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ORIGINAL ARTICLE

Optimal local truncation error method for solution of 2-D elastodynamics
problems with irregular interfaces and unfitted Cartesian meshes
as well as for post-processing

A. Idesman and M. Mobin

Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA

ABSTRACT
The optimal local truncation error method (OLTEM) with unfitted Cartesian meshes recently devel-
oped for the scalar wave and heat equations for heterogeneous materials is extended to a more
complex case of a system of the elastodynamics PDEs. Compact 9-point stencils (similar to those
for linear finite elements) are used for OLTEM. Compared to our previous results, a new approach
is used for the calculation of the right-hand side of the stencil equations due to body forces. It
significantly simplifies the analytical derivations of OLTEM for time-dependent problems. There are
no unknowns on interfaces between different materials; the structure of the global semi-discrete
equations for OLTEM is the same for homogeneous and heterogeneous materials. For the first
time we have also developed OLTEM with the diagonal mass matrix. In contrast to many known
approaches with some ad-hoc calculations of the diagonal mass matrix, OLTEM offers a rigorous
approach which is a particular case of OLTEM with the non-diagonal mass matrix.
Another novelty of the article is a new post-processing procedure for the accurate calculations of
stresses. It includes the same compact 9-point stencils as those in basic computations and uses
the accelerations and the displacements at the grid points along with the PDEs for the stress
calculations.
OLTEM yields accurate numerical results for heterogeneous materials with big contrasts in the
material properties of different components. Numerical experiments for elastic heterogeneous
materials show: a) at the same number of degrees of freedom (dof), OLTEM with unfitted
Cartesian meshes is more accurate than linear finite elements with similar stencils and conformed
meshes; at the engineering accuracy of 0:1% for the displacements, OLTEM reduces the number
of dof by more than 20 times; at the engineering accuracy of 0:1% for the stresses, OLTEM with
the new post-processing procedure reduces the number of dof by more than 104 times compared
to linear finite elements; b) at the same number of dof, OLTEM with unfitted Cartesian meshes is
even more computationally efficient than high-order finite elements with much wider stencils and
conformed meshes. This will lead to a huge reduction in the computation time for elastodynamics
problems solved by OLTEM and will allow the direct computations of some complex wave propa-
gation and structural dynamics problems for heterogeneous materials without the scale
separation.
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1. Introduction

There are many important engineering problems described
by the time-dependent elasticity equations. Accurate numer-
ical solutions of elastodynamics (structural dynamics and
wave propagation) problems on complex irregular geometry
are time consuming and this restricts the application of
numerical methods to many important applications.
Therefore, the development of computationally efficient
numerical methods for elastodynamics is still a challenging
task and many different numerical techniques has been sug-
gested in the recent years (e.g., see [1–9] and many others).

The finite element method, the finite volume method, the
isogeometric elements, the spectral elements and similar
techniques represent very powerful tools for the solution of

partial differential equations (PDEs) for a complex geometry.
However, the generation of non-uniform meshes for a com-
plex geometry is not simple and may lead to a significant
decrease in accuracy of these techniques for elastodynamics
problems if “bad” elements (e.g., elements with small angles)
appear in the mesh. There is a significant number of publi-
cations related to the numerical solution of different PDEs
on irregular domains with uniform embedded meshes. For
example, we can mention the following fictitious domain
numerical methods that use uniform embedded meshes: the
embedded finite difference method, the cut finite element
method, the finite cell method, the Cartesian grid method,
the immersed interface method, the virtual boundary
method, the embedded boundary method, etc.; e.g., see [10–
38] and many others. The main objective of these techniques
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is to simplify the mesh generation for irregular domains as
well as to mitigate the effect of “bad” elements. For example,
the techniques based on the finite element formulations
(such as the cut finite element method, the finite cell
method, the virtual boundary method and others) yield the
pþ 1 order of accuracy even with small cut cells generated
due to complex irregular boundaries (e.g., see [11–14, 18,
37] and many others). The main advantage of the embedded
boundary method developed in [19–21, 32, 34] is the use of
simple Cartesian meshes. The boundary conditions or fluxes
in this technique are interpolated using the Cartesian grid
points and this leads to the increase in the stencil width for
the grid points located close to the boundary (the numerical
techniques developed in [19–21, 33, 34] provide the second
order of accuracy for the global solution). The development
of different numerical techniques (finite difference method,
immersed finite element method, immersed meshfree
method) for statics elasticity interface problems with unfitted
meshes were recently reported in [39–41].

Recently in our papers [42–50] OLTEM has been devel-
oped for the solution of PDEs with constant coefficients on
regular and irregular domains with Cartesian meshes. At the
same structure of the semidiscrete or discrete equations, the
new technique provides the optimal order of accuracy of
discrete equations that exceeds the order of accuracy of
many known numerical approaches on regular and irregular
domains. For example, in our paper [46] it was shown that
OLTEM with 9-point and 25-point stencils (similar to those
for linear and quadratic finite elements) provides the second
and sixth orders of accuracy for the 2-D elastodynamics
equations on regular domains. The second and sixth orders
of accuracy are the optimal accuracy for all elastodynamics
numerical techniques with 9-point and 25-point stencils
independent of the approach used for their derivations. In
our paper [51] we have developed OLTEM with 9-point
stencils and unfitted Cartesian meshes to a much more gen-
eral case of the 2-D time-dependent scalar heat and wave
equations with discontinuous coefficients and irregular
interfaces and we have obtained the third order of accuracy
of the new approach.

Here, OLTEM with unfitted Cartesian meshes recently
developed in [51] for the scalar wave and heat equations for
heterogeneous materials is extended to a more complex case
of a system of the elastodynamics PDEs. Compact 9-point
stencils (similar to those for linear finite elements) are used
for OLTEM. Compared to our previous results, a new
approach is used for the calculation of the right-hand side
of the stencil equations due to body forces. It significantly
simplifies the analytical derivations of OLTEM for time-
dependent problems. For the first time we have also devel-
oped OLTEM with the diagonal mass matrix. In contrast to
many known approaches with some ad-hoc calculations of
the diagonal mass matrix (e.g., see [5, 6, 8] and many
others), OLTEM offers a rigorous approach which is a par-
ticular case of OLTEM with the non-diagonal mass matrix.
Another novelty of the article is a new post-processing pro-
cedure for the accurate calculations of stresses. In contrast
to known finite element post-processing procedures (e.g.,

see [52–54] and others), it includes the same compact 9-
point stencils as those in basic computations and uses the
accelerations and the displacements at the grid points along
with the PDEs for the stress calculations.

The idea of OLTEM for the solution of elastodynamics
PDEs is very simple. First, an unfitted Cartesian mesh is
selected independent of the irregular domain under consid-
eration. Then, stencil equations of a semi-discrete system are
assumed for all internal grid points of the Cartesian mesh
located inside the domain. The stencil equation for each
internal grid point is a linear combination of the numerical
values of the unknown displacements and accelerations at a
number of grid points included into the stencil; e.g., see Eq.
(6). The stencil equations for all internal grid points form
the global semi-discrete system of equations for OLTEM.
The coefficients of the stencil equations are assumed to be
unknown. These unknown coefficients are determined by
the minimization of the order of the local truncation error
of the stencil equation. The local truncation error of the
stencil equation is obtained by the replacement of an
unknown numerical solution for the displacements and
accelerations in the stencil equation by an unknown exact
solution. According to the new approach suggested in this
article, the second order time derivatives in the local trunca-
tion error are excluded with the help of the elastodynamics
PDEs. Then, substituting a Taylor series expansion of the
unknown exact solution at the grid points into the stencil
equation, we obtain the local truncation error of the stencil
equation in the form of a Taylor series. The unknown coef-
ficients of each stencil equation are calculated from a small
local system of algebraic equations. This local system is
obtained by equating to zero the lowest terms in the Taylor
series expansion of the local truncation error as well as by
the minimization of the non-zero leading terms of the local
truncation error with the least square method. The coeffi-
cients of the stencil equations are similarly calculated for
homogeneous (no interfaces) and heterogeneous (with inter-
faces) stencils. The local truncation error for the heteroge-
neous stencils additionally includes the known interface
conditions at a small number of selected interface points
located on the irregular interface. The semi-discrete system
of equation does not include unknowns at the interface
points. Finally, a semi-discrete global system with unknowns
at the internal grid points can be easily integrated by known
time-integration methods. The structure of this semi-system
is the same for homogeneous and heterogeneous materials
(the difference is in the values of the stencil coefficients).
The main advantages of OLTEM are an optimal accuracy
and the simplicity of the formation of a semi-discrete system
for irregular interfaces with unfitted Cartesian meshes.
Changing the width of the stencil equations, different linear
and high-order numerical techniques can be developed. We
should mention that similar to the finite-difference techni-
ques, OLTEM does not use any weak formulation for the
derivation of the semi-discrete equations. However, in con-
trast to the finite-difference techniques with the stencil coef-
ficients calculated through the approximation of separate
partial derivatives, the entire system of the elastodynamics
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partial differential equations is used for the calculation of
the stencil coefficients in OLTEM. This leads to the optimal
accuracy of the proposed technique.

The focus of this article is the development of 2-D com-
pact 9-point stencils (similar to those for linear elements)
for the elastodynamics equations affected by irregular inter-
faces between different elastic materials on unfitted
Cartesian meshes. These stencils will be used for the calcula-
tion of the displacements in basic computations as well as
for the stress calculation during post-processing.

The 2-D elastodynamics equations in a composite
domain X ¼ [Xl (l ¼ 1, 2, :::, �N where �N is the total num-
ber of subdomains) can be written down in each subdomain
Xl as follows:

llr2ul þ ðll þ klÞ @2ul
@x2

þ @2vl
@x@y

 !
þ f lx ¼ ql

@2ul
@t2

,

llr2vl þ ðll þ klÞ @2vl
@y2

þ @2ul
@x@y

 !
þ f ly ¼ ql

@2vl
@t2

,

(1)

where ul ¼ ulðx, y, tÞ and vl ¼ vlðx, y, tÞ are the x� and y�
components of the displacement vector, f lx ¼ f lxðx, y, tÞ and
f ly ¼ f lyðx, y, tÞ are the x� and y� components of the body

forces that can be discontinuous across interfaces, t is the time,
ll and kl are Lame coefficients that can be also expressed in
terms of Young’s modulus El and Poisson’s ratio �l as follows:

ll ¼
El

2ð1þ �lÞ , kl ¼ El�l
ð1þ �lÞð1� 2�lÞ : (2)

We also assume that the functions ul and fl are suffi-
ciently smooth in each subdomain Xl. At the interface G
between any two subdomains, the following interface condi-
tions (the continuity of the displacements and the tractive
forces across the interface) are applied:

u�G � u��G ¼ 0, v�G � v��G ¼ 0, (3)

t�x,G � t��x,G ¼ 0, t�y,G � t��y,G ¼ 0, (4)

where the symbols � and �� correspond to the quantities on
the opposite sides from the interface for the corresponding
subdomains Xl. The x� and y� components of the tractive
forces tx,G and ty,G can be expressed in terms of the dis-
placements as follows:

tx,G ¼ nx ðkþ 2lÞ @u
@x

þ k
@v
@y

� �
þ nyl

@u
@y

þ @v
@x

� �
,

ty,G ¼ ny ðkþ 2lÞ @v
@y

þ k
@u
@x

� �
þ nxl

@u
@y

þ @v
@x

� �
,

(5)

where nx and ny are the x- and y-components of the unit
normal vector at the interface. According to Eqs. (3)–(5),
the displacements u and v are continuous across the interfa-
ces but they can have the discontinuous spatial derivatives
across the interfaces.

Remark 1. The derivation of the new approach can be easily
extended to the case with the discontinuous displacements

and tractive forces across interfaces; i.e., when the right-
hand sides in Eqs. (3) and (4) are the given functions.
However, for simplicity we consider Eqs. (3) and (4) with
zero right-hand sides.

In this article, the Dirichlet boundary conditions u ¼ g1
and v ¼ g2 are applied along the external boundary C where
g1 and g2 are the given functions. However, the Neumann
boundary conditions (tractive forces) can be also used with
the proposed approach; e.g., see our papers [47, 55].
According to OLTEM, the semi-discrete system for the elas-
todynamics equations, Eq. (1), after the space discretization
with a Cartesian rectangular mesh can be represented as a
system of linear ordinary differential equations (ODEs). The
ODEs of this system for each internal grid point of the
domain are called the stencil equations. For the 2-D elasto-
dynamics equations, two stencil equations can be written
down for each grid point as follows:

h2
XL
i¼1

mj, i
d2unumi

dt2
þ
XL
i¼1

�mj, i
d2vnumi

dt2

 !
þ
XL
i¼1

kj, iu
num
i

þ
XL
i¼1

�kj, iv
num
i ¼ �f j, j ¼ 1, 2,

(6)

where unumi and vnumi as well as d2unumi
dt2 and d2vnumi

dt2 are the
numerical solution for the displacements u and v as well as
for their second order time derivatives at the i-th grid point,
mj, i, �mj, i, kj, i and �kj, i are the unknown stencil coefficients
(they should be determined) corresponding to the displace-
ments u and v and their second order time derivatives, L is
the number of the grid points included into the stencil, �f j
are the components of the discretized body forces (see the
next Sections). We should mention that we do not consider
the time discretization for the derivation the stencil coeffi-
cients mj, i, �mj, i, kj, i and �kj, i used in OLTEM. These stencil
coefficients are related to the space discretization. The time
discretization with any known time integration method can
be used for the integration of the global system of the semi-
discrete equations of OLTEM. Many numerical techniques
such as the finite difference method, the finite element
method, the finite volume method, the isogeometric ele-
ments, the spectral elements, different meshless methods
and others can be finally reduced to Eq. (6) with some spe-
cific coefficients mj, i, �mj, i, kj, i and �kj, i: In order to demon-
strate a new technique, below we will assume compact 9-
point stencils (L¼ 9) in the 2-D case that correspond to the
width of the stencils for linear quadrilateral finite elements
on Cartesian meshes and that require similar computational
costs as those for linear finite elements. However, the sten-
cils with any width can be used with the suggested
approach.

Let us introduce the local truncation error used with
OLTEM. The replacement of the numerical values of the dis-
placements unumi and vnumi at the grid points in Eq. (6) by the
exact solution ui and vi to the elastodynamics equations,
Eq. (1), leads to the residual of these equations called the local
truncation error ej of the semi-discrete equations, Eq. (6):
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ej ¼ h2
XL
i¼1

mj, i
d2ui
dt2

þ
XL
i¼1

�mj, i
d2vi
dt2

 !
þ
XL
i¼1

kj, iui

þ
XL
i¼1

�kj, ivi � �f j, j ¼ 1, 2:

(7)

Calculating the difference between Eqs. (7) and (6) we
can get

ej ¼ h2
XL
i¼1

�
mj, i

d2ui
dt2

�d2unumi

dt2

� �
þ �mj, i

d2vi
dt2

�d2vnumi

dt2

� ��

þ
XL
i¼1

fkj, i ui�unumi

� 	þ�kj, i vi�unumi

� 	g
¼ h2

XL
i¼1

ðmj, i�e iþ �mj, i�e
�
i Þ þ

XL
i¼1

ðkj, i�eiþ�kj, i�e
�
i Þ, j¼ 1,2,

(8)

where �ei ¼ ui�unumi , �e�i ¼ vi� vnumi , �e i ¼ d2ui
dt2 �

d2unumi
dt2 and �e�i ¼

d2vi
dt2 �

d2vnumi
dt2 are the errors in the numerical solution for the

displacements u, v and their second order time derivatives
at the grid point i. As can be seen from Eq. (8), the local
truncation errors ej (j¼1, 2) are a linear combination of the
errors in the numerical solution for the displacements u and
v and for their second order time derivatives at the grid
points which are included into the stencil equations.

In Section 2, OLTEM with 9-point compact stencils and
unfitted Cartesian meshes is derived for the calculation of
the displacements for the 2-D elastodynamics equations with
discontinuous coefficients and irregular interfaces. It
includes the derivation of the local truncation error for
homogeneous and heterogeneous materials, the derivation of
the right-hand side of the stencil equation due to the body
forces, the derivation of a small local system of algebraic
equations for the calculation of the stencil coefficients as
well as the use of the non-diagonal and diagonal mass
matrices. Section 3 describes a new post-processing proced-
ure for the stress calculations that includes the same

compact 9-point stencils as those in basic computations and
uses the accelerations and the displacements at the grid
points along with the PDEs for the stress calculations.
Numerical experiments showing the advantages of OLTEM
are presented in Section 4. For the derivation of many ana-
lytical expressions presented below we use the computa-
tional program “Mathematica.”

2. OLTEM for the 2-D elastodynamics equations
with discontinuous material properties

2.1. 9-Point stencil equations and the corresponding
local truncation error

Let us consider a 2-D bounded domain and a Cartesian
rectangular mesh with a mesh size h where h is the size of
the mesh along the x� axis, byh is the size of the mesh
along the y� axis (by is the aspect ratio of the mesh). To
simplify derivations, below we consider regular rectangular
domains with irregular interfaces between different materi-
als. However, irregular domains can be also considered with
OLTEM; see [42–44]. Here we will develop 9-point uniform
stencils that provide the optimal second order of accuracy.
We should mention that the same structure of stencils for
homogeneous and heterogeneous materials is used (the dif-
ference between homogeneous and heterogeneous materials
is in the values of the stencil coefficients only). The spatial
locations of the 8 grid points that are close to the central
grid point with the coordinates x5, y5 and contribute to the
9-point stencil for this central grid point are shown in
Figure 1. For convenience, the local numeration of the grid
points from 1 to 9 is used in Figure 1 as well as in the deri-
vations below. The interface in Figure 1b divides the 9-point
uniform stencil into two parts with different material prop-
erties. In order to impose the interface conditions at the
interface, we select a small number of interface points as fol-
lows. First we select one point at the interface with the coor-
dinates xG, 1 and yG, 1: This point can be selected as the
shortest distance from the central grid point of the 9-point
stencil to the interface. Then, we additionally select n

Figure 1. The spatial locations of the degrees of freedom up and vp (p ¼ 1, 2, :::, 9) that contribute to the 9-point uniform stencil for the internal degrees of freedom
u5 and v5 for homogeneous material without interface (a) and for heterogeneous material with interface (b).
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interface points to the left and to the right from the point with the coordinates xG, 1 and yG, 1 at the same distances �h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxG, iþ1 � xG, iÞ2 þ ðyG, iþ1 � yG, iÞ2

q
(i ¼ 1, 2, :::, 2n) from each other; e.g., see Figure 1b for 9-point stencils. The numerical

experiments show that small distances �h ¼ h=5 yield accurate results. The total number of selected interface points is NG ¼
2nþ 1 where NG ¼ 5 is used for the 9-point stencils developed below.

Let us describe the coordinates of the grid points of the 9-point uniform stencils (see Figure 1) with respect to their cen-
tral point ðx5, y5Þ as follows:

xp ¼ x5 þ rx, ph ¼ x5 þ ði� 2Þh, yp ¼ y5 þ ry, pbyh ¼ y5 þ ðj� 2Þbyh, (9)

where the coefficients rx, p, ry, p are:

rx, p ¼ ði� 2Þ, ry, p ¼ ðj� 2Þ, (10)

and p ¼ 3ðj� 1Þ þ i with i, j ¼ 1, 2, 3:
To describe the coordinates of the NG points on the interface (see Figure 1b) we introduce 2NG coefficients dx, p and dy, p

(p ¼ 1, 2, :::,NG) as follows (see also Figure 1b):

xG,m ¼ x5 þ dx,mh, yG,m ¼ y5 þ dy,mbyh, m ¼ 1, 2, :::,NG: (11)

Remark 2. Some interface points Gm (m ¼ 1, 2, :::,NG) can be located slightly outside the 9-point cell. The derivations pre-
sented below are also valid for these cases.

The stencil equations, Eq. (6), for heterogeneous materials with the 9-point uniform stencil for the grid point ðx5, y5Þ
(see Figure 1) will be assumed in the following form:

h2
�X9

p¼1

mj, p ap
d2u�, nump

dt2
þ ð1� apÞ

d2u��, nump

dt2

� �
þ
X9
p¼1

�mj, p ap
d2v�, nump

dt2
þ ð1� apÞ

d2v��, nump

dt2

� ��

þ
X9
p¼1

kj, p apu
�, num
p þ ð1� apÞu��, nump

h i
þ
X9
p¼1

�kj, p apv
�, num
p þ ð1� apÞv��, nump

h i
¼ �f j, 5, j ¼ 1, 2,

(12)

where �f j, 5 ¼ 0 in the case of zero body forces f lx ¼ f ly ¼ 0 in Eq. (1), the unknown coefficients mj, p, �mj, p, kj, p and �kj, p
(p ¼ 1, 2, :::, 9) are to be determined from the minimization of the local truncation error, k1, 5 ¼ 1, �k1, 5 ¼ 0 for j¼ 1 and
k2, 5 ¼ 0, �k2, 5 ¼ 1 for j¼ 2 (in this case the stencil coefficients for the two stencils with j¼ 1 and j¼ 2 are linearly independ-
ent; see also Remark 3 below), the coefficients ap ¼ 1 if the grid point up belongs to material � or ap ¼ 0 if the grid point
up belongs to another material �� (i.e., only two variables u�, nump , v�, nump or u��, nump , v��, nump are included into Eq. (12) for

each grid point; e.g., see Figure 1b with a1 ¼ a2 ¼ a3 ¼ a5 ¼ a6 ¼ 1 and a4 ¼ a7 ¼ a8 ¼ a9 ¼ 0).

Remark 3. Only 35 out of the 36 coefficients mj, p, �mj, p, kj, p, �kj, p (p ¼ 1, 2, :::, 9) in Eq. (12) for each stencil can be consid-
ered as unknown coefficients. This can be explained as follows. In the case of zero body forces �f j, 5 ¼ 0, Eq. (12) can be

rescaled by the division of the left- and right-hand sides of Eq. (12) by any scalar; i.e., one of the coefficients can be selected
as unity and there will be only 35 unknown rescaled coefficients. The case of nonzero body forces �f j, 5 6¼ 0 can be similarly

treated because the term �f j, 5 is a linear function of the stencil coefficients; see below. For convenience, we will scale the

stencil coefficients in such a way that k1, 5 is k1, 5 ¼ 1 for the first stencil. Moreover, similar to the finite element stencils we
select �k1, 5 ¼ 0:

Remark 4. Usually, stencil equations similar to Eq. (12) include the coefficient h2 in the denominator in order to express
the second space derivatives in the elastodynamics equations, Eq. (1). However, for convenience, the stencil equations, Eq.
(12), are multiplied by h2 in order to write down them without 1

h2 : Therefore, the expressions for the local truncation error
used in the article are also multiplied by h2.

The local truncation error e follows from Eq. (12) by the replacement of the numerical solution u�, nump , u��, nump , v�, nump

and v��, nump by the exact solution u�p, u
��
p , v�p and v��p :

ej ¼ h2
�X9

p¼1

mj, p ap
@2u�p
@t2

þ ð1� apÞ
@2u��p
@t2

� �
þ
X9
p¼1

�mj, p ap
@2v�p
@t2

þ ð1� apÞ
@2v��p
@t2

� ��

þ
X9
p¼1

kj, p apu
�
p þ ð1� apÞu��p

h i
þ
X9
p¼1

�kj, p apv
�
p þ ð1� apÞv��p

h i
� �f j, 5, j ¼ 1, 2:

(13)
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One of the ideas of the new approach is to include the interface conditions for the exact solution at a small number of
the interface points into Eq. (13) for the local truncation error as follows:

ej ¼ h2
�X9

p¼1

mj, p ap
@2u�p
@t2

þ ð1� apÞ
@2u��p
@t2

� �
þ
X9
p¼1

�mj, p ap
@2v�p
@t2

þ ð1� apÞ
@2v��p
@t2

� ��

þ
X9
p¼1

kj, p apu
�
p þ ð1� apÞu��p

h i
þ
X9
p¼1

�kj, p apv
�
p þ ð1� apÞv��p

h i

þ
XNG

m¼1

q1,mðu�G,m � u��G,mÞ þ
XNG

m¼1

q2,mðv�G,m � v��G,mÞ þ
XNG

m¼1

hq3,mðt�xðG,mÞ � t��xðG,mÞÞ þ
XNG

m¼1

hq4,mðt�yðG,mÞ � t��yðG,mÞÞ
" #

��f j, 5, j ¼ 1, 2,

(14)

with

t�xðG,mÞ ¼ nx,m ðk� þ 2l�Þ
@u�G,m
@x

þ k�
@v�G,m
@y

" #
þ ny,ml�

@u�G,m
@y

þ @v�G,m
@x

 !
,

t��xðG,mÞ ¼ nx,m ðk�� þ 2l��Þ
@u��G,m
@x

þ k��
@v��G,m
@y

" #
þ ny,ml��

@u�G,m
@y

þ @v��G,m
@x

 !
,

t�yðG,mÞ ¼ ny,m ðk� þ 2l�Þ
@v�G,m
@y

þ k�
@u�G,m
@x

" #
þ nx,ml�

@u�G,m
@y

þ @v�G,m
@x

 !
,

t��yðG,mÞ ¼ ny,m ðk�� þ 2l��Þ
@v��G,m
@y

þ k��
@u��G,m
@x

" #
þ nx,ml��

@u��G,m
@y

þ @v��G,m
@x

 !
,

(15)

where the expressions in parenthesis after q1,m, q2,m, q3,m and q4,m in the end of Eq. (14) are the interface conditions at the
selected NG interface points and are equal to zero (see Eqs. 3–5), the coefficients q1,m, q2,m, q3,m and q4,m (m ¼ 1, 2, :::,NG)
will be used for the minimization of the local truncation error in Eq. (14) (these coefficients can be also considered as
Lagrange multipliers for the interface conditions), nx,m and ny,m in Eq. (15) are the x- and y-components of the unit normal
vectors at the selected NG interface points (e.g., see Figure 1b). Due to the interface conditions (Eqs. 3 and 4), the expres-
sions in Eqs. (13) and (14) yield the same local truncation error ej. The addition of the interface conditions at NG ¼ 5
points in Eq. (14) with the coefficients q1,m, q2,m, q3,m and q4,m (m ¼ 1, 2, :::,NG) allows us to get the second order of accur-
acy of OLTEM for general geometry of interfaces; see below.

Remark 5. In Eq. (14) we consider two local truncation errors for the first j¼ 1 and second j¼ 2 stencils. The coefficients
q1,m, q2,m, q3,m and q4,m (m ¼ 1, 2, :::,NG) are different for these two stencils. However, in order to simplify the notations
we omit index j for the coefficients q1,m, q2,m, q3,m and q4,m:

2.2. The modification of the local truncation error using the elastodynamics equations as well as the calculation of
the loading term �f j, 5

Here we show that using the elastodynamics equations, Eq. (1), we can exclude the second order time derivatives
@2u�p
@t2 ,

@2u��p
@t2 ,

@2v�p
@t2 ,

@2v��p
@t2 in the expression for the local truncation error in Eq. (14) as well as we can define the loading term

�f j, 5: According to Eq. (1), for the exact solution at the grid points and at the interface points we can write down:

@2u�

@t2
¼ �u� þ 1

q�
f �x with �u� ¼ l�

q�
r2u� þ ðl� þ k�Þ

q�
@2u�

@x2
þ @2v�

@x@y

 !
, (16)

@2v�

@t2
¼ �v� þ 1

q�
f �y with �v� ¼ l�

q�
r2v� þ ðl� þ k�Þ

q�
@2v�

@y2
þ @2u�

@x@y

 !
, (17)

@2u��

@t2
¼ �u�� þ 1

q��
f ��x with �u�� ¼ l��

q��
r2u�� þ ðl�� þ k��Þ

q��
@2u��

@x2
þ @2v��

@x@y

 !
, (18)
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@2v��

@t2
¼ �v�� þ 1

q��
f ��y with �v�� ¼ l��

q��
r2v�� þ ðl�� þ k��Þ

q��
@2v��

@y2
þ @2u��

@x@y

 !
, (19)

Inserting Eqs. (16)–(19) into Eq. (14) we will get:

ej ¼ h2
�X9

p¼1

mj, p ap�u
�
p þ ð1� apÞ�u��

p

h i
þ
X9
p¼1

�mj, p ap�v
�
p þ ð1� apÞ�v��p

h i�

þ
X9
p¼1

kj, p apu
�
p þ ð1� apÞu��p

h i
þ
X9
p¼1

�kj, p apv
�
p þ ð1� apÞv��p

h i

þ
XNG

m¼1

q1,mðu�G,m � u��G,mÞ þ
XNG

m¼1

q2,mðv�G,m � v��G,mÞ þ
XNG

m¼1

hq3,mðt�xðG,mÞ � t��xðG,mÞÞ þ
XNG

m¼1

hq4,mðt�yðG,mÞ � t��yðG,mÞÞ
" #

þefj , j ¼ 1, 2,

(20)

where in Eq. (20) we moved all terms with the body forces to the term efj as follows:

efj ¼ ��f j, 5 þ h2
�X9

p¼1

mj, p ap
f �p, x
q�

þ ð1� apÞ
f ��p, x
q��

" #
þ
X9
p¼1

�mj, p ap
f �p, y
q�

þ ð1� apÞ
f ��p, y
q��

" #�
, j ¼ 1, 2: (21)

Here, f �ð��Þp, x ¼ f �ð��Þx ðxp, yp, tÞ and f �ð��Þp, y ¼ f �ð��Þy ðxp, yp, tÞ with xp and yp given by Eq. (9). Equating to zero efj ¼ 0, we can

define the load term �f j, 5 due to the body forces in the stencil equations:

�f j, 5 ¼ h2
�X9

p¼1

mj, p ap
f �p, x
q�

þ ð1� apÞ
f ��p, x
q��

" #
þ
X9
p¼1

�mj, p ap
f �p, y
q�

þ ð1� apÞ
f ��p, y
q��

" #�
, j ¼ 1, 2, (22)

as well as we will get that the local truncation errors ej is independent of the body forces. As can be seen from Eq. (22), the
load term �f j, 5 depends on the stencil coefficients mj, p, �mj, p (p ¼ 1, 2, :::, 9) that should be first calculated as described in the

next Section 2.3. Then, the load term �f j, 5 is calculated according to Eq. (22).

Remark 6. It is interesting to mention that in our previous papers on OLTEM for the time-dependent PDEs (e.g., see [44,
46, 48, 51]), the load term �f j, 5 in the stencil equations is calculated in terms of a Taylor series expansion of the loading

(source) term of the corresponding PDEs. This leads to a long expression for �f j, 5 with the high-order spatial derivatives.

Here, we have found that for time-dependent PDEs we can use another procedure for OLTEM without the use of a Taylor
series expansion. We can obtain a much simpler expression for the load term (see Eq. 22) that also requires smaller compu-
tation time.

2.3. The calculation of the stencil coefficients

The calculation of the stencil coefficients is based on the minimization of the order and the leading terms in a Taylor
series expansion of the local truncation error of the stencil equations. In order to represent the local truncation error ej
as a Taylor series, let us expand the exact solution at the grid points and the selected NG interface points in Eq. (20)
into a Taylor series at small h � 1 in the vicinity of the central grid point with the coordinates x5 and y5 (see Figure 1)
as follows:

w ¼ w5 þ @w5

@x
cx, jh
� 	þ @w5

@y
cy, jbyh
� 	þ @2w5

@x2
cx, jh
� 	2

2!

þ @2w5

@y2
cy, jbyh
� 	2

2!
þ 2

@2w5

@x@y

cx, jh
� 	

cy, jbyh
� 	
2!

þ ::::

(23)

In Eq. (23) the function w is u�j , u
��
j , v�j , v

��
j with cx, j ¼ rx, j, cy, j ¼ ry, j (j ¼ 1, 2, :::, 9) as well as the function w is u�G, j, uG,

j��,
@u�G, j
@x ,

@u��G, j
@x ,

@u�G, j
@y ,

@u��G, j
@y , v�G, j, v

��
G, j,

@v�G, j
@x ,

@v��G, j
@x ,

@v�G, j
@y ,

@v��G, j
@y with cx, j ¼ dx, j, cy, j ¼ dy, j (j ¼ 1, 2, :::, 5). Inserting Eq. (23) into

Eq. (20) (with efj ¼ 0), we will get the following Taylor series of the local truncation error in space ej:
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ej ¼ bj, 1u�5 þ bj, 2u��5 þ bj, 3v�5 þ bj, 4v��5 þ h

�
bj, 5

@u�5
@x

þ bj, 6
@u��5
@x

þ bj, 7
@v�5
@x

þ bj, 8
@v��5
@x

þ bj, 9
@u�5
@y

þ b10
@u��5
@y

þ bj, 11
@v�5
@y

þ bj, 12
@v��5
@y

�

þh2
�
bj, 13

@2u�5
@x2

þ bj, 14
@2u��5
@x2

þ bj, 15
@2v�5
@x2

þ bj, 16
@2v��5
@x2

þ bj, 17
@2u�5
@x@y

þ bj, 18
@2u��5
@x@y

þbj, 19
@2v�5
@x@y

þ bj, 20
@2v��5
@x@y

þ bj, 21
@2u�5
@y2

þ bj, 22
@2u��5
@y2

þ bj, 23
@2v�5
@y2

þ bj, 24
@2v��5
@y2

�

þh3
�
bj, 25

@3u�5
@x3

þ bj, 26
@3u��5
@x3

þ bj, 27
@3v�5
@x3

þ bj, 28
@3v��5
@x3

þ bj, 29
@3u�5
@x2@y

þþbj, 30
@3u��5
@x2@y

þ bj, 31
@3v�5
@x2@y

þþbj, 32
@3v��5
@x2@y

þbj, 33
@3u�5
@x@y2

þ bj, 34
@3u��5
@x@y2

þ bj, 35
@3v�5
@x@y2

þ bj, 36
@3v��5
@x@y2

þ bj, 37
@3u�5
@y3

þ bj, 38
@3u��5
@y3

þ bj, 39
@3v�5
@y3

þ bj, 40
@3v��5
@y3

�

þh4
�
bj, 41

@4u�5
@x4

þ :::þ bj, 60
@4v��5
@y4

�
þ h5

�
bj, 61

@5u�5
@x5

þ :::þ bj, 84
@5v��5
@y5

�
þ h6

�
bj, 85

@6u�5
@x6

þ :::þ bj, 112
@6u��5
@y6

�
þ Oðh7Þ, j ¼ 1, 2

(24)

where the coefficients bj, p (j¼ 1, 2, p ¼ 1, 2, :::, 112) are expressed in terms of the coefficients mj, i, �mj, i, kj, i, �kj, i
(i ¼ 1, 2, :::, 9) and q1,m, q2,m, q3,m, q4,m (m ¼ 1, 2, :::, 5); see Appendix A and B.

Below we first show the derivation of the stencil coefficients for the heterogeneous stencil that is divided by the interface
and includes the grid points belonging to different materials. Then, we show the simplification of the general approach to
the case of the homogeneous stencil with the grid points belonging to the same material and no interfaces.

2.3.1. 9-Point stencils for heterogeneous materials with an irregular interface
The formulas presented below can be used for the first j¼ 1 and second j¼ 2 stencils (they should be separately considered
for j¼ 1 and j¼ 2). In order to minimize the order of the local truncation error ej in Eq. (24), we will zero the first 24 coef-
ficients bj, p in Eq. (24) up to the second order with respect to h; i.e.,

bj, p ¼ 0, p ¼ 1, 2, :::, 24: (25)

Then, in order to have a sufficient number of equations for the calculation of the 56 stencil coefficients of each stencil
including mj, i, �mj, i, kj, i, �kj, i (i ¼ 1, 2, :::, 9) and q1,m, q2,m, q3,m, q4,m (m ¼ 1, 2, :::, 5), we use the least square method for the
minimization of coefficients bj, p related to the third, fourth, fifth and sixth orders of the local truncation error with the fol-
lowing residual Rj:

Rj ¼
X40
p¼25

b2j, p þ h1
X60
p¼41

b2j, p þ h2
X84
p¼61

b2j, p þ h3
X112
p¼85

b2j, p, (26)

where h1, h2 and h3 are the weighting factors to be selected (e.g., the numerical experiments show that h1 ¼ h2 ¼ h3 ¼ 0:1
yield accurate results). In order to minimize the residual Rj with the constraints given by Eq. (25), we can form a new
residual �Rj with the Lagrange multipliers kl:

�Rj ¼
X24
l¼1

klbj, l þ
X40
p¼25

b2j, p þ h1
X60
p¼41

b2j, p þ h2
X84
p¼61

b2j, p þ h3
X112
p¼85

b2j, p: (27)

The residual �Rj is a quadratic function of the stencil coefficients mj, i, �mj, i, kj, i, �kj, i (i ¼ 1, 2, :::, 9) and

q1,m, q2,m, q3,m, q4,m (m ¼ 1, 2, :::, 5), and a linear function of the Lagrange multipliers kl; i.e., �Rj ¼
�Rjðmj, i, �mj, i, kj, i, �kj, i, qp,m, klÞ (p ¼ 1, 2, :::, 4). In order to minimize the residual �Rj ¼ �Rjðmj, i, �mj, i, kj, i,�kj, i, qp,m, klÞ, the follow-
ing equations based on the least square method for the residual �Rj can be written down:

@�Rj

@mj, i
¼ 0,

@�Rj

@ �mj, i
¼ 0,

@�Rj

@kj, i
¼ 0,

@�Rj

@�kj, i
¼ 0,

@�Rj

@q1,m
¼ 0,

@�Rj

@q2,m
¼ 0,

@�Rj

@q3,m
¼ 0,

@�Rj

@q4,m
¼ 0,

@�Rj

@kl
¼ 0,

i ¼ 1, 2, :::, 9, m ¼ 1, 2, :::, 5, l ¼ 1, 2, :::, 24,

(28)

where equations @�R1
@k1, 5

¼ @�R1

@�k1, 5
¼ 0 should be replaced by k1, 5 ¼ 1 and �k1, 5 ¼ 0 for the first stencil with j¼ 1 as well as @�R2

@k2, 5
¼

@�R2

@�k2, 5
¼ 0 should be replaced by k2, 5 ¼ 0 and �k2, 5 ¼ 1 for the second stencil with j¼ 2; see Remark 3. Eq. (28) forms a system

of 80 linear algebraic equations with respect to 56 unknown coefficients mj, i, �mj, i, kj, i, �kj, i (i ¼ 1, 2, :::, 9) and
q1,m, q2,m, q3,m, q4,m (m ¼ 1, 2, :::, 5) as well as 24 Lagrange multipliers kl (l ¼ 1, 2, :::, 24). Solving these linear algebraic
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equations numerically, we can find the coefficients
mj, i, �mj, i, kj, i, �kj, i (i ¼ 1, 2, :::, 9) for the 9-point uniform
stencils as well as q1,m, q2,m, q3,m, q4,m (m ¼ 1, 2, :::, 5). As
can be seen from Eq. (28), the interface conditions that
introduce the additional terms in the expressions for the
coefficients bj, p (see the terms with the q1,m, q2,m, q3,m, q4,m
coefficients in Appendix A) affect the calculation of the
stencil coefficients mj, i, �mj, i, kj, i, �kj, i (i ¼ 1, 2, :::, 9) through
the coefficients bj, p: We should also note that similar to the
imposition of the constraint k1, 5 ¼ 1, we can impose the
constraint for any stencils coefficients (e.g., for the diagonal
coefficient m1, 5 if it is very small).

Remark 7. To estimate the computational costs for the solu-
tion of 80 linear algebraic equations formed by Eq. (28) for
the 9-point stencils, we solved 103 such systems with the gen-
eral MATLAB solver on a desktop computer (Processor: Intel
(R) Core(TN) i9-9900 CPU @3.10Hz 3.10HZ). The computa-
tion “wall” time was T ¼ 2:232s for 103 systems or the average
time for one system was 0:002232s for the 9-point stencils.
Because the coefficients mj, i, �mj, i, kj, i, �kj, i (i ¼ 1, 2, :::, 9) are
independently calculated for different grid points, the compu-
tation time of their calculation for different grid points can be
significantly reduced on modern parallel computers. This
means that for large global systems of semi-discrete equations,
the computation time for the calculation of the coefficients
mj, i, �mj, i, kj, i, �kj, i (i ¼ 1, 2, :::, 9) is very small compared to
that for the solution of the global system of semi-discrete
equations. We should mention that the coefficients
q1,m, q2,m, q3,m, q4,m as well as the Lagrange multipliers kl in
the local system of equations, Eq. (28), are not used in the glo-
bal system of semi-discrete equations at all.

Remark 8. It is interesting to mention that the stencil coef-
ficients can be also derived using a Taylor series expansion
in the vicinity of the interface point with the coordinates xG
and yG in Eqs. (23) and (24) instead of the central grid point
with the coordinates x5 and y5.

2.3.2. Homogeneous materials (no interface)
For homogeneous materials all aj (j ¼ 1, 2, :::, 9) coefficients
are aj ¼ 1 (see Eq. 12 if we consider material �) as well as
all q1, j ¼ q2, j ¼ q3, j ¼ q4, j ¼ 0 (j ¼ 1, 2, :::, 5) coefficients are
zero. The case of material �� can be similarly treated. For
material � the local truncation error, Eq. (24), does not
include the terms with symbol ��; i.e., the corresponding
terms b2i ¼ 0 (i ¼ , 1, 2, :::, 56) in Eq. (24). Then, the local
system of equations, Eq. (28), reduces to the following 48
algebraic equations for the 36 stencil coefficients
mj, i, �mj, i, kj, i, �kj, i (i ¼ 1, 2, :::, 9) and 12 Lagrange multipliers
k2l�1 (l ¼ 1, 2, :::, 12):

@�Rj

@mj, i
¼ 0,

@�Rj

@ �mj, i
¼ 0,

@�Rj

@kj, i
¼ 0,

@�Rj

@�kj, i
¼ 0,

@�Rj

@k2l�1
¼ 0, i ¼ 1, 2, :::, 9, l ¼ 1, 2, :::, 12,

(29)

where similar to Section 2.3.1, equations @�R1
@k1, 5

¼ @�R1

@�k1, 5
¼ 0

should be replaced by k1, 5 ¼ 1 and �k1, 5 ¼ 0 for the first

stencil with j¼ 1 as well as @�R2
@k2, 5

¼ @�R2

@�k2, 5
¼ 0 should be

replaced by k2, 5 ¼ 0 and �k2, 5 ¼ 1 for the second stencil with
j¼ 2; see Remark 3. We should mention that the explicit
values of the stencil coefficients for homogeneous materials
with Poisson ratio � ¼ 0:3 are given in our paper [46]. The
stencil coefficients of OLTEM for homogeneous materials
provide the fourth order of the local truncation error, Eq.
(24); i.e., the order of the local truncation error cannot
exceed four for any 9-point uniform stencils independent of
the method used for their derivation (the finite element
method, the finite volume method, the finite difference
method, or any other method). The fourth order of the local
truncation error corresponds to the second order of accur-
acy for the global numerical solution (e.g., see our paper
[46]) and is the same as that for linear finite elements.
These results are different from the application of OLTEM
to the scalar wave equation for which at the same 9-point
stencils the accuracy was improved by two orders compared
to linear finite elements; see [42].

As can be seen, the presented procedure provides the
third order of the local truncation error for the 9-point uni-
form stencils with the general geometry of the interface. The
9-point uniform stencils of OLTEM for homogeneous mate-
rials (without interface) provide the fourth order of the local
truncation error. This leads to the second order of accuracy
of global solutions; see the numerical examples below.
Moreover, due to the minimization of the leading high-
order terms bj, p of the local truncation error with Eqs. (28)
and (29), at the same numbers of degrees of freedom and at
the engineering accuracy, OLTEM with irregular interfaces
yields more accurate results than those obtained by high-
order finite elements (up to the third order) with much
wider stencils; see the numerical examples below.

The global system of semi-discrete equations includes the
9-point stencils for homogeneous materials without interfa-
ces and the 9-point stencils for heterogeneous materials with
interfaces between different materials (see Figure 1) for all
internal grid points located inside the domain. OLTEM does
not use the unknowns at the interfaces and the global sys-
tem of semi-discrete equations has the same structures of
the global matrices for homogeneous and heterogeneous
materials (see Eq. 12), the difference is only in the values of
the stencil coefficients mj, i, �mj, i, kj, i, �kj, i of the global
matrices).

2.4. The simplification of OLTEM for the diagonal global
mass matrix

OLTEM derived in Sections 2.1� 2.3 leads to the non-diag-
onal global mass matrix because the stencil coefficients
mj, i, �mj, i (i ¼ 1, 2, :::, 9) are generally non-zero. However,
OLTEM can be easily derived for the diagonal global mass
matrix. In this case in Eqs. (12)–(14), (20)–(22) of the previ-
ous Sections we should zero all stencil coefficients mj, i ¼
�mj, i ¼ 0 (i ¼ 1, 2, :::, 9) except m1, 5 6¼ 0 for the first stencil
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with j¼ 1 and �m2, 5 6¼ 0 for the second stencil with j¼ 2 as well as the first two formulas in Eqs. (28) and (29) should be

replaced by @�R1
@m1, 5

¼ 0 and @�R2
@ �m2, 5

¼ 0:

3. OLTEM for post-processing of numerical results: calculations of spatial derivatives

For elastodynamics problems the accurate calculations of stresses is a very important part of a numerical technique because
stresses define many mechanical phenomenon; e.g., crack propagation in fracture mechanics. Therefore, after the displace-
ment calculation, many computer codes include special post-processing procedures for the stress calculation. The stresses
are defined by Hooke’s law in terms of the spatial derivatives of the displacements. Here we show the application of
OLTEM with the compact 9-point stencils (the same as we used in the previous sections; see also Figure 1) for the calcula-
tion of the spatial derivatives of the displacements @unum

@x , @unum
@y , @vnum

@x , @vnum
@y : Using these derivatives, the normal sx, sy and

shear sxy stresses are easily calculated according to Hooke’s law:

sx ¼ ð2lþ kÞ @u
@x

þ l
@v
@y

, sy ¼ ð2lþ kÞ @v
@y

þ l
@u
@x

, sxy ¼ l
@u
@y

þ @v
@x

� �
: (30)

Because the calculations of the four spatial derivatives of the displacements are similar then the procedure for @unum
@x is

shown in detail only.
The compact 9-point stencils for the calculation of @unum

@x at the central stencil grid point with the coordinates x5 and y5
(see Figure 1) can be selected similar to Eq. (12) as follows:

� a5
@u�, num5

@x
þ ð1� a5Þ @u

��, num
5

@x

� �
h

þh2
�X9

p¼1

mp ap
d2u�, nump

dt2
þ ð1� apÞ

d2u��, nump

dt2

� �
þ
X9
p¼1

�mp ap
d2v�, nump

dt2
þ ð1� apÞ

d2v��, nump

dt2

� ��

þ
X9
p¼1

kp apu
�, num
p þ ð1� apÞu��, nump

h i
þ
X9
p¼1

�kp apv
�, num
p þ ð1� apÞv��, nump

h i
¼ �f 5,

(31)

where a5 ¼ 1 if the central stencil point belongs to material � and a5 ¼ 0 if the central stencil point belongs to material ��.
We should mention that in contrast to known post-processing procedures (e.g., used with finite elements), in the proposed
approach the calculation of the spatial derivative @u

@x depends not only on the displacement u but also on the displacement v

as well as their second order time derivatives @2u
@t2 and @2v

@t2 : The local truncation error e for Eq. (31) can be obtained by the
replacement of the numerical solution u�, nump , u��, nump , v�, nump and v��, nump in Eq. (31) by the exact solutions u�p, u

��
p , v�p and

v��p :

e ¼ � a5
@u�5
@x

þ ð1� a5Þ @u
��
5

@x

� �
hþ h2

�X9
p¼1

mp ap
d2u�p
dt2

þ ð1� apÞ
d2u��p
dt2

� �
þ
X9
p¼1

�mp ap
d2v�p
dt2

þ ð1� apÞ
d2v��p
dt2

� ��

þ
X9
p¼1

kp apu
�
p þ ð1� apÞu��p

h i
þ
X9
p¼1

�kp apv
�
p þ ð1� apÞv��p

h i
� �f 5:

(32)

We should note that in Eq. (32) we do not use index “j” for the local truncation error e and for the stencil coefficients
mi, �mi, ki, �ki (i ¼ 1, 2, :::, 9) because for the calculation of @unum

@x we consider just one stencil equation. Similar to Eq. (14) in
Section 2, we will include the interface conditions for the exact solution at the same small number NG of the interface points
into the expression for the local truncation error in Eq. (32) as follows:

e ¼ � a5
@u�5
@x

þ ð1� a5Þ @u
��
5

@x

� �
hþ h2

�X9
p¼1

mp ap
d2u�p
dt2

þ ð1� apÞ
d2u��p
dt2

� �
þ
X9
p¼1

�mp ap
d2v�p
dt2

þ ð1� apÞ
d2v��p
dt2

� ��

þ
X9
p¼1

kp apu
�
p þ ð1� apÞu��p

h i
þ
X9
p¼1

�kp apv
�
p þ ð1� apÞv��p

h i

þ
XNG

m¼1

q1,mðu�G,m � u��G,mÞ þ
XNG

m¼1

q2,mðv�G,m � v��G,mÞ þ
XNG

m¼1

hq3,mðt�xðG,mÞ � t��xðG,mÞÞ þ
XNG

m¼1

hq4,mðt�yðG,mÞ � t��yðG,mÞÞ
" #

� �f 5,

(33)

see the corresponding explanations in Section 2.1. For the accurate calculation of the derivative @unum
@x , we should minimize

the local truncation error e in Eq. (33). Repeating the procedure described in Section 2 we can derive the load term �f 5 that
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is also calculated according to Eq. (22). Then, the local trun-
cation error in space e in Eq. (24) is modified in this case as
follows:

where the coefficients bp (p ¼ 1, 2, :::) are expressed in terms of
the coefficients mi, �mi, ki, �ki (i ¼ 1, 2, :::, 9) and
q1, j, q2, j, q3, j, q4, j (j ¼ 1, 2, :::, 5). The coefficients bp
(p ¼ 1, 2, :::) are exactly the same as those in Eq. (24) and are
given in Appendix A. The difference between Eqs. (24) and (34)

is just in two coefficients before the derivatives @u
�
5

@x and
@u��5
@x :

�b5 ¼ b5 � a5, �b6 ¼ b6 � ð1� a5Þ, (35)

where �b5 and �b6 are the coefficients in Eq. (34). For homo-
geneous materials (without interface), the coefficients q1, j ¼
q2, j ¼ q3, j ¼ q4, j ¼ 0 (j ¼ 1, 2, :::, 5) are zero and the stencils

coefficients mi, �mi, ki, �ki (i ¼ 1, 2, :::, 9) can be found similar
to those in Section 2.3.2 using Eq. (29). The stencil coeffi-
cients of OLTEM for homogeneous materials provide the
fourth order of the local truncation error e. For heteroge-
neous materials with interfaces, the stencil coefficients mi,
�mi, ki, �ki (i ¼ 1, 2, :::, 9) and q1, j, q2, j, q3, j, q4, j (j ¼ 1, 2, :::, 5)
are calculated similar to those in Section 2.3.1 from 80 linear
algebraic equations formed by Eq. (28). In contrast to
Sections 2.3.1–2.3.2, in Eqs. (28) and (29) we do not use the
condition that k1, 5 ¼ 1 and �k1, 5 ¼ 0 for the first stencil with
j¼ 1 and k2, 5 ¼ 0 and �k2, 5 ¼ 1 for the second stencil with
j¼ 2; i.e., we do not modify Eqs. (28) and (29). We also use
Eq. (35) instead of b5 and b6. Due to Eq. (25), the stencil
coefficients for heterogeneous materials provide the 3-rd
order of accuracy for the local truncation error e.

To summarize, for the calculation of the derivative @unum
@x

using OLTEM with the 9-point stencils, we should follow
the following procedure:

� Calculate the stencil coefficients mi, �mi, ki, �ki
(i ¼ 1, 2, . . . , 9) and q1, j, q2, j, q3, j, q4, j (j ¼ 1, 2, . . . , 5)
for each internal grid point as described above in Section
3 for homogeneous (without interfaces and
q1, j ¼ q2, j ¼ q3, j ¼ q4, j ¼ 0) and heterogeneous (with
interfaces) materials.

� Using these stencil coefficients, calculate the right-hand
side �f 5 in Eq. (31) for each internal grid point using
Eq. (22).

� Calculate the derivative ounum
ox from Eq. (31) for each

internal grid point as follows:

@u�, num5

@x
¼ h

�X9
p¼1

mp ap
d2u�, nump

dt2
þ ð1� apÞ

d2u��, nump

dt2

� �

þ
X9
p¼1

�mp ap
d2v�, nump

dt2
þ ð1� apÞ

d2v��, nump

dt2

� ��

þ 1
h

�X9
p¼1

kp apu
�, num
p þ ð1� apÞu��, nump

h i

þ
X9
p¼1

�kp apv
�, num
p þ ð1� apÞv��, nump

h i
� �f 5

�
,

(36)

if the central stencil point belongs to material � (a5 ¼ 1)
and

@u��, num5

@x
¼ h

�X9
p¼1

mp ap
d2u�, nump

dt2
þ ð1� apÞ

d2u��, nump

dt2

� �

þ
X9
p¼1

�mp ap
d2v�, nump

dt2
þ ð1� apÞ

d2v��, nump

dt2

� ��

þ 1
h

�X9
p¼1

kp apu
�, num
p þ ð1� apÞu��, nump

h i

þ
X9
p¼1

�kp apv
�, num
p þ ð1� apÞv��, nump

h i
� �f 5

�
,

(37)

if the central stencil point belongs to material �� (a5 ¼ 0).
The calculation of the derivatives @unum

@y , @vnum
@x and @vnum

@y

can be done similar to the calculation of the derivative @unum
@x

as described above.

Remark 9. If any of the grid points included into the stencil
is located on the boundary with the Dirichlet boundary con-
ditions then for this point p in Eqs. (36) and (37) the exact
values of u�p or u��p , v�p or v��p defined by the boundary con-

ditions are used. In the case of the Neumann boundary con-
ditions, the procedure can be modified similar to that in our

e ¼ b1u
�
5 þ b2u

��
5 þ b3v

�
5 þ b4v

��
5 þ h

�
ðb5 � a5Þ @u

�
5

@x
þ ðb6 � ð1� a5ÞÞ @u

��
5

@x
þ b7

@v�5
@x

þ b8
@v��5
@x

þ b9
@u�5
@y

þ b10
@u��5
@y

þ b11
@v�5
@y

þ b12
@v��5
@y

�

þ h2
�
b13

@2u�5
@x2

þ b14
@2u��5
@x2

þ b15
@2v�5
@x2

þ b16
@2v��5
@x2

þ b17
@2u�5
@x@y

þ b18
@2u��5
@x@y

þ b19
@2v�5
@x@y

þ b20
@2v��5
@x@y

þ b21
@2u�5
@y2

þ b22
@2u��5
@y2

þ b23
@2v�5
@y2

þ b24
@2v��5
@y2

�
þ :::

(34)
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paper [55] for OLTEM with irregular boundaries and the
Neumann boundary conditions.

Remark 10. The described post-processing procedure can
be equally applied to OLTEM with the diagonal mass
matrix.

It is interesting to note that for homogeneous materials
the post-processing procedure described above can be also
used for the calculation of the spatial derivatives without the
application of the partial differential equation as in other
post-processing techniques (e.g., see [52–54] for finite and
isogeometric elements). Let us assume that we can calculate
the derivative @unum

@x at the internal grid point in terms of the
values of the displacement unum at the neighboring grid
points. For simplicity, we will use a uniform Cartesian mesh

and 9 grid points for the calculation of the derivative @unum5
@x at

the central grid point (see Figure 1a) as follows:

�h
@unum5

@x
þ
X9
p¼1

kpu
num
p ¼ 0 (38)

with the following local truncation error:

e ¼ �h
@u5
@x

þ
X9
p¼1

kpup: (39)

Using the procedure described in Section 2.3 without the
use of the elastodynamics equations, Eqs. (16)–(19), and
zeroing the corresponding coefficients bp in the Taylor
expansion of the local truncation error e, we can show that
k6 ¼ 1=2 and k4 ¼ �1=2 (all other ki ¼ 0,
i ¼ 1, 2, 3, 5, 7, 8, 9) in Eq. (38) yield the optimal order of e
in Eq. (39):

e ¼ � h3

6
@3u5
@x3

þ Oðh4Þ: (40)

In this case we have the well-known finite-difference
approximation of the derivative. In contrast to the third
order of the local truncation error in Eq. (40), OLTEM pro-
vides the fourth order of the local truncation error for
homogeneous materials and improves the accuracy of the
spatial derivative of by one order for the same 9-point com-
pact stencils. We should also mention that the approxima-
tion given by Eq. (38) cannot be used for the stencils with
interfaces (as those in Figure 1b).

To summarize, the proposed post-processing procedure
provides the optimal accuracy of the spatial derivatives of
displacements calculated with the help of compact stencils.
It can be developed with or without the use of PDEs.
However, the use of PDEs improves the accuracy of the spa-
tial derivatives for the given stencils. Despite the fact that
we have applied the proposed post-processing technique to
the stencils defined on Cartesian meshes, it can be also used
for non-uniform meshes with the corresponding coefficients
rx, p, ry, p in Eq. (9) (similar to OLTEM developed in our
papers [42, 44, 55] for irregular boundaries). Finally, the
post-processing procedure developed can be independently
used with any known numerical technique (e.g., with finite
elements).

4. Numerical examples

In this section the computational efficiency of OLTEM with
the 9-point stencils developed for the solution of the 2-D
elastodynamics equations with discontinuous coefficients
will be demonstrated and compared with conventional linear
and high order (up to 5th order, the highest order in
“COMSOL”) triangular finite elements. For finite element
calculations, the commercial finite element software
“COMSOL” with isoparametric finite elements is used. In
order to compare the accuracy of OLTEM with FEM, the

following errors are considered below. The relative error ejw
for the function w at the jth grid point is defined as:

ejw ¼ jwnum
j � wexact

j j
wexact
max

, j ¼ 1, 2, :::,N: (41)

The maximum relative error emax
w for the function w is

defined as:

emax
w ¼ max

j
ejw, j ¼ 1, 2, :::,N: (42)

In Eqs. (41) and (42) the superscripts “num” and “exact”
correspond to the numerical and exact solutions, N is the
total number of the grid points used in calculations, wexact

max is
the maximum absolute value of the exact solution over the
entire domain for the function w. We also use the relative
error in the L2 norm for finite elements (e.g., see [56]) and
the relative error in the l2 norm (e.g., see [57]) for OLTEM:

el
2

w ¼
�
dx dy

XNx

i¼0

XNy

j¼0

wnumðxi , yj , tÞ � wexactðxi , yj , tÞ
� 	2�1

2
�

jwexactjL2 ,
(43)

where Nx and Ny are the numbers of Cartesian grid points
along x- and y-axes, xi and yj are the coordinates of
Cartesian grid points, respectively. As function w in Eqs.
(41)–(43) we consider the displacements u and v, the veloc-
ities _u ¼ du

dt and _v ¼ dv
dt , as well as the stresses sx, sy and sxy.

4.1. Test problem: a square plate with a circular
interface

Let us consider a square plate ABCD with dimensions
2� 2; see Figure 2. A circular interface with the radius
r0 ¼ p=8 centered at the origin O(0, 0) divides the
domain X into two subdomains: the circular subdomain
XI and the remaining subdomain XII. For the circular
interface, the components of the unit normal vector used
in the interface conditions equal nx ¼ x

r0
and ny ¼ y

r0
for

any interface point with the coordinate (x, y). Using the
method of manufactured solutions, the following exact
solution is selected:

uIðx, y, tÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p Þa
kI

sin ðxtÞ,

vIðx, y, tÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p Þb
kI

sin ðxtÞ,

8>><
>>: in XI
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uIIðx, y, tÞ ¼
� ð ffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 1
p Þa

kII
þ
�

1
kI

� 1
kII

�� ffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ 1

q �a�
sin ðxtÞ,

vIIðx, y, tÞ ¼
� ð ffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 1
p Þb

kII
þ
�

1
kI

� 1
kII

�� ffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ 1

q �b�
sin ðxtÞ,

in XII

8>>><
>>>:

(44)

where a¼ 7, b¼ 10, x¼ 5 and r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: The body

forces can be calculated by the substitution of the exact
solution into the elastodynamics equations Eq. (1). Six dif-
ferent combinations of the elastic Lame’s coefficients k and
l are considered: 1) kI ¼ 5, kII ¼ 5

2 , lI ¼ 2, lII ¼ 1; 2) kI ¼
5, kII ¼ 1

2 , lI ¼ 2, lII ¼ 1
5 ; 3) kI ¼ 5, kII ¼ 1

20 , lI ¼ 2, lII ¼
1
50 ; 4) kI ¼ 5

2 , kII ¼ 5, lI ¼ 1, lII ¼ 2; 5) kI ¼ 1
2 , kII ¼

5, lI ¼ 1
5 , lII ¼ 2; 6) kI ¼ 1

20 , kII ¼ 5, lI ¼ 1
50 , lII ¼ 2: They

correspond to the same Poisson’s ratio �I ¼ �II ¼ 5
14 ¼ 0:357

and the following Young’s moduli EI ¼ 38
7 ;

38
7 ;

38
7 ;

38
14 ;

38
70 ;

38
700 , EII ¼ 38

14 ;
38
70 ;

38
700 ;

38
7 ;

38
7 ;

38
7 with the contrast for Young’s

moduli Ec ¼ EI
EII

¼ 2; 10; 100; 1
2 ;

1
10 ;

1
100 : The density is

selected to be qI ¼ 1 and qII ¼ 4: The exact solution given
by Eqs. (44) with the selected material properties meets the
interface conditions, Eqs. (3) and (4). The final observation
time is selected to be T¼ 0.2.

The test problem is solved by OLTEM on square (by ¼ 1)
Cartesian meshes as well as by conventional linear and

high-order (up to the fifth order which is the maximum
order implemented in COMSOL) isoparametric finite ele-
ments; see Figure 2b for an example of an unfitted
Cartesian mesh used with OLTEM and see Figure 2c for an
example of a conformed triangular finite element mesh gen-
erated by COMSOL (the numerical results on triangular and
quadrilateral finite element meshes for the problems consid-
ered below are similar at the same number of degrees of
freedom). The Dirichlet boundary conditions are imposed
along the edges of the square plate according to the exact
solution given by Eq. (44).

For the time integration of the semi-discrete equations of
OLTEM with the non-diagonal mass matrix, the implicit
trapezoidal rule is used. For the time integration of the
semi-discrete equations of OLTEM with the diagonal mass
matrix we use the explicit central-difference method which
does not require the solution of the global system of alge-
braic equations. For the both time-integration methods,
small time increments at which the error in time is negli-
gible compared to the error in space are used. In this case,
the numerical results shown below present the space-
discretization errors. Because the main unknowns for the
time-integration of the elastodynamics equations are the dis-
placements and velocities, we show the accuracy of these
variables for all numerical results.

Figure 2. A square plate ABCD with a circular interface centered at O(0, 0) with the radius r0 ¼ p=8 (a). Examples of an unfitted square Cartesian mesh for OLTEM
(b), of a conformed triangular finite element mesh (c) generated by COMSOL. The distribution of the relative errors in displacements eu (d) and ev (e) at the final
time T¼ 0.2 obtained by OLTEM with the non-diagonal mass matrix on a square Cartesian mesh of size h¼ 1/6 (the material contrast EI

EII
¼ 2).
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The accuracy (errors) of the numerical results presented
below will be analyzed and compared at the final observa-
tion time T¼ 0.2.

4.2. OLTEM with non-diagonal mass matrix. Test
problem with different material contrasts Ec5 EI

EII

Here, we present the convergence of OLTEM with the
non-diagonal mass matrix for the test problem with hetero-
geneous materials described in Section 4.1. The six combina-
tions of the material properties with the contrast in Young’s
moduli Ec ¼ EI

EII
¼ 2; 10; 100; 12 ;

1
10 ;

1
100 are considered (see

Section 4.1). Figures 3 and 4 show the maximum relative
errors and the relatives errors in the l2 norm for the dis-
placements and velocities at the final time T¼ 0.2 at mesh
refinement in the logarithmic scale. The slopes of the curves
in these figures at the small mesh size h correspond to the
order of convergence of OLTEM. Because the less accurate
x� or y� component of the displacement (velocity) defines

the order of convergence of the displacement (velocity) vec-
tor, the slope of the curves in Figures 3 and 4 is designated
for this component. As can be seen from the presented
results, the order of convergence of OLTEM in the consid-
ered error norms is close to 2 for the displacements and
velocities for the different materials contrasts. These obser-
vations are in agreement with the theoretical results in
Section 2.

4.3. OLTEM with non-diagonal mass matrix. Comparison
with FEM. Test problem with material contrast EI

EII
52

In the all following sections, we analyze OLTEM for the test
problem with the material contrast Ec ¼ EI

EII
¼ 2 in more

detail (similar results can be obtained for other material
contrasts). Figure 2d,e presents the distribution of the rela-
tive errors in displacements eu (d) and ev (e) at the final
time T¼ 0.2 obtained by OLTEM with the non-diagonal
mass matrix on a square Cartesian mesh of size h¼ 1/6. As

Figure 3. The maximum relative errors in displacements emax
u (curve 1) and emax

v (curve 2) as well as the maximum relative errors in velocities emax
_u (curve 3) and

emax
_v (curve 4) at the final time T¼ 0.2 as a function of the mesh size h in the logarithmic scale. The numerical solutions for the test problem with the circular inter-
face are obtained by OLTEM with the non-diagonal mass matrix on square Cartesian meshes (see Figure 2b) with the following material contrasts: EIEII ¼ 2 (a), EIEII ¼ 1

2
(b), EIEII ¼ 10 (c), EIEII ¼ 1

10 (d),
EI
EII
¼ 100 (e) and EI

EII
¼ 1

100 (f).
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can be seen from Figure 2d,e the results obtained by
OLTEM are accurate (the errors are small). In order to com-
pare the accuracy of the numerical solutions obtained by
OLTEM and by conventional finite elements, Figure 5 shows
the maximum relative errors emax

u (a), emax
v (b), and the rela-

tive errors eL
2

u (c), eL
2

v (d) in the L2 norm for the displace-
ments as a function of the number N of degrees of freedom
in the logarithmic scale. As can be seen from Figure 5, at
the same N the numerical results obtained by OLTEM are
much more accurate than those obtained by linear finite ele-
ments; compare curves 1 and 2. At the engineering accuracy
of 0.1% (–3 along the y-axis in Figure 5 corresponds to the
error of 0.1%) for the u displacement in Figure 5c, OLTEM
with the computational costs of linear finite elements
reduces the number N of degrees of freedom by a factor of
greater than 21 compared to that for linear finite elements.
For the other displacements and the other error norms

presented in Figure 5, the reduction in the number N of
degrees of freedom for OLTEM at the engineering accuracy
of 0.1% is even greater. This will lead to a significant reduc-
tion in the computation time for OLTEM compared to lin-
ear finite elements at a given accuracy. Moreover, OLTEM
yields more accurate results for the displacements than those
obtained by quadratic finite elements and by cubic (up to
the accuracy of 0.1%) finite elements at the same number N;
see curve 1 and curves 3,4 in Figure 5. This increase in
accuracy by OLTEM is impressive considering the fact that
higher order finite elements have much wider stencils com-
pared to those for OLTEM (the width of the stencils for
OLTEM corresponds to that for linear finite elements) and
require a much greater computation time. Similar to
Figure 5, the comparison of the numerical results for the
velocities obtained by OLTEM and by linear and high-order
finite elements is shown in Figure 6. Compared to FEM, the

Figure 4. The relative errors in the l2 norm for displacements el
2

u (curve 1) and el
2

v (curve 2) as well as the relative errors in the l2 norm for velocities el
2

_u (curve 3)
and el

2

_v (curve 4) at the final time T¼ 0.2 as a function of the mesh size h in the logarithmic scale. The numerical solutions for the test problem with the circular
interface are obtained by OLTEM with the non-diagonal mass matrix on square Cartesian meshes (see Figure 2b) with the following material contrasts: EI

EII
¼ 2 (a),

EI
EII
¼ 1

2 (b),
EI
EII
¼ 10 (c), EIEII ¼ 1

10 (d),
EI
EII
¼ 100 (e) and EI

EII
¼ 1

100 (f).
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advantages in accuracy of OLTEM for the velocities in
Figure 6 are similar to those in Figure 5 for the displace-
ments; see curve 1 and curves 2,3,4 in Figure 6.

Next, we compare the accuracy of stresses sx, sy and sxy
obtained by OLTEM with the new post-processing proced-
ure described in Section 3 and obtained by linear and
high order finite elements that are shown in Figure 7.
Similar to the displacements and velocities in Figures 5
and 6, the maximum relative errors emax

sx (a), emax
sy (c), emax

sxy

(e) as well as the relative errors in the L2 norm eL
2

sx (b),

eL
2

sy (d) and eL
2

sxy (f) are plotted as a function of the num-

ber N of degrees of freedom. As can be seen from Figure
7, at the same N the stresses obtained by OLTEM are
much more accurate than those obtained by linear finite
elements; compare curves 1 with curves 2. At the engin-
eering accuracy of 0.1%, for the all stresses components
and considered error norms, OLTEM reduces the number
N of degrees of freedom by a factor of greater than 12:5 �
103 compared to that for linear finite elements; compare
curves 1 with curves 2 in Figure 7. This will lead to a
huge reduction in the computation time for OLTEM com-
pared to linear finite elements at a given accuracy.
Moreover, OLTEM yields more accurate results for the
stresses than those obtained by quadratic and cubic finite
elements as well as by the fourth order (up to the accur-
acy of 0.1%) finite elements at the same number N; see
curve 1 and curves 3,4,5 in Figure 5. It is also interesting
to note that due to the new post-processing procedure for
the stress calculations, the difference in accuracy between

OLTEM and FEM is greater for the stresses (see Figure 7)
compared to that for the displacements and velocities (see
Figures 5 and 6). This is very important for the problems
where the accurate calculations of stresses are crucial for
accurate predictions (e.g., simulations of crack
propagation).

In order to study the convergence and stability of the
numerical results obtained by OLTEM in more detail,
Figure 8 presents the curves 1–4 in Figures 3a and 4a at
small changes of the mesh size h. We solve the test problem

on 1001 Cartesian meshes with the mesh sizes hi ¼
h1 þ ðh2�h1Þði�1Þ

1000 where h1 ¼ 1=4 ¼ 0:25, h2 ¼ 1=16 ¼ 0:0625
and i ¼ 1, 2, :::, 1001: For these meshes, two grid lines always
coincide with the left and bottom lines of the square
domain; see Figure 2b. At the small variations of the mesh
size h we have very different locations of the circular inter-
face with respect to the grid points. As can be seen from
Figure 8, the numerical results obtained by OLTEM con-
verge with the decrease in the grid size h. The oscillatory
behavior can be explained by the fact that at small variations
of the mesh size h, there is a discontinuous change in the
location of the grid points with respect to the interface (e.g.,
some grid points that belong to one material for the previ-
ous mesh can belong to another material for the next mesh;
this leads to the discontinuous change of some stencils equa-
tions for the meshes with a small difference in h). It is
important to mention that small oscillations in numerical
convergence curves are typical for many numerical techni-
ques at small variations of h. For example, the change in the

Figure 5. The maximum relative errors in displacements emax
u (a) and emax

v (b) as well as the relative errors in the L2 norm eL
2

u (c) and eL
2

v (d) at the final time T¼ 0.2
as a function of the number N of degrees of freedom in the logarithmic scale. The test problem with the material contrast EI

EII
¼ 2 was solved by OLTEM on unfitted

square Cartesian meshes and by FEM on triangular meshes. Curves 1 and 7 correspond to OLTEM with the non-diagonal and diagonal mass matrices, respectively.
Curves 2,3,4,5,6 correspond to linear, quadratic, cubic, 4-th order and 5-th order finite elements, respectively.
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angles of finite elements at small variations of the element
size h also leads to such oscillations in convergence curves
for finite element techniques.

4.4. OLTEM with diagonal mass matrix. Test problem
with material contrast EI

EII
52

As we mentioned in the beginning of this section, the expli-
cit central difference time-integration method is used for
OLTEM with the diagonal mass matrix. This allows to avoid
the solution of the global system of algebraic equations at
time integration; however, this imposes the restriction on
the size of time increments (it should be smaller than the
stability limit). To study the effect of the size Dt of time
increments on the accuracy of OLTEM, Figure 9 shows the
maximum relative errors for the displacements at the final
time T¼ 0.2 as a function of Dt on an unfitted Cartesian
mesh with 2178 degrees of freedom. The stability limit for
this mesh is close to Dtst � 11:2 � 10�3: For Dt > Dtst , the
accuracy of the results obtained by OLTEM explosively
decreases. It is interesting to mention that the decrease in
the size of time increments below the stability limit Dt <
Dtst does not practically effect the accuracy of the numerical
results obtained by OLTEM; see Figure 9.

Unfortunately, the diagonal mass matrix is not imple-
mented in COMSOL. Therefore, below we compare OLTEM
with the diagonal mass matrix and the numerical results
obtained by OLTEM and FEM with the non-diagonal mass
matrices. Similar to curves 1 and 2 in Figure 9, curves 3 and
4 in Figure 9 show the accuracy of the numerical results for
the displacements obtained by linear triangular finite

elements with the non-diagonal mass matrix and 10466
degrees of freedom. For the selected meshes, OLTEM and
linear finite elements provide approximately the same accur-
acy in space for the displacement u at small Dt (see curves 1
and 3). Curves 3 and 4 also shows that for the accurate
results, the size of time increments used by linear finite ele-
ments with the implicit time-integration method should be
close to the stability limit Dtst � 11:2 � 10�3 for OLTEM
with the diagonal mass matrix and the explicit time-integra-
tion method.

Next, the accuracy of OLTEM with the diagonal mass
matrix and FEM are compared at mesh refinement. As can
be seen from Figures 5 and 6, at the same N the numerical
results for the displacements and velocities obtained by
OLTEM with the diagonal mass matrix are less accurate
than those obtained by OLTEM with the non-diagonal mass
matrix; see curves 1 and 7. This can be explained by the fact
that the 9-point stencils with the diagonal mass matrix
include a smaller number 17 of the stencils coefficients for
the diagonal mass matrix compared to the 36 stencils coeffi-
cients for the non-diagonal mass matrix (see Eq. 12) used
for the minimization of the local truncation error in Eq.
(24). Nevertheless, OLTEM with the diagonal mass matrix
yields more accurate results for the displacements and veloc-
ities than those for linear finite elements; see curves 2 and 7
in Figures 5 and 6.

Let us analyze the accuracy of the stresses obtained by
OLTEM with the diagonal mass matrix and the new post-
processing procedure. Because, the stress calculation does
not include the solution of the global system of algebraic
equations, for post-processing we use 9-point stencils with

Figure 6. The maximum relative errors in velocities emax
_u (a) and emax

_v (b) as well as the relative errors in the L2 norm eL
2

_u (c) and eL
2

_v (d) at the final time T¼ 0.2 as a
function of the number N of degrees of freedom in the logarithmic scale. The test problem with the material contrast EI

EII
¼ 2 was solved by OLTEM with the non-

diagonal mass matrix on unfitted square Cartesian meshes and by FEM on conformed triangular meshes. Curves 1 and 7 correspond to OLTEM with the non-diag-
onal and diagonal mass matrices, respectively. Curves 2,3,4,5,6 correspond to linear, quadratic, cubic, 4-th order and 5-th order finite elements, respectively.
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36 stencil coefficients (see Eq. 31) along with the displace-
ments and accelerations obtained by OLTEM with the diag-
onal mass matrix in basic computations. Similar to the
displacements and velocities, at the same N the numerical
results for the stresses obtained by OLTEM with the diag-
onal mass matrix are less accurate than those obtained by
OLTEM with the non-diagonal mass matrix; see curves 1
and 7 in Figure 7. Nevertheless, at the same N the stresses
obtained by OLTEM with the diagonal mass matrix are
much more accurate than those obtained by linear finite ele-
ments; compare curves 7 with curves 2. At the engineering
accuracy of 0.1%, for the all stress components and the con-
sidered error norms, OLTEM with the diagonal mass matrix
reduces the number N of degrees of freedom by a factor of
greater than 3:1 � 103 compared to that for linear finite ele-
ments; compare curves 7 with curves 2 in Figure 7. This will
lead to a huge reduction in the computation time for
OLTEM compared to linear finite elements at a given accur-
acy. Moreover, OLTEM with the diagonal mass matrix yields
even more accurate results for the stresses than those

obtained by quadratic finite elements as well as by cubic (up
to the accuracy of 0.1%) finite elements at the same number
N; see curve 1 and curves 3,4 in Figure 5. It is also interest-
ing to note that due to the new post-processing procedure
for the stress calculations, the difference in accuracy between
OLTEM and FEM is greater for the stresses (see Figure 7)
compared to that for the displacements and velocities (see
Figures 5 and 6). This is very important for the problems
where the accurate calculations of stresses are crucial for
accurate predictions (e.g., simulations of crack propagation).
We should also mention that in contrast to OLTEM with
the diagonal mass matrix, the finite element results in
Figures 5–7 include the solution of the global system of
algebraic equations that leads to the additional computa-
tional costs.

Similar to Figure 8 for OLTEM with the non-diagonal
mass matrix, Figure 10 shows the convergence and stability
of OLTEM with the diagonal mass matrix on 1001 meshes
with very small variations of the mesh size h (see also the
corresponding text in Section 4.3).

Figure 7. The maximum relative errors in stresses emax
sx (a), emax

sy (c), emax
sxy (e) as well as the relative errors in stresses in the L2 norm eL

2

sx (b), eL
2

sy (d), eL
2

sxy (f) at the final
time T¼ 0.2 as a function of the number N of degrees of freedom in the logarithmic scale. The test problem with the material contrast EI

EII
¼ 2 was solved by OLTEM

on unfitted square Cartesian meshes and by FEM on conformed triangular meshes. Curves 1 and 7 correspond to OLTEM with the non-diagonal and diagonal mass
matrices, respectively. Curves 2,3,4,5,6 correspond to linear, quadratic, cubic, 4-th order and 5-th order finite elements, respectively.
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5. Concluding remarks

OLTEM developed in our paper [51] for the scalar wave
equation with heterogeneous materials is here extended to a
more complex case of a system of the time-dependent PDEs
related to elastodynamics. 9-point stencils (similar to those
for linear finite elements) and unfitted Cartesian meshes for
irregular geometry are used. One of the main ideas of the
proposed approach for heterogeneous materials with interfa-
ces is the addition of the interface conditions at a small
number of interface points to the expression for the local
truncation error of the stencil equations. The calculation of
the unknown stencil coefficients is based on the

minimization of the local truncation error of the stencil
equations and yields the optimal second order of accuracy
of the new technique at a given stencil width. Finally, the
unknown stencil coefficients are numerically calculated from
a small local system of algebraic equations for general geom-
etry of interfaces. OLTEM does not change the width of the
stencil equations for heterogeneous materials; i.e., the size of
the global semi-discrete system of equations is the same for
the elastodynamics equations with constant or discontinuous
coefficients. The increase in the computational costs for the
calculation of the unknown stencil coefficients from the
local system is insignificant compared to the computational
costs for the solution of the global semi-discrete system. The
extension of OLTEM from the scalar wave equation to a sys-
tem of the elastodynamics equations is not trivial due to the
increase in the number of stencil coefficients for elastody-
namics (by a factor of two compared to the scalar wave
equation) and some analytical expressions for the local trun-
cation error that may become intractable. In contrast to our
paper [51] for the scalar wave equation, here we have pro-
posed a new approach for the calculation of the right-hand
side of the stencil equations due to body forces that signifi-
cantly simplifies the analytical derivations of OLTEM for
time-dependent problems. In this article, for the first time
we have also developed OLTEM with the diagonal mass
matrix for time-dependent problems. In contrast to many
known approaches with some ad-hoc procedures for the cal-
culation of the diagonal mass matrix (e.g., “row summation”
and other techniques; see [5, 6, 8]), OLTEM offers a rigor-
ous approach. The calculation of the diagonal mass matrix
in OLTEM is a particular case of the more general non-

Figure 8. The maximum relative errors in displacements emax
u (curve 1 in (a)), emax

v (curve 2 in (a)) and the relative errors in the l2 norm el
2

u (curve 1 in (b)), el
2

v (curve
2 in (b)) as well as the maximum relative errors in velocities emax

_u (curve 1 in (c)), emax
_v (curve 2 in (c)) and the errors in the l2 norm el

2

_u (curve 1 in (d)), el
2

_v (curve 2
in(d)) at the final time T¼ 0.2 as a function of the mesh size h in the logarithmic scale. The test problem with the material contrast EI

EII
¼ 2 was solved by OLTEM

with the non-diagonal mass matrix on 1001 unfitted square Cartesian meshes.

Figure 9. The maximum relative errors in displacements emax
u (curves 1 and 3)

and emax
v (curves 2 and 4) at the final time T¼ 0.2 as a function of the size of

time increments Dt: The numerical solutions for the test problem with the
material contrast of EI

EII
¼ 2 are obtained by OLTEM with the diagonal mass

matrix on a square Cartesian mesh with 2178 degrees of freedom (curves 1 and
2) and by linear triangular finite elements with the non-diagonal mass matrix
and 10466 degrees of freedom (curves 3 and 4).
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diagonal mass matrix when the non-diagonal stencil coeffi-
cients of the mass matrix are assumed to be zero.

Another novelty of the article is the development of a new
post-processing procedure for the accurate calculations of
stresses. The proposed post-processing technique includes the
same compact 9-point stencils as those in basic computations,
the use of the partial differential equations and the solution of
the small local systems of algebraic equations similar to those
used for the calculations of the stencils coefficients in basic
computations. It is also interesting to note that in contrast to
known finite element and other post-processing techniques,
OLTEM uses the accelerations along with the displacements
at the grid points for the stress calculations.

The main advantages of the suggested technique can be
summarized as follows:

� Many difficulties of the existing numerical techniques for
irregular domains (e.g., finite elements, spectral element,
isogeometric elements, the finite volume method, and
many other) are related to complicated mesh generators
for conformed meshes and the poor accuracy of “bad” ele-
ments (e.g., the elements with small angles) especially for
elastodynamics problems. In contrast to these techniques,
OLTEM is based on trivial unfitted Cartesian meshes with
the trivial procedure for the formation of the 9-point sten-
cils for 2-D domains with complex irregular interfaces.

� The new approach has the same width of the stencil equa-
tions and the same structure of the sparse global semi-dis-
crete equations for the elastodynamics equations with
constant and discontinuous coefficients. There are no

unknowns on the interfaces between different materials for
the proposed technique; i.e., complex irregular interfaces
do not affect the structure of the global system of equations
(they affect just the values of the stencils coefficients).

� OLTEM does not require the time consuming numerical
integration for finding the coefficients of the stencil
equations; e.g., as for high-order finite, spectral and iso-
geometric elements. The stencil coefficients are calculated
analytically or numerically (for the general geometry of
interfaces) by the solution of small local systems of linear
algebraic equations. Numerical experiments show that
the solution of these small local systems of algebraic
equations is fast. Moreover, these local systems are inde-
pendent of each other and can be efficiently solved on a
parallel computer.

� The numerical results for an irregular interface show that at
the same number of degrees of freedom, OLTEM with the
non-diagonal mass matrix on unfitted meshes yields even
much more accurate results for the displacements and
velocities than those for linear as well as quadratic and cubic
(with much wider stencils) finite elements with the non-
diagonal mass matrix on conformed meshes. This also
means that at a given accuracy, OLTEM significantly
reduces the computation time compared to that for linear,
quadratic and cubic finite elements. For example, at accur-
acy of 0.1% OLTEM decreases the number of degrees of
freedom by a factor of greater than 21 compared to linear
finite elements with similar stencils and conformedmeshes.

� The numerical results for an irregular interface also show
that at the same number of degrees of freedom, OLTEM

Figure 10. The maximum relative errors in displacements emax
u (curve 1 in (a)), emax

v (curve 2 in (a)) and the relative errors in the l2 norm el
2

u (curve 1 in (b)), el
2

v
(curve 2 in (b)) as well as the maximum relative errors in velocities emax

_u (curve 1 in (c)), emax
_v (curve 2 in (c)) and the errors in the l2 norm el

2

_u (curve 1 in (d)), el
2

_v
(curve 2 in(d)) at the final time T¼ 0.2 as a function of the mesh size h in the logarithmic scale. The test problem with the material contrast EI

EII
¼ 2 was solved by

OLTEM with the diagonal mass matrix on 1001 unfitted square Cartesian meshes.
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with the diagonal mass matrix on unfitted meshes yields
slightly more accurate results for the displacements and
velocities than those for linear finite elements with the
non-diagonal mass matrix on conformed meshes.
However, OLTEM with the diagonal mass matrix is used
with the explicit time-integration method and does not
require the solution of the global system of algebraic
equations.

� It was shown that OLTEM with the 9-point compact
stencils used for basic computations can be also applied
(with small modifications) to the calculation of stresses
at post-processing. The proposed post-processing proced-
ure includes the use of the elastodynamics partial differ-
ential equations and the solutions of small local systems
of algebraic equations. Numerical experiments show that
OLTEM with the non-diagonal mass matrix and 9-point
stencils used for basic computations and post-processing
yields much more accurate results for stresses compared
to linear and high-order (up to the 4-th order) finite ele-
ments with much wider stencils. At the engineering
accuracy of 0.1% for stresses, OLTEM with the non-diag-
onal mass matrix decreases the number of degrees of
freedom by a factor of greater than 104 compared to lin-
ear finite elements. This is very important for the prob-
lems where accurate calculations of stresses are critical
(e.g., for crack propagation in fracture mechanics).

� The proposed post-processing procedure for the stress
calculation based on OLTEM with the non-diagonal
mass matrix can be also applied to the numerical results
obtained by OLTEM with the diagonal mass matrix
because the post-processing procedure does not require
the solution of the global system of algebraic equations.
In this case basic computations with OLTEM and the
diagonal mass yield the stresses that are more accurate
than those obtained by linear and high-order (up to the
3-rd order) finite elements with much wider stencils and
the non-diagonal mass matrix. At the engineering accur-
acy of 0.1% for stresses, OLTEM with the diagonal mass
matrix decreases the number of degrees of freedom by a
factor of greater than 3 � 103 compared to linear finite
elements with the non-diagonal mass matrix.

� Despite the fact that we have applied the post-processing
procedure to the stencils defined on Cartesian meshes, it
can be equally used for non-uniform meshes (similar to
OLTEM developed in our papers [42, 44, 55] for irregu-
lar boundaries). Finally, the post-processing procedure
developed can be independently used with any known
numerical technique (e.g., with finite elements).

In the future we plan to develop OLTEM with adaptive
mesh refinement similar to h� and p� mesh refinement for
finite elements (e.g., it was shown in papers [46, 48] that
OLTEM can easily combine different stencils). We plan to
use quadtrees/octrees meshes that allow a simple refinement
strategy with Cartesian meshes. The extension of OLTEM to
other PDEs with discontinuous coefficients as well as to
non-linear PDEs will be also considered in the future. We

plan to extend the new post-processing procedure with
OLTEM to other PDEs.
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Appendix A. The coefficients bj, i used in Eq. (24) for the 9-point stencils

The first 15 coefficients bj, i (i ¼ 1, 2, :::, 15) are presented below. Please also see Appendix B and the attached file “b-coef.nb.” For simplicity of
notations, below we omit the first index j in bj, i, kj, p, �kj, p, mj, p, �mj, p related to the stencil number j¼ 1, 2.
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Appendix B. The explicit form of Eq. (28) for the determination of the stencil coefficients

For simplicity of notations, below we omit the first index j in bj, i, kj, p, �kj, p, mj, p, �mj, p related to the stencil number j¼ 1, 2. The coefficients bi in
Eq. (24) can be represented as a linear function of the stencil coefficients mp, �mp, kp, �kp (p ¼ 1, 2, :::, 9) and q1,m, q2,m, q3,m, q4,m (m ¼ 1, 2, :::, 5)
as follows:

bi ¼
X36
j¼1

sij~kj þ
X20
j¼1

cij~qj, i ¼ 1, 2, :::, 112, (B.1)

where the coefficients sij and cij can be found from the expressions for the coefficients bi; see A and the attached file “b-coef.nb.” In Eq. (B.1) we
use the following notations for the coefficients ~kj and ~qj :

f~k1, ~k2, :::, ~k36g ¼ fm1, �m1, k1, �k1, m2, �m2, k2, �k2, :::, �k9g, (B.2)

f~q1, ~q2, :::, ~q20g ¼ fq1, 1, q2, 1, q3, 1, q4, 1, q1, 2, q2, 2, :::, q4, 5g: (B.3)

Then using Eq. (B.1), the local system of linear algebraic equations for finding the stencil coefficients, Eq. (28), can be rewritten as follows:
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(B.4)
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1
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(B.5)

@�R
@km

¼ bm ¼
X36
j¼1

smj
~kj þ

X20
j¼1

cmj~qj ¼ 0, m ¼ 1, 2, :::, 24, (B.6)

where Eqs. (B.4)–(B.6) form a system of 80 linear algebraic equations for the determination of the stencil coefficients ~kj (j ¼ 1, 2, :::, 36), ~qj
(j ¼ 1, 2, :::, 20) as well as 24 Lagrange multiplier kl (l ¼ 1, 2, :::, 24).

24 A. IDESMAN AND M. MOBIN


	Abstract
	Introduction
	OLTEM for the 2-D elastodynamics equations with discontinuous material properties
	9-Point stencil equations and the corresponding local truncation error
	The modification of the local truncation error using the elastodynamics equations as well as the calculation of the loading term f¯j,5
	The calculation of the stencil coefficients
	9-Point stencils for heterogeneous materials with an irregular interface
	Homogeneous materials (no interface)

	The simplification of OLTEM for the diagonal global mass matrix

	OLTEM for post-processing of numerical results: calculations of spatial derivatives
	Numerical examples
	Test problem: a square plate with a circular interface
	OLTEM with non-diagonal mass matrix. Test problem with different material contrasts Ec=EIEII
	OLTEM with non-diagonal mass matrix. Comparison with FEM. Test problem with material contrast EIEII=2
	OLTEM with diagonal mass matrix. Test problem with material contrast EIEII=2

	Concluding remarks
	Acknowledgments
	Funding
	References


