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Abstract. We consider general systems of ordinary differential equations with monotonic Gibbs
entropy and introduce an entropic scheme that simply imposes an entropy fix after every time step
of any existing time integrator. It is proved that in the general case, our entropy fix has only
infinitesimal influence on the numerical order of the original scheme, and in many circumstances,
it can be shown that the scheme does not affect the numerical order. Numerical experiments on
the linear Fokker–Planck equation and nonlinear Boltzmann equation are carried out to support our
numerical analysis.
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1. Introduction. The second law of thermodynamics, discovered more than
170 years ago, states that the direction of the thermodynamic processes is driven by a
physical quantity called entropy. The importance of this law cannot be overstated, and
nearly every thermodynamic model has to respect such a property. Mathematically,
there are a number of formulas to represent the entropy, among which the Gibbs
entropy, formulated as the integral of f log f with f being the distribution function
of the states, is widely used in a variety of models such as the heat equation, the
Boltzmann equation, and the Fokker–Planck equation. In our discussion, we assume
a finite number of states, so that the Gibbs entropy is defined by

η(f) =

N∑
i=1

fi log fi∆vi,

where f = (f1, . . . , fN )T ∈ RN
+ describes the distribution of the N states and ∆vi ∈

R+ represents the weight of the ith state which might come from the size of the ith
grid or the quadrature rule. The vector f is a vector function of time t, and we assume
that it satisfies the initial value problem

dfi(t)

dt
= Qi(f(t)), i = 1, . . . , N,

fi(0) = f0
i ,

(1.1)
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2346 ZHENNING CAI, JINGWEI HU, YANG KUANG, AND BO LIN

with the following properties:
(P1) conservation of mass: d

dt

∑N
i=1 fi(t)∆vi = 0;

(P2) nonnegativity: fi(t) ≥ 0 for all 1 ≤ i ≤ N, t ≥ 0;

(P3) monotonicity of entropy: d
dt

∑N
i=1 fi(t) log fi(t)∆vi ≤ 0.

The ODE system of the form (1.1) appears frequently after discretizing the ther-
modynamic equations in space. For example, it may arise from the finite difference
discretization of the heat equation and the Fokker–Planck-type equations [10, 6, 17, 8],
or the discrete velocity method and the entropic Fourier method for the Boltzmann
equation [11, 7].

Although the semidiscrete scheme (1.1) decays entropy, there is no guarantee
that this property will carry over when time is discretized. In some special cases, the
entropy decay can be proved for the fully discrete scheme [3, 14, 15], yet it often comes
at a price of using implicit schemes and is highly problem and scheme dependent.
Given the importance of entropy in thermodynamic processes, it would be desirable
to have a fully discrete entropic scheme that is generic (e.g., does not require a specific
type of time discretization) as well as easily implementable (e.g., does not require
expensive nonlinear iterations).

Researchers have been trying to develop entropic schemes for explicit time inte-
grators [4, 5, 20]. One recent progress is the relaxation Runge–Kutta method [13, 18],
which enforces the entropy dissipation by adding a relaxation parameter to the final
stage of each Runge–Kutta step. However, such a modification can cause slower con-
vergence, which is typically one order less than the original Runge–Kutta method.
Another recent work [1, 2] applies the deferred correction method under the resid-
ual distribution framework, which needs calculating additional entropy residual and
solving a series of correction substeps to reach desired order of accuracy.

To bridge the above gap, we introduce an entropic scheme in this paper to achieve
the following: one can apply any time discretization to the system (1.1) as long as it
maintains the mass conservation and nonnegativity of the solution. After each time
step, if the entropy goes in the wrong direction, we provide a simple fix to make it
decay monotonically. Such a fix is done by a weighted average of the current solution
and the solution with maximum entropy. This fix only at the final stage of each time
step is similar to the idea of the relaxation Runge–Kutta method [18]. Via numerical
analysis, we show that such a fix has only a tiny effect on the order of accuracy,
and in various cases, it can be proven that the order of accuracy is not affected
at all. Numerical experiments on the linear Fokker–Planck equation and nonlinear
Boltzmann equation will also be carried out to support our findings.

The paper is organized as follows. In section 2, we first outline the procedure
of our entropic method and summarize the main theorems of the method. The de-
tailed proof of the theorems with some deeper understandings is illustrated in sec-
tion 3. Section 4 provides the numerical experiments, and the conclusion follows in
section 5.

2. Main results. This section outlines the overall procedure of our entropic
method and lists the main results of our numerical analysis. Before stating our the-
orems, we introduce the notations and review some basic properties of the Gibbs
entropy.

2.1. Brief review of Gibbs entropy. Due to the conservation hypothesis (P1),
below we focus on the entropy functional defined by
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AN ENTROPIC METHOD FOR SYSTEMS WITH GIBBS ENTROPY 2347

H(f) =
N∑
i=1

(fi log fi − fi)∆vi :=
N∑
i=1

h(fi)∆vi

with h(x) = x log x− x. Note that H(f) differs from η(f) only by a constant.
Let C = (C, . . . , C)T ∈ RN

+ with

C =

∑N
i=1 fi∆vi∑N
i=1 ∆vi

.(2.1)

We denote by f̃ = f/C = (f̃1, . . . , f̃N )T the normalized f ; then it can be checked
that

Cη(f̃) = H(f)−H(C).(2.2)

Furthermore, we define the Lp (p = 1, 2) norm and L∞ norm of any f as

∥f∥p =

(
N∑
i=1

fp
i ∆vi

)1/p

, ∥f∥∞ = max
i

|fi|.

Lemma 2.1. C is the unique global minimum point of H(f) for all f ∈ RN
+

satisfying (2.1) with fixed C.

The proof of Lemma 2.1 can be done by the concavity of log(x) and Jensen’s
inequality. Furthermore, a straightforward corollary of Lemma 2.1 is that 1 =
(1, . . . , 1)T ∈ RN

+ is the unique global minimum point of η(f̃) for all f̃ ∈ RN
+ sat-

isfying ∥f̃∥1 = ∥1∥1. To ease the notation, we use ∥1∥1 =
∑N

i=1 ∆vi = V to denote
the volume.

The notations hereafter will be focused on the relative entropy η(f̃) and the
normalized f̃ for fixed C. One could find its relationship to the entropy function H(·)
from (2.2). For simplicity, we would like to omit the tilde symbol in f̃ , and thus the
average of the components of f will be 1 hereafter.

2.2. Main results. We assume after temporal discretization of (1.1), the prop-
erties (P1) and (P2) can be preserved. Specifically, if we let fn ≥ 0 be the numerical
solution at the nth time step, then we have

(H1) conservation:
∑N

i=1 f
n+1
i ∆vi =

∑N
i=1 f

n
i ∆vi;

(H2) nonnegativity: fn+1
i ≥ 0 for all 1 ≤ i ≤ N .

We would like to design an entropic method such that it can fulfill a discrete version
of (P3) while keeping (H1) and (H2).

Our numerical scheme is based on imposing a simple entropy fix after computing
the numerical solution at every time step. Suppose that fn+1 is computed through
evolving fn by one time step. If η(fn+1) ≤ η(fn), nothing needs to be done. Other-
wise, we revise the solution at the (n+ 1)th time step by a convex combination with
the state of minimum entropy. According to Lemma 2.1, such a state is 1 under our
conservation hypothesis, and thus the revised numerical solution is

f̂
n+1

= fn+1 + βp(1− fn+1),(2.3)

where βp ∈ (0, 1] is chosen to satisfy

η(fn+1 + βp(1− fn+1)) = η(fn).(2.4)
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This guarantees that the entropy is always nonincreasing. In the case where the
equilibrium is not a constant, the same technique can be applied, and we refer the
readers to Remark 2.7 for some comments on such cases. It can be shown that the
solution of (2.4) exists since the function ϕ(β) := η(fn+1+β(1−fn+1)) is convex and
monotonic with respect to β ∈ [0, 1], and we have ϕ(0) > η(fn) and ϕ(1) ≤ η(fn).
Therefore, we can use the bisection method to solve the equation efficiently.

In most cases, such a method stabilizes the solution since it reduces both the Gibbs
entropy and the 2-norm of vectors, where the reduction of 2-norm can be shown by the
convexity of the 2-norm and Jensen’s inequality. Therefore we are mainly concerned
about the magnitude of the fixing term βp(1 − fn+1), and we hope that this term
does not affect the numerical convergence order of the original scheme. Generally, the
error estimation of this scheme can be analyzed in the following manner:

∥f̂
n+1

− f(tn+1)∥ ≤ ∥f̂
n+1

− fn+1∥+ ∥fn+1 − f(tn+1)∥

≤ ∥f̂
n+1

− fn+1∥+ ∥fn+1 − f̃(tn+1)∥+ ∥f̃(tn+1)− f(tn+1)∥,

(2.5)

where f̃(t) is the solution of the problem

df̃i(t)

dt
= Qi(f̃(t)), i = 1, . . . , N,

f̃i(tn) = fn
i , i = 1, . . . , N,

(2.6)

and hence ∥fn+1 − f̃(tn+1)∥ is the “one-step error” of the scheme. The last term in
(2.5) is usually controlled by the stability of the ODE problem with respect to the
initial condition. If we assume that the scheme satisfies the consistency condition

∥f(tn+1)− fn+1∥ ≤ O(∆ts+1),

then the original scheme (before our entropy fix) is a scheme of order s. Here our
purpose is to demonstrate that the first term in the second line of (2.5), i.e., ∥βp(1−
fn+1)∥, can be controlled by the second term ∥f̃(tn+1) − fn+1∥. In the ideal case,
we may find a constant C such that

∥βp(1− fn+1)]∥ ≤ C∥f̃(tn+1)− fn+1∥;

then the numerical convergence order is not affected. Hereafter, for simplicity, we
would like to omit the tilde and use f(tn+1) to denote the solution of (2.6) at time
tn+1. In other words, we assume that the solution at the nth time step fn is exact
(f(tn) = fn), so that f(tn+1) becomes identical to f̃(tn+1).

In the following theorems, we will study a stronger result,

η
(
fn+1 + β(1− fn+1)

)
= η(f(tn+1)),(2.7)

where βp in (2.4) is replaced by β and the solution at (n + 1)th time step is revised
to possess the same entropy as f(tn+1). Due to η(f(tn+1)) ≤ η(fn) and the mono-
tonicity of η(fn+1 + ω(1− fn+1)) with respect to ω, we see that βp ≤ β. Therefore,
it suffices to show that ∥β(1 − fn+1)∥ can be controlled by the difference between
f(tn+1) and fn+1. Based on the commonly used 2-norm of vectors, we are going to
prove this type of results in four different scenarios, which will be stated in the four
theorems listed below.

In the first case, we have no assumptions on the structure of the solution, which
may lead to a slight reduction of the numerical convergence order.
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Theorem 2.2. Given a positive and conservative numerical scheme, i.e., fn+1 ∈
RN

+ and ∥fn+1∥1 = ∥f(tn+1)∥1, when η(fn+1) > η(fn) and (2.7) are satisfied, if

∥f(tn+1)− fn+1∥2 ≤ 1, then

∥β(1− fn+1)∥2 ≤ M∥f(tn+1)− fn+1∥2
(
1 +

∣∣log (∥f(tn+1)− fn+1∥2
)∣∣) ,

where M > 0 is a constant which depends on V , ∥fn+1∥∞, and ∥f(tn+1)∥∞.

In this case, the right-hand side of the inequality contains a logarithmic term,
which tends to infinity when ∥f(tn+1) − fn+1∥2 approaches zero. However, for any
ϵ > 0, we have

1 +
∣∣log (∥f(tn+1)− fn+1∥2

)∣∣ < ∥f(tn+1)− fn+1∥−ϵ
2

when ∥f(tn+1)−fn+1∥2 is sufficiently small, meaning that the numerical convergence
order is reduced only by an arbitrarily small positive number. Nevertheless, we would
still like to explore the conditions under which such a logarithmic term does not exist.
The remaining three cases are related to this type of results.

Intuitively, the reason of the logarithmic term in Theorem 2.2 is the unbounded-
ness of the function h′(x) when x is close to zero. In the following result, we assume
that the components of the numerical solution fn+1 have a lower bound C0 such that
h′(x) becomes bounded.

Theorem 2.3. Given a positive and conservative numerical scheme, i.e., fn+1 ∈
RN

+ and ∥fn+1∥1 = ∥f(tn+1)∥1, when η(fn+1) > η(fn) and (2.7) are satisfied, if

fn+1
i ≥ C0 > 0 holds for all 1 ≤ i ≤ N , then

∥β(1− fn+1)∥2 ≤ M∥f(tn+1)− fn+1∥2,

where M > 0 is a constant which depends on C0, ∥fn+1∥∞, and ∥f(tn+1)∥∞.

The condition in this theorem disallows the numerical solution to be zero anywhere
in the domain. When some components of the numerical solution equal zero, we can
still show that the L2 error after the entropy fix is small if the scheme can guarantee
the numerical convergence order for the L∞ error. This corresponds to our third case.

Theorem 2.4. Given a positive and conservative numerical scheme, i.e., fn+1 ∈
RN

+ and ∥fn+1∥1 = ∥f(tn+1)∥1, when η(fn+1) > η(fn) and (2.7) are satisfied, if

∥f(tn+1)− fn+1∥∞ ≤ 1/3, it holds that

∥β(1− fn+1)∥2 ≤ M∥f(tn+1)− fn+1∥∞,

where M > 0 is a constant which depends on V , ∥fn+1∥∞, and ∥f(tn+1)∥∞.

The last case we consider can be regarded as a generalization of Theorem 2.3.
We allow the numerical solution to be small on some part of the domain but require
that the solution increases slowly. This will lead to a result similar to the conclusion
of Theorem 2.3, where the L2-magnitude of the entropy fix can be directly bounded
by the L2 error.

Theorem 2.5. Given a positive and conservative numerical scheme, i.e., fn+1 ∈
RN

+ and ∥fn+1∥1 = ∥f(tn+1)∥1, we denote the components of fn+1 as fn+1
1 ≤ fn+1

2 ≤
· · · ≤ fn+1

N . For any C1, Cf ∈ (0, 1], there exist two positive constants δ and M such
that

∥β(1− fn+1)∥2 ≤ M∥fn+1 − f(tn+1)∥2
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if all the following conditions hold:
• η(fn+1) > η(fn) and η(fn+1 + β(1− fn+1)) = η(f(tn+1));
• ∥fn+1 − f(tn+1)∥2 < δ;

• The index I1 = min{I |
∑I

i=1 ∆vi ≥ C1V } satisfies

1

| log
(
fn+1
1

)
|
≥ Cf

| log
(
fn+1
I1

)
|
.(2.8)

Here δ depends on C1, Cf , and V , and M depends on C1, Cf , V , ∥fn+1∥∞, and
∥f(tn+1)∥∞.

In (2.8), the function 1/| log x| is regarded as zero when x takes the value zero.
The condition (2.8) allows the existence of small components in the solution. To
better demonstrate the nature of this condition, two examples are presented below.

Example 1. This example assumes that fn+1 is the uniform discretization of a
one-dimensional Gaussian, i.e.,

∆vi = ∆v, fn+1
i =

1

C
√
π
exp(−v2i ), i = 1, . . . , N + 1,

where vi are uniformly distributed in [−L,L], ∆v = 2L/(N + 1), and L > 0 is set
to be sufficiently large such that exp(−L2) is sufficiently small. The constant C is
chosen such that ∥fn+1∥1 = ∥1∥1. Furthermore, fox fixed L, we assume that N is an
even number and large enough such that C ≥ 1/(4L). According to the assumption
of Theorem 2.5, we set vi to be

vi = (−1)i⌈(N + 1− i)/2⌉2L
N

, i = 1, . . . , N + 1,

such that fn+1
i increases with respect to i. For illustration, we plot the normalized

Gaussian and its sorted version in Figure 1, where parameters are set as L = 6 and
N = 20. In this example, we take I1 = ⌈(N + 1)/2⌉ = N/2 + 1; then

log(fn+1
I1

)

log(fn+1
1 )

=
log 1

C
√
π
− v2I1

log 1
C
√
π
− L2

≥
v2I1 − log( 4L√

π
)

L2
≥

v2I1
2L2

≥ 1

8
,

which satisfies (2.8) with C1 = 1/2 and Cf = 1/8. This example shows a case where
the values of fn+1

i are nonzero but can be arbitrarily small.
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Fig. 1. Discretized Gaussian, its normalization and sorted notation in Example 1.
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Example 2. The second example is for the case where some components of fn+1

are zero. We assume a uniform discretization on [0, 1] with ∆vi = 1/N for i = 1, . . . , N
and choose fn+1 to be

fn+1
i =

 0, i = 1, . . . , I1,
1, i = I1 + 1, . . . , N − I1,
2, i = N − I1 + 1, . . . , N.

If I1/N is a constant, the vector fn+1 approximates a piecewise constant function.
In this case, Theorem 2.5 holds by choosing C1 = I1/N and Cf to be any positive
number in (0, 1]. The blue lines in Figure 2 show the situation where C1 = 1/3.
However, if I1/N decreases to zero as N increases, e.g., I1 ≡ 1 for all N , such a
constant C1 cannot be found. This situation violates the condition of Theorem 2.5,
which is illustrated as the red lines in Figure 2.

In general, the above theorems suggest that such an entropy fix can be safely used
without sacrificing the numerical accuracy. Moreover, for a numerical scheme with
sufficient accuracy, the violation of the entropy inequality will not always happen,
meaning that the entropy fix may be needed only at a few time steps, resulting in
even less significant impact on the numerical accuracy.

Remark 2.6. The value of β in the above theorems is determined by (2.7), which is
not practical in real implementation as f(tn+1) is unknown. Nevertheless, as stated
after (2.7), the computable βp defined in (2.4) satisfies βp ≤ β. Therefore, all the
theorems still hold if we replace β by βp in the theorems.

Remark 2.7. The above results can be easily generalized to the cases where the
equilibrium is not a constant. Assume that M = (M1, . . . ,MN )T ∈ R+

N is the
equilibrium state of (1.1), and the entropy functional (in this case, it is the relative
entropy) is defined by

η[f ] =
N∑
i=1

fi log
fi
Mi

∆vi.

We can let gi = fi/Mi and ∆wi = Mi∆vi so that η[f ] can be rewritten as

η[f ] =
N∑
i=1

gi log gi∆wi,

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Fig. 2. Illustration of Example 2 where fn+1
i can only be chosen as 0, 1, or 2.
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which fits the entropy formulas in the theorems again. In this case, the entropy fix
(2.3) applied to gn+1 is equivalent to the following fix applied to fn+1:

f̂
n+1

= fn+1 + βp(M− fn+1).(2.9)

By this transformation, our approach can also be applied to the linear Fokker–Planck
equation. Please see the numerical section for more details.

3. Theoretical proofs of the error estimates. This section provides all the
details of the proofs of the four theorems. Instead of proving these theorems in the
order they are presented, below we will first provide the proof of Theorem 2.3, which
can provide necessary tools needed in the proof of Theorem 2.2.

3.1. Proof of Theorem 2.3. Before proving the theorem, the relationship be-
tween the entropy function and the L2 norm will be demonstrated by several lemmas.
Among them, we will first estimate the entropy function η(f) and its L2 norm ∥f∥2
in the following lemma.

Lemma 3.1. For f ∈ RN
+ and ∥f∥1 = V ,

1

2∥f∥∞
∥f − 1∥22 ≤ η(f) ≤ ∥f − 1∥22.

Proof. On one hand, for x ≥ 0,

x log x− (x− 1) ≤ x(x− 1)− (x− 1) = (x− 1)2,

where the inequality above uses log x ≤ x−1. On the other hand, by Taylor’s theorem,

x log x = (x− 1) +

∫ x

1

1

t
(x− t)dt.

For 0 ≤ x ≤ ∥f∥∞, the integral satisfies∫ x

1

1

t
(x− t)dt ≥

∫ x

1

1

max(x, 1)
(x− t)dt ≥

∫ x

1

1

∥f∥∞
(x− t)dt =

(x− 1)2

2∥f∥∞
.

Therefore,

(x− 1) +
(x− 1)2

2∥f∥∞
≤ x log x ≤ (x− 1) + (x− 1)2.

The lemma can be proved by taking x = fi in the above inequality and summing up
all 1 ≤ i ≤ N .

A straightforward corollary of the above lemma is given as follows.

Lemma 3.2. For f (1) ∈ RN
+ and f (2) ∈ RN

+ with ∥f (1)∥1 = ∥f (2)∥1 = V , if

η(f (1)) ≤ η(f (2)), then it holds that

∥f (1) − 1∥22 ≤ 2∥f (1)∥∞∥f (2) − 1∥22.

After showing the equivalence between the entropy function and the 2-norm, we
will proceed to discuss the relationship between η(f (1))− η(f (2)) and ∥f (1) − f (2)∥2
for any two vectors f (1) and f (2). By the definition of η(·), we are inspired to study
the estimation of h(x)− h(y). The result is presented in the following lemma.
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Lemma 3.3. Given 0 < C0 ≤ 1, y ≥ 0, and x ≥ C0, if y ≥ C0 or h(x) > h(y),
then

|h(x)− h(y)| ≤ max (2, 2| log(C0)|) |x− y| (|x− 1|+ |y − 1|) .(3.1)

Proof. If x = y, it is obvious that the lemma is correct. It remains to prove the
lemma when x ̸= y.

By the mean value theorem,

h(x)− h(y) = log(ξ)(x− y),(3.2)

where ξ is between x and y. If log(ξ) ≥ 0, it holds that ξ ≥ 1 and

| log(ξ)| = log(ξ) ≤ ξ − 1 ≤ max(x− 1, y − 1) ≤ |x− 1|+ |y − 1|.

Therefore, if log(ξ) ≥ 0, (3.2) becomes

|h(x)− h(y)| ≤ |x− y| (|x− 1|+ |y − 1|) .(3.3)

Next we assume h(x) > h(y). If h(x) > h(y) and x > y, (3.2) implies log(ξ) > 0,
which gives (3.3). If h(x) > h(y) and x < y, (3.2) implies log(ξ) < 0 and ξ ≤ 1. In
this case, y > x ≥ C0, which implies ξ ≥ C0 and log(ξ) ≥ log(C0). Therefore, (3.2)
becomes

|h(x)− h(y)| = − log(ξ)|x− y| ≤ − log(C0)|x− y| = | log(C0)||x− y|.(3.4)

On the other hand, by the mean value theorem,

− log(ξ) = log(1)− log(ξ) =
1

ξ2
(1− ξ) ≤ 1

C0
(|x− 1|+ |y − 1|) ,

where ξ2 ∈ [ξ, 1] ⊂ [C0, 1]. The above results can be summarized into the following
estimation:

|h(x)− h(y)| ≤ |x− y|min

(
| log(C0)|,

1

C0
(|x− 1|+ |y − 1|)

)
.(3.5)

If we further assume x ≥ 1/2 and y ≥ 1/2, then (3.5) is satisfied with C0 = 1/2,
which becomes

|h(x)− h(y)| ≤ |x− y|min (log 2, 2 (|x− 1|+ |y − 1|)) ≤ 2|x− y| (|x− 1|+ |y − 1|) .

Otherwise, if x < 1/2 or y < 1/2, we have 2(|x− 1|+ |y − 1|) ≥ 1. Therefore,

min

(
| log(C0)|,

1

C0
(|x− 1|+ |y − 1|)

)
≤ | log(C0)| ≤ 2| log(C0)| (|x− 1|+ |y − 1|) .

Combining the two results above yields the inequality (3.1) when h(x) > h(y).
It remains only to consider the case h(x) ≤ h(y) and y ≥ C0. If x < y, (3.2)

implies log(ξ) ≥ 0, which gives the result of (3.3). Otherwise, x > y implies log(ξ) ≤ 0.
Since x ≥ C0 and y ≥ C0, it holds that ξ ≥ C0, and therefore 0 ≥ log(ξ) ≥ log(C0),
which also yields (3.5). The rest of the proof is the same as the previous case.

With the help of the above lemma, we could give an upper bound of the difference
of entropy functions η(f (1))− η(f (2)) in the following lemma.
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Lemma 3.4. For f (1) = (f
(1)
1 , . . . , f

(1)
N ) ∈ RN

+ and f (2) = (f
(2)
1 , . . . , f

(2)
N ) ∈ RN

+

with ∥f (1)∥1 = ∥f (2)∥1 = V , given 0 < C0 ≤ 1, if f
(1)
i ≥ C0 for all 1 ≤ i ≤ N and

f (2) satisfies either of the conditions

1. f
(2)
i ≥ C0 for all 1 ≤ i ≤ N or

2. η(f (2)) < η(f (1)),
then it holds that∣∣∣η(f (1))− η(f (2))

∣∣∣ ≤ max (2, 2| log(C0)|) ∥f (1) − f (2)∥2
(
∥f (1) − 1∥2 + ∥f (2) − 1∥2

)
.

Proof. For simplicity, we use M to denote the constant max (2, 2| log(C0)|) in this

proof. In the first case, f
(2)
i ≥ C0 > 0 for all 1 ≤ i ≤ N , we can plug x = f

(1)
i and

y = f
(2)
i in Lemma 3.3 and sum over all 1 ≤ i ≤ N . By using ∥f (1)∥1 = ∥f (2)∥1, we

can obtain that∣∣∣η(f (1))− η(f (2))
∣∣∣ ≤ M

N∑
i=1

(∣∣∣(f (1)
i − 1)(f

(1)
i − f

(2)
i )
∣∣∣+ ∣∣∣(f (2)

i − 1)(f
(1)
i − f

(2)
i )
∣∣∣)∆vi.

The lemma can be proven by the Cauchy–Schwarz inequality.
In the second case η(f (2)) < η(f (1)), we have

η(f (1))− η(f (2))

=
∑

h(f
(1)
i )≤h(f

(2)
i )

(
h(f

(1)
i )− h(f

(2)
i )
)
∆vi +

∑
h(f

(1)
i )>h(f

(2)
i )

(
h(f

(1)
i )− h(f

(2)
i )
)
∆vi

≤
∑

h(f
(1)
i )>h(f

(2)
i )

(
h(f

(1)
i )− h(f

(2)
i )
)
∆vi

≤ M
∑

h(f
(1)
i )>h(f

(2)
i )

(∣∣∣(f (1)
i − 1)(f

(1)
i − f

(2)
i )
∣∣∣+ ∣∣∣(f (2)

i − 1)(f
(1)
i − f

(2)
i )
∣∣∣)∆vi,

where the last inequality is again the result of Lemma 3.3. The lemma naturally
follows by extending the range of summation of i to 1, . . . , N and applying the Cauchy–
Schwarz inequality.

In the proof of case 2, we applied Lemma 3.3 only to f
(1)
i and f

(2)
i with h(f

(1)
i ) >

h(f
(2)
i ). This allows us to relax the condition “f

(1)
i ≥ C0 for all 1 ≤ i ≤ N” in the case

η(f (1)) > η(f (2)). In fact, we need f
(1)
i > C0 only for the components that require

Lemma 3.3. We write this result in the following corollary.

Corollary 3.5. For f (1) = (f
(1)
1 , . . . , f

(1)
N ) ∈ RN

+ and f (2) = (f
(2)
1 , . . . , f

(2)
N ) ∈

RN
+ with ∥f (1)∥1 = ∥f (2)∥1 = V , we assume η(f (1)) > η(f (2)). If there exists 0 <

C0 < 1 such that for any i = 1, . . . , N , either f
(1)
i ≥ C0 or h(f

(1)
i ) ≤ h(f

(2)
i ) is

satisfied, then it holds that∣∣∣η(f (1))− η(f (2))
∣∣∣ ≤ max (2, 2| log(C0)|) ∥f (1) − f (2)∥2

(
∥f (1) − 1∥2 + ∥f (2) − 1∥2

)
.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. The convexity of η(·) implies

η(fn+1 + β(1− fn+1)) ≤ βη(1) + (1− β)η(fn+1).
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By (2.7) with η(1) = 0, the above inequality is equivalent to

β ≤ η(fn+1)− η(f(tn+1))

η(fn+1)
.(3.6)

The numerator in (3.6) can be estimated by

η(fn+1)− η(f(tn+1))

≤ M∥fn+1 − f(tn+1)∥2
(
∥fn+1 − 1∥2 + ∥f(tn+1)− 1∥2

)
(Lemma 3.4)

≤ M∥fn+1 − f(tn+1)∥2
(
1 +

√
∥f(tn+1)∥∞

)
∥fn+1 − 1∥2, (Lemma 3.2)

where M = max(2, 2| log(C0)|). On the other hand, according to Lemma 3.1, the
denominator in (3.6) satisfies

η(fn+1) ≥ 1

2∥fn+1∥∞
∥fn+1 − 1∥22.

Therefore,

∥β(1− fn+1)∥2 ≤ 2M∥fn+1∥∞(1 +
√

∥f(tn+1)∥∞)∥fn+1 − f(tn+1)∥2.

In this case, we would like to give a remark on the practical choice of βp in

(2.4). Instead of solving η(fn+1 + βp(1 − fn+1)) = η(fn), we can simply take β̂p =
(η(fn+1)− η(fn))/η(fn+1), which equals the upper bound in (3.6). Note that the

convexity of function η(·) implies η(fn) = (1−β̂p)η(f
n+1)+β̂pη(1) ≥ η(fn+1+β̂p(1−

fn+1)). Therefore, under the condition of Theorem 2.3, if we change the numerical

solution at (n+1)th step to fn+1+ β̂p(1−fn+1), it still holds that ∥β̂p(1−fn+1)∥2 ≤
M∥f(tn+1)− fn+1∥2.

3.2. Proof of Theorem 2.2. Different from the previous proof, in Theorem 2.2,
we allow the solution to have components arbitrarily close to zero, so that Lemma 3.4
cannot be directly applied. To overcome this difficulty, we introduce a regularization
term before using Lemma 3.4. The details are given as follows.

Proof of Theorem 2.2. For simplicity, we let ε = ∥fn+1 − f(tn+1)∥2. To avoid
dealing with zero components, we first regularize the numerical solution fn+1 by

fn+1,1 = fn+1 + ε(1− fn+1),(3.7)

after which fn+1,1
i ≥ ε for all i = 1, . . . , N . On the other hand, since ∥1− fn+1∥∞ ≤

max(1, ∥f∥∞ − 1) ≤ ∥f∥∞, the L2 norm of the perturbation introduced by the regu-
larization satisfies

∥ε(1− fn+1)∥2 ≤
√
V ∥fn+1∥∞ε.

After perturbation, if η(fn+1,1) < η(f(tn+1)), then we have β < ε so that the
conclusion of the theorem is drawn. If η(fn+1,1) > η(f(tn+1)), we can find β2 ∈ (0, 1]
such that

η
(
fn+1,1 + β2(1− fn+1,1)

)
= η(f(tn+1)),

which is identical to (2.7) by replacing fn+1 to fn+1,1. Therefore, we can set C0 = ε
in Theorem 2.3 to obtain

∥β2(1− fn+1,1)∥2 ≤ M1∥fn+1,1 − f(tn+1)∥2,
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and by the proof of Theorem 2.3, we know that

M1 = 4max (1, |log ε|) ∥fn+1,1∥∞(1 +
√
∥f(tn+1)∥∞)

≤ 4(1 + |log ε|)∥fn+1∥∞(1 +
√
∥f(tn+1)∥∞),

since ∥fn+1,1∥∞ ≤ ∥fn+1∥∞.
If we define

f̂
n+1

= fn+1,1 + β2(1− fn+1,1) = fn+1 + (ε+ β2 − εβ2)(1− fn+1),(3.8)

then by η(f̂
n+1

) = η(f(tn+1)) we know that β = ε+ β2 − εβ2. Thus it holds that

∥β(1− fn+1)∥2 = ∥f̂
n+1

− fn+1∥2 ≤ ∥f̂
n+1

− fn+1,1∥2 + ∥fn+1,1 − fn+1∥2
≤ M1∥fn+1,1 − f(tn+1)∥2 + ∥fn+1,1 − fn+1∥2
≤ M1(∥fn+1,1 − fn+1∥2 + ε) + ∥fn+1,1 − fn+1∥2
≤ M1(

√
V ∥fn+1∥∞ε+ ε) +

√
V ∥fn+1∥∞ε ≤ M2ε(| log ε|+ 1),

where M2 = 8(
√
V ∥fn+1∥∞ + 1)∥fn+1∥∞(1 +

√
∥f(tn+1)∥∞).

The proof of this theorem follows the two-step procedure, which will also be
applied in the proof of Theorem 2.4.

3.3. Proof of Theorem 2.4. To prove Theorem 2.4, we deal with the compo-
nents with fn+1

i < 2
3 and fn+1

i > 2
3 separately. The difference between these two

cases can be seen from the following lemma:

Lemma 3.6. For f (1) ∈ RN
+ and f (2) ∈ RN

+ with ∥f (1) − f (2)∥∞ ≤ 1
3 , define

f (3) = f (1) + β1(1− f (1)),

where β1 = 3∥f (1) − f (2)∥∞. If ∥f (1)∥1 = V , then f (3) satisfies following properties:

1. For all k such that f
(1)
k < 2

3 , it holds that h(f
(3)
k ) ≤ h(f

(2)
k ).

2. For all k such that f
(1)
k ≥ 2

3 , it holds that f
(3)
k ≥ 2

3 .

3. ∥f (3) − f (1)∥∞ ≤ 3∥f (1)∥∞∥f (1) − f (2)∥∞.

Proof. For those k such that f
(1)
k < 2

3 , we have 1− f
(1)
k ≥ 1

3 . Thus

f
(3)
k − f

(1)
k = β1(1− f

(1)
k ) ≥ 3

∣∣∣f (1)
k − f

(2)
k

∣∣∣ · (1− f
(1)
k ) ≥

∣∣∣f (1)
k − f

(2)
k

∣∣∣ ≥ f
(2)
k − f

(1)
k ,

which yields f
(3)
k ≥ f

(2)
k . Since f

(3)
k is the convex combination of 1 and f

(1)
k , we

have 0 ≤ f
(3)
k ≤ 1. Since h(·) is monotonically decreasing on [0, 1], we conclude that

h(f
(3)
k ) ≤ h(f

(2)
k ).

The second property is obvious since f
(3)
k lies between f

(1)
k and 1.

As for the third property, it should be noted that ∥f (1)∥1 = V implies ∥f (1)∥∞ ≥
1. Therefore,

∥f (3) − f (1)∥∞ = β1∥1− f (1)∥∞
≤ max(1, ∥f (1)∥∞ − 1)β1 ≤ 3∥f (1)∥∞∥f (1) − f (2)∥∞.
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The first property in Lemma 3.6 shows how we deal with the small components,
and this only holds when β1 is proportional to the difference between f (1) and f (2)

measured by the infinity norm, leading to the form of the right-hand side in the
conclusion of Theorem 2.4. For the remaining terms, an O(1) lower bound exists, so
that the same technique as Theorem 2.3 can be applied. The details of the proof are
given below.

Proof of Theorem 2.4. By Lemma 3.6, we could pick β1 = 3∥fn+1 − f(tn+1)∥∞
and construct

fn+1,1 = fn+1 + β1(1− fn+1).(3.9)

If η(fn+1,1) ≤ η(f(tn+1)), the proof is already completed. If η(fn+1,1) > η(f(tn+1)),

we construct f̂
n+1

as (3.8) such that η(f̂
n+1

) = η(f(tn+1)), and thus β = β1 + β2 −
β1β2. According to Lemma 3.6, those components i where h(fn+1,1

i ) > h(fi(tn+1))

satisfy fn+1,1
i ≥ 2

3 . Therefore, Corollary 3.5 could be applied with C0 = 2
3 , and we

could mimic the proof of Theorem 2.3, replacing only Lemma 3.4 with Corollary 3.5
in the proof. As a result, by the conclusion of Theorem 2.3, it holds that

∥β2(1− fn+1,1)∥2 ≤ M1∥f(tn+1)− fn+1,1∥2,

where M1 = 4max (1, | log(C0)|) ∥fn+1,1∥∞(1 +
√

∥f(tn+1)∥∞) taken from the proof

of Theorem 2.3. Moreover, fn+1,1 inM1 could be replaced by fn+1 since ∥fn+1,1∥∞ ≤
∥fn+1∥∞. Then, similar to the second step in the proof of Theorem 2.2, it holds that

∥f̂
n+1

− fn+1∥2 ≤ ∥f̂
n+1

− fn+1,1∥2 + ∥fn+1,1 − fn+1∥2
≤ M1∥f(tn+1)− fn+1,1∥2 + ∥fn+1,1 − fn+1∥2
≤ M1

√
V ∥f(tn+1)− fn+1,1∥∞ +

√
V ∥fn+1,1 − fn+1∥∞

≤ M1

√
V ∥f(tn+1)− fn+1∥∞ +

√
V (M1 + 1)∥fn+1,1 − fn+1∥∞

≤
(
M1

√
V + 3

√
V (M1 + 1)∥fn+1∥∞

)
∥f(tn+1)− fn+1∥∞,

where the last “≤” is the result of Lemma 3.6. This completes the proof since ∥β(1−
fn+1)∥2 = ∥f̂

n+1
− fn+1∥2.

3.4. Proof of Theorem 2.5. In this subsection, we will prove Theorem 2.5.
Before that, we would like to introduce two lemmas. Lemma 3.7 comes from opti-
mization, which illustrates the infinity norm of optimal solution could be bounded by
the L2 norm of it. Based on Lemma 3.7, we make a decomposition of the (relative)
entropy function in (3.21) and then introduce Lemma 3.11 to estimate the difference
of decomposed entropy functions.

As assumed in the theorem, we suppose all the components of f are sorted in the
ascending order:

f1 ≤ f2 ≤ · · · ≤ fN = ∥f∥∞.

Note that this does not affect the definition of entropy and the numerical scheme for
the entropy fix.

Lemma 3.7. For any C1, Cf ∈ (0, 1] and positive integer N , let I1 = min{I |∑I
i=1 ∆vi ≥ C1V }. If f ∈ RN

+ satisfies

fi ≤ 1/2 ∀i = 1, . . . , I1 and
1

| log f1|
≥ Cf

| log fI1 |
,
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then when ε < 1
2

√
C1V , the solution g∗ = (g∗1 , . . . , g

∗
I1
)T ∈ RI1 of the optimization

problem

argmin
g1,...,gI1

I1∑
i=1

h(fi + gi)∆vi s.t.

I1∑
i=1

g2i∆vi ≤ ε2(3.10)

satisfies 0 ≤ g∗I1 ≤ · · · ≤ g∗1 ≤ (
√
C1V Cf )

−1ε and Cf ≤ g∗I1/g
∗
1 ≤ 1.

Proof. The proof utilizes the Karush–Kuhn–Tucker sufficient conditions for op-
timization problems [19, Chapter 3.5]. It is easy to verify that both the objective
function and the constraint are continuously differentiable convex functions with re-
spect to (g1, . . . , gI1)

T . Therefore, if the following conditions hold for λ∗ ∈ R and
g∗ = (g∗1 , . . . , g

∗
I1
)T , 

h′(fi + g∗i ) + 2λ∗g∗i = 0 ∀ 1 ≤ i ≤ I1,

I1∑
i=1

(g∗i )
2∆vi ≤ ε2,

λ∗ ≥ 0,

λ∗

(
I1∑
i=1

(g∗i )
2∆vi − ε2

)
= 0,

(3.11)

then g∗ is the global minimum of the optimization problem.
First, we claim that λ∗ ̸= 0, so that

I1∑
i=1

(g∗i )
2∆vi = ε2(3.12)

due to the last equation in (3.11). If λ∗ equals 0, then h′(fi + g∗i ) = 0, which yields
g∗i = 1− fi ≥ 1

2 . Therefore,

I1∑
i=1

(g∗i )
2∆vi ≥

∑I1
i=1 ∆vi
4

≥ C1V

4
> ε2,

which contradicts with the second inequality in (3.11).
Now we would like to establish the existence and uniqueness of the solution. We

first focus on the first equation in (3.11). For any 1 ≤ i ≤ I1 and fixed λ∗ > 0, there
exists one unique g∗i ∈ (0, 1) satisfying h′(fi + g∗i ) + 2λ∗g∗i = 0. This is because the
function ζi(x) := h′(fi + x) + 2λ∗x is monotonically increasing, and

ζ(0) = log fi ≤ log

(
1

2

)
< 0, ζ(1) ≥ 2λ∗ > 0.

Thus it remains to demonstrate that λ∗ is unique. Inspired by the first equation in
(3.11), we define

σ(x) = −h′(fi + x)

2x
= − log(fi + x)

2x
, x ∈ (0, 1− fi].

Then its inverse function σ−1
i (y) satisfies

y = − log(fi + σ−1
i (y))

2σ−1
i (y)

and σ−1
i (y) =

W0(2ye
2yfi)− 2yfi
2y

,(3.13)
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where W0(·) is the Lambert W function [9] satisfying W0(x)e
W0(x) = x. For σi(·) and

σ−1
i (·), we have the following properties:

1. σi(x) is monotonically decreasing, and so is σ−1
i (x) (this requires fi ≤ 1

2 );

2. σi(g
∗
i ) = λ∗ and g∗i = σ−1

i (λ∗);
3. σ−1

i (0) = 1− fi ≥ 1
2 and σ−1

i (y) → 0 as y → +∞.

Here the limit of σ−1
i (y) at +∞ can be obtained by the inequality (see [12])

W0(x) ≤ log(x)− log(log(x)) +
e

e− 1

log(log(x))

log(x)
∀x ≥ e.

Furthermore, if we define

Ξ(y) =

I1∑
i=1

[σ−1
i (y)]2∆vi, y ∈ [0,+∞),

then by the three properties of σi, we have
1. Ξ(y) is a decreasing function since each σ−1

i (y) is monotonically decreasing;
2. Ξ(λ∗) = ε2 according to (3.12);

3. Ξ(0) ≥ 1
4

∑I1
i=1 ∆vi > ε2, and Ξ(y) → 0 as y → +∞.

These properties show the existence and uniqueness of λ∗.
Next, we will show g∗I1 ≤ · · · ≤ g∗1 . For any 1 ≤ i ≤ j ≤ I1, fi ≤ fj implies

σj(g
∗
j ) = λ∗ = σi(g

∗
i ) ≥ σj(g

∗
i ).

Using the fact that σj(·) is decreasing, we see that g∗j ≤ g∗i . To get the bound of g∗1 ,
we need the following two results:

• By (3.13), we have

lim
y→+∞

σ−1
i (y)

σ−1
1 (y)

= lim
y→+∞

log(fi + σ−1
i (y))

log(f1 + σ−1
1 (y))

=
log(fi)

log(f1)
≥ Cf .

• By straightforward calculation, we have

d

dy

(
σ−1
i (y)

σ−1
1 (y)

)
=

W0(2ye
2yf1)−W0(2ye

2yfi)

y(1 +W0(2ye2yf1))(1 +W0(2ye2yfi))

σ−1
i (y)

σ−1
1 (y)

≤ 0.

These results indicate that
g∗i
g∗1

=
σ−1
i (λ∗)

σ−1
1 (λ∗)

≥ Cf ,

and thus

g∗1 = ε

(
I1∑
i=1

(g∗i )
2

(g∗1)
2
∆vi

)−1/2

≤ ε

(
I1∑
i=1

C2
f∆vi

)−1/2

≤ ε√
C1V Cf

.

This completes the proof.

One corollary of the above lemma is the extension to a continuous version, with
identical optimal solution g∗ in the sense of a piecewise constant function. For the
ease of this extension, we would like to introduce the (partial) sum of first i parameters
∆vi as

S0 = 0, Si =
i∑

j=1

∆vj , i = 1, . . . , N.(3.14)

Then we have the following corollary.
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Corollary 3.8. Under the condition of Lemma 3.7, if a piecewise constant func-
tion defined on (0, SI1 ] is introduced as

f(v) = fi, v ∈ (Si−1, Si], i = 1, . . . , I1,

then the solution g∗(v) ∈ L2((0, SI1 ]) of the following problem

argmin
g∈L2((0,SI1

])

∫ SI1

0

h(f(v) + g(v))dv s.t. ∥g∥22 :=

∫ SI1

0

(g(v))2dv ≤ ε2(3.15)

is equal to a piecewise constant function a.e. as

g∗(v) = g∗i , v ∈ (Si−1, Si], i = 1, . . . , I1,

where g∗i is the component of the optimal solution g∗ in Lemma 3.7.

Proof. To prove the corollary, it suffices to show that for every i = 1, . . . , I1, the
function g∗(v) is a constant on (Si−1, Si] except for a set with measure zero, so that
the optimization problem (3.15) is essentially equivalent to (3.10). Suppose that g∗(v)
is essentially not a constant on (Si−1, Si] for some i. We define the function ĝ(v) by

ĝ(v) =


1

∆vi

∫ Si

Si−1

g∗(v) dv if v ∈ (Si−1, Si],

g∗(v) otherwise.

By Hölder’s inequality (on (Si−1, Si]), it is easy to find ∥ĝ∥22 ≤ ∥g∗∥22 ≤ ε2. Moreover,
using Jensen’s inequality on the convex function h(fi + ·), we obtain∫ Si

Si−1

h(f(v) + ĝ(v)) dv = ∆vih(fi + ĝ(v)) ≤
∫ Si

Si−1

h(fi + g∗(v)) dv.(3.16)

Note that g∗(·) is the optimal solution, implying that the equality must hold for (3.16).
However, since h(fi + ·) is strictly convex, the equality holds only when g∗(v) is a
constant on (Si−1, Si], which contradicts our assumption. This completes the proof
of the corollary.

Another important corollary of Lemma 3.7 is to pick β1 = O(∥fn+1−f(tn+1)∥2)
and construct fn+1,1 following (3.9) such that the entropy of fn+1,1 is less than the
entropy of f(tn+1) in the range of i ≤ I1.

Corollary 3.9. Let ε := ∥fn+1 − f(tn+1)∥2. Suppose fn+1 satisfies the condi-

tion of Lemma 3.7 and ε <
√
C1V Cf

2 . Let β1 = 2ε√
C1V Cf

and

fn+1,1 = fn+1 + β1(1− fn+1).(3.17)

Then fn+1,1 satisfies

I1∑
i=1

h(fn+1,1
i )∆vi ≤

I1∑
i=1

h(fi(tn+1))∆vi.(3.18)

Proof. Let g∗1 , . . . , g
∗
I1

be the solution of the optimization problem (3.10). Since

I1∑
i=1

(fn+1
i − fi(tn+1))

2∆vi ≤ ∥fn+1 − f(tn+1)∥22 = ε2,
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it holds that
I1∑
i=1

h(fn+1
i + g∗i )∆vi ≤

I1∑
i=1

h(fi(tn+1))∆vi.

To prove (3.18), it suffices to show

I1∑
i=1

h(fn+1,1
i )∆vi ≤

I1∑
i=1

h(fn+1
i + g∗i )∆vi.(3.19)

By the conclusion of Lemma 3.7,

fn+1,1
i = fn+1

i + β1(1− fn+1
i ) ≥ fn+1

i +
β1

2
= fn+1

i +
ε√

C1V Cf

≥ fn+1
i + g∗i

for all 1 ≤ i ≤ I1. Noticing that β1 < 1 by the constraint ε <
√
C1V Cf

2 , we obtain

fn+1,1
i < 1. Hence, the monotonicity of h(·) yields

h(fn+1,1
i ) ≤ h(fn+1

i + g∗i ) ∀i = 1, . . . , I1.

Multiplying ∆vi and summing up the above inequalities for i yield (3.19).

By Corollary 3.9, we have performed our first step that reduces the entropy of the
smallest part of fn+1 (from fn+1

1 to fn+1
I1

) below the entropy of the exact solution

in the same section. If the smallest component beyond this section fn+1
I1+1 already

has the magnitude O(1), for instance, fn+1
I1+1 ≥ 1

2 , then the remaining part can be
processed using the same technique as in Theorem 2.2 and Theorem 2.4. Therefore,
below we will only focus on the case where fn+1

I1+1 < 1/2, and this inspires us to further
decompose the remaining components into two parts by introducing I2 such that

fn+1
I2

≤ 1

2
, fn+1

I2+1 >
1

2
.(3.20)

Then we will have η(f)− V = H1(f) +H2(f) +H3(f) for any f ∈ RN
+ , where

H1(f) =

I1∑
i=1

h(fi)∆vi, H2(f) =

I2∑
i=I1+1

h(fi)∆vi, H3(f) =

N∑
i=I2+1

h(fi)∆vi.

(3.21)

Note that this decomposition also includes the case fn+1
I1+1 ≥ 1

2 , for which we can

choose I2 = I1, so that H2(f
n+1) = 0.

Lemma 3.11 will show some properties of above decomposition. Before that, a
quotient F (x, y, C), which will be used in the proof of Lemma 3.11, is introduced as

F (x, y, C) =
h(x+ y)− h(x+ Cy)

h(x)− h(x+ y)
,(3.22)

where 0 ≤ x ≤ 1/2, C > 1 and 0 ≤ y ≤ 1/(2C). It is easy to find F (x, y, C) ≥ 0 in
its domain of definition. Furthermore, the following lemma gives the positive lower
bound of F (x, y, C) for fixed C, where the proof utilizes the (partial) derivatives of
F (x, y, C), and its detail is left in supplementary material SM1.

D
ow

nl
oa

de
d 

09
/0

9/
22

 to
 2

05
.1

75
.1

06
.2

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2362 ZHENNING CAI, JINGWEI HU, YANG KUANG, AND BO LIN

Lemma 3.10. For any C1 ∈ (0, 1], there exists C2 > 1 depending on C1 such that
F (x, y, C2) given in (3.22) satisfies

F (x, y, C2) ≥
1

C1
∀0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1

2C2
.

Lemma 3.11. Under the condition of Corollary 3.9 and the decomposition of
(3.21), the following properties are satisfied:

1. H2(f
n+1,1)−H2(f(tn+1)) ≤ 1

C1
(H1(f

n+1)−H1(f
n+1,1)).

2. There exists a constant M1 > 1 depending on C1 such that when ε ≤
√
C1V Cf

2M1
,

the vector

fn+1,2 = fn+1,1 +M1β1(1− fn+1,1)(3.23)

satisfies H1(f
n+1,1)−H1(f

n+1,2) ≥ 1
C1

(H1(f
n+1)−H1(f

n+1,1)).

Proof. To prove the first statement, we use the convexity of H2(·) to obtain

H2(f
n+1,1) = H2(f

n+1 + β1(1− fn+1)) ≤ max(H2(f
n+1), H2(1)) = H2(f

n+1).

(3.24)

Therefore,

H2(f
n+1,1)−H2(f(tn+1))

= H2(f
n+1,1)−H2(f

n+1) +H2(f
n+1)−H2(f(tn+1))

≤ H2(f
n+1)−H2(f(tn+1)) ≤ H2(f

n+1)−H2(f
n+1 + g∗∗),

(3.25)

where g∗∗ = (g∗∗1 , . . . , g∗∗N )T ∈ RN is the solution of following minimization problem:

argmin
∥g∥2≤ε

H2(f
n+1 + g).

The existence of g∗∗ is because H2(f
n+1 + g) is a continuous function (with respect

to g) defined on a closed set, and the constraint ∥g∥2 ≤ ε also gives a closed set for g.
The solution g∗∗ satisfies that g∗∗i ≥ 0 for all I1 < i ≤ I2, since replacing any negative
component of g by zero will lead to a smaller value for the objective function.

For any i = I1 + 1, . . . , I2 and j = 1, . . . , I1, the convexity of h(·) implies

h(fn+1
i )− h(fn+1

i + g∗∗i ) ≤ h(fn+1
j )− h(fn+1

j + g∗∗i ).(3.26)

To extend the above inequality to functions defined on R+ with support in [0, V ],
which is convenient for our proof in the following step, we would like to follow the
notation in (3.14) and represent fn+1 and g∗∗ by piecewise constant functions fn+1(v)
and g∗∗(v), respectively, as

fn+1(v) = fn+1
i , g∗∗(v) = g∗∗i , v ∈ (Si−1, Si], i = 1, . . . , I2,

and where both fn+1(v) and g∗∗(v) equal zero if v > SI2 . Using the functions fn+1(v)
and g∗∗(v), the inequality (3.26) is equivalent to the following: for any w ∈ (SI1 , SI2)
and v ∈ (S0, SI1),

h(fn+1(w))− h(fn+1(w) + g∗∗(w)) ≤ h(fn+1(v))− h(fn+1(v) + g∗∗(w)).
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Since g∗∗(w) = 0 for w ≥ SI2 , the above inequality actually holds for any w ∈
(SI1 ,+∞). Therefore, we choose w = v + kSI1 with k ≥ 1 to obtain

H2(f
n+1)−H2(f

n+1 + g∗∗)

=

I2∑
i=I1+1

(
h(fn+1

i )− h(fn+1
i + g∗∗i )

)
∆vi

=

∫ SI2

SI1

(
h(fn+1(v))− h(fn+1(v) + g∗∗(v))

)
dv

=

⌈
SI2

−SI1
SI1

⌉∑
k=1

∫ SI1

0

(
h(fn+1(v + kSI1))− h(fn+1(v + kSI1) + g∗∗(v + kSI1))

)
dv

≤

⌈
SI2

−SI1
SI1

⌉∑
k=1

∫ SI1

0

(
h(fn+1(v))− h(fn+1(v) + g∗∗(v + kSI1))

)
dv.

(3.27)

Since ∥g∗∗∥22 ≤ ∥g∗∗∥22 ≤ ε2, for any 1 ≤ k ≤ ⌈SI2
−SI1

SI1
⌉, we have∫ SI1

0

h(fn+1(v) + g∗∗(v + kSI1))dv

≥
∫ SI1

0

h(fn+1(v) + g∗(v))dv

=

I1∑
j=1

h(fn+1
j + g∗j )∆vj ≥

I1∑
j=1

h(fn+1,1
j )∆vj ,

(3.28)

where g∗(v) and g∗i stand for the solutions of the optimization problem (3.15) and
(3.10), respectively; the equality is the conclusion of Corollary 3.8, and the last “≥”
comes from the inequality (3.19). Inserting (3.28) into (3.27) yields

H2(f
n+1)−H2(f

n+1 + g∗∗) ≤

⌈
SI2

−SI1
SI1

⌉∑
k=1

I1∑
j=1

(
h(fn+1

j )− h(fn+1,1
j )

)
∆vj

≤ V

SI1

(H1(f
n+1)−H1(f

n+1,1)).

(3.29)

Since the definition of I1 implies SI1 ≥ C1V , concatenating (3.25) and (3.29) proves
the first statement.

The second statement will be proved componentwise. We set M1 = 2C2, where
C2 is determined by Lemma 3.10 with C1 being chosen as the constant C1 appearing
in the first statement. Then, for any 1 ≤ i ≤ I1, it holds that

fn+1,1
i = fn+1

i + β1(1− fn+1
i ) ≤ fn+1

i + β1.

Moreover, when ε ≤
√
C1V Cf

2M1
, it could be found that β1 ≤ 1/M1 and

fn+1,2
i = fn+1

i + (β1 +M1β1 −M1β
2
1)(1− fn+1

i )

≥ fn+1
i +M1β1(1− fn+1

i ) ≥ fn+1
i + C2β1,
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where we have used fn+1
i ≤ 1

2 and M1 = 2C2. Therefore, the monotonicity of h(·) in
the interval of [0, 1] implies

h(fn+1,1
i )− h(fn+1,2

i )

h(fn+1
i )− h(fn+1,1

i )
≥ h(fn+1

i + β1)− h(fn+1
i + C2β1)

h(fn+1
i )− h(fn+1

i + β1)
= F (fn+1

i , β1, C2) ≥
1

C1
,

where the function F (·, ·, ·) is defined in (3.22) and the last inequality is due to
Lemma 3.10. By noticing h(fn+1

i ) − h(fn+1,1
i ) ≥ 0, the second statement can then

be easily derived.

With the preparation of Lemma 3.11, we can start to prove Theorem 2.5.

Proof of Theorem 2.5. If fn+1
I1

≥ 1
2 , (2.8) implies log(fn+1

1 ) ≥ − 1
Cf

log(2), which

means fn+1
1 ≥ 2−1/Cf . Then, from Theorem 2.3, we get ∥β(1−fn+1)∥2 ≤ M∥fn+1−

f(tn+1)∥2, where M > 0 depends on 2−1/Cf , ∥fn+1∥∞ and ∥f(tn+1)∥∞. This com-
pletes the proof.

Otherwise, if fn+1
I1

< 1
2 , we would like to introduce I2 and decompose η(f) fol-

lowing (3.20) and (3.21). After that, we construct fn+1,1 and fn+1,2 from (3.9)
with β1 = ∥f(tn+1) − fn+1∥2/(

√
C1V Cf ) and (3.23) with β2 = M1β1, respectively,

where the M1 is the constant in Lemma 3.11. Then we set δ =
√
C1V Cf/2, and if

∥fn+1 − f(tn+1)∥ < δ, it holds that

H1(f
n+1,2) +H2(f

n+1,2)−H1(f(tn+1))−H2(f(tn+1))

=
(
H1(f

n+1,2)−H1(f
n+1,1)

)
+
(
H1(f

n+1,1)−H1(f(tn+1))
)

+
(
H2(f

n+1,2)−H2(f
n+1,1)

)
+
(
H2(f

n+1,1)−H2(f(tn+1))
)

≤
(
H1(f

n+1,2)−H1(f
n+1,1)

)
+ 0 (Corollary 3.9)

+

(
−H1(f

n+1)−H1(f
n+1,1)

C1

)
+

(
H1(f

n+1)−H1(f
n+1,1)

C1

)
(Lemma 3.11)

= H1(f
n+1,2)−H1(f

n+1,1) ≤ 0,

where the last inequality is similar to (3.24) which utilizes the convexity of H1(·).
Therefore, by the decomposition in (3.21),

η(fn+1,2)− η(f(tn+1)) ≤ H3(f
n+1,2)−H3(f(tn+1))

=
∑

fn+1
i > 1

2

(
h(fn+1,2

i )− h(fi(tn+1))
)
∆vi.(3.30)

From the construction of fn+1,2, we know fn+1,2
i is a convex combination of 1 and

fn+1
i , so fn+1

i > 1
2 implies fn+1,2

i > 1
2 . Therefore (3.30) can be further extended as

η(fn+1,2)− η(f(tn+1)) ≤
∑

fn+1,2
i > 1

2

(
h(fn+1,2

i )− h(fi(tn+1))
)
∆vi.(3.31)

The remaining part of the proof is similar to the proof of Theorem 2.4. If
η(fn+1,2) ≤ η(f(tn+1)), the proof is done. Otherwise, we have η(fn+1,2) > η(f(tn+1)),

and we can continue to find f̂
n+1

and β3 such that

f̂
n+1

= fn+1,2 + β3(1− fn+1,2)
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and η(f̂
n+1

) = η(f(tn+1)). Due to the inequality (3.31), we can follow the proof of
Lemma 3.4 (case 2) and Theorem 2.3 to show

∥β3(1− fn+1,2)∥2 ≤ M2∥f(tn+1)− fn+1,2∥2,

where M2 > 0 is a constant depending on ∥fn+1∥∞ (because ∥fn+1,2∥∞ ≤ ∥fn+1∥∞)

and ∥f(tn+1)∥∞. Therefore, η(f̂
n+1

) ≤ η(f(tn+1)), and

∥f̂
n+1

− fn+1∥2

≤ ∥f̂
n+1

− fn+1,2∥2 + ∥fn+1,2 − fn+1∥2
≤ M2∥f(tn+1)− fn+1,2∥2 + ∥fn+1,2 − fn+1∥2
≤ M2∥f(tn+1)− fn+1∥2 + (1 +M2)∥fn+1,2 − fn+1∥2
= M2∥f(tn+1)− fn+1∥2 + (1 +M2)(β1 + β2 − β1β2)∥1− fn+1∥2

≤
(
M2 +

(1 +M1)(1 +M2)∥fn+1∥∞√
C1Cf

)
∥f(tn+1)− fn+1∥2,

where the last inequality utilizes (β1 + β2 − β1β2) ≤ β1 + β2 and ∥1 − fn+1∥2 ≤√
V ∥fn+1∥∞. If we denote the constant in front of ∥f(tn+1)−fn+1∥2 as M , we have

proved that

f̂
n+1

= fn+1,2 + β3(1− fn+1,2)

= fn+1 + (β1 + β2 + β3 − β1β2 − β2β3 − β1β3 + β1β2β3)(1− fn+1)

satisfies η(f̂
n+1

) ≤ η(f(tn+1)) and ∥f̂
n+1

− fn+1∥2 ≤ M∥f(tn+1)− fn+1∥2. Due to
the monotonicity of H(fn+1+β(1−fn+1)) with respect to β, if we construct β from
(2.7),

∥β(1− fn+1)∥2 ≤ ∥f̂
n+1

− fn+1∥2 ≤ M∥fn+1 − f(tn+1)∥2.

4. Numerical examples. We now present three numerical examples to show
the effect of our entropy fix. In order to construct cases where the numerical scheme
frequently violates the entropy inequality, we deliberately select highly oscillatory
initial data. We would like to remark that such an entropy fix may only need to be
applied occasionally in many applications.

4.1. Convection equation. In this example, we consider the finite volume
method for the scalar convection equation

∂u

∂t
+

∂u

∂x
= 0, x ∈ (0, 1), t > 0,

with periodic boundary conditions. We define the semidiscrete solution on a uniform
grid with N = 256 cells:

uj(t) =
1

∆x

∫ xj+1

xj

u(t, x) dx, j = 0, . . . , N − 1,

where ∆x = 1/256 and xj = j∆x. To preserve the conservation of entropy, we adopt
the numerical method introduced in [20]:

duj

dt
+

1

∆x

(
Fj+1/2 − Fj−1/2

)
= 0,(4.1)
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where

Fj+1/2 =
uj+1 − uj

log(uj+1)− log(uj)
.(4.2)

The conservation of the Gibbs entropy can be shown by

d

dt

∑
j

(uj log uj − uj) =
∑
j

duj

dt
log uj = −

∑
j

Fj+1/2 − Fj−1/2

∆x
log uj

= −
∑
j

Fj+1/2
log uj+1 − log uj

∆x
= −

∑
j

uj+1 − uj

∆x
= 0.

Following Example 1, we demonstrate Theorem 2.5 numerically by choosing the
initial condition of uj to be a Gaussian:

uj(0) = exp

(
−40

[(
j +

1

2

)
∆x− 1

2

]2)
.

Two different temporal discretizations are adopted to check the numerical order, which
are the first-order forward Euler method and the second-order Heun’s method. The
numerical errors are computed by the comparison to the numerical solution using
Heun’s method and a smaller time step ∆t = 10−7 without entropic fix. Results are
summarized in Tables 1 and 2 for the forward Euler method and Heun’s method,
respectively.

It can been seen from Tables 1 and 2 that both temporal schemes retain their
orders of convergence with the entropic fix. In the forward Euler method, an entropy
fix is required at every time step to maintain the monotonicity of entropy, and the
entropy fix actually reduces the L2 error for all sizes of the time steps. However, in
Heun’s method, the entropy fix is applied only at a few time steps, and its effect on
the final L2 error at T = 1 is negligible.

To numerically verify the general case described in Theorem 2.2, we design another
test case with the initial condition:

uj(0) =

∣∣∣∣j∆x− 1

2

∣∣∣∣+ δ, j = 1, . . . , N,(4.3)

where δ is a small positive number to avoid the appearance of log(0) in (4.2), and
we choose δ = 10−12 in our test. With this initial condition, there exists only one
uj very close to zero, which implies a large constant M if we apply Theorem 2.3 or

Table 1
Errors of the convection equation (4.1) with Gaussian initial values at T = 1.

Forward Euler method

Time step ∆t 1/215 1/216 1/217 1/218

L2 error of u 4.71× 10−4 2.35× 10−4 1.18× 10−4 5.88× 10−5

Order 1.00 0.99 1.00

Forward Euler method with entropy fix (2.4)

Time step ∆t 1/215 1/216 1/217 1/218

L2 error of u 3.72× 10−4 1.86× 10−4 9.32× 10−5 4.66× 10−5

Order 1.00 1.00 1.00
No. of entropy fixes 215 216 217 218
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Table 2
Errors of the convection equation (4.1) with Gaussian initial values at T = 1.

Heun’s method

Time step ∆t 1/211 1/212 1/213 1/214

L2 error of u 1.74× 10−5 4.20× 10−6 9.06× 10−7 1.93× 10−7

Order 2.05 2.21 2.23

Heun’s method with entropy fix (2.4)

Time step ∆t 1/211 1/212 1/213 1/214

L2 error of u 1.74× 10−5 4.20× 10−6 9.06× 10−7 1.93× 10−7

Order 2.05 2.21 2.23
No. of entropy fixes 50 65 88 96

Table 3
Errors of the convection equation (4.1) with piecewise linear initial values at T = 1.

Forward Euler method

Time step ∆t 1/215 1/216 1/217 1/218

L2 error of u 1.81× 10−3 7.47× 10−4 3.42× 10−4 1.64× 10−4

Order 1.28 1.13 1.06

Forward Euler method with entropy fix (2.4)

Time step ∆t 1/215 1/216 1/217 1/218

L2 error of u 1.80× 10−3 7.42× 10−4 3.39× 10−4 1.62× 10−4

Order 1.28 1.13 1.07
No. of entropy fixes 215 216 217 218

Table 4
Errors of the convection equation (4.1) with piecewise linear initial values at T = 1.

Heun’s method

Time step ∆t 1/211 1/212 1/213 1/214

L2 error of u 7.04× 10−4 1.76× 10−4 4.46× 10−5 1.14× 10−5

Order 2.00 1.98 1.97

Heun’s method with entropy fix (2.4)

Time step ∆t 1/211 1/212 1/213 1/214

L2 error of u 7.03× 10−4 1.75× 10−4 4.45× 10−5 1.14× 10−5

Order 2.01 1.98 1.96
No. of entropy fixes 211 212 213 214

Theorem 2.5. We therefore expect that the theoretical result in Theorem 2.2 better
fits this test case.

Results of the two temporal discretizations are summarized in Tables 3 and 4.
The general behavior of the entropy fix for the initial condition (4.3) is similar to the
Gaussian case. According to Theorem 2.2, the entropy fix has only infinitesimal effect
on the numerical order. As shown in Tables 3 and 4, the orders of convergence are
well retained for both temporal schemes even if the entropy fix is applied on every
time step.

4.2. Linear Fokker–Planck equation. In this example, we consider the one-
dimensional linear Fokker–Planck equation (also known as the drift-diffusion equa-
tion):

ft = fxx + (V ′(x)f)x, t > 0, x ∈ (0, 1),(4.4)
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with periodic boundary condition f(t, 0) = f(t, 1) and potential function

V (x) =
1

2π
cos (20πx) .

Let M(x) = exp(−V (x)); then (4.4) can be written equivalently as

ft =

(
M

(
f

M

)
x

)
x

.(4.5)

If we further define g(t, x) = f(t, x)/M(x), then (4.5) becomes

gt =
1

M
(Mgx)x , t > 0, x ∈ (0, 1).(4.6)

We will focus on the discretization of (4.6). Initial condition is taken as

g(0, x) = 1.2 +
20∑
j=1

j

210
sin (2jπx) ,

Note that
∑20

j=1 j = 210, which yields 0.2 ≤ g(0, x) ≤ 2.2 indicating that the condition
of Theorem 2.3 is fulfilled after the spatial discretization. We partition [0, 1] into
N = 64 grids uniformly with mesh size ∆x = 1/N and take central difference for
spatial discretization. Denoting gj = g(t, j∆x),Mj = M(j∆x), andMj+1/2 = M((j+
1/2)∆x) for j = 0, . . . , N − 1, (4.6) can be approximated by

dgj
dt

=
1

Mj

Mj+1/2(gj+1 − gj)−Mj−1/2(gj − gj−1)

(∆x)2
.(4.7)

The exact solution of (4.7) can be calculated by evaluating the eigenvalues and eigen-
vectors of the right-hand side of (4.7).

The semidiscrete scheme (4.7) (time is kept continuous) satisfies the conservation
of mass and the monotonicity of entropy with weight Mj . In fact, it is easy to verify∑N−1

j=0 Mjgj remains as constant. For the entropy, we have

d
(∑N−1

j=0 Mjgj log gj

)
dt

=
1

(∆x)2

N−1∑
j=0

(
Mj+1/2(gj+1 − gj)−Mj−1/2(gj − gj−1)

)
log gj

= − 1

(∆x)2

N−1∑
j=0

Mj−1/2(gj − gj−1)(log gj − log gj−1) ≤ 0.

(4.8)

We now discretize (4.7) by the implicit midpoint (i.e., Crank–Nicolson) method.
This time discretization still conserves the mass. However, there is no guarantee
that the entropy will decay monotonically in time (in fact, it does not). In Figure 3,
we report the time evolution of the entropy with and without the entropy fix. Two
different time steps ∆t = 1/512 and ∆t = 1/1024 are considered. In both cases, it
is clear that the entropy decreases monotonically with the help of the entropy fix.
Meanwhile, the L2 error of the solution remains almost the same with and without
the entropy fix. It is interesting to note that when ∆t = 1/512, the entropy fix is
only needed at the first few time steps. On the other hand, when ∆t = 1/1024, the
entropy fix is required only after t = 0.02.
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Fig. 3. Example of the linear Fokker–Planck equation. Time evolution of the entropy
H(g) =

∑N−1
j=0 (gj log gj−gj)Mj∆x and the L2 relative error ∥g−gexact∥2/∥gexact∥2 = (

∑N−1
j=0 (gj−

gexact,j)
2Mj∆x)1/2/(

∑N−1
j=0 (gexact,j)

2Mj∆x)1/2, where ∆x = 1/64, ∆t = 1/512 in the top two

panels and ∆t = 1/1024 in the bottom two panels.

4.3. Nonlinear Boltzmann equation. In this example, we consider a nonlin-
ear model introduced in [7], which results from a Fourier method for the spatially
homogeneous Boltzmann equation. The governing equation reads

dfr(t)

dt
=

∑
p,q,s∈X

Ars
pq (fp(t)fq(t)− fr(t)fs(t)) , r ∈ X ,(4.9)

where fr represents the approximation of the distribution function on a uniform three-
dimensional lattice index set X = {(r1, r2, r3) | ri = 0, . . . ,M − 1 for i = 1, 2, 3}. In
[7], the coefficients Ars

pq are determined in such a way that the semidiscrete scheme
(4.9) decays the entropy. However, this property may not hold when the time is
discretized.

In our experiment, we choose M = 17, and the values of Ars
pq are given in Appen-

dix A. The initial condition is taken as the one with lower bound so that condition of
Theorem 2.3 is satisfied:

fr(0) = 3.2 +

10∑
j=1

j

55

[
sin

(
jπ

(
r1
M

− 1

2

))
+ sin

(
jπ

(
r2
M

− 1

2

))
+ sin

(
jπ

(
r3
M

− 1

2

))]
.

We solve (4.9) by the forward Euler method with time step ∆t = 0.0007. The results
are displayed in Figure 4, from which we can see that the entropy fix method guaran-
tees the monotonicity of the entropy. The numerical error is computed by comparison
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Fig. 4. Example of the nonlinear Boltzmann equation. Time evolution of the entropy
H(f) =

∑
r∈X (fr log fr − fr)∆v and the L2 relative error ∥f − fexact∥2/∥fexact∥2 = (

∑
r∈X (fr −

fexact,r)2∆v)1/2/(
∑

r∈X (fexact,r)2∆v)1/2, where ∆v = (3(3 +
√
2)/17)3 and ∆t = 0.0007. fexact

is the numerical solution evaluated with time step ∆t = 0.000175.

with the numerical solution computed with a smaller time step ∆t = 0.000175, with
and without the entropy fix. It can be seen that the two error curves almost coincide
with each other, meaning that the entropy fix does not ruin the numerical accuracy.

5. Conclusions. This paper focuses on the entropic method for a conserva-
tive and positive system of ODEs. When the numerical solution at the next time
step violates the monotonicity of entropy, our entropic method revises it by a linear
interpolation to the constant state. The resulting scheme decays the entropy mono-
tonically, while the order of local truncation error has a slight reduction in general.
However, in some special cases, the numerical order is proved to be retained after
entropic revision. Numerical experiments validate our results. Future work includes
the extension of the entropic method to spatially inhomogeneous kinetic equations
such as the Boltzmann equation and the radiative transfer equations.

Appendix A. Coefficients in (4.9). The values of Ars
pq are given by

Ars
pq =

1

M9

∑
l,h,k∈K

B̂σ
M (h− k, l − k)E−l(p− s)E−h(q − s)Ek(r − s),(A.1)

where K is defined as K = {k | k = (k1, k2, k3),−m ≤ k1, k2, k3 ≤ m} with M =
2m + 1, and Ek(v) = exp( iπT k · v) is the Fourier basis on the period [−T, T ]3. The

kernel functions B̂σ
M (·, ·) are defined by

B̂σ
M (i, j) := B̂(i mod M, j mod M)σM (i mod M)σM (j mod M),

where mod is the symmetric modulo function such that each component of i mod M
ranges from −m to m, and σM (i) = σ̃M (i1)σ̃M (i2)σ̃M (i3), where σ̃M (β) is the one-
dimensional modified Jackson filter [21] given by

σ̃M (β) =
(m+ 1− |β|) cos

(
π|β|
m+1

)
+ sin

(
π|β|
m+1

)
cot
(

π
m+1

)
m+ 1

.

In the example in subsection 4.3, we adopt the kernel modes for the case of the
Maxwell molecules presented in [16] with

B̂(k, l) :=

∫ 1

0

r2 Sinc(ξr) Sinc(ηr) dr =
(ξ + η) sin(ξ − η)− (ξ − η) sin(ξ + η)

2ξη(ξ2 − η2)
,

D
ow

nl
oa

de
d 

09
/0

9/
22

 to
 2

05
.1

75
.1

06
.2

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN ENTROPIC METHOD FOR SYSTEMS WITH GIBBS ENTROPY 2371

where ξ = |k + l|λπ, η = |k − l|λπ, and λ = 2/(3 +
√
2). In the numerical simulation,

we take M = 17 and T = 3/λ.
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