed. We call this the “swapping greedy
algorithm.”

3.6. Computation and complexity. In this section, we present the computation for the
MAP point in (3.3) and the low-rank approximation (3.13). Both of these require PDE solves,
which overwhelmingly dominate the computational cost. We also present a comparison of
computational complexity for different approximations introduced above.

3.6.1. Finding the MAP point. In the computation of the MAP point, one needs to solve
an optimization problem. We use an inexact Newton conjugate gradient (CG) method, which
requires computation of the action of the Hessian of the objective (3.3) in a given direction
m, evaluated at a point m, which can be formally written as

(3.19) H(m)m = (D5, ®(m,y) + Cp ).
The second term can be evaluated by (2.16) as
(3.20) Colm~T i =AM"'Arn,
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Algorithm 3.3 Swapping greedy algorithm.

1: Input: data {yl}f\il generated from the prior samples {mz}f\il, d sensor candidates
set S, sensor budget r.
2: fori=1,...,Ns; do
3:  Compute low-rank approximation Ui Xt (UD)T of Hy = J4(m;)TprJ% (m;) by
Algorithm 3.1.

4: end for

5: Compute the initial guess sensor choice S* ={s1,...,s,} C S based on leverage scores
of YN UL, S0 ={p}.

6: while S* # S° do

7. 80 S

8 fort=1,...,r do

9: v¥ 4 argmax, e s, 3u(s\ St 1) U(y, W, {U}C,E%}Z]\il) defined in (3.18),

W, is the design matrix for the sensor choice S*=1\ {s;} U {v}.
10: St (S {s})) U {v*}.
11: end for
S* ¢+ S".
12: end while
13: Output: optimal sensor choice S*.

which requires the solution of a linear system with mass matrix M. The first term of (3.19)
can be evaluated by the Lagrange method. The potential ®(m,y) can be explicitly written
as ®(u(m)) = 3||B(u) — yH%,l. We introduce the Lagrangian

(3.21) L(u,m,v) =®(u) +r(u, m,v),

where v is the Lagrangie multiplier, and r(u,m,v) is the weak form of the forward PDE (2.2).
By setting variations of £ w.r.t. v as zero, we obtain the forward problem (2.2), which can
be equivalently written as follows: find u € V such that

(3.22) (0,07 (u,m,v)) =0 Yoe.

By setting variations of £ w.r.t. u to zero, we obtain the adjoint problem: find v € V such that
(3.23) (U, Oyr(u,m,v)) =—(u,0,P(u)) YaeV,

where (1,0, ®(u)) = (B(u) —y)IT;!B(@). The gradient of ® w.r.t. m can be evaluated as
(3.24) (M, Dy ®(m,y)) = (M, O L(u, m,v)) = (1, Opr(u, m,v)).

To compute the Hessian action D2,® 7, we introduce another Lagrangian £ that combines
the gradient (3.24) and adjoint (3.23) problems enforced via the Lagrange multipliers @ and
0, the constraints (3.22) and (3.23) as

(3.25) EH(u,m,v,fEL,m,@) = (1, O (u,m, v)) + (0, Opr(u, m,v)) + (G, Oyr(u, m,v) + 0, P(u)).
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By setting variations of £ w.r.t. v to zero, we obtain the incremental forward problem: find
4 € V such that

(3.26) (0, Ogor 01) = — (B, Oy 1) VD EV,

where Oy : V — V' and Ot : M — V' are linear operators. By setting variations of £H
w.r.t. u to zero, we obtain the incremental adjoint problem: find ¢ € V such that

(3.27) (@i, D 0) = — (i, Oyt 172) — (i, Dy 1) — (@, D ® 1) Vi1 € V),

where Opur : V — V), Opur : M — V', and Oyur : V — V' are linear operators, and
(@1, Oy ® @) = B(2)TT; 1 B(@). To this end, the Hessian action D2 ® 1 can be evaluated as

(3.28) (i, D%,® 1) = (1, O LT 1) = (10, Oy 110+ Oy 0 + Oy 10),

where Oy : M — M’ Oypr : YV — M, and 91 : V — M’ are linear operators. Therefore,
at m, after solving one forward problem (3.22) and one adjoint problem (3.23), the Hessian
action D2 ® 7 at each 1 requires the solution of one incremental forward problem (3.26)
and one incremental adjoint problem (3.27), i.e., two linearized PDE solves. We solve all the
above PDEs by a finite element method in the subspace V,, C V, and M,, C M.

3.6.2. Computing the H,; action requred for its low-rank approximation. In the compu-
tation of the low-rank approximation (3.13) by Algorithm 3.1, we need to perform the actions
H,;Q and HyQ, where Hy is defined in (3.13). We next present the computation of the action
H,% in an arbitrary direction 2 € R?. By definition, we have
(3.29)  Hgz =3, 072 = (%) 23,05 (0922 = (T9) 2 J,A"MA I (T2 2,
which involves the computation of the actions of the Jacobian J; and its transpose Jg, and
two solves of a linear system with stiffness matrix A. We first consider the action of Jde
in direction z = (I'))"2%. By definition of the Jacobian in (3.6) and F(m) = By(u(m)),
we have JLz = (Dpu(m))TBL 2, where the jth column (Bg); = Ba(;) € R? for the basis
functions {1;}/*, in approximating the state u = Z?;l ujj, and w= (uq,...,up, )T €R™ is
the coefficient vector. By taking the variation of the forward problem in the form (3.22) w.r.t.
m, and noting that u depends on m, we have

(3.30) 0= (0, Opur Diu(m) + Oymr) Yo €V,

Let R,, and R, denote the matrices corresponding to the finite element discretization of
Oyt and Jymr above, respectively. We formally obtain

(3.31) Dmu(m) = _R;ulema

so that ng can be evaluated by solving the linear system R w = Bgz for w € R™, which
has the same coefficient matrix R., = R, as in the discrete incremental forward problem
(3.26), and performing the matrix-vector product —RZ aw. Similarly the Jacobian action
Jin =By Dpu(m)n for n=A"'MA1JL 2 can be evaluated by first performing the matrix-
vector product R,,;,n, then solving the linear system R,,w = R,,,n for w € R™, which
has the same matrix R, as in the discrete incremental adjoint problem (3.27), and finally
performing the matrix-vector product —Bgyw. In summary, after solving one forward problem
(3.22) for u and one adjoint problem (3.23) for v, each action Hy2 consists of solving four
linearized PDESs, one with matrix R,,,, one with R,,, and two with A.
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Table 1
Computational complezity in terms of the number of H actions (3.28) for finding MAP point and Hy actions
(3.29) for low-rank approzimation. Ns: # data, Nxi: # EIG evaluations, Nn:: # Newton iterations, Neg: #
CG iterations, k: # rank of the low-rank approzimation (3.13), p: an oversampling factor in Algorithm 3.1.

# H or H, actions Exact MAP point Fixed MAP point Prior sample point
Finding MAP point Nii X Ng X Npy X Neg Ng X Nyt X Neg 0

(by Newton CG)

Low-rank approximation Nii X Ng x 2(k + p) N, x 2(k+p) N, x 2(k+p)

(by RSVD Algorithm 3.1)

3.6.3. Computational complexity. The cost of solving the OED problem is overwhelm-
ingly dominated by the costs of PDE solves needed to form the actions of either H or Hy on
given vectors. Recall that a pair of linearized forward/adjoint PDE solves, in addition to two
elliptic PDE solves representing the prior, are required to form actions with H or Hy. The
remaining costs, which involve linear algebra, are negligible relative to those PDE solves, for
anything other than small model problems. Thus, in the section, we characterize the complex-
ity of solving the OED problem under the three stages of approximation (exact MAP point,
fixed MAP point, prior sample point) using the number of H or H; actions as a measure of
cost.

Suppose we need to evaluate INi; times of the objective function of the OED problem,
i.e., the KL divergence (3.1) for each of the Ny training data {yz}fil Each time corresponds
to a different choice of sensor locations to find the optimal design by the greedy algorithms.
Assume that to find the MAP point for each training data, we need N,; Newton iterations
and an average of N., CG iterations for each Newton iteration. Then, in total, we need
Ny X Ng x Nyt x Neg Hessian actions (3.19) to compute the exact MAP points, Ng x Nyt X Neg
H, actions to compute the fixed MAP points, and 0 Hessian actions if the prior points are
used. Assume that on average the rank k with an oversampling factor p = 10 is used in the
low-rank approximation in Algorithm 3.1. Thus, for the low-rank approximation of Hy, in
total we need Ny x Ny x 2(k + p) Hy actions (3.29) for the case of an exact MAP point,
N x 2(k+ p) Hy actions for the case of a fixed MAP point, and N x 2(k + p) Hy actions for
case of a prior point. We summarize the computational complexity in terms of H,; actions in
Table 1.

3.7. Special case of linear Bayesian inverse problems. For the linear Bayesian inverse
problems, by which we mean that the parameter-to-observable map F(m) is linear w.r.t. the
parameter m, where for a specific design W, we have F = WF;. The KL divergence [1] has
a closed form expression defined in (2.8). Employing the discretization of subsection 2.4, the
EIG reduces to [1]

1 ~
(3.32) W = logdet <I + Hm> ,

where ﬁm = I‘érFTI‘; 1FI‘ér. With no need of further approximation of MAP point, we
can employ our method to present an efficient approximation of the discrete EIG given in
(3.32) and establish an error estimate for the approximation in Theorem 3.3 with the proof
in Appendix A.
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Theorem 3.3. Let Hy := FyTp, ]?‘z; e R4 with Fy = (I‘ﬁ)_%Fd, where T is defined in
(2.11). We compute a low-rank decomposition of Hy as

(3.33) H,=U,%, UL,

where (X, Uy) represent the k dominant eigenpairs, with Xy = diag(\1, ..., \x) for eigenvalues
AL > > M. Moreover, let W denote an approzimate EIG defined as

A 1 N
(3.34) (W)= Slogdet (Trr + WHWT).

Then we have

d
- 1
(3.35) 0<W(W)—¥(W) <o > log(1+ ),
i=k+1
where Agi1,...,Aq are the trailing eigenvalues of Hy.

We can then apply our online-offline scheme to efficiently evaluate ¥ and solve the opti-
mization problem with the greedy algorithms as in subsection 3.5.

4. Numerical results. In this section, we present numerical results of both a linear
advection-diffusion problem for the inversion of the initial condition and a nonlinear Pois-
son problem for the inversion of a diffusion coefficient. We demonstrate that our proposed
approximations and the greedy algorithm are effective and efficient, and our method is scal-
able w.r.t. the number of training data points, the number of candidate sensors, and the
parameter dimension.

4.1. A linear Bayesian inverse problem. In this example, we consider inversion of the
initial condition of an advection-diffusion problem given pointwise observations of the state
at certain sensor locations and certain times. The forward problem is given by

(4.1a) ur —kAu+v-Vu=01in D x (0,7,
(4.1b) u(-,0)=m in D,
(4.1c) kEVu-n=0on 0D x (0,T),

where D = (0,1)2 ¢ R? is the open and bounded domain with boundary 0D depicted in
Figure 1, k > 0 is the diffusion coefficient, and 7" > 0 is the final time. In our numerical
experiments, we choose k = 0.001. The velocity field v € R? is obtained by solving the
following steady-state Navier—Stokes equation with the side walls driving the flow:

1
(4.2a) —R—Av+Vq+v-Vv:01n D,

e
(4.2b) V-v=0inD,
(4.2c) v=g on JD.
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0.0 0.0

(a) velocity field v (b) The “true” initial con- (c) 9 candidates (d) 75 candidates
dition

Figure 1. The computational domain D for a two-dimensional problem is [0,1)* with two rectangular blocks
(10.25,0.5] x [0.15,0.4],[0.6,0.75] x [0.6,0.85] ) removed. (a) The velocity field obtained by solving (4.2). (b) The
“true” initial condition merwe of parameter m. (c) The state field at time T =4 obtained by solving (4.1) with 9
candidate sensor locations. (d) The state field at time T =4 obtained by solving (4.1) with 75 candidate sensor
locations.

Here ¢ represents the pressure field, and the Reynolds number Re is set at 50. The Dirichlet
boundary data g € R? is prescribed as g = (0,1) on the left wall of the domain, g = (0, —1) on
the right wall, and g = (0,0) elsewhere.

We use a Galerkin finite element method with piecewise linear elements for spatial dis-
cretization of the forward and adjoint problems, which results in n = 2023 spatial degrees of
freedom for the parameter m and state variable u. We use the implicit Euler method for tem-
poral discretization with Ny =40 time steps for the final time T'=4. We consider a Gaussian
prior fipy = N (mpy, Cpr) for the parameter m. The covariance Cpy = A~2 is given by the square
of the inverse of differential operator A = —yA 4461 with Laplacian A and identity I, equipped
with Robin boundary condition YVm - n + fm on 9D, where ,d > 0 control the correlation
length and variance of the prior distribution. The Robin coefficient 3 is chosen as in [32] to
reduce boundary artifacts. For our numerical test, we choose mp, =0.25, y=1,0 =8, and set
a “true” initial condition Mmyyye = min(0.5, exp(—100||z — [0.35,0.7]||?). The velocity field and
initial condition are shown in Figure 1 (left two), to generate the observation data at the final
time, as shown in Figure 1 (right two). We compute the low-rank approximation (3.33) and
its eigenvalues are displayed in Figure 2 with the increasing number of parameter dimensions
and data dimensions (number of candidate sensor locations). We can see eigenvalues decay
rapidly, over five orders of magnitude in the first 20 eigenvalues, independent of data dimen-
sion and parameter dimension. This shows that we only need a limited number of PDE solves
for low-rank approximations of Hy to evaluate EIG for different designs, scalable w.r.t. the
number of PDE solves.

In the first test, we use a small number of candidate sensors and compare the design
obtained by the greedy algorithms with the optimal design by brute-force search to show
the efficacy of the greedy algorithms. Specifically, we use a grid of d = 9 candidate sensor
locations {z; }7_, (z; € {0.2,0.55,0.8} x {0.25,0.5,0.75}) as shown in Figure 1(c) with the goal
of choosing r = 2,3,4,5,6,7,8 sensors at the finial time. We run the two greedy algorithms,
Algorithms 3.2 and 3.3, as well as a brute-force search of all possible designs (#lr),) to find
the optimal design. In the evaluation of the approximate EIG (3.34), we do not need the
low-rank approximation of Hy here as in Theorem 3.3 since it is a small (9 x 9) matrix that
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Figure 2. Decay of the eigenvalues of Hessian Hy in (3.33) with the increasing number of parameter
dimensions n (left) and candidate sensor locations d (right).
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Figure 3. EIG with the increasing number of sensors. Blue filled areas represent the probability distributions
for all the designs with lines at the minimum, maximum, and median.

we can easily compute by solving 9 incremental forward and 9 incremental adjoint problems in
directions e; of dimension 9 with the jth element as one and others as zeros, j =1,...,9. The
values of the approximate EIG by the two algorithms and at all possible designs are shown in
Figure 3(a).

We can see that for r = 2,3,5,6,7,8 the swapping greedy algorithm finds the optimal
design for all » but r = 4 with the second best, while the standard greedy algorithm finds
the optimal for r = 4,5,8, the second-best for r = 6,7, the third for » = 2, and the fifth for
r =3. Although the optimal designs are not found in all cases, those chosen by the two greedy
algorithms are quite close to the optimal.

In the second test, we consider a grid of d = 75 candidate sensor locations as shown
in Figure 1(d) with the goal of choosing r sensor locations from 5 to 65 in increments of
5. We randomly draw 200 different designs from the candidate sensors and compute their
approximate EIG and compare them with the ones chosen by two greedy algorithms as shown
in Figure 3(b), from which we can see that both greedy algorithms find the designs better
than all the random choices, and the new swapping greedy algorithm we propose always gives
higher (better) or at least equal values.
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(a) swapping greedy (b) standard greedy (¢) random design (d) random design

Figure 4. Pointwise variance of the posterior at designs chosen by swapping greedy algorithm, the standard
greedy algorithm, and two random designs with 10 sensors. The brighter region corresponds to larger variance.
Compared with the optimal design chosen by the swapping greedy algorithm, the standard greedy algorithm and
the two random designs lead to 7%,30%,53% increase in the averaged variance, respectively.

Moreover, the advantage of our swapping greedy algorithm can also be illustrated by
reduced pointwise posterior variance indicated in Figure 4 compared to the standard greedy
algorithm and two random designs with the same number of sensors.

4.2. A nonlinear Bayesian inverse problem. In this problem, we consider a log-normal
diffusion forward model as follows:

(4.3a) —V - (exp(m)Vu)= f in D,
(4.3b) u=gonI'p,
(4.3c) exp(m)Vu-n=h on I'y,

where D C R? is an open, bounded domain with sufficiently smooth boundary I' =T'p UTy
with Dirichlet and Neumann boundaries Tp NTy =@ and data g € H/?(Ty) and h € L*(T'y),
respectively. The state variable u € V, = {v € H}(D) : v|r, = g}. f € L*(D) is a source term.
We consider a Gaussian prior for the parameter m € H!(D), i.e., m ~ ppr =N (mypy, Cpr) With
mean mp, and covariance Cp, = A72, where A is a differential operator given by

(4.4) Ao — {—7V -(OVm)+om in D,

OVm - -n+ fm on 0D,

where § ~ /70 is the optimal Robin coefficient derived in [32] to minimize boundary artifacts
and O is an symmetric positive definite and anisotropic matrix of the form

01 sin(a)? (01 — 62) sin(«) cos(av)
— 62) sin(a) cos(av) 02 cos(a)?

(4.5) 0= [( "

In our numerical experiment, we set the prior mean to be zero, vy =0.04,§ =0.2,6; = 2,0, =
0.5, = 7 /4. For the forward problem, we consider the domain D = (0,1) x (0,1), no source
term (i.e., f =0), and no normal flux on I'y ={0,1} x (0,1), i.e., imposing the homogeneous
Neumann condition exp(m)Vu -n = 0. The Dirichlet boundary I'p = (0,1) x {0,1} with
boundary condition u=1 on (0,1) x {1} and u=0on (0,1) x {0}. We draw a sample from the
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1.0 1.0

0.0 0.0

(a) The synthetic “true” parameter (b) 9 candidate sensor locations  (c) 81 candidate sensor locations

Figure 5. The computational domain D = (0,1) x (0,1) with no source term and no normal fluz on T'n =
{0,1} x (0,1). (a) The “true” parameter myr.e of parameter m. (b) The state field at the “true” parameter with
9 candidate sensor locations. (c) The state field at the “true” parameter with 81 candidate sensor locations.

prior and use it as the “true” parameter field myye as shown Figure 5(a). We use quadratic
finite elements for the discretization of the state and adjoint variables and use linear elements
for the parameter. The degrees of freedom for the state and parameter are n, = 4225 and
n = 1089, respectively.

4.2.1. Effectiveness of the approximations. To reduce the computational cost for the
nonlinear inverse problems, we introduced the Laplace approximation with low-rank decom-
position, fixed MAP point approximation, and prior sample point approximation in section 3.
To investigate their effectiveness, we consider their (sample) correlation at the same design.
A high correlation (with correlation coefficient close to 1) of the approximate EIG values by
two different approximations implies that the optimal design obtained by one approximation
is likely to be close to optimal for the other approximation.

In the test, we use the grid of d =81 candidate sensor locations as shown in Figure 5(c)
with the goal of choosing r = 10 sensor locations. We generate 200 random designs and
compute the EIG of each design by a DLMC method as the reference. Then we compute their
approximate EIG by the Laplace approximation (LA-EIG) and its further approximation with
fixed map point shown in Figure 6 (left). We can see that the correlation between DLMC-EIG
and LA-EIG is 0.9752, and the maximum of DLMC-EIG is also the maximum of LA-EIG.
The correlation between DLMC-EIG and LA-EIG with fixed map point is 0.9453, and the
maximum of LA-EIG with fixed map point is the second maximum of DLMC-EIG. Although
it is not the maximum, it gives almost the same EIG value as the maximum. We can observe
closely the relation between LA-EIG and LA-EIG with fixed MAP point in Figure 6 (middle)
with a correlation 0.9525 and that their optimal choices have almost the same LA-EIG values.
Figure 6 (right) illustrates the correlation between ¥ computed with the fixed MAP point and
with the prior sample at which to evaluate Hessian. We can see close to 1 correlation and
that the optimal choices with the fixed map point and the prior sample point are the same.

4.2.2. Numerical results. We first use a grid of d = 9 candidate sensor locations with
the goal of choosing r = 2,3,4,5,6,7,8. As we can see in Figure 7(a), the standard greedy
and swapping greedy algorithms give the same optimal design for all the cases and they are
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Figure 7. Laplace approzimate EIG with the increasing number of sensors. Blue filled areas represent the
probability distributions for all the designs with lines at the minimum, mazimum, and median.

the actual optimal one among all possible choices for r = 2,3,5,8, second-best for r = 4,7,
and third for » = 6. We remark that by evaluating the Hessian at the prior sample point,
the computational cost is significantly reduced as analyzed in subsection 3.6. Despite the fact
that the optimal choice by the approximation might not be optimal for LA-EIG, we can still
find the ones close to the best in all the cases.

Then we consider 81 candidate sensor locations shown in Figure 5(c). We randomly draw
200 different designs from the candidate sensors and compute their LA-EIG, and compare
them with LA-EIG of the choices by two greedy algorithms. Figure 7(b) illustrates that the
designs chosen by both greedy algorithms are much better than all the random choices, and
the swapping greedy algorithm is mostly better or equal to the standard greedy algorithm.

To illustrate the stability of our method, we compare the greedy choices with 200 random
designs with the increasing number of training data Ng and increasing number of candidate
sensor locations d (data dimension) in Figure 8. We see that the swapping greedy algorithm
always finds better designs than the standard greedy algorithm, and much better than the
random choices.

4.2.3. Scalability. As analyzed in subsection 3.6, the computational complexity in terms
of the number of PDE solves critically depends on the rank k in the low-rank approximation
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of the Hessian H,. In this section, we investigate the dependence of k on the parameter
dimension and data dimension (the number of candidate sensor locations). The decay of the
eigenvalues of the Hessian is shown in Figure 9 with increasing parameter dimension (left)
and data dimension (right). From the similarity of the decay rates of the eigenvalues in the
left part of the figure, we can conclude that our algorithm is scalable w.r.t. the parameter
dimension in the sense that k is essentially independent of the parameter dimension, once the
parameter filed is sufficiently resolved. The similarity of the decay rates of the eigenvalues of
the Hessian in the right part of the figure suggests that k& is only weakly dependent on the
data dimension.

5. Conclusion. We have developed a fast and scalable computational framework for both
linear and nonlinear Bayesian OED problems governed by PDEs. It exploits the low-rank
structure of the prior-preconditioned data misfit Hessian, the dominant data subspace infor-
mation from the Jacobian of the parameter-to-observable map, the Laplace approximation
of the posterior in nonlinear Bayesian inverse problems, and the approximation of the MAP
point by the prior sample. Our method is fast and scalable in that it significantly reduces
the total computational cost as measured by the number of PDE solves, independent of the
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parameter dimension, the data dimension, and the number of greedy optimization iterations.
The numerical experiments on both a linear advection-diffusion initial condition inversion
problem and a nonlinear diffusion coefficient inversion problem illustrate the effectiveness and
scalability of our method.

In this work we considered Gaussian prior and independent Gaussian additive noise, for
which the Laplace approximation provides a good approximation of the posterior. In future
work, we plan to develop (i) extension to nonlinear Bayesian OED problems with more general
prior and noise distributions, (ii) other approximations of the posterior such as the student’s t-
distribution, and (iii) theoretical analysis of the convergence of the swapping greedy algorithm.

Appendix A. Proof of Theorem 3.3. To start, we need the following results.

Proposition A.1 ([5]). Let A,B € C™*™ be Hermitian positive semidefinite with A = B,
and then

(A.1) 0 <logdet(I+ A) —logdet(I+ B) <logdet(I+ A — B).

Proposition A.2 (Weinstein—Aronszajn identity [55]). Let A and B be matrices of size m X n
and n X m, respectively, and then

(A.2) det(L,xn + BA) =det(I,xm + AB).
From the definition of ﬁm = I‘SrFTI‘; 1Fl"lgr, we first denote F = T, 2F. Then

(A.3) F=T,WF;=W (%) :F,=WF,.

n

We can write the form of EIG in (3.32) as

1 L
(A.4a) (W) = Jlogdet (Inxn T FIT; 1Frpr>
1 1.1
(A.4b) — 5 logdet (Inxn + I‘f,rFTFI‘gr>
1 1, ~ 1
Adc = logdet (Iyxn + T FIWIWE, T2, ).
2 P d p

By the Weinstein—Aronszajn identity (A.2), we have
1 L1 1.
(A.5a) (W) = logdet (I +WE T3 Fng)

1
(A.5b) = jlogdet (L + WH, W),

where in the second equality we use the definition of Hy. We denote the eigenvalue decom-
position of Hy as

(A.6) H,=U, 2, Ul +U, 3, UT,
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where (X, Uy) represent the k& dominant eigenpairs and (X,,U L)A represent the remaining
d — k eigenpairs. Then by the definition of the EIG approximation W(W) in (3.34), we have

~ 1 N
(ATa)  W(W)— B(W) = Slogdet (T, + WHWT) - flogdet (T + WH,WT)
1
(A.7b) < Slogdet (IW +WH,WT — WHdWT)
1
(A.7c) = glogdet (L + WU, 2, U wT)
1
(A.7d) = Jlogdet (I + WU, B/*57UTWT)
1
(A.7e) — Slogdet (I(d,k)x(d,k) +xV2UTwiwu L21/2) :

where we use Proposition A.1 for the inequality and Proposition A.2 for the last equality. By
definition of the design matrix W in (2.10), we have that W7 W € R%*? is a square diagonal
matrix with r diagonal entries as one and the others zero, which satisfies W/W < I;.g4.
Consequently, we have

(A.8)
A 1
(W) — ¥ (W) < Slogdet (I(d_k)x(d_k)+21/2U{Ul21/2) flogdet( @Rk + 1)

where we use the orthonormality U LU 1= I( k)x(d—k) for the eigenvectors in the equality.
This concludes the upper bound for ¥(W) — W(W). The lower bound in (3.35) is implied by
Proposition A.1 and Hy = Hy.
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