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AN OFFLINE-ONLINE DECOMPOSITION METHOD FOR
EFFICIENT LINEAR BAYESIAN GOAL-ORIENTED OPTIMAL

EXPERIMENTAL DESIGN: APPLICATION TO OPTIMAL SENSOR
PLACEMENT*

KEYI WU†, PENG CHEN‡, AND OMAR GHATTAS§

Abstract. Bayesian optimal experimental design (OED) plays an important role in minimizing
model uncertainty with limited experimental data in a Bayesian framework. In many applications,
rather than minimizing the uncertainty in the inference of model parameters, one seeks to minimize
the uncertainty of a model-dependent quantity of interest (QoI). This is known as goal-oriented OED
(GOOED). Here, we consider GOOED for linear Bayesian inverse problems governed by large-scale
models represented by partial di↵erential equations (PDE) that are computationally expensive to
solve. In particular, we consider optimal sensor placement by maximizing an expected informa-
tion gain (EIG) for the QoI. We develop an e�cient method to solve such problems by deriving a
new formulation of the goal-oriented EIG. Based on this formulation we propose an o✏ine-online
decomposition scheme that achieves significant computational reduction by computing all of the
PDE-dependent quantities in an o✏ine stage just once, and optimizing the sensor locations in an
online stage without solving any PDEs. Moreover, in the o✏ine stage we need only to compute
low-rank approximations of two Hessian-related operators. The computational cost of these low-
rank approximations, measured by the number of PDE solves, does not depend on the parameter
or data dimensions for a large class of elliptic, parabolic, and su�ciently dissipative hyperbolic in-
verse problem that exhibit dimension-independent rapid spectra decay. We carry out detailed error
analysis for the approximate goal-oriented EIG due to the low-rank approximations of the two oper-
ators. Furthermore, in the online stage we extend a swapping greedy method to optimize the sensor
locations developed in our recent work that is demonstrated to be more e�cient than a standard
greedy method. We conduct a numerical experiment for a contaminant transport inverse problem
with an infinite-dimensional parameter field to demonstrate the e�ciency, accuracy, and both data-
and parameter-dimension independence of the proposed algorithm.
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1. Introduction. Optimizing the acquisition of data—e.g., what, where, and
when to measure, what experiments to run—to maximize information gained from
the data is a fundamental and ubiquitous problem across all of the natural and
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B58 KEYI WU, PENG CHEN, AND OMAR GHATTAS

social sciences, engineering, medicine, and technology. Just three important examples
include optimal observing system design for ocean climate data [50], optimal sensor
placement for early warning of tsunami waves [33], and optimal experimental design
(OED) to accelerate MRI imaging [11]. Bayesian OED (BOED)—including formula-
tions such as active learning, Bayesian optimization, and sensor placement—provides
a probabilistic framework to maximize the expected information gain (EIG) or mutual
information for uncertain parameters or related quantities of interest [21]. However,
evaluating the EIG remains prohibitive for large-scale, complex models, due to the
need to compute double integrals with respect to both parameter and data distribu-
tions. Recently, advances in e�cient evaluations of the EIG and design optimization
have been achieved using methods based on posterior Laplace approximation for EIG
estimation [49], myopic posterior sampling for adaptive goal-oriented BOED [45], EIG
estimation by variational inference for BOED [35], BOED for implicit models by neu-
ral EIG estimation [47], and sequential BOED with variable cost structure [66].

Interest has intensified in extending BOED to the case of experiments on, or
observations of, complex physical systems, since these can be very expensive (e.g.,
satellite trajectories, subsurface wells, ocean-bottom acoustic sensors). Such physical
systems are typically modeled by partial di↵erential equations (PDEs), which are
expensive to solve and often contain infinite-dimensional parameter fields and large
numbers of design variables. This presents fundamental challenges to conventional
BOED methods, which require prohibitively large numbers of PDE solves.

Several di↵erent classes of methods have been developed to tackle these com-
putational challenges The authors in [39, 40, 41] exploited sparsity of polynomial
chaos approximations of parameter-to-observable (PtO) maps. In [1, 2, 3, 10, 29,
57], the authors explored intrinsic low dimensionality by low-rank approximation of
(prior-preconditioned and data-informed) operators [1, 2, 3, 10, 29, 57]. The low-rank
properties revealed by Jacobians and Hessians of the PtO map has been exploited
for model reduction for sampling and deep learning [6, 12, 22, 53], Bayesian inference
[15, 19, 23, 25, 27, 28], optimization under uncertainty [4, 24, 26], and BOED [2,
3, 10, 29, 57, 62]. The authors in [5, 20, 64] developed gradient methods to solve
the optimization problem for sensor placement. They relax the binary nature of the
sensor location variables to solve the easier continuous optimization problem with
gradient-based methods, and then induce the integer solution. The authors of [51]
considered sensor placement problems for signal reconstruction with the D-optimality
criterion and compared the accuracy and e�ciency between convex optimization and
QR pivoting with a greedy method to find the optimal design. The authors of [46,
54] used a greedy algorithm to sequentially select observation locations.

In contrast with the previous work, here we focus on goal-oriented OED (GOOED)
for linear Bayesian inverse problems, in the context of optimal sensor placement. That
is, we seek optimal sensor locations that maximize the information gained from the
sensors, not about the model parameters, but (often of greater interest) for a posterior
model-predictive goal. In particular, we consider linear PtO maps governed by ex-
pensive PDEs with high-dimensional uncertain parameters (e.g., infinite-dimensional
before discretization). In [10], a gradient-based optimization method is developed to
solve the linear GOOED problem to find the optimal sensor locations. However, in
each of the possibly very large number of optimization iterations, many PDE evalua-
tions have to be performed, which makes the algorithm prohibitive if each PDE solve
is very expensive.

Contributions. We propose an e�cient (fast and scalable) method for high-
dimensional Bayesian GOOED problems governed by expensive-to-solve PDEs. We
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AN EFFICIENT METHOD FOR GOOED B59

propose a new computational framework with an e�cient o✏ine-online decomposi-
tion to evaluate the goal-oriented EIG and solve the optimization problem. In the
o✏ine stage, all PDE solves are computed to evaluate two Hessian-related opera-
tors, while in the online stage the design optimization is performed free of PDE
solves. To overcome the lack of scaling with respect to both parameter and data
dimensions, we exploit the intrinsic low-dimensionality of the Hessian-related oper-
ators and compute low-rank approximations of these operators in the o✏ine stage.
Rapid spectral decay of Hessian operators is a manifestation of ill-posedness of in-
verse problems. It can be proven for model inverse problems governed by elliptic,
parabolic, and su�ciently dissipative hyperbolic PDEs [34, 36], and demonstrated
numerically for a broad spectrum of inverse problems governed by large-scale mod-
els, including for example ice sheet dynamics [42], shape and medium acoustic and
electromagnetic scattering [16, 17, 18], global seismic wave propagation [19], mantle
convection [61], viscous incompressible flow [63], atmospheric transport [34], ocean
dynamics [44], algebraic turbulence modeling [26], poroelasticity [8], infectious dis-
ease spread [28], tumor growth modeling [59], joint inversion [30], and subsurface
flow [25]. We provide a detailed error analysis for approximate goal-oriented EIG
due to the low-rank approximations. By using a randomized algorithm for the low-
rank approximations, we require only a small and dimension-independent number of
PDE solves for typical ill-posed inverse problems. Furthermore, for the optimiza-
tion of the sensor locations, we extend a swapping greedy algorithm that first con-
structs an initial set of sensors using leverage scores, and then swaps the chosen
sensors with other candidates until certain convergence criteria are met. The swap-
ping greedy algorithm has the attractive property that we avoid having to di↵er-
entiate the goal-oriented EIG objective with respect to the design variables. Note
that the o✏ine-online decomposition is not restricted to a greedy solution of the op-
timization problem, but can be used in conjunction with other optimization-based
approaches that encourage a binary solution (such as sparsifying penalties). Fi-
nally, we demonstrate the e�ciency, accuracy, and data and parameter dimension-
independence (with respect to the required number of PDE solves) of the proposed
algorithm for a contaminant transport inverse problem with an infinite-dimensional
parameter field.

Limitations. For our method to be fast and scalable with respect to parameter
and data dimensions, we require that the PtO map be approximated with a small and
dimension-independent number of PDE solves. As discussed and illustrated above,
many ill-posed inverse problems exhibit rapid spectral decay of the PtO map, which
motivates a low-rank approximation of the (data misfit) Hessian via matrix-free meth-
ods such as randomized SVD. In the present work, we exploit this rapid spectral decay
to e↵ect low-rank approximations of two Hessian-like operators. However, other im-
portant inverse problems, for example those governed by high Reynolds number flows,
advection-dominated transport, or high frequency wave propagation, have slowly de-
caying Hessian spectra and, as a consequence, our proposed method as formulated
here may require a large number of PDE solves. (For that matter, we are not aware of
any other OED method for which this class of highly data-informed inverse problems
does not present di�culties.) We do note, however, that rapid spectral decay of the
PtO map is not a necessary condition for it to be approximated with a small number
of PDE solves. In fact, recent and ongoing work seeks to approximate PtO maps hav-
ing high global rank with a number of PDE solves far smaller than the global rank,
using such representations as product convolutions [7] and hierarchical matrices [9].
In future work we aim to extend our proposed method to exploit such representations.
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B60 KEYI WU, PENG CHEN, AND OMAR GHATTAS

Another limitation of this work is that we assume uncorrelated observational noise to
derive our o✏ine-online decomposition and compute error bounds.

We present background on BOED in section 2, propose our computational frame-
work for GOOED in section 3, and report results on experiments in section 4.

2. Background.

2.1. Linear Bayesian inverse problem. We consider a general linear model

(2.1) y=Fm+ ✏,

where y 2 Rdy is a dy-dimensional observational data vector corrupted by additive
Gaussian noise ✏ 2 N (0,�n) with zero mean and covariance �n 2 Rdy⇥dy , m 2 Rdm

is a dm-dimensional uncertain parameter vector, and F : Rdm 7! Rdy is a linear PtO
map. As a specific case, m is a discretization (e.g., by a finite element method) of
an infinite-dimensional parameter field in a model described by PDEs, while F is
implicitly given by solving the PDE model. In this case, the parameter dimension is
typically very high, O(106 � 109) for practical applications.

We assume a Gaussian prior m ⇠ N (mpr,�pr) with mean mpr and covariance
�pr for the parameter m with density

(2.2) ⇡pr(m)/ exp

✓
�1

2
||m�mpr||2

�
�1
pr

◆
,

where ||m�mpr||2
�

�1
pr

:= (m�mpr)T��1
pr (m�mpr). Then by Bayes’ rule the posterior

density of m satisfies

(2.3) ⇡post(m|y)/ ⇡like(y|m)⇡pr(m).

Here ⇡like(y|m) is the likelihood function that satisfies

⇡like(y|m)/ exp (��(m,y))(2.4)

under Gaussian noise ✏2N (0,�n), where the potential function

(2.5) �(m,y) :=
1

2
||Fm� y||2

�
�1
n

.

Under the assumption of Gaussian prior and Gaussian noise, the posterior of m is
also Gaussian N (mmap,�post) with mean mpost = �post(F⇤��1

n y + ��1
pr mpr) and

covariance �post = (Hm +��1
pr )

�1, where

(2.6) Hm =F⇤��1
n F

is the (data-misfit) Hessian of the potential �(m,y), and F⇤ is the adjoint of F with
respect to the mass matrix-weighted inner product [60]. The action of F⇤ involves
solution of an adjoint PDE.

2.2. Bayesian optimal experimental design.

2.2.1. Expected information gain. The EIG is defined as the expected (with
respect to data) Kullback–Leibler (KL) divergence between the posterior and the prior
distributions,

(2.7)  :=Ey[DKL(⇡post(·|y)k⇡pr)],
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AN EFFICIENT METHOD FOR GOOED B61

where the KL divergence is defined as

(2.8) DKL(⇡postk⇡pr) :=

Z
ln

✓
d⇡post

d⇡pr

◆
d⇡post.

For a Bayesian linear inverse problem as formulated in subsection 2.1, the EIG  
admits the closed form [1]

(2.9)  =
1

2
logdet

⇣
Im + eHm

⌘
,

where Im is an identity matrix of size dm ⇥ dm, and eHm := �
1

2

prHm�
1

2

pr is the prior-

preconditioned Hessian that includes both data and prior information.

2.2.2. BOED for sensor placement. We consider an optimal sensor place-
ment problem. Assume we have a collection of d candidate sensors {si}di=1. We
need to choose a much smaller number r < d of sensors (due to a limited budget or
physical constraints) at which data are collected. The OED problem seeks to find
the best sensor combination from the candidates. We use a Boolean design matrix
W 2W ⇢ Rr⇥d to represent sensor placement such that Wij = 1 if the ith sensor is
placed at the jth candidate location, i.e.,

(2.10) Wij 2 {0,1},
dX

j=1

Wij = 1,
rX

i=1

Wij 2 {0,1}.

We assume that the observational noise for the d candidate sensors is uncorrelated,
with covariance

(2.11) �d
n =diag(�2

1 , . . . ,�
2
d).

As a result, for any design W with the covariance for the observation noise ✏ as
�n(W) =W�d

nW
T , we have

(2.12) ��1
n (W) =W(�d

n)
�1WT

.

Denoting by Fd the PtO map using all d candidate sensors, we have the design-specific
PtO map

(2.13) F(W) =WFd

with its adjoint F⇤ =F⇤
dW

T . We can now state the OED problem as find an optimal
design Ŵ 2W such that

(2.14) Ŵ= argmax
W2W

 (W).

3. Goal-oriented optimal experimental design. The classical OED problem
seeks a design that maximizes the information gain for the parameter vector m. In
this work, we consider a GOOED problem that maximizes the information gain of a
predicted quantity of interest (QoI) ⇢ 2Rp, which is assumed to be a linear function
of the parameter m,

(3.1) ⇢=Pm,

where P :Rdm 7!Rd⇢ is a linear map that typically involves solution of the governing
PDEs. Due to linearity, the prior distribution of ⇢ is Gaussian N (⇢pr,⌃pr) with
mean ⇢pr = Pmpr and covariance ⌃pr = P�prP⇤, where P⇤ is the adjoint of P
with respect to the mass matrix-weighted inner product [60]. Moreover, the posterior
distribution of ⇢ is also Gaussian N (⇢post,⌃post) with mean ⇢post = Pmpost and
covariance ⌃post =P�postP⇤.
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B62 KEYI WU, PENG CHEN, AND OMAR GHATTAS

3.1. EIG for GOOED. To construct an expression for EIG for GOOED, we
first introduce Proposition 3.1 [58, Lemma 2.2], which relates the observational data
y and the QoI ⇢. See proof in Appendix A.

Proposition 3.1. Model (2.1) and QoI (3.1) lead to

(3.2) y=FP†⇢+ ⌘,

where P† :=�prP⇤⌃�1
pr and ⌘⇠N (0,�⌘) with

(3.3) �⌘ :=�n +F(�pr ��prP
⇤⌃�1

pr P�pr)F
⇤

or, equivalently, �⌘ =Cov[✏]+Cov[F(Im�P†P)m] with Cov as covariance. Moreover,

⇢ and ⌘ are independent.

Thus, the EIG for ⇢ can be obtained analogously to (2.9),

(3.4)  ⇢(W) =
1

2
logdet

⇣
I⇢ + eH⇢

m(W)
⌘
,

where I⇢ is an identity matrix of size d⇢ ⇥ d⇢, and eH⇢
m(W) = ⌃

1

2

prH⇢
m(W)⌃

1

2

pr with
H⇢

m(W) given by

(3.5) H⇢
m(W) = (F(W)P†)

⇤��1
⌘ (W)F(W)P†.

3.2. O✏ine-online decomposition for EIG  ⇢. The EIG  ⇢(W) depends
on W through F(W) =WFd, which involves solution of the governing PDEs. Since
 ⇢(W) must be evaluated repeatedly in the course of maximizing EIG, these repeated
PDE solves would be prohibitive. To circumvent this problem, we propose an o✏ine-

online decomposition scheme, where the PDE-governed computation of quantities
that are independent of W is performed o✏ine just once, and the online experimen-
tal design optimization is free of any PDE solves. The key result permitting this
decomposition is given in the following theorem with proof in Appendix A.

Theorem 3.2. For each design W 2W, the goal-oriented EIG  ⇢(W) given in

(3.4) can be computed as

(3.6)  ⇢(W) =
1

2
logdet

�
Ir +LTWH⇢

dW
TL

�
,

where Ir is an identity matrix of size r⇥ r, H⇢
d is given by

(3.7) H⇢
d :=Fd�prP

⇤⌃�1
pr P�prF

⇤
d,

and L is given by the Cholesky factorization ��1
⌘ = (W(�d

n +�Hd)WT )�1 = LLT
.

�Hd :=Hd �H⇢
d with Hd =Fd�prF⇤

d.

Note that by Theorem 3.2, we can separate the design matrix W and PDE-
governed operators (H⇢

d and �Hd, independent of W) in  ⇢(W). Hence evaluation
of  ⇢(W) can be decomposed as follows: (1) construct the PDE-governed matrices
H⇢

d and �Hd o✏ine just once; and (2) for each W in the online optimization process,
assemble a small (r ⇥ r) matrix �⌘(W) by (A.6), compute a Cholesky factorization
��1
⌘ = LLT , and assemble  ⇢(W) by (3.6), which are all free of the expensive PDE

solves.
Note that �Hd 2 Rd⇥d and H⇢

d 2 Rd⇥d are large matrices when we have a large
number of candidate sensors d � 1. Moreover, their explicit construction involves

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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AN EFFICIENT METHOD FOR GOOED B63

PDE solves, which may become prohibitive when the parameters are high dimen-
sional, dm� 1. Therefore, it is computationally impractical to directly compute and
store these matrices. Fortunately, the intrinsic ill-posedness of many high-dimensional
inverse problems—data inform only a low-dimensional subspace of parameter space,
e.g., [15, 34, 42, 55]—suggests that these matrices are likely of low rank or exhibit
rapid spectral decay. We exploit this property and construct low-rank approximations
of H⇢

d and �Hd in subsection 3.3.

3.3. Low-rank approximation. H⇢
d and �Hd are given in (3.7) and (A.6) and

integrate data, parameter, and QoI information. Noting that H⇢
d and �Hd are both

symmetric, we compute their low-rank approximation for given tolerances ✏⇣ , ✏� > 0
as

(3.8) Ĥ⇢
d =UkZkU

T
k and �Ĥd =Vl⇤lV

T
l ,

where (Uk,Zk) represent the k dominant eigenpairs of H⇢
d with Zk =diag(⇣1, . . . , ⇣k)

such that

(3.9) ⇣1 � ⇣2 � · · ·� ⇣k � ✏⇣ � ⇣k+1 · · ·� ⇣d

and (Vl,⇤l) represent the l dominant eigenpairs of �Hd with ⇤l = diag(�1, . . . ,�l)
such that

(3.10) �1 � �2 � · · ·� �l � ✏� � �l+1 � · · ·� �d.

With �̂⌘(W) :=W(�d
n +�Ĥd)WT as an approximation of �⌘(W) in (3.3), we

compute the Cholesky factorization �̂�1
⌘ = L̂L̂T . Then we can define an approximate

EIG as

(3.11)  ̂⇢(W) :=
1

2
logdet

⇣
Ir + L̂TWĤ⇢

dW
T L̂

⌘
.

The following theorem quantifies the approximation error. See proof in Appendix A

Theorem 3.3. For any design W 2 W, the error for the goal-oriented EIG

 ⇢(W) in (3.6) by its approximation  ̂⇢(W) in (3.11) can be bounded by

| ⇢(W)�  ̂⇢(W)| 1

2

dX

i=k+1

log(1 + ⇣i/�
2
min) +

1

2

kX

i=l+1

log(1 + �i⇣1/�
4
min),(3.12)

where �
2
min :=min(�2

1 , . . . ,�
2
d) as defined in (2.11).

We remark that with the rapid decay of the eigenvalues (⇣k)k�1 of Ĥ⇢
d and (�l)l�1

of �Ĥd, the error bound in (3.12) becomes very small. Moreover, the decay rates are
often independent of the (candidate) data dimension d and the parameter dimension
dm, as demonstrated in subsection 4.3. We employ a randomized SVD algorithm [37],
which requires only O(k) and O(l) PDE solves, respectively. In practice, k, l ⌧ d.
More details on the algorithm applied to the example problem in section 4 can be
found in Appendix B. This means that an arbitrarily accurate EIG approximation
can be constructed with a small number, O(k+ l) of PDE solves.

3.4. Swapping greedy optimization. Once the low-rank approximations of
H⇢

d and �Hd are constructed per (3.8), we obtain a fast method for evaluating the
approximate EIG in (3.11), with a certified approximation error given by Theorem 3.3.
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B64 KEYI WU, PENG CHEN, AND OMAR GHATTAS

We emphasize that this fast computation does not involve any PDE solves as the
designs W change. We now turn to the (combinatorial) optimization problem of
finding the optimal design matrix Ŵ,

(3.13) Ŵ= argmax
W2W

 ̂⇢(W).

We next introduce a swapping greedy algorithm to solve this problem requiring only
evaluation of  ̂⇢(W). Maximizing the EIG for linear OED is equivalent to min-
imizing a D-optimality criterion [10]. This combinatorial optimization problem is
NP-hard. Fortunately, a simple greedy algorithm can provide a quasi-optimal solu-
tion under proper assumptions (submodularity [48]) with some theoretical guarantees
[52]. The standard greedy method sequentially finds the optimal sensors one by one
(or batch by batch) [13, 43]. In contrast to the standard greedy algorithm, we ex-
tend a swapping greedy algorithm developed for BOED in [62] to solve the GOOED
problem. The swapping greedy algorithm is a combination of Fedorov’s exchange
algorithm [32] and uses leverage scores for a more informative initial guess to accel-
erate the optimization convergence. Given a current sensor set, it swaps sensors with
the remaining sensors to maximize the approximate EIG  ̂⇢(W) until convergence.
To initialize the chosen sensor set, we take advantage of the low-rank approxima-
tion Ĥ⇢

d in (3.8), which contains information from the data (through Fd), parameter
(through �pr), and QoI (through P), as can be seen from (3.7). In particular, the
most informative sensors can be revealed by the rows of Uk with the largest norms,
or the leverage scores of H⇢

d [14]. More specifically, given a budget for selecting r

sensors from d candidate locations, we initialize the candidate set S
0 = {s1, . . . , sr}

such that si, i= 1, . . . , r, is the row index corresponding to the ith largest row norm
of Uk, i.e.,

(3.14) si = argmax
s2S\Si�1

||Uk(s, :)||2, i= 1, . . . , r,

where Uk(s, :) is the sth row of Uk, || · ||2 is the Euclidean norm, and the set Si�1 =
{s1, . . . , si�1} for i= 2,3, . . . , and S

0 = ;. Then, at each step of a loop for t= 1, . . . , r,
we swap a sensor st from the current chosen sensor set S

t�1 with one from the
candidate set such that the approximate EIG  ̂⇢(W) evaluated as in (3.11) can be
maximized, i.e., we choose s

⇤ such that

(3.15) s
⇤ = argmax

s2{st}[(S\St�1)
 ̂⇢(Ws),

where Ws is the design matrix corresponding to the sensor choice S
t�1 \ {st} [ {s}.

We repeat the loop until a convergence criterion is met, e.g., the chosen S does not
change or the di↵erence of the approximate EIG is smaller than a given tolerance ✏g.
We summarize the swapping algorithm in Algorithm 3.1.

4. Experiments. In this section, we present the results of numerical experi-
ments for GOOED governed by a linear time-dependent PDE model with an infinite-
dimensional parameter field and varying numbers of candidate sensors. This prob-
lem features the key challenges of (1) an expensive PtO map in the form of a time-
dependent PDE solution and (2) high-dimensional parameters and data.

4.1. Model settings. We consider sensor placement for Bayesian inversion of
a contaminant source with the goal of maximizing information gain for contami-
nant concentration on some building surfaces. The transport of the contaminant can
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AN EFFICIENT METHOD FOR GOOED B65

Algorithm 3.1 A swapping greedy algorithm for GOOED
1: Input: low-rank approximations (3.8), a set S = {1, . . . , d} of d candidate

sensors, a budget of r sensors to be placed.
2: Output: the optimal sensor set S⇤ with r sensors.
3: Initialize S

⇤ = {s1, . . . , sr}⇢ S according to (3.14).
4: Set S0 = {;}.
5: while S

⇤ 6= S
0 and  ̂⇢(W(S⇤))�  ̂⇢(W(S0))< ✏g do

6: S
0 S

⇤.
7: for t= 1, . . . , r do
8: Choose s

⇤ according to (3.15).
9: Update S

t (St�1 \ {st})[ {s⇤}.
10: end for
11: Update S

⇤ S
r.

12: end while
13: Output: optimal sensor choice S

⇤.

be modeled by the time-dependent advection-di↵usion equation with homogeneous
Neumann boundary condition,

ut � k�u+ v ·ru= 0 in D⇥ (0, T ),

u(·,0) =m in D,

kru · n= 0 on @D⇥ (0, T ),

(4.1)

where k = 0.001 is the di↵usion coe�cient and T > 0 is the final time. The domain
D ⇢ R2 is open and bounded with boundary @D depicted in Figure 1. The initial
condition m is an infinite-dimensional random parameter field in D, which is to be
inferred. The velocity field v 2 R2 is obtained as the solution of the steady-state
Navier-Stokes equations with Dirichlet boundary condition,

� 1

Re
�v+rq+ v ·rv= 0 in D,

r · v= 0 in D,

v= g on @D,

(4.2)

where q represents the pressure field and the Reynolds number Re= 50. The Dirichlet
boundary data g 2R2 are prescribed as g= (0,1) on the left wall of the domain, g=
(0,�1) on the right wall, and g= (0,0) elsewhere. We consider a Gaussian prior for the
parameter m⇠N (mpr,Cpr) with mean mpr and covariance operator Cpr =A�2, where
the elliptic operator A=���+�I (with Laplacian � and identity I) is equipped with
Robin boundary condition �rm ·n+�m on @D. Here �, � > 0 control the correlation
length and variance of m [31]. In our numerical test, we set mpr = 0.25, � = 1, � = 8.
We synthesize a “true” initial condition mtrue = min(0.5, exp(�100kx� [0.35,0.7]k2)
as the contaminant source (Figure 1(b)). To solve the PDE model, we use an implicit
Euler method for temporal discretization with Nt time steps, and a finite element
method for spatial discretization, resulting in a dm-dimensional discrete parameter
m ⇠ N (mpr,�pr) with mpr,�pr denoting finite element discretizations of mpr,Cpr,
respectively.

The solution of the PDE for dm = 2023 and Nt = 40 at the observation time
T = 0.8 and d candidate sensor locations are also shown in Figures 1(c) and 1(d), at
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B66 KEYI WU, PENG CHEN, AND OMAR GHATTAS

which we observe the contaminant concentration u. The linear map F is defined by
the predicted data, i.e., the concentrations at the selected sensors. Finally, we take the
QoI as an averaged contaminant concentration at time tpred within a distance �= 0.02
from the boundaries of either the left, the right, or both buildings, with corresponding
QoI maps denoted asP1,P2,P3 at certain prediction times (see Figures 1(c) and 1(d)).

4.2. Numerical results. We first consider the case of a small number of can-
didate sensors, for which we can use an exhaustive search to find the optimal sensor
combination and compare it with the sensors chosen by the standard and swapping
greedy algorithms. Specifically, we use a grid of d = 9 candidate locations {si}9i=0

(xi 2 {0.2,0.55,0.8}⇥{0.25,0.5,0.75}) as shown in Figure 1(c) with the goal of choos-
ing r = 2,3,4,5,6,7,8 sensors for the QoI prediction time tpred = 1.0. We compute
the matrices H⇢

d and �Hd (of size 9⇥ 9) without low-rank approximation since they
are small.

We can see from Figure 2 that for QoI maps P1 and P2, both greedy algorithms
find the optimal design, while for P3 with r = 2,4, only swapping greedy finds the
optimal design. Moreover, an increase in r leads to diminishing returns, as the gain in
information about the QoI from additional sensors saturates. We see that ⇠3 sensors
is su�cient for either building, whereas 5 is su�cient for both.

Next we consider the case of the 75 candidate sensors depicted in Figure 1(d).
The total number of possible sensor combinations is d!

r!(d�r)! . An exhaustive search
across all sensor combinations is not feasible in this case; instead, we compare the
best EIG from 200 random designs with those obtained by the greedy algorithms.

(a) velocity field v (b) initial condition
mtrue

(c) 9 candidates (d) 75 candidates

Fig. 1. The domain D is [0,1]2 with two rectangular blocks ([0.25,0.5]⇥ [0.15,0.4], [0.6,0.75]⇥
[0.6,0.85]) removed. Data of contaminant concentration at time T = 0.8, obtained as the solution of
(4.1) at the initial condition as shown. The QoI maps (P1,P2,P3) are the averaged solution within
the lines along the left, right, and both buildings. Candidate sensor locations are shown in circles.

(a) P1 (b) P2 (c) P3

Fig. 2. Approximate EIG  ̂⇢ at r sensors chosen by the standard and swapping greedy algo-
rithms, and the distribution of  ̂⇢ at all possible combinations of 9 candidate sensors. The three
plots are for the QoI maps P1,P2, and P3.
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AN EFFICIENT METHOD FOR GOOED B67

(a) P1 (b) P2 (c) P3

Fig. 3. Approximate EIG  ̂⇢ for r out of 75 sensors, found by the standard and swapping
greedy algorithms, compared with the distribution of  ̂⇢ for 200 randomly-chosen sets from the 75.
The three plots are for the QoI maps P1,P2, and P3 .

Table 1
Number of swapping loops (#LOOPS), swaps (# SWAPS), and EIG evaluations (# EIG

EVAL) for di↵erent numbers of r selected sensors out of 75 candidates. Results are reported for
Algorithm 3.1 for the goal P1.

r 5 10 15 20 25 30 40 50 60

#loops 3 3 3 3 3 2 3 3 3
#swaps 41 73 124 164 190 194 235 199 119

#EIG eval 1050 1950 2700 3300 3750 2700 4200 3750 2700

We seek the r optimal sensors, r = 5,10,15,20,25,30,40,50,60, from among the 75
candidates. Results are shown in Figure 3. We see that both greedy algorithms find
designs with larger EIG than all random choices. Moreover, for small r, the swapping
greedy algorithm finds better designs than the standard greedy. For large r, both
greedy algorithms can find designs with similar EIG.

To demonstrate the reduction of computational cost achieved by the o✏ine-online
decomposition, we report the total number of EIG evaluations, the number of swap-
ping loops, and the number of swaps of the swapping greedy algorithm (Algorithm 3.1)
in Table 1 for 75 candidate sensors with di↵erent target numbers of sensors. We see
that the number of loops at convergence is mostly 3, which does not change with
respect to the number of selected sensors. We observe in the experiments that most
of the swaps take place in the first loop, followed by a smaller number of swaps in
the second loop resulting in slight sensor adjustments. There are no swaps in the last
loop, which we require as a convergence criterion. As a result of the o✏ine-online
decomposition Theorem 3.2, which relieves the (thousands of) EIG evaluations of ex-
pensive PDE solves once the low-rank approximation (3.8) is built, we achieve over
1000X speedup. This is because the PDE solves overwhelmingly dominate the overall
cost, and because the o✏ine decomposition is computed at a cost comparable to one
direct EIG evaluation by (3.4).

Figure 4 illustrates the e↵ect of the goal of maximizing information gain for
the QoIs from optimally placed sensors. Specifically, for the parameter-to-QoI maps
P1,P2,P3 that quantify the average contaminant concentration at time tpred = 1
around the left, right, and both blocks, the GOOED finds the sensors depicted in the
first row. For P1 at longer prediction times tpred = 1,2,4,8, we see in the bottom row
of Figure 4 that the optimal sensors are no longer placed in the immediate vicinity
of the building, but instead are increasingly dispersed to better detect the now more
di↵used field. Finally, the ability of GOOED to reduce the posterior variance in the
initial condition field is depicted in Figure 5 for di↵erent goals P1,P2,P3. Compared
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B68 KEYI WU, PENG CHEN, AND OMAR GHATTAS

(a) P1 at tpred = 1. (b) P2 at tpred = 1. (c) P3 at tpred = 1.

(d) P1 at tpred = 2. (e) P1 at tpred = 4. (f) P1 at tpred = 8.

Fig. 4. Sensor locations chosen by the swapping greedy algorithm for 10 out of 75 candidates
for the parameter-to-QoI maps P1,P2,P3 at time tpred = 1 and also P1 at time tpred = 2,4,8.

(a) optimal design for
P1

(b) optimal design for
P2

(c) optimal design for
P3

(d) random design

Fig. 5. Pointwise posterior variance of the parameter at optimal designs for goals P1,P2, P3,
compared to a random design, for 10 sensors. The darker regions represent lower variance.

to a random design (lower right), the three optimal designs lead to lower variance
surrounding regions of interest.

4.3. Scalability with respect to parameter and data dimensions. Here
we demonstrate the fast decay of the eigenvalues of H⇢

d and �Hd with respect to
the parameter and data dimensions, as exploited by the algorithms of subsection 3.3.
For H⇢

d defined in (3.7), we have rank(H⇢
d)  min(p, d) with QoI dimension p and

data dimension d. In practice, the QoI is often an averaged quantity with small
p, so the rank of H⇢

d is also small. In our tests we have rank(H⇢
d) = p = 1. For

�Hd =Hd �H⇢
d with Hd =Fd�prF⇤, the spectrum of �Hd depends on that of Hd,

which typically exhibits fast decay due to ill-posedness of inverse problems. As can be
observed in the left plot of Figure 6, the eigenvalues of �Hd decay very rapidly and
independently of the parameter dimension, which implies that the required number
of PDE solves is small and independent of the parameter dimension while achieving
the same absolute accuracy of the approximate EIG by Theorem 3.3. The right plot
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AN EFFICIENT METHOD FOR GOOED B69

Fig. 6. Decay of the eigenvalues of �Hd with the increasing parameter dimension (left) and
data (candidate sensor locations) dimension (right).

in Figure 6 also illustrates rapid decay of eigenvalues, with the increasing number
of candidate sensors, suggesting that the number of PDE solves is asymptotically
independent of the data dimension for the same relative accuracy of the approximate
EIG. These plots suggest that O(100) PDE solves are required to accurately capture
the information gained about the parameter field and QoI from the data, regardless
of the parameter or sensor dimensions, when using randomized SVD (Algorithm B.1).

5. Conclusions. We have developed a fast and scalable computational frame-
work for goal-oriented linear BOED governed by PDEs (or more generally expensive
models). Repeated fast evaluation of an (arbitrarily accurate) approximate EIG free
of PDE solves as the experimental design changes is made possible by an o✏ine-
online decomposition and low-rank approximation of certain operators informed by
the parameter, data, and predictive goals of interest. Scalability—as measured by in-
dependence of the number of PDE solves from the parameter and data dimensions—is
achieved by carefully exploiting the GOOED problem’s intrinsic low dimensionality
as manifested by the rapid spectral decay of several critical operators. To justify the
low-rank approximation of these operators in computing the EIG, we proved an upper
bound for the approximation error in terms of the operators’ truncated eigenvalues.
Moreover, we proposed a new swapping greedy algorithm that is demonstrated to
be more e↵ective than the standard greedy algorithm in our experiments. Numeri-
cal experiments with optimal sensor placement for Bayesian inference of the initial
condition of an advection-di↵usion PDE demonstrated over 1000X speedups (mea-
sured in PDE solves). Future work includes extension to nonlinear Bayesian GOOED
problems with nonlinear PtO maps and nonlinear parameter-to-QoI maps.

Appendix A. Proofs of the main results.

Proof of Proposition 3.1

(A.1) y=Fm+ ✏=FP†Pm+F(I�P†P)m+ ✏=FP†⇢+ ⌘,

where P† :=�prP⇤⌃�1
pr and ⌘ :=F(I�P†P)m+ ✏.

Proof of Theorem 3.2. To start with, we introduce the Weinstein–Aronszajn
identity in Proposition A.1 which is proven in [56].

Proposition A.1. Let A and B be matrices of size m⇥n and n⇥m, respectively,

then

(A.2) det(In⇥n +BA) = det(Im⇥m +AB).
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B70 KEYI WU, PENG CHEN, AND OMAR GHATTAS

Proof. Since Im⇥m is invertible, the formula for the determinant of a block matrix
gives

(A.3) det

✓
Im⇥m �A
B In⇥n

◆
=det(Im⇥m)det(In⇥n�BI�1

m⇥m(�A)) = det(In⇥n+BA).

Since In⇥n is invertible,

(A.4) det

✓
Im⇥m �A
B In⇥n

◆
=det(Im⇥m�(�A)I�1

n⇥nB)det(In⇥n) = det(Im⇥m+AB).

Thus det(In⇥n +BA) = det(Im⇥m +AB).

We can then reformulate  ⇢ in (3.4) as

 ⇢(W) =
1

2
logdet(I⇢ + eH⇢

m)

=
1

2
logdet(I⇢ +⌃

1

2

pr(WFdP†)
⇤��1

⌘ (W)(WFdP†)⌃
1

2

pr),
(A.5)

where

�⌘(W) =�n(W) +F(W)(�pr ��prP
⇤⌃�1

pr P�pr)F
⇤(W)

=W�d
nW

T +WFd(�pr ��prP
⇤⌃�1

pr P�pr)F
⇤
dW

T

=W(�d
n +Fd(�pr ��prP

⇤⌃�1
pr P�pr)F

⇤
d)W

T

=W(�d
n + Fd�prF

⇤
d| {z }

:=Hd2Rd⇥d

�Fd�prP
⇤⌃�1

pr P�prF
⇤
d| {z }

:=H
⇢
d2Rd⇥d

)WT

=W(�d
n +Hd �H⇢

d| {z }
:=�Hd

)WT

=W(�d
n +�Hd)W

T
.

(A.6)

�d
n and Fd are defined in (2.12) and (2.13).

To this end, we have

 (W)⇢ =
1

2
logdet

⇣
I⇢ +⌃

1

2

pr(WFdP†)
⇤��1

⌘ (W)(WFdP†)⌃
1

2

pr

⌘

=
1

2
logdet

0

@I⇢ +⌃
1

2

pr(WFdP†)
⇤L

| {z }
A

LT (WFdP†)⌃
1

2

pr| {z }
B

1

A

=
1

2
logdet

0

@I⇢ +LT (WFdP†)⌃
1

2

pr| {z }
B

⌃
1

2

pr(WFdP†)
⇤L

| {z }
A

1

A

=
1

2
logdet

�
Ir +LT (WFdP†)⌃pr(WFdP†)

⇤L
�

=
1

2
logdet

�
Ir +LTWFd�prP

⇤⌃�1
pr ⌃pr⌃

�1
pr P�prF

⇤
dW

TL
�

=
1

2
logdet

�
Ir +LTWFd�prP

⇤⌃�1
pr P�prF

⇤
dW

TL
�

=
1

2
logdet

�
Ir +LTWH⇢

dW
TL

�
,

(A.7)

where we use the Cholesky decomposition ��1
⌘ =LLT in the second equality, Propo-

sition A.1 in the third, definition of P† from (3.2) in the fifth, and the definition of
H⇢

d from (3.7) in the last.
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AN EFFICIENT METHOD FOR GOOED B71

Proof of Theorem 3.3. We first introduce necessary properties that are proven
in [62] for Proposition A.2, [5] for Proposition A.3 and [65] for Proposition A.4.

Proposition A.2. Let A and B be matrices of size m⇥n and n⇥m, respectively,

then AB and BA have the same nonzero eigenvalues.

Proposition A.3. Let A,B 2 Cn⇥n
be Hermitian positive semidefinite with

A�B (i.e., A�B is Hermitian positive semidefinite), then

(A.8) 0 log det(I+A)� log det(I+B) log det(I+A�B).

Proposition A.4. Let f :R+!R be a continuous function that is di↵erentiable

on R+ (with x� 0 for x2R+). If the function x 7! xf
0(x) is monotonically increasing

on R+, then for any matrices A,B2Rn⇥m
, it holds that

(A.9)
nX

i=1

f(�i(ABT ))
nX

i=1

f(�i(A)�i(B)),

where �i(·) denotes the singular values of matrices sorted in nonincreasing order.

Lemma A.5. Let A 2 Rn⇥m
,B 2 Rm⇥m

. ATA and B are Hermitian positive

semidefinite, then

(A.10) log det(I+ABAT )
mX

i=1

log(1 + �i(A
TA)�i(B)).

Proof. Since logdet(I + ABAT ) =
Pn

i=1 log(1 + �i(ABAT )) =
Pn

i=1 log(1 +
�
2
i (AB1/2)), letting f(x) = log(1 + x

2), which satisfies Proposition A.4, we have

nX

i=1

log(1 + �
2
i (AB1/2))

nX

i=1

log(1 + �
2
i (A)�2

i (B
1/2)) =

mX

i=1

log(1 + �i(A
TA)�i(B)).

(A.11)

Denote the eigenvalue decompositions of H⇢
d and �Hd as

(A.12) H⇢
d =UkZkU

T
k +U?Z?U

T
?, and �Hd =Vl⇤lV

T
l +V?⇤?V

T
?,

where (Zk,Uk), (Vl,⇤l) represent the dominant eigenpairs, and (Z?,U?), (V?,⇤?)
represent the remaining eigenpairs. By the triangle inequality, we have

| ⇢(W)�  ̂⇢(W)|

= |1
2
logdet

�
Ir⇥r +LTWH⇢

dW
TL

�
� 1

2
logdet

⇣
Ir⇥r + L̂TWĤ⇢

dW
T L̂

⌘
|

 |1
2
logdet

�
Ir⇥r +LTWH⇢

dW
TL

�
� 1

2
logdet

⇣
Ir⇥r +LTWĤ⇢

dW
TL

⌘
|

| {z }
(a)

+ |1
2
logdet

⇣
Ir⇥r +LTWĤ⇢

dW
TL

⌘
� 1

2
logdet

⇣
Ir⇥r + L̂TWĤ⇢

dW
T L̂

⌘
|

| {z }
(b)

.

(A.13)
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We first look at (a). By Proposition A.3 and noting that (H⇢
d� Ĥ⇢

d) =U?Z?UT
?

is Hermitian positive semidefinite, we have

(a) 1

2
logdet

⇣
Ir⇥r +LTWH⇢

dW
TL�LTWĤ⇢

dW
TL

⌘

=
1

2
logdet

⇣
Ir⇥r +LTW(H⇢

d � Ĥ⇢
d)W

TL
⌘

=
1

2
logdet

�
Ir⇥r +LTWU?Z?U

T
?W

TL
�
.

(A.14)

Then applying Proposition A.1, we have

(a) =
1

2
logdet

⇣
Ir⇥r +LTWU?Z

1/2
? Z1/2

? UT
?W

TL
⌘

=
1

2
logdet

⇣
I(d�k)⇥(d�k) +Z1/2

? UT
?W

TLLTWU?Z
1/2
?

⌘

=
1

2
logdet

⇣
I(d�k)⇥(d�k) +Z1/2

? UT
?W

T (W(�d
n +�Hd)W

T )�1WU?Z
1/2
?

⌘
.

(A.15)

Applying Lemmas A.1 and A.5, let A=Z1/2
? UT

?W
T
,B= (W(�d

n+�Hd)WT )�1, we
have

(a) 1

2

X

i

log(1 + �i(WU?Z
1/2
? Z1/2

? UT
?W

T )�i((W(�d
n +�Hd)W

T )�1))

=
1

2

X

i

log(1 + �i(WU?Z?U
T
?W

T )�i((W(�d
n +�Hd)W

T )�1)).
(A.16)

By Proposition 3.1,�Hd =Cov[Fd(I�P†P)m], is a covariance matrix, thus is positive
semidefinite. The smallest eigenvalue of �d

n+�Hd is greater than the smallest eigen-
value of �d

n. Hence �i(W(�d
n+�Hd)WT ))� �

2
min, i.e., �i((W(�d

n+�Hd)WT )�1)
1/�2

min. Note that �i(WU?Z?UT
?W

T ) �i(U?Z?UT
?) = ⇣i. Thus we have

(A.17) (a) 1

2

dX

i=k+1

log(1 + ⇣i/�
2
min).

Then we turn to the second part (b), with Propositions A.1 and A.3, we have

(b) =
����

1

2
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T
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1
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CA ,

(A.18)
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where

(A.19) (c) = L̂L̂T �LLT = (W(�d
n +�Ĥd)W

T )�1 � (W(�d
n +�Hd)W

T )�1)

Noting that (A + B)�1 = A�1 �A�1B(A + B)�1 by Hua’s identity [38], let A =
W(�d

n +�Ĥd)WT
,B=W(�Hd ��Ĥd)WT =WV?⇤?VT

?W
T , we have

(A+B)�1 = (W(�d
n +�Hd)W

T )�1 = (W(�d
n +�Ĥd)W

T )�1

� (W(�d
n +�Ĥd)W

T )�1WV?⇤?V
T
?W

T (W(�d
n +�Hd)W

T )�1
.

(A.20)

Then, we can see that

(c) = (W(�d
n +�Ĥd)W

T )�1

| {z }
C1

WV?⇤?V
T
?W

T (W(�d
n +�Hd)W

T )�1

| {z }
C2

:=C1WV?⇤?V
T
?W

TC2.

(A.21)

Thus,

(b) 1

2
logdet

⇣
Ik⇥k +Z1/2

k UT
kW

TC1WV?⇤?V
T
?W

TC2WUkZ
1/2
k

⌘

=
1

2
logdet

⇣
I(d�l)⇥(d�l) +⇤1/2

? VT
?W

TC2WUkZkU
T
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TC1WV?⇤
1/2
?

⌘
.

(A.22)

Applying Lemma A.5, we have

(b) 1

2

X

i

log(1 + �i(WV?⇤?V
T
?W

T )�i(C2WUkZkU
T
kW

TC1))

 1

2

kX

i=l+1

log(1 + �i⇣1/�
4
min),

(A.23)

where we have used

�i(C2WUkZkU
T
kW

TC1)

= �i((W(�d
n +�Hd)W

T )�1WUkZkU
T
kW

T (W(�d
n +�Ĥd)W

T )�1)

 v1((W(�d
n +�Hd)W

T )�1)v1(WUkZkU
T
kW

T )v1((W(�d
n +�Ĥd)W

T )�1)

 ⇣1/�
4
min

(A.24)

for i  k in the last inequality. Note that it vanishes for i > k as Zk has rank not
larger than k. Combining (A.17) and (A.23),
(A.25)

| ⇢(W)�  ̂⇢(W)| (a)+ (b) 1

2

dX

i=k+1

log(1+ ⇣i/�
2
min) +

1

2

kX

i=l+1

log(1+ �i⇣1/�
4
min).

Appendix B. Low-rank approximation. To compute the low-rank approx-
imations of �Hd and H⇢

d as described in subsection 3.3, we present the randomized
SVD algorithm for these two quantities. Recall the explicit forms of �Hd and H⇢

d as

(B.1) H⇢
d =Fd�prP

⇤⌃�1
pr P�prF

⇤
d,�Hd =Fd�prF

⇤
d �Fd�prP

⇤⌃�1
pr P�prF

⇤
d.
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Algorithm B.1 Randomized SVD to compute H with low rank k

1: Generate independent and identically distributed Gaussian matrix
⌦2Rd⇥(k+p) with an oversampling parameter p very small (e.g., p= 10).

2: Compute Y =H⌦.

3: Compute the QR factorization Y=QR satisfying QTQ= I.
4: Compute B=QTHQ.
5: Solve an eigenvalue problem for B such that B=Z⌃ZT .
6: Form Uk =QZ[1 : k] and ⌃k =⌃[1 : k,1 : k].

We see that this is a matrix-free eigensolver. Steps 2 and 4 represent �Hd action
on 2(l+ p) vectors and H⇢

d action on 2(k + p) vectors. In terms of the total actions,
it requires 2(2l + k + 2p) forward operator F and 2(l + k + 2p) of its adjoint F⇤,
2(k+ l+ 2p) prediction operator P and its adjoint P⇤.

For the contaminant problem given in subsection 4.1, the concentration field
u(x, t) is given by

ut � k�u+ v ·ru= 0 in D⇥ (0, T ),

u(·,0) =m in D,

kru ·n= 0 on @D⇥ (0, T );

(B.2)

we can form the PtO map F with Fm as the discretized value of Bu(m), where B is
the pointwise observation operator. The adjoint problem is a terminal value problem
which can be solved backwards in time by the equation:

�pt �r · (pv)� k�p=B⇤y in D⇥ (0, T ),

p(·, T ) = 0 in D,

(pv+ krp) ·n= 0 on @D⇥ (0, T ).

(B.3)

Then we can define the adjoint of the PtO map F⇤ with F⇤y as the discretized value
of p(x,0) for any y.
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