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Abstract. We consider general systems of ordinary differential equations with monotonic Gibbs
entropy and introduce an entropic scheme that simply imposes an entropy fix after every time step
of any existing time integrator. It is proved that in the general case, our entropy fix has only
infinitesimal influence on the numerical order of the original scheme, and in many circumstances,
it can be shown that the scheme does not affect the numerical order. Numerical experiments on
the linear Fokker—Planck equation and nonlinear Boltzmann equation are carried out to support our
numerical analysis.
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1. Introduction. The second law of thermodynamics, discovered more than
170 years ago, states that the direction of the thermodynamic processes is driven by a
physical quantity called entropy. The importance of this law cannot be overstated, and
nearly every thermodynamic model has to respect such a property. Mathematically,
there are a number of formulas to represent the entropy, among which the Gibbs
entropy, formulated as the integral of flog f with f being the distribution function
of the states, is widely used in a variety of models such as the heat equation, the
Boltzmann equation, and the Fokker—Planck equation. In our discussion, we assume
a finite number of states, so that the Gibbs entropy is defined by

N
n(f) = Zfi log f;Av;,

i=1

where f = (f1,..., fn)" € RY describes the distribution of the N states and Av; €
R represents the weight of the ith state which might come from the size of the ith
grid or the quadrature rule. The vector f is a vector function of time ¢, and we assume
that it satisfies the initial value problem

dfit) _ o
(1.1) dt =Qi(f(t), i=1,...,N,
fi(0) = f7,
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with the following properties:

(P1) conservation of mass: & Zivzl fi(t)Av; = 0;

(P2) nonnegativity: f;(t) >0 forall 1 <i< N,t>0;

(P3) monotonicity of entropy: % vazl fi(t) log fi(t)Av; < 0.
The ODE system of the form (1.1) appears frequently after discretizing the ther-
modynamic equations in space. For example, it may arise from the finite difference
discretization of the heat equation and the Fokker—Planck-type equations [10, 6, 17, §],
or the discrete velocity method and the entropic Fourier method for the Boltzmann
equation [11, 7].

Although the semidiscrete scheme (1.1) decays entropy, there is no guarantee
that this property will carry over when time is discretized. In some special cases, the
entropy decay can be proved for the fully discrete scheme [3, 14, 15], yet it often comes
at a price of using implicit schemes and is highly problem and scheme dependent.
Given the importance of entropy in thermodynamic processes, it would be desirable
to have a fully discrete entropic scheme that is generic (e.g., does not require a specific
type of time discretization) as well as easily implementable (e.g., does not require
expensive nonlinear iterations).

Researchers have been trying to develop entropic schemes for explicit time inte-
grators [4, 5, 20]. One recent progress is the relaxation Runge-Kutta method [13, 18],
which enforces the entropy dissipation by adding a relaxation parameter to the final
stage of each Runge-Kutta step. However, such a modification can cause slower con-
vergence, which is typically one order less than the original Runge-Kutta method.
Another recent work [1, 2] applies the deferred correction method under the resid-
ual distribution framework, which needs calculating additional entropy residual and
solving a series of correction substeps to reach desired order of accuracy.

To bridge the above gap, we introduce an entropic scheme in this paper to achieve
the following: one can apply any time discretization to the system (1.1) as long as it
maintains the mass conservation and nonnegativity of the solution. After each time
step, if the entropy goes in the wrong direction, we provide a simple fix to make it
decay monotonically. Such a fix is done by a weighted average of the current solution
and the solution with maximum entropy. This fix only at the final stage of each time
step is similar to the idea of the relaxation Runge-Kutta method [18]. Via numerical
analysis, we show that such a fix has only a tiny effect on the order of accuracy,
and in various cases, it can be proven that the order of accuracy is not affected
at all. Numerical experiments on the linear Fokker—Planck equation and nonlinear
Boltzmann equation will also be carried out to support our findings.

The paper is organized as follows. In section 2, we first outline the procedure
of our entropic method and summarize the main theorems of the method. The de-
tailed proof of the theorems with some deeper understandings is illustrated in sec-
tion 3. Section 4 provides the numerical experiments, and the conclusion follows in
section 5.

2. Main results. This section outlines the overall procedure of our entropic
method and lists the main results of our numerical analysis. Before stating our the-
orems, we introduce the notations and review some basic properties of the Gibbs
entropy.

2.1. Brief review of Gibbs entropy. Due to the conservation hypothesis (P1),
below we focus on the entropy functional defined by
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N

N
H(f)=> (filog fi — fi)Av; :== Z h(fi)Av;

i=1
with h(z) = xlogx — . Note that H(f) differs from 7(f) only by a constant.
Let C = (C,...,C)T € RY with
C _ Ziil fZAU’L
Zi]il Av;

We denote by f = f/C = (fl, .. .,fN)T the normalized f; then it can be checked
that

(2.1)

(2.2) Cn(f) = H(f) - H(C).

Furthermore, we define the L? (p = 1,2) norm and L* norm of any f as

N 1/p
£y = (Z ff’Avi> v [ fllee = max|[fil.

i=1

LEMMA 2.1. C is the unique global minimum point of H(f) for all f € RY
satisfying (2.1) with fized C.

The proof of Lemma 2.1 can be done by the concavity of log(x) and Jensen’s
inequality. Furthermore, a straightforward corollary of Lemma 2.1 is that 1 =
(1,...,1)T € RY is the unique global minimum point of n(}') for all f e RY sat-
isfying ||f|l = [|1]l1. To ease the notation, we use [|1]; = vazl Av; =V to denote
the volume.

The notations hereafter will be focused on the relative entropy 77(}) and the
normalized f for fixed C. One could find its relationship to the entropy function H )
from (2.2). For simplicity, we would like to omit the tilde symbol in f, and thus the
average of the components of f will be 1 hereafter.

2.2. Main results. We assume after temporal discretization of (1.1), the prop-
erties (P1) and (P2) can be preserved. Specifically, if we let f™ > 0 be the numerical
solution at the nth time step, then we have

(H1) conservation: Zf\il T A = Zivzl I Avg;

(H2) nonnegativity: fi”Jr1 >0 foralll <i<N.
We would like to design an entropic method such that it can fulfill a discrete version
of (P3) while keeping (H1) and (H2).

Our numerical scheme is based on imposing a simple entropy fix after computing
the numerical solution at every time step. Suppose that f"*' is computed through
evolving f™ by one time step. If n(f* ) < n(f"), nothing needs to be done. Other-
wise, we revise the solution at the (n + 1)th time step by a convex combination with
the state of minimum entropy. According to Lemma 2.1, such a state is 1 under our
conservation hypothesis, and thus the revised numerical solution is

~n+1

(2.3) foo=rtsa -,
where 3, € (0,1] is chosen to satisfy
(2.4) n(F" T+ Bp(L— ") = n(f").
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This guarantees that the entropy is always nonincreasing. In the case where the
equilibrium is not a constant, the same technique can be applied, and we refer the
readers to Remark 2.7 for some comments on such cases. It can be shown that the
solution of (2.4) exists since the function ¢(3) := n(f"* +8(1— ")) is convex and
monotonic with respect to 3 € [0,1], and we have ¢(0) > n(f™) and ¢(1) < n(f™).
Therefore, we can use the bisection method to solve the equation efficiently.

In most cases, such a method stabilizes the solution since it reduces both the Gibbs
entropy and the 2-norm of vectors, where the reduction of 2-norm can be shown by the
convexity of the 2-norm and Jensen’s inequality. Therefore we are mainly concerned
about the magnitude of the fixing term 8,(1 — f™*'), and we hope that this term
does not affect the numerical convergence order of the original scheme. Generally, the
error estimation of this scheme can be analyzed in the following manner:

(2.5)
1F" = F )l < IF = £+ 1 = £ )]
<" 1 Rl IF () — £,
where f(t) is the solution of the problem

Gt
(2.6 S QuF®), i=1.N,

and hence || " — f(tns1)|| is the “one-step error” of the scheme. The last term in
(2.5) is usually controlled by the stability of the ODE problem with respect to the
initial condition. If we assume that the scheme satisfies the consistency condition

1 (tns1) — £ < O(ALH),

then the original scheme (before our entropy fix) is a scheme of order s. Here our
purpose is to demonstrate that the first term in the second line of (2.5), i.e., ||8,(1 —
£ ||, can be controlled by the second term ||f(tns1) — F*. In the ideal case,
we may find a constant C' such that

185(1 = £ < CllF (tnrr) = £

then the numerical convergence order is not affected. Hereafter, for simplicity, we
would like to omit the tilde and use f(¢,+1) to denote the solution of (2.6) at time
tnr1. In other words, we assume that the solution at the nth time step f" is exact
(f(tn) = f™), so that f(t,41) becomes identical to f(t,,1).

In the following theorems, we will study a stronger result,

(2.7) 0 (f"+ B = ) = a(f (),

where (3, in (2.4) is replaced by 8 and the solution at (n + 1)th time step is revised
to possess the same entropy as f(tn,+1). Due to n(f(tnt+1)) < n(f") and the mono-
tonicity of ("™ +w(1 — £™*)) with respect to w, we see that Bp < B. Therefore,
it suffices to show that ||3(1 — f™*)|| can be controlled by the difference between
f(tn+1) and f" 1. Based on the commonly used 2-norm of vectors, we are going to
prove this type of results in four different scenarios, which will be stated in the four
theorems listed below.

In the first case, we have no assumptions on the structure of the solution, which
may lead to a slight reduction of the numerical convergence order.
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THEOREM 2.2. Given a positive and conservative numerical scheme, i.e., f”"’1 S
RY and ||f* i = [|F(tas1)l1, when n(f*) > n(f™) and (2.7) are satisfied, if

| f(tni1) — F* T2 < 1, then

1B(L = F" )2 < M| F(tasr) = "2 (14 [log (1 (tnsa) — £ I2)])

where M > 0 is a constant which depends on V., || " loo, and || f (tns1)]loo-

In this case, the right-hand side of the inequality contains a logarithmic term,
which tends to infinity when ||f(t,q1) — f"'||2 approaches zero. However, for any
€ > 0, we have

L+ [log (1 (tnga) = £ I2) [ < N F (Bnga) = £

when || f(tni1) — "2 is sufficiently small, meaning that the numerical convergence
order is reduced only by an arbitrarily small positive number. Nevertheless, we would
still like to explore the conditions under which such a logarithmic term does not exist.
The remaining three cases are related to this type of results.

Intuitively, the reason of the logarithmic term in Theorem 2.2 is the unbounded-
ness of the function h’(z) when z is close to zero. In the following result, we assume
that the components of the numerical solution f™*! have a lower bound Cj such that
1/ (z) becomes bounded.

THEOREM 2.3. Given a positive and conservative numerical scheme, i.e., an S
RY and ||[f* 'y = | Ftasr) |1, when n(F*T) > n(f") and (2.7) are satisfied, if
fi"Jr1 > Cy > 0 holds for all 1 <1i < N, then

1B(L = £ )2 < M| f(tnsr) = £ 2,

where M > 0 is a constant which depends on Co, |f" oo, and || f(tni1)loo-

The condition in this theorem disallows the numerical solution to be zero anywhere
in the domain. When some components of the numerical solution equal zero, we can
still show that the L? error after the entropy fix is small if the scheme can guarantee
the numerical convergence order for the L>° error. This corresponds to our third case.

THEOREM 2.4. Given a positive and conservative numerical scheme, i.e., f* €
RY and || i = [|F(tas1)l1, when n(F*T) > n(f™) and (2.7) are satisfied, if
£ (tns1) — £ oo < 1/3, it holds that

181 = £ )2 < M| f(tnsr) = £ s,

where M > 0 is a constant which depends on V., | " oo, and || £ (tni1)lso-

The last case we consider can be regarded as a generalization of Theorem 2.3.
We allow the numerical solution to be small on some part of the domain but require
that the solution increases slowly. This will lead to a result similar to the conclusion
of Theorem 2.3, where the L?-magnitude of the entropy fix can be directly bounded
by the L? error.

THEOREM 2.5. Given a positive and conservative numerical scheme, i.e., f* €
RY and | "1 = || £ (tns1)|l1, we denote the components of f* as f < fyt! <

e < f]\L,H. For any C1,Cy € (0,1], there exist two positive constants § and M such
that

1B = £ Nl < MIIF"* = Ftns)ll2

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/09/22 to 205.175.106.20 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2350 ZHENNING CAI, JINGWEI HU, YANG KUANG, AND BO LIN

if all the following conditions hold:
. n(f’fll) >n(f") and n(f* + BA = £77) = n(F(tngr));
o [l = ftns1)ll2 <6
e The index Iy = min{I | Zle Av; > C1V} satisfies

1 N Cf
[log (f1*1) | ~ log (f71) I

Here 6 depends on Ci, Cy, and V, and M depends on Cy, Cf, V, £ oo, and
Hf(tn+1)||00~

In (2.8), the function 1/|logz| is regarded as zero when z takes the value zero.
The condition (2.8) allows the existence of small components in the solution. To
better demonstrate the nature of this condition, two examples are presented below.
n+1

(2.8)

Ezxample 1. This example assumes that f is the uniform discretization of a

one-dimensional Gaussian, i.e.,
1
Av; = Av, frHl = N exp(—v?), i=1,...,N+1,
where v; are uniformly distributed in [—L, L], Av = 2L/(N + 1), and L > 0 is set
to be sufficiently large such that exp(—L?) is sufficiently small. The constant C is
chosen such that ||f""!||; = ||1||;. Furthermore, fox fixed L, we assume that N is an
even number and large enough such that C' > 1/(4L). According to the assumption
of Theorem 2.5, we set v; to be

; 2L
’Ui:(—l)l’—(N-i-l—i)/Q]W’ i=1,...,N+1,

such that fi""'l increases with respect to i. For illustration, we plot the normalized
Gaussian and its sorted version in Figure 1, where parameters are set as L = 6 and
N = 20. In this example, we take I; = [(N +1)/2] = N/2 + 1; then

log(f7) _ log = — 07, - vi, —log($%) S v, S 1
log(fi™h)  loggi=—L? ~ L2 — 2028

which satisfies (2.8) with C; = 1/2 and C'y = 1/8. This example shows a case where
the values of fi"‘”'1 are nonzero but can be arbitrarily small.

10° 10°
g 10° g 10°
© ©
> >
_51010 _510-10
S ©
5 5
1075 =101
—6—Original Gaussian
—=—Normalized Gaussian \+Sorted and normalized Gaussian\
10—20 . " " " . . 10—20 N " " " .
-6 -4 -2 0 2 4 6 0 5 10 15 20 25
v; 7

Fic. 1. Discretized Gaussian, its normalization and sorted notation in Example 1.
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Ezample 2. The second example is for the case where some components of £

are zero. We assume a uniform discretization on [0, 1] with Av; = 1/N fori=1,...,N
and choose £ to be

0, i=1,...,1,
=41, i=hL+1,...,N -1,
2, i=N-I,+1,...,N.

If I; /N is a constant, the vector F T approximates a piecewise constant function.
In this case, Theorem 2.5 holds by choosing C; = I /N and C; to be any positive
number in (0,1]. The blue lines in Figure 2 show the situation where C; = 1/3.
However, if I; /N decreases to zero as N increases, e.g., I; = 1 for all N, such a
constant Cj cannot be found. This situation violates the condition of Theorem 2.5,
which is illustrated as the red lines in Figure 2.

In general, the above theorems suggest that such an entropy fix can be safely used
without sacrificing the numerical accuracy. Moreover, for a numerical scheme with
sufficient accuracy, the violation of the entropy inequality will not always happen,
meaning that the entropy fix may be needed only at a few time steps, resulting in
even less significant impact on the numerical accuracy.

Remark 2.6. The value of 8 in the above theorems is determined by (2.7), which is
not practical in real implementation as f(t,+1) is unknown. Nevertheless, as stated
after (2.7), the computable 8, defined in (2.4) satisfies 8, < . Therefore, all the
theorems still hold if we replace 8 by 3, in the theorems.

Remark 2.7. The above results can be easily generalized to the cases where the
equilibrium is not a constant. Assume that M = (My,...,Myn)T € R;{, is the
equilibrium state of (1.1), and the entropy functional (in this case, it is the relative
entropy) is defined by

fi
Awv;.
M;

N
nlf)=>_ filog
=1

We can let g; = f;/M; and Aw; = M;Av; so that n[f] can be rewritten as

N
nlf] = gilog giAw;,
i=1
2 2 oo
I
1
I
157 1.5 !
i
1
51 = 1 T !
i
I
05t 0.5 ]
I [——L =1,N=20 | [—L=1,N=90
| |re-I,=[N/3],N =20 I |e=-L =[N/3],N =90
0 & 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
v; = (i —0.5)/N v; = (i —0.5)/N
ntl

Fic. 2. Lllustration of Example 2 where f

j can only be chosen as 0, 1, or 2.
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which fits the entropy formulas in the theorems again. In this case, the entropy fix
(2.3) applied to g™ is equivalent to the following fix applied to f"*:

~n—+1

(2.9) o= B M - .

By this transformation, our approach can also be applied to the linear Fokker—Planck
equation. Please see the numerical section for more details.

3. Theoretical proofs of the error estimates. This section provides all the
details of the proofs of the four theorems. Instead of proving these theorems in the
order they are presented, below we will first provide the proof of Theorem 2.3, which
can provide necessary tools needed in the proof of Theorem 2.2.

3.1. Proof of Theorem 2.3. Before proving the theorem, the relationship be-
tween the entropy function and the L? norm will be demonstrated by several lemmas.
Among them, we will first estimate the entropy function n(f) and its L? norm || f||2
in the following lemma.

LEMMA 3.1. For f € RY and ||f]1 =V,

1
2[1 £l

Proof. On one hand, for z > 0,

If =113 < n(f) < IIf - 1]3.

zlogr —(z—1) <z(z—1)— (z—1) = (z — 1)%

where the inequality above uses log x < z—1. On the other hand, by Taylor’s theorem,

zlogx = (z — 1) +/ %(z —t)dt.
1

For 0 <z < || f||lco, the integral satisfies

1 ¥ 1 | —1)2
/ 2o —t)dt > / . (z—t)dt> / L popare @D
1t 1 max(z,1) 1 1l 2[| flloo
Therefore,
(z—1) 2
(r—1)+ = <zlogz < (z—-1)+ (xz— 1)~
2/ flloo
The lemma can be proved by taking x = f; in the above inequality and summing up
all 1 <i<N. 0

A straightforward corollary of the above lemma is given as follows.
Lemma 3.2. For £ € RY and f& € RY with |V = @ =V, if
n(FD) < n(f@), then it holds that

1P =105 < 21D ol £ = 13,

After showing the equivalence between the entropy function and the 2-norm, we
will proceed to discuss the relationship between n(f4) — n(£®) and ||f& — £P |,
for any two vectors £ and £?). By the definition of 7(-), we are inspired to study
the estimation of h(z) — h(y). The result is presented in the following lemma.
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LEMMA 3.3. Given 0 < Cyp <1,y >0, and x > Cy, if y > Cy or h(x) > h(y),
then

(3.1) [h(x) = h(y)| < max (2,2[log(Co)|) [z —y| |z — 1| + |y — 1]).

Proof. If x =y, it is obvious that the lemma is correct. It remains to prove the
lemma when x # y.
By the mean value theorem,

(3-2) h(z) = h(y) = log(&)(x — y),
where £ is between z and y. If log(§) > 0, it holds that £ > 1 and
[log(§)] =1log(§) <& —1 <max(z—1y—1) < |z —1+[y—1].
Therefore, if log(¢) > 0, (3.2) becomes
(3-3) (h(@) = h(y)| < |z =yl (jz =1+ |y —1]).

Next we assume h(z) > h(y). If h(z) > h(y) and x > y, (3.2) implies log(&) > 0,
which gives (3.3). If h(z) > h(y) and z < y, (3.2) implies log(§) < 0 and £ < 1. In
this case, y > x > Cp, which implies £ > Cj and log(§) > log(Cp). Therefore, (3.2)
becomes

(3.4) |h(x) — h(y)| = —log(§)|z — y| < —log(Co)|x — y| = [log(Co)llz — y|.

On the other hand, by the mean value theorem,
1 1
—log(§) =log(1) —log(§) = ~(1 - &) < = (lz — 1| + |y — 1)),
&2 Co

where & € [£,1] C [Co, 1]. The above results can be summarized into the following
estimation:

(35)  |h(@) - hy) < |z — ¢ min (|1og<co>|, =1+l - 1|>) |

If we further assume « > 1/2 and y > 1/2, then (3.5) is satisfied with Cy = 1/2,
which becomes

() = h(y)| < o —y|min (log 2,2 (je — 1] + [y — 1[)) < 2fx —y| (o = 1| + [y —1]).

Otherwise, if z < 1/2 or y < 1/2, we have 2(|x — 1| + |y — 1|) > 1. Therefore,

min (|1og<co>|, g (=11 +1y - 1|>) < 110g(Co)| < 2/10g(Co)] (| — 1] + |y — 1]).

Combining the two results above yields the inequality (3.1) when h(z) > h(y).

It remains only to consider the case h(xz) < h(y) and y > Co. If z < y, (3.2)
implies log(&) > 0, which gives the result of (3.3). Otherwise, z > y implies log(§) < 0.
Since z > Cp and y > Cy, it holds that & > Cp, and therefore 0 > log(£) > log(Cy),
which also yields (3.5). The rest of the proof is the same as the previous case. ]

With the help of the above lemma, we could give an upper bound of the difference
of entropy functions n(f(l)) — n(f(2)) in the following lemma.
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LemMa 3.4. For f& = (F1 0 f0) e RY and £@ = (f2,... ) e RY
with ||f(1)\|1 = ||f(2)\|1 =V, given 0 < Cy <1, if fi(l) >Cy foralll <i¢ < N and
f(2) satisfies either of the conditions

1. f,i(z) >Cy foralll1 <i< N or

2. (@) <n(fY),
then it holds that

n(FD) = n(F®)| < max (2,2110g(Co) ) 15V = FPlla (15 = 12 + 152 = 1]12) .

Proof. For simplicity, we use M to denote the constant max (2, 2|log(Cp)|) in this
proof. In the first case, fl-(2) >Cop>0foralll <i< N, we can plug x = fi(l) and

Yy = fi(Q) in Lemma 3.3 and sum over all 1 <4 < N. By using ||f(1)||1 = Hf(2)||1, we
can obtain that

a0 = (s )| < b1 i(\ HO 0G0 = )]+ |0 -0 - 1)) v,

The lemma can be proven by the Cauchy—Schwarz inequality.
In the second case n(f?) < n(f1), we have

n(f) = n(

(2))

3
[

(]

(h) =) v S () = () A,
RO ROD)>h(1)

< Y (M) =) av

R >R(FP)

<u Y (|U = nuD =) [P = e = 5] A,

R >h(r )
where the last inequality is again the result of Lemma 3.3. The lemma naturally

follows by extending the range of summation of i to 1, ..., N and applying the Cauchy—
Schwarz inequality. ]

In the proof of case 2, we applied Lemma 3.3 only to fi(l) and fi(z) with h(fi(l)) >
h(fi(Q)). This allows us to relax the condition “fi(l) > (Cyforalll <i< N”in the case

n(f(l)) > n(f(z)). In fact, we need fi(l) > () only for the components that require
Lemma 3.3. We write this result in the following corollary.

CororLLAry 3.5. For £ = (& () e RY and £@ = (£?,..., 1) €
RY with 17V = 1FPNy = V, we assume n(fP) > n(FP). If there exists 0 <
Co < 1 such that for any i = 1,..., N, either fi(l) > Cp or h(fi(l)) < h(fi(2)) is
satisfied, then it holds that

n(F ) = n(#®)| < max (2,2108(Co)) £ = FPz (IFD = 12 + 1F2 —12)

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. The convexity of 7(-) implies
n(f™ A= 1) < Bn(1) + (1= Bn(FH).
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By (2.7) with n(1) = 0, the above inequality is equivalent to

n(F") = n(f (tns1))
n(F" ) '
The numerator in (3.6) can be estimated by
n(F") = n(f(tns))
<M = Fltas) 2 (1F77 = Ul2 + [ f (Fan) = 12)  (Lemma 3.4)
< MIF = Fa)l (14 VTG ) 177 = 1, (Lemma 3.2)

(3.6) B <

where M = max(2,2|1log(Cp)|). On the other hand, according to Lemma 3.1, the
denominator in (3.6) satisfies

n 1 n
a2 g7 1B

Therefore,

181 = F" )2 < 2M [ F" oo L+ VIIF s )l 1 F* = F () l2- 0

In this case, we would like to give a remark on the practical choice of 3, in
(2.4). Tnstead of solving n(f™ ™ + B,(1 — £™)) = n(f™), we can simply take 3, =
(" = n(F™)/n(f"), which equals the upper bound in (3.6). Note that the
convexity of function 7(-) implies n(F™) = (1—B,)n(F* ) +Byn(1) = n(f* ' +5,(1—
f"“)). Therefore, under the condition of Theorem 2.3, if we change the numerical
solution at (n+1)th step to £ + B, (1 — £"), it still holds that [|3,(1—f"™)||s <
M|\ f (tns1) = £ 2

3.2. Proof of Theorem 2.2. Different from the previous proof, in Theorem 2.2,
we allow the solution to have components arbitrarily close to zero, so that Lemma 3.4
cannot be directly applied. To overcome this difficulty, we introduce a regularization
term before using Lemma 3.4. The details are given as follows.

Proof of Theorem 2.2. For simplicity, we let ¢ = || " — f(tny1)]2. To avoid
dealing with zero components, we first regularize the numerical solution "™ by

(3.7) e s R )

after which finH’1 >eforalli=1,...,N. On the other hand, since |1 — f" ||, <
max(1, || flleo = 1) < || flloo, the L? norm of the perturbation introduced by the regu-
larization satisfies

le(x = £ )llz < VVIF " loce.

After perturbation, if n(f"**!) < n(Ff(tns1)), then we have § < e so that the
conclusion of the theorem is drawn. If n(f™ ') > n(f(tns1)), we can find B, € (0,1]
such that

n (£ 4 B (1= 1Y) = n(f (tas)),

which is identical to (2.7) by replacing f"** to "1, Therefore, we can set Cp = ¢
in Theorem 2.3 to obtain

1B2(1 = £ 1)l < MulF"H = F(tas) 2,
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and by the proof of Theorem 2.3, we know that

M,y = 4max (L, [loge]) [ " loo (L + V[ £ (tar1) o)
<AL+ [log e[ F" oo (1 + VIF (Ens1)lloo)s

since || £ oo < £ oo

If we define
(38) }.n—O—l _ fn+1,1 +ﬁ2(1 _ fnJrl,l) _ fn+1 + (E"’_BQ _ 562)(1 o fn+1)7
An+1

then by n(f ) = n(f(tnt+1)) we know that 8 =€ + B2 — €f2. Thus it holds that

~n+1 ~n+1
1B =" Dlla=11F =M< IF —F T e+ 10 =

< M| F" 0 = Fltag)ll2 + IFT5 = £
<M = e o) + N =
< Ml(\/V||f”+1||oo5 +e)+ \/V||f”+1||ooe < Mae(|loge| + 1),

where My = 8(VV| " oo + DIF" oo (1 + v/ F tns1)]ls0)- o

The proof of this theorem follows the two-step procedure, which will also be
applied in the proof of Theorem 2.4.

3.3. Proof of Theorem 2.4. To prove Theorem 2.4, we deal with the compo-
nents with fi”+1 < % and fi"+1 > % separately. The difference between these two
cases can be seen from the following lemma:

LemMa 3.6. For £ e RY and f& € RY with || — £&)| < &, define

FO =50+ pa - ),

where B = 3|FfY — F . I 1 F DL = V, then £ satisfies following properties:
1. For all k such that f{" < 2, it holds that h(f{”) < h(f”).

2. For all k such that f,gl) > %, it holds that f,gg) > %
3 MFY = FVlloo <BIF M el FY = £ 2o

Proof. For those k such that f,il) < %, we have 1 — él) > =. Thus

1
L
10 =1 =801 28,0 = 1P =) 2 |10 - 12| 2 52 - 1D,

which yields f,gg) > f,f). Since f,gg’) is the convex combination of 1 and f,gl)7 we
have 0 < f,gg) < 1. Since h(-) is monotonically decreasing on [0, 1], we conclude that

3 2
B < B,
The second property is obvious since f,gg) lies between f,gl) and 1.

As for the third property, it should be noted that |||y = V implies || £ || >
1. Therefore,

1F® = D)o = B1l1 — £V o
< max(L || FV o = 1)B1 < 3 FV ol FY = £P . 0
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The first property in Lemma 3.6 shows how we deal with the small components,
and this only holds when f; is proportional to the difference between f M and f(2)
measured by the infinity norm, leading to the form of the right-hand side in the
conclusion of Theorem 2.4. For the remaining terms, an O(1) lower bound exists, so
that the same technique as Theorem 2.3 can be applied. The details of the proof are
given below.

Proof of Theorem 2.4. By Lemma 3.6, we could pick 81 = 3||f" ™ — f(tns1) s
and construct

(39) fn+1,1 — fnJrl +ﬁ1(1 _ fn+1).

If n(f”“’l) < n(f(tnt1)), the proof is already completed. If n(f"“’l) > (f(tnt)),

we construct }'nﬂ as (3.8) such that n(}'nﬂ) =n(f(tns1)), and thus 8 = 51 + B2 —
B1B2. According to Lemma 3.6, those components i where A(f]""") > h(fi(tni1))
satisfy f;H_Ll > % Therefore, Corollary 3.5 could be applied with Cy = %, and we
could mimic the proof of Theorem 2.3, replacing only Lemma 3.4 with Corollary 3.5

in the proof. As a result, by the conclusion of Theorem 2.3, it holds that

[1B2(1 = FH5N)l2 < Myl f (bngr) — £ 2,

where M; = 4max (1, |1og(Co)) || £ [loo (1 + /I F(tns1)|o0) taken from the proof
of Theorem 2.3. Moreover, f"! in M could be replaced by £™ 1! since || £ | <
| F" ™ |loc. Then, similar to the second step in the proof of Theorem 2.2, it holds that

~n+1 ~n—+1
1F = e < I = T =

< My f(tngn) = £ o+ £
<MWV Ftnsr) — £ oo + VYV 78— 77
< MVV[F(bnsr) = £ oo + VV ML+ D = 7 oo

< (MY + 3V + DI ) 1 ) = £ e

where the last “<” is the result of Lemma 3.6. This completes the proof since ||3(1 —
~n+1

=18 =l 0

3.4. Proof of Theorem 2.5. In this subsection, we will prove Theorem 2.5.
Before that, we would like to introduce two lemmas. Lemma 3.7 comes from opti-
mization, which illustrates the infinity norm of optimal solution could be bounded by
the L? norm of it. Based on Lemma 3.7, we make a decomposition of the (relative)
entropy function in (3.21) and then introduce Lemma 3.11 to estimate the difference
of decomposed entropy functions.

As assumed in the theorem, we suppose all the components of f are sorted in the
ascending order:

H<fo< < fnv=flloo-

Note that this does not affect the definition of entropy and the numerical scheme for
the entropy fix.

LEMMA 3.7. For any C1,Cy € (0,1] and positive integer N, let Iy = min{[ |
Zle Av; > C1V} If f € RY satisfies

1 Cy

fi<1/2 Vi=1,...,1 and > ,
/ ! |log fi] |log fr, |
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then when € < %\/C’lV, the solution g* = (gi*,...,g}‘l)T € Rv of the optimization
problem

Il 11
(3.10) argmin Z h(fi + gi)Av; s.t. Z g7 Av; < &2

g1y 911 i=1

satisfies 0 < g7, < - < gf < (VC1VCy)~'e and Cy < g7, /97 < 1.

Proof. The proof utilizes the Karush-Kuhn—Tucker sufficient conditions for op-
timization problems [19, Chapter 3.5]. It is easy to verify that both the objective
function and the constraint are continuously differentiable convex functions with re-
spect to (g1,...,91,)T. Therefore, if the following conditions hold for A* € R and

g* = (gfa"'agfl)T7

W(fi+g)+2\g; =0 V1<i<I,
I
Z(g;k)QAvi < 52’
i=1
(3.11) x>0,
I
A* (Z(gi‘)%w - 52> =0,
=1

then g* is the global minimum of the optimization problem.
First, we claim that A* # 0, so that

I
(8.12) > (g5)* Ay = €7
i=1
due to the last equation in (3.11). If A* equals 0, then A'(f; + g;) = 0, which yields
gf =1— fi > 3. Therefore,
I

I
§ :(gZ)ZA’Ui > Zl:i v > CZV > 827
=1

which contradicts with the second inequality in (3.11).

Now we would like to establish the existence and uniqueness of the solution. We
first focus on the first equation in (3.11). For any 1 <1 < I; and fixed \* > 0, there
exists one unique gF € (0, 1) satisfying h'(f; + gF) + 2A*gf = 0. This is because the
function ¢;(z) := h'(f; + =) + 2X*x is monotonically increasing, and

C(0) = log f; < log (;) <0, C(1) =20 >0,

Thus it remains to demonstrate that \* is unique. Inspired by the first equation in
(3.11), we define
W (fit+x)  log(fi +x)

o(z) = = 5 ©E€(01-f)

Then its inverse function o; !(y) satisfies

(3.13) y = _IOg(fi + Uz_1<y)) and O‘;l(y) —

20, (y)

Wo(2ye?7t) — 2y f;
2y

)
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where Wy(-) is the Lambert W function [9] satisfying Wy (z)eVo(®) = z. For o4(-) and
o; 1(.), we have the following properties:
1. o;(z) is monotonically decreasing, and so is o; () (this requires f; < 1);
2. 0i(g;) = A" and g =0, ' (A*);
3.07(0)=1—f; > % and 0; ' (y) = 0 as y — +o0.
Here the limit of o; ' (y) at +oo can be obtained by the inequality (see [12])

e log(log(x))

Wo(z) < log(z) ~ log(log(x)) + =5 = 7

Vo > e.

Furthermore, if we define
I
E(y) = > o7 W)*Avi,  y € [0,+00),
i=1
then by the three properties of o;, we have
1. Z(y) is a decreasing function since each o; *(y) is monotonically decreasing;
2. E(X*) = &2 according to (3.12);
3. E(0) > izlhzl Av; > €%, and Z(y) — 0 as y — +oo.
These properties show the existence and uniqueness of A\*.
Next, we will show g’}l <o <gf. Forany 1 <i<j <1, f; < f; implies

0j(g;) = A" =0i(g7) =2 0;(97)-
Using the fact that o;(-) is decreasing, we see that g7 < g7. To get the bound of g,
we need the following two results:
e By (3.13), we have
i T o log(fi+ ot (y) _ log(fi)
im — = lim — =
voteo g (y)  voteelog(fi+op(y)  log(f1)

e By straightforward calculation, we have

> .

d ( a;%y)) _ L Woyeh) - Wo2ye)  oi'y)
dy \ o7 (y) y(1 4 Wo(2ye2vh)) (1 + Wy (2ye2vfi)) o ty) T
These results indicate that L
* THN
g%k = %T() = Cy,
g1 op (A)
and thus
I (1)? —1/2 n 2 —1/2 .
gi=¢ R R D e, 7 I
= 2 g 2. Vee,
This completes the proof. 0

One corollary of the above lemma is the extension to a continuous version, with
identical optimal solution g* in the sense of a piecewise constant function. For the
ease of this extension, we would like to introduce the (partial) sum of first ¢ parameters
Awv; as

(3.14) So=0, Si=)» Av;, i=1,...,N.
j=1

Then we have the following corollary.
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COROLLARY 3.8. Under the condition of Lemma 3.7, if a ptecewise constant func-
tion defined on (0, Sy,] is introduced as
f(’l)):fi, ’UG(Sifl,Si}, i=1,...,1,
then the solution g*(v) € L*((0,S1,]) of the following problem

Sny

s,
(3.15)  argmin / hFW) +g)do st |lgl2 = / (g(v))2dv < &2
9€L2((0,51,)) Jo 0

is equal to a piecewise constant function a.e. as
9" () =g;, vE (Si—1, 8], i=1,.... I,

where g} is the component of the optimal solution g* in Lemma 3.7.

Proof. To prove the corollary, it suffices to show that for every i = 1,..., I, the
function ¢*(v) is a constant on (S;_1,.5;] except for a set with measure zero, so that
the optimization problem (3.15) is essentially equivalent to (3.10). Suppose that g*(v)
is essentially not a constant on (S;_1,.9;] for some i. We define the function §(v) by

1[5 ,
i) =4 A /S g*(v)dv ifve (S;_1,S5],

g*(v) otherwise.

By Hoélder’s inequality (on (S;_1,5;]), it is easy to find ||g]|3 < ||g*||3 < 2. Moreover,
using Jensen’s inequality on the convex function A(f; + ), we obtain
Si

Si
(3.16) /S B(F () + §(0)) dv = Avsh(fi + §(v)) < / Wi + g*(v)) do.

i—1 Si—1

Note that g*(-) is the optimal solution, implying that the equality must hold for (3.16).
However, since h(f; + -) is strictly convex, the equality holds only when g*(v) is a
constant on (S;_1,5;], which contradicts our assumption. This completes the proof
of the corollary. O

Another important corollary of Lemma 3.7 is to pick 81 = O([| ™ = F(tns1)|2)
and construct "1 following (3.9) such that the entropy of "' is less than the
entropy of f(t,+1) in the range of ¢ < I.

COROLLARY 3.9. Let € := || £ — f(tni1)ll2. Suppose £ satisfies the condi-

VC1VC
%f. Let ,81 =

tion of Lemma 3.7 and € < and

2¢e
VC1VCy
(317) fn+1,1 _ fnJrl +ﬂ1(1 _ fn+1).

Then f*1 satisfies

(318) SR A < S h(filtns) A

i=1 i=1
Proof. Let g7,..., g}, be the solution of the optimization problem (3.10). Since

Iy

DU = filtar)? Aoy < | F™ = Fltaa)ll; = €%,

i=1
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it holds that
I I
SR 4 ) A0 £ D h(filtn1)) Avi.

=1 i=1

To prove (3.18), it suffices to show

Il Il
(3.19) DRI A <Y R+ g7 A,

i=1 i=1

By the conclusion of Lemma 3.7,

FE = R B ) 2 e B e e g
for all 1 <4 < I;. Noticing that 87 < 1 by the constraint ¢ < @, we obtain
fi”Jrl’1 < 1. Hence, the monotonicity of h(-) yields
RO <h(fM 4gl) Vi=1,... 1.
Multiplying Av; and summing up the above inequalities for i yield (3.19). O

By Corollary 3.9, we have performed our first step that reduces the entropy of the
smallest part of £ (from ! to fﬁ“) below the entropy of the exact solution

in the same section. If the smallest component beyond this section f}llfl already
has the magnitude O(1), for instance, fﬁfl > %, then the remaining part can be

processed using the same technique as in Theorem 2.2 and Theorem 2.4. Therefore,

below we will only focus on the case where flnl‘:_ll < 1/2, and this inspires us to further

decompose the remaining components into two parts by introducing I such that

1 1
n+1 n+1
(3.20) f12+ < 2 fl;-rrl > 9
Then we will have n(f) —V = Hi(f) + Ha(f) + H3(f) for any f € Rf, where

(3.21)

I Iz N
Hy(f) =Y h(f)Avi, Hy(f)= Y h(f)Avi, Hs(f)= Y h(f)Av,.

i=1 i=I1+1 i=I>+1

Note that this decomposition also includes the case fﬁfrll > 1, for which we can
choose I, = I, so that Hg(f”“) =0.

Lemma 3.11 will show some properties of above decomposition. Before that, a
quotient F'(x,y,C), which will be used in the proof of Lemma 3.11, is introduced as

h(z +y) — h(z + Cy)

where 0 <z <1/2, C >1and 0 <y <1/(2C). Tt is easy to find F(z,y,C) > 0 in
its domain of definition. Furthermore, the following lemma gives the positive lower
bound of F(x,y,C) for fixed C, where the proof utilizes the (partial) derivatives of
F(z,y,C), and its detail is left in supplementary material SM1.
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LEMMA 3.10. For any Cy € (0, 1], there exists Co > 1 depending on Cy such that
F(z,y,C2) given in (3.22) satisfies
Fla,y,Ca) > —  Y0<z<1/2, 0<y< -
z,Yy,L2 _01 ST > ) —y—202
LEMMA 3.11. Under the condition of Corollary 3.9 and the decomposition of
(3.21), the following properties are satisfied:

L Hy(f7) © Hy(f(tsr)) < & (HL(F") — Hi(F7)).

2. There exists a constant My > 1 depending on C1 such that when & < 7@@ r
the vector
(3.23) P = Mg (1

satisfies Hy(f"11) = H(f"412) > & (L) = Hi(£70)).

Proof. To prove the first statement, we use the convexity of Hz(-) to obtain

(3.24)
Hy(f"0) = Hy (£ 4+ B1(1 = £771)) < max(Ha (1), Ha(1)) = Ho (7).

Therefore,

Hy(f"01) — Ha(f(tnsa))
(3.25) = Hao(f"0) = Ho(F"Y) + Ho(F7) — Ha(f (tns1))
< Hy(f") = Ha(f(tng1)) < Ha(F77) — Ho (£ + g™),

where g** = (g7*,...,95)T € RY is the solution of following minimization problem:
argmin Hy (" + g).
lgll2<e

The existence of g** is because Ho(f"1' + g) is a continuous function (with respect
to g) defined on a closed set, and the constraint ||g||s < € also gives a closed set for g.
The solution g** satisfies that g;* > 0 for all I} < i < I, since replacing any negative
component of g by zero will lead to a smaller value for the objective function.
Foranyi=1I +1,...,Iyand j =1,..., 11, the convexity of h(-) implies

(3.26) AP = h(fPT 4 g7) S WP = W7+ g7).

To extend the above inequality to functions defined on Ry with support in [0, V],
which is convenient for our proof in the following step, we would like to follow the
notation in (3.14) and represent £ and g** by piecewise constant functions i (v)
and ¢g**(v), respectively, as

o) =77 g")=g" ve(Si1,8] i=1...1I,

and where both f"*1(v) and ¢**(v) equal zero if v > Sz,. Using the functions f"+1(v)
and ¢g**(v), the inequality (3.26) is equivalent to the following: for any w € (S, Sr,)
and v € (So, St ),

h(f"H (w)) = (" (w) + g** (w)) < BT (v)) = h(F"H (v) + g7 (w)).
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Since ¢g**(w) = 0 for w > Sy,, the above inequality actually holds for any w €
(S1,,+00). Therefore, we choose w = v + kS, with k¥ > 1 to obtain

(3.27)
HQ(fn+1) _Hg(fn+1 +g**)
I
= S (Y — T 4 g)) Avg
i=I+1
S,
= [ @) = b )+ o)) o

> / B(F™ (0 4 kSE,)) — h(F (0 + kS1) + g (0 + kS1))) dv

< Z / (R (0)) = h(F™(0) + g7 (v + kS1))) dv
Since [lg**[|2 < [lg**||3 < €2, for any 1 < k < [Mq we have
/ R @) + g (o K1)
(3.28) / h(f"H (v) + g*(v))dv

Iy
= Zh(ff“ +g7)Av; = (T A,

j=1 j=1

where g*(v) and g} stand for the solutions of the optimization problem (3.15) and
(3.10), respectively; the equality is the conclusion of Corollary 3.8, and the last “>”
comes from the inequality (3.19). Inserting (3.28) into (3.27) yields

(220

(3.29) Hy (") — Ho(f" +977) < Z Z( (fi) - (ff“’l)> Av;

< sV (HL(f74) = Hi(£751).
I

Since the definition of I; implies Sy, > C1V, concatenating (3.25) and (3.29) proves
the first statement.

The second statement will be proved componentwise. We set My = 2C5, where
Cs is determined by Lemma 3.10 with C; being chosen as the constant C; appearing
in the first statement. Then, for any 1 <4 < Iy, it holds that

Pt = g (1 — Y < 4By

Moreover, when & < 'C;IIV‘;Cf , it could be found that 5, < 1/M; and

finﬂ’2 = sz+1 + (B1+ Mipi — M1512)(1 - finﬂ)
> [T My (1= [P 2 S0 oy,
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where we have used f/'*' < 1 and M; = 2C,. Therefore, the monotonicity of A(-) in
the interval of [0, 1] implies

1

WOUETD = BT BT 4 B — U 4 o) 1
Cy’

RO = h(ETHY T R = RO+ B)
where the function F(-,-,-) is defined in (3.22) and the last inequality is due to

Lemma 3.10. By noticing h(f"*) — h(f*"") > 0, the second statement can then
be easily derived. O

(fn+1761a 02)

With the preparation of Lemma 3.11, we can start to prove Theorem 2.5.
Proof of Theorem 2.5. If f”+1 > 1, (2.8) implies log( ) > _6% log(2), which

means fit > 271/ Then, from Theorem 2.3, we get ||B(1— ") || < M| —
F(tns1)l|2, where M > 0 depends on 2=YC7 || £ || and || f(tns1)]leo- This com-
pletes the proof.

Otherwise, if f"“ < 7, we would like to introduce Iy and decompose n(f) fol-
lowing (3.20) and (3.21). After that, we construct "' and f"*'? from (3.9)
with 81 = ||F(tnt1) — F*H2/(VCIVCy) and (3.23) with B2 = M, f3;, respectively,
where the M is the constant in Lemma 3.11. Then we set 6 = /C1V /2, and if
£ = F(tny1)| < 8, it holds that

Hy(f"2) + Hy(F"12) = Hy(f(tns1)) — Ha(F(tns1))
= (Hy(f"%) = Hu(F70h) + (Hu(F0Y) = Hi(f ()
+ (Ha(F712) = Hy(F70) + (Ho(F"5Y) = Ha( £ (tng)))

< (Hi(f"0%) — Hi(f"70h) +0 (Corollary 3.9)
+ (_ Hy(f") - Hl(fnﬂ’l)) + (Hl(an) - Hl(fn“’l)) (Lemma 3.11)
CH Ch

= Hy(f"*"%) — Hi(f") <0,

where the last inequality is similar to (3.24) which utilizes the convexity of Hy(-).
Therefore, by the decomposition in (3.21),

(F2) = (F (b)) < Hs(F™2) = Hy(F(tas))
(3.30) = > (AU = hfiltara)) Avi

>y

n+1,2 n+1,2

From the construction of f , we know f; is a convex combination of 1 and
it so frrt > 5 implies f”"’1 2 3. Therefore (3.30) can be further extended as

(3.31) N = n(fte) <Y (h(finﬂ’z) - h(fi(thrl))) Awv;.

frtLz

i

>3

The remaining part of the proof is similar to the proof of Theorem 2.4. If
(£ %) < n(f(tns1)), the proof is done. Otherwise, we have n(f""2?) > n(f(tni1)),

~n+1
and we can continue to find fn and (3 such that

~n+1

f _ fn+l,2 +/83(1 o fn+1,2)
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and 77(}”+1) = n(f(tnt+1)). Due to the inequality (3.31), we can follow the proof of
Lemma 3.4 (case 2) and Theorem 2.3 to show

185 (1 = £ ) 2 < Mol f(tnra) — £ 2,
where M, > 0 is a constant depending on || ™o (because || £ %o < £ ls0)

~n—+1
and || f(tn+1)|lec. Therefore, n(f ) < n(f(tns1)), and
~n—+1

1F = s
~n+1 ,
I = 1 =
< Mo f(tnar) = S22 + | F7T02 =

) f
< Mo (tngr) = £ 2+ (L+ M)||f7402 = F741
= Mol F(tu) = £ la + (L4 Ma)(B1 + B2 = B1Bo)l|L = £
(L4 My)(1+ Mo)[|F" e
VCiCy
where the last inequality utilizes (81 + B2 — S1B2) < Bi + B2 and [|1 — f"T||5 <

VV|[ £ |- If we denote the constant in front of || f(tn1) — £ |2 as M, we have
proved that

< (M2 ; ) 1 (tn) — £ o

~n+1

f _ fn+1,2 +63(1 _ fn+1,2)
= F" (B + B2+ B3 — 1Bz — B2Bs — B1s + BrBaBa) (1 — )
satisfies (") < 0(f(tsr) and [F7 = Yy < M| F(tnsr) = F7l2- Due to
the monotonicity of H(f" " + (1 — f™*)) with respect to 3, if we construct 8 from

(2.7),
18— £ 2 < 1F7 = £ o < MIF™ = Fltar)]- 0

4. Numerical examples. We now present three numerical examples to show
the effect of our entropy fix. In order to construct cases where the numerical scheme
frequently violates the entropy inequality, we deliberately select highly oscillatory
initial data. We would like to remark that such an entropy fix may only need to be
applied occasionally in many applications.

4.1. Convection equation. In this example, we consider the finite volume
method for the scalar convection equation

Oou Ou

—+—=0 € (0,1 t>0

8t + ax ) x ( i )’ )
with periodic boundary conditions. We define the semidiscrete solution on a uniform
grid with N = 256 cells:

1 [T+
uj(t):A—x/ u(t, x) de, j=0,...,N—1,

where Az =1/256 and z; = jAxz. To preserve the conservation of entropy, we adopt
the numerical method introduced in [20]:
de 1

(4.1) T + Az (Fjt172 — Fj_1/2) =0,
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where
Uj+1 — Uy
log(u;j41) — log(uy)

(4.2) Fit12 =

The conservation of the Gibbs entropy can be shown by

d du; Fiti2—Fj_1/2
&Z(uﬂ logu; —uj) = zj: Elogu]’ = —zj: Tloguj

J
logujy1 — logu; Ujpl — Uj
= _;FM/QT =2 =0
Following Example 1, we demonstrate Theorem 2.5 numerically by choosing the

initial condition of u; to be a Gaussian:

= (n[(5+5)ae3])

Two different temporal discretizations are adopted to check the numerical order, which
are the first-order forward Euler method and the second-order Heun’s method. The
numerical errors are computed by the comparison to the numerical solution using
Heun’s method and a smaller time step At = 10~7 without entropic fix. Results are
summarized in Tables 1 and 2 for the forward Euler method and Heun’s method,
respectively.

It can been seen from Tables 1 and 2 that both temporal schemes retain their
orders of convergence with the entropic fix. In the forward Euler method, an entropy
fix is required at every time step to maintain the monotonicity of entropy, and the
entropy fix actually reduces the L? error for all sizes of the time steps. However, in
Heun’s method, the entropy fix is applied only at a few time steps, and its effect on
the final L? error at T = 1 is negligible.

To numerically verify the general case described in Theorem 2.2, we design another
test case with the initial condition:

1
(4.3) uj(O)‘jAzz'Jr(S, j=1,...,N,
where § is a small positive number to avoid the appearance of log(0) in (4.2), and
we choose § = 10712 in our test. With this initial condition, there exists only one
u; very close to zero, which implies a large constant M if we apply Theorem 2.3 or

TABLE 1
Errors of the convection equation (4.1) with Gaussian initial values at T = 1.

Forward Euler method

Time step At 1/215 1/216 1/2%7 1/218

L? error of u 471 x107%T [ 235x 1077 | 1.18 x 10=%* | 5.88 x 10~ °
Order 1.00 0.99 1.00

Forward Euler method with entropy fix (2.4)

Time step At 1/218 1/216 1/2%7 1/218

L? error of u 3.72x 1077 [ 1.86 x 10=% | 9.32 x 1075 | 4.66 x 10—°
Order 1.00 1.00 1.00

No. of entropy fixes 215 216 217 218
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TABLE 2
Errors of the convection equation (4.1) with Gaussian initial values at T = 1.

Heun’s method
Time step At 17211 1/212 1/213 1/214
L? error of u 1.74 x 107° | 420 x 107% | 9.06 x 10~7 | 1.93 x 10— 7
Order 2.05 2.21 2.23
Heun’s method with entropy fix (2.4)
Time step At 17211 1/212 1/213 1/214
L? error of u 1.74 x 107° | 420 x 107% | 9.06 x 10~7 | 1.93 x 10— 7
Order 2.05 2.21 2.23
No. of entropy fixes 50 65 88 96
TABLE 3

Errors of the convection equation (4.1) with piecewise linear initial values at T = 1.

Forward Euler method

Time step At 1/218 1/216 1/2%7 1/218

L? error of u 1.81x 1073 | 747 x10~% | 342x 10~% | 1.64 x 10~2
Order 1.28 1.13 1.06

Forward Euler method with entropy fix (2.4)

Time step At 1/218 1/216 1/2%7 1/218

L? error of u 1.80 x 1073 | 7.42x 10~% | 339 x 10~% | 1.62 x 10~ %
Order 1.28 1.13 1.07

No. of entropy fixes 215 216 217 218
TABLE 4

Errors of the convection equation (4.1) with piecewise linear initial values at T = 1.

Heun’s method
Time step At 1/211 1/212 1/213 17214
L? error of u 7.04x10~% | 1.76 x 10~% | 4.46 x 10~° | 1.14 x 1077
Order 2.00 1.98 1.97
Heun’s method with entropy fix (2.4)
Time step At 1/211 1/212 1/213 1/214
L? error of u 7.03x10~% | 1.75 x 10~% | 445 x 10~° | 1.14 x 1077
Order 2.01 1.98 1.96
No. of entropy fixes 211 212 213 o14

Theorem 2.5. We therefore expect that the theoretical result in Theorem 2.2 better

fits this test case.

Results of the two temporal discretizations are summarized in Tables 3 and 4.
The general behavior of the entropy fix for the initial condition (4.3) is similar to the
Gaussian case. According to Theorem 2.2, the entropy fix has only infinitesimal effect
on the numerical order. As shown in Tables 3 and 4, the orders of convergence are
well retained for both temporal schemes even if the entropy fix is applied on every

time step.

4.2. Linear Fokker—Planck equation. In this example, we consider the one-
dimensional linear Fokker—Planck equation (also known as the drift-diffusion equa-

tion):

t>0,2€(0,1),
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with periodic boundary condition f(¢,0) = f(¢,1) and potential function
V() = 5 cos (20m2)
x) = — cos (207x) .
2m

Let M(z) = exp(—V (x)); then (4.4) can be written equivalently as

().

If we further define g(¢,x) = f(t,z)/M(z), then (4.5) becomes

1
— (Mg.), , t>0,2€(0,1).

(4~6) gt = M

We will focus on the discretization of (4.6). Initial condition is taken as

g(0,z —12—1—22—108111 (2j7zx),

Note that Z]ﬂj = 210, which yields 0.2 < ¢(0, z) < 2.2 indicating that the condition
of Theorem 2.3 is fulfilled after the spatial discretization. We partition [0,1] into
N = 64 grids uniformly with mesh size Az = 1/N and take central difference for
spatial discretization. Denoting g; = g(t, jAx), M; = M (jAx), and M1/ = M((j+
1/2)Ax) for j =0,...,N — 1, (4.6) can be approximated by

dgj 1 Mjyiya(gi+r — g5) — Mj—1/2(g5 — g5-1)

.7 At M, (Ax)?

The exact solution of (4.7) can be calculated by evaluating the eigenvalues and eigen-
vectors of the right-hand side of (4.7).

The semidiscrete scheme (4.7) (time is kept continuous) satisfies the conservation
of mass and the monotonicity of entropy with weight M;. In fact, it is easy to verify

Z =0 LM 797 remains as constant. For the entropy, we have

(4.8)
d (Z;V;ol Mj;g;log gj) N-1
dt - )2 Z Mj 1729541 — 95) — Mj—12(95 — gj_l)) log g,
7=0
N-1
7)2 M;_1/2(9; — gj—1)(log g; —loggj—1) < 0.
7=0

We now discretize (4.7) by the implicit midpoint (i.e., Crank—Nicolson) method.
This time discretization still conserves the mass. However, there is no guarantee
that the entropy will decay monotonically in time (in fact, it does not). In Figure 3,
we report the time evolution of the entropy with and without the entropy fix. Two
different time steps At = 1/512 and At = 1/1024 are considered. In both cases, it
is clear that the entropy decreases monotonically with the help of the entropy fix.
Meanwhile, the L? error of the solution remains almost the same with and without
the entropy fix. It is interesting to note that when At = 1/512, the entropy fix is
only needed at the first few time steps. On the other hand, when At = 1/1024, the
entropy fix is required only after ¢ = 0.02.
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0.07

Tmplicit midpoint

Tmplicit midpoint '
i Tmplicit midpoint with entropy fix

-2738 X Tmplicit midpoint with entropy fix 0.06
-2740 ‘
i \4 . 005 ‘
L7 5
o \\ S 004
: 9 :
£ 216 2 003
2748 “
! =002 <
-2750
\ \
oo — 0.01 _—
2754 0.00
0 001 002 003 004 005 0.06 0.07 0.08 0 001 002 0.03 004 005 006 007 008
t t
(a) Entropy vs t. At =1/512. (b) L2 relative error vs t. At = 1/512.
-2736 — 0.07 — :
Tplicit midpoint Tmplicit midpoint
-2738 Implicit midpoint with entropy fix 0.06 Tmplicit midpoint with entropy fix
2740 275221 1 005 \
-2742 ] g O \
- \\ -2752.23 | : 0.01 \
F om0 \ “2752.25 1F ;s
2748 97 o 10y
\ 275227 0.02
2750 00022 005 0,028 0.031]
7o 0.01 ———
-2754 0.00 —
0 001 002 003 004 005 0.06 0.07 0.08 0 001 002 0.03 004 005 006 007 008
t t
(c) Entropy vs t. At =1/1024. (d) L2 relative error vs t. At = 1/1024.

Fic. i]’)v 1E:vample of the linear Fokker—Planck equation. Time evolution of theNeq,tropy
H(g) =320 (g5log g;—g;)M;Ax and the L? relative error ||g—geoxact||2/|9exact |2 = (=0 (95—
gexact’j)2Mij)1/2/(Z§V:701(gexactyj)2Mij)1/2, where Ax = 1/64, At = 1/512 in the top two
panels and At =1/1024 in the bottom two panels.

4.3. Nonlinear Boltzmann equation. In this example, we consider a nonlin-
ear model introduced in [7], which results from a Fourier method for the spatially
homogeneous Boltzmann equation. The governing equation reads

(4.9) Vell) _ S~ ams (1 0,(0) — (0 5(0), € A,

dt
P,q,SEX

where f,. represents the approximation of the distribution function on a uniform three-
dimensional lattice index set X = {(r1,72,73) | 75 =0,...,M —1fori=1,2,3}. In
[7], the coefficients A}7 are determined in such a way that the semidiscrete scheme
(4.9) decays the entropy. However, this property may not hold when the time is
discretized.

In our experiment, we choose M = 17, and the values of A}7 are given in Appen-
dix A. The initial condition is taken as the one with lower bound so that condition of
Theorem 2.3 is satisfied:

0 =320 3 oo (5 -1)) 220 (o= (5-3)) +o0 (5 -3))

We solve (4.9) by the forward Euler method with time step At = 0.0007. The results
are displayed in Figure 4, from which we can see that the entropy fix method guaran-
tees the monotonicity of the entropy. The numerical error is computed by comparison
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0.20

) ‘ ‘ ‘ ‘
Forward Euler 0.065
1340 v\ Forward Euler with entropy fix 0.18 \
. 0.16 ‘
1320 107 4 \ 0.064
. L 014
1300 1 ; 0.063
o \ 1196 g 012 o
2 1280
S ol \ o5 0.10 0.062 1
5 1260 1195 2 o0s 0.05 0 nr.zTn.(m 0.056 |
. o o —
1240 1194 . 15 006 —
1220 0.05 0052 0.054 0.056] 001
1200 0.02 Forward Euler .
~ Forward Euler with entropy fix
1180 0.00 s : ‘ ‘ ‘ ‘
0 001 002 003 004 005 006 007 0 001 002 003 004 005 006 007
t t
(a) Entropy vs t. (b) L? relative error vs t.

Fia. 4. Ezample of the nonlinear Boltzmann equation. Time evolution of the entropy

H(-f) = ZT-EX(fT 10g fT - f’")AU and the L2 relative error H-f - -fexactH2/||fexact||2 = (ZreX(fT‘ -
fexact,r)2Av)l/2/(ZT€X(fexact,r-)zAv)lm, where Av = (3(3 +1/2)/17)% and At = 0.0007. foract
is the numerical solution evaluated with time step At = 0.000175.

with the numerical solution computed with a smaller time step At = 0.000175, with
and without the entropy fix. It can be seen that the two error curves almost coincide
with each other, meaning that the entropy fix does not ruin the numerical accuracy.

5. Conclusions. This paper focuses on the entropic method for a conserva-
tive and positive system of ODEs. When the numerical solution at the next time
step violates the monotonicity of entropy, our entropic method revises it by a linear
interpolation to the constant state. The resulting scheme decays the entropy mono-
tonically, while the order of local truncation error has a slight reduction in general.
However, in some special cases, the numerical order is proved to be retained after
entropic revision. Numerical experiments validate our results. Future work includes
the extension of the entropic method to spatially inhomogeneous kinetic equations
such as the Boltzmann equation and the radiative transfer equations.

Appendix A. Coefficients in (4.9). The values of A2 are given by

rs 1 Ho
(A.1) Ape = i Z Bi;(h—k,l—K)E_j(p—3s)E_p(q — s)Ex(r — s),
LhkeK
where K is defined as K = {k | k = (k1, ko, k3),—m < ki,ko, k3 < m} with M =
2m + 1, and Ej(v) = exp(%k - v) is the Fourier basis on the period [-7,T]?. The
kernel functions Bj‘w(, -) are defined by

B, (i, §) := B(i mod M, j mod M)o (i mod M)o(j mod M),

where mod is the symmetric modulo function such that each component of ¢ mod M
ranges from —m to m, and op (i) = Gas(i1)0ar(i2) 0 (i3), where 6p7(53) is the one-
dimensional modified Jackson filter [21] given by

B (m+1-— \ﬂ|)cos(ﬁf|1) + sin (;‘—f‘l) cot (m11>
- m+1 '

In the example in subsection 4.3, we adopt the kernel modes for the case of the
Maxwell molecules presented in [16] with

oM

(€ +mn)sin(§ —n) — (£ —n)sin(§ +n)
26n(&2 —n?) ’

X 1
B(k,l) :== /0 72 Sinc(&r) Sinc(nr) dr =
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where & = |k + I|Am,n = |k — I|]A7, and A\ = 2/(3 + 1/2). In the numerical simulation,
we take M = 17 and T = 3/\.
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