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Kinetic equations are difficult to solve numerically due to their high dimensionality. A 
promising approach for reducing computational cost is the dynamical low-rank algorithm, 
which decouples the dimensions of the phase space by proposing an ansatz as the sum 
of separable (rank-1) functions in position and velocity respectively. The fluid asymptotic 
limit of collisional kinetic equations, obtained in the small-Knudsen number limit, admits a 
low-rank representation when written as f = Mg, where M is the local Maxwellian, and g
is low-rank. We apply this decomposition to the Vlasov-Ampère-Fokker-Planck equation of 
plasma dynamics, considering the asymptotic limit of strong collisions and electric field. 
We implement our proposed algorithm and demonstrate the expected improvement in 
computation time by comparison to an implementation that evolves the full solution tensor 
f . We demonstrate that our algorithm can capture dynamics in the fluid regime with 
very low rank, thereby efficiently capturing the asymptotic fluid limit. Moreover we find 
that a modest rank of between 15 and 20 is sufficient to capture kinetic effects on the 
problems we consider, showing that the approach is applicable and efficient across a range 
of regimes.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamics and multi-fluid systems of equations provide reasonable descriptions of plasma dynamics across 
a wide range of parameter regimes. However, in situations where one or more of the particle species’ phase space dis-
tributions is far from a Maxwellian, fluid models can fail to capture relevant physics. The Vlasov equation, when coupled 
with Maxwell’s equations of electrodynamics, provides a more complete description of plasma dynamics in these regimes 
[11]. However, the numerical solution of kinetic models is quite costly in 2 or 3 dimensions, since they are posed over 4 
or 6 phase space dimensions, respectively. This prompts the search for computational algorithms which can accelerate the 
solution of kinetic equations.

One promising approach for accelerated kinetic algorithms comes from the recognition that there is low-rank structure 
in certain solutions of kinetic equations. By low-rank structure, we mean that an approximation of the following form can 
be successful:
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f (x, v, t) ≈
r∑
i j

Xi(x, t)Sij(t)V j(v, t). (1.1)

Such an approximation will be useful only if the numerical rank, r, is small compared to the number of degrees of freedom 
Nx and Nv . The inspiration for this form of approximation, called a low-rank approximation, comes from linear algebra and 
the need to deal effectively with extremely large data matrices. The idea is to capture most of the action of a data matrix 
with a low-rank approximation which can require vastly less storage. Bounds on the quality of the approximation are avail-
able in various norms. Perhaps the best-known approximation of this kind is the truncated Singular Value Decomposition, 
which is known to provide the best rank r approximation to a given matrix in the spectral norm [22].

Our setting is time-dependent kinetic equations, so it is not enough to be able to compress a given phase space distri-
bution. One must also be able to evolve the distribution f in an approximate form. This is made possible by the theory 
of dynamical low-rank approximation, which has been studied in the matrix and tensor contexts in [14], [15]. This method 
advances the representation (1.1) by updating the bases Xi, V j , and the matrix of singular values Sij at each timestep. The 
point is to never form the full product of all three factors but to evolve the factorized form directly. A crucial innovation 
in this field that we make use of is the projector-splitting integrator of [17]. This integrator enables a robust dynamical 
low-rank method which is insensitive to “overapproximation”, or vanishingly small singular values in the approximation. 
Another such integrator with comparable robustness properties is the recently proposed “unconventional” dynamical low-
rank integrator of [3].

In the numerical analysis of kinetic equations, the dynamical low-rank method has recently been applied to many prob-
lems. Here we mention a few representative ones: the Vlasov equation [8], [7], linear transport equation [9], [18], [4], 
Boltzmann equation [12], and BGK equation [6], [10]. In particular, the last contribution [10] is significant for preserving the 
asymptotic fluid limit of the collisional BGK equation, which inspires our current work.

In this paper we present a dynamical low-rank algorithm for the solution of a model equation for the Vlasov equation 
with collisions. Collisions with a Coulomb interaction potential can be described by an integro-differential operator with 
a drift term and a diffusion term, i.e., the Landau operator [11], [1], [20], [23] or simplified Fokker-Planck type operator 
[5]. We therefore consider the non-magnetic Vlasov equation with a linear Fokker-Planck collision operator, in the so-called 
“high-field” limit. This scaling was introduced in [19] as a model for the semiconductor Boltzmann equation, was treated 
numerically in [2], and in [13] with an asymptotic-preserving scheme. It retains key properties of the full Vlasov-Landau-
Poisson equation, specifically the diffusive collision operator and nonlinear coupling between f and the electric field. As 
such, it provides an interesting test case for the dynamical low-rank method applied to collisional plasma equations. In a 
nondimensionalized form, the equation reads

∂t f + v · ∇x f + 1

ε
E · ∇v f = 1

ε
PFP( f ), t > 0, x ∈ � ⊂ Rd, v ∈Rd. (1.2)

The function f (x, v, t) is the single-particle probability density function defined over phase space of d spatial and d velocity 
dimensions. The operator PFP is the linear Fokker-Planck operator

PFP( f ) = ∇v · (v f + ∇v f ). (1.3)

One can imagine that f describes a population of electrons moving under the influence of their own inertia and electric 
field. The small parameter ε > 0 is a scaling parameter which determines the strength of both collisions and the electric 
field E . It is analogous to the Knudsen number from the theory of hydrodynamic limits of the Boltzmann equation.

The electric field E is determined self-consistently from the phase space distribution f via Ampère’s law:

∂t E = − J , t > 0, x ∈ �, (1.4)

where the current density J is defined as

J (x, t) = 〈v, f 〉v . (1.5)

Here we have made use of a notation for the L2 inner product, which we now define as

〈g,h〉x =
∫
�

gh dx, 〈g,h〉v =
∫
Rd

gh dv, 〈g,h〉xv =
∫
�

∫
Rd

gh dxdv. (1.6)

The initial electric field will be specified via a static background charge density η(x). To continue the physical picture of an 
electron fluid, η may represent a density of ions which do not move on the timescale resolved by (1.2). To be physical, the 
field E should satisfy Gauss’s law with respect to the density ρ:

E = −∇xφ(x), −∇2
x φ(x) = ρ(x, t) − η(x), (1.7)

where
2
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ρ(x, t) = 〈1, f 〉v . (1.8)

It is easy to show that if E(x, t) satisfies Ampère’s equation (1.4) and satisfies Gauss’s law (1.7) at time 0, then it will satisfy 
(1.7) for all time. Numerically, we initialize E(x, 0) using Gauss’s law and a specified background density η(x), and then 
timestep E using Ampère’s law.

To recapitulate, in this work we are solving the coupled system⎧⎪⎨
⎪⎩

∂t f + v · ∇x f + 1
ε E · ∇v f = 1

ε ∇v · (v f + ∇v f ), (x, v, t) ∈ � ×Rd × [0, T ]
∂t E = − J , (x, t) ∈ � × [0, T ]
E = −∇xφ, −∇2

x φ = ρ − η, x ∈ �, t = 0.

(1.9)

Remark 1. The standard choice for coupling the Vlasov equation with electrostatics is to solve the Vlasov-Poisson system, 
in other words to couple the Vlasov equation with Gauss’s law, rather than Ampère’s law. In this paper we choose to 
solve Ampère’s law in order to strengthen the connection with previous work, namely [10]. In that paper, the moments of 
the distribution function, ρ and u, are evolved via a time-dependent moment system. Here, we solve for E—which plays 
an analogous role to u as the average velocity of the equilibrium distribution—in a similar manner, preferring the time-
dependent relation to the equivalent elliptic equation.

However, this choice introduces a first-order-in-time violation of Gauss’s law, so solving the Vlasov-Poisson system may 
be preferable for some applications. We note that the framework applied here functions equally well for solving Gauss’s law 
at each timestep. See Remark 3 for details of how to achieve that within our low-rank framework.

1.1. Asymptotic fluid limit

The limit of (1.9) for very small ε is a sort of electrostatic “creeping flow”, in which inertial forces are vanishingly small 
compared to electrostatic forces. To analyze the limit ε → 0, we introduce a scaled “local Maxwellian” defined as

M(x, v, t) = 1

(2π)d/2
e− |v−E(x,t)|2

2 . (1.10)

One should note that, in contrast to the Maxwellian equilibrium of the Boltzmann equation, this function has a uniform 
density. It is isothermal and the flow velocity is equal to E . It is not hard to show that (1.2) is equivalent to

∂t f + v · ∇x f = 1

ε
∇v · [M∇v(M

−1 f )
]
. (1.11)

To see this we expand the right hand side of (1.11):

∇v(M
−1 f ) = (∇vM

−1) f + M−1∇v f = (v − E)M−1 f + M−1∇v f = M−1(v − E + ∇v) f . (1.12)

Therefore,

∇v · [M∇v(M
−1 f )] = ∇v · [(v − E + ∇v) f ] = ∇v · (v f + ∇v f )︸ ︷︷ ︸

PFP( f )

−����
(∇v · E) f − E · ∇v f︸ ︷︷ ︸

force term

, (1.13)

where we have accounted for both PFP( f ) and the force term on the left hand side of (1.2).
The form (1.11) reveals the dominant balance structure of (1.2): the linear Fokker-Planck operator and the electrostatic 

force term are balanced under this scaling; together they drive f to a local equilibrium. Indeed, when ε → 0 in (1.11), 
formally ∇v · [M∇v (M−1 f )

] → 0 which implies f → ρM . To see this, first note that∫
∇v · [M∇v(M

−1 f )] log(M−1 f )dv =
∫

∇v · [ f ∇v log(M
−1 f )] log(M−1 f )dv

= −
∫

f
∣∣∇v log(M

−1 f )
∣∣2 dv ≤ 0.

(1.14)

If equality holds, as it does in the formal limit ε → 0, then by positivity of f , |∇v log(M−1 f )| = 0 and thus f = cM , where c
is a function independent of v . Consequently ∇v · [M∇v (M−1 f )] = 0 which implies 

∫ ∇v · [M∇v (M−1 f )] log(M−1 f ) dv = 0. 
Therefore, one has the following equivalent statements:∫

∇v · [M∇v(M
−1 f )] log(M−1 f )dv = 0 ⇐⇒ f = cM ⇐⇒ ∇v · [M∇v(M

−1 f )] = 0. (1.15)

Finally ρ = 〈1, f 〉v = c〈1, M〉v = c.
3
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To derive a macroscopic system of (1.11) when ε → 0, we first take moments 〈1, ·〉v , 〈v, ·〉v of (1.11) to obtain

∂tρ + ∇x · J = 0, (1.16)

∂t J + ∇x · 〈v ⊗ v, f 〉v = 1

ε
(ρE − J ). (1.17)

As ε → 0, one has J → ρE from (1.17). Then (1.16) becomes

∂tρ + ∇x · (ρE) = 0, (1.18)

which together with Ampère’s law (1.4) constitutes the limiting system:⎧⎪⎨
⎪⎩

∂tρ + ∇x · (ρE) = 0, (x, t) ∈ � × [0, T ]
∂t E = −ρE, (x, t) ∈ � × [0, T ]
E = −∇xφ, −∇2

x φ = ρ − η, x ∈ �, t = 0.

(1.19)

The system (1.19) fully determines the behavior of the kinetic system (1.9) in the asymptotic limit ε → 0. Our numerical 
scheme is careful to preserve this asymptotic limit at the discrete level. However, trying to design a low-rank scheme that 
smoothly approaches this limit quickly runs into a problem: f 0 = ρM is not a low-rank function in x and v , i.e., we cannot 
write it in the form (1.1) with small r. Recall the definition (1.10), where the cross term e−v·E(x,t) is not low rank. If we 
require a high rank to resolve the limiting solution f 0, then we are, in a sense, wasting effort on a kinetic system whose 
dominant dynamics are described by the much lower-dimensional system (1.19).

To resolve this problem, we can observe that while f 0 = ρM is not low rank in x and v , ρ(x, t) certainly is. This 
motivates us to consider a low-rank approximation to the quotient

g(x, v, t) = M−1 f (x, v, t), (1.20)

which as we have seen has a rank-1 asymptotic limit. We will therefore search for solutions of the form

f = Mg = 1

(2π)d/2
e− |v−E(x,t)|2

2 g, (1.21)

where g is given a low-rank approximation g̃:

g(x, v, t) ≈ g̃(x, v, t) :=
r∑

i, j=1

Xi(x, t)Sij(t)V j(v, t). (1.22)

The bases Xi and V j are required to satisfy orthogonality relations,

〈Xi, Xk〉x = δik, 〈V j, Vl〉v = δ jl. (1.23)

The approximation g̃ is the quantity which we will timestep using the dynamical low-rank method. We will also solve Am-
père’s law to advance the electric field, which has only a dependence on x. From these, we can reconstruct the approximate 
solution f̃ = g̃M as desired.

The rest of this paper is organized as follows. In Section 2 we present the dynamical low-rank algorithm for the evolution 
of the function g̃ defined in (1.22). This consists of deriving the PDEs satisfied by the low-rank factors. In Section 3 we 
present a first-order time integration scheme for that system of PDEs. In Section 4, we address the question of discretization 
in physical (x) and velocity (v) space. Section 5 consists of a brief discussion of the asymptotic limit of the discrete system 
derived in Sections 2-4, verifying that it recovers the fluid equations of (1.19). Finally, Section 6 includes some numerical 
results from an implementation of our algorithm and comparison with the full tensor solution of the kinetic equation.

2. Dynamical low-rank algorithm

The dynamical low-rank algorithm works by confining the time derivative of the system to the tangent space of a low-
rank manifold. We will write down the time derivative of g imposed by (1.11), and then discuss its projection onto the 
tangent space. We can derive the dynamics for g by plugging f = Mg into (1.11). This gives

∂t(Mg) + v · ∇x(Mg) = 1

ε
∇v · [M∇v g]

=⇒ g∂tM + M∂t g + v · (g∇xM + M∇xg) = 1

ε
(∇vM · ∇v g) + 1

ε
M∇2

v g. (2.1)

Consolidating terms and dividing through by M , we obtain
4
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∂t g = −v · ∇xg + 1

ε
[(∇v − v + E) · ∇v g]− 1

M
(∂tM + v · ∇xM)g

= −v · ∇xg + 1

ε
[(∇v − v + E) · ∇v g]−Mg (2.2)

:= H[g],
where we have introduced the shorthand

M = 1

M
(∂tM + v · ∇xM). (2.3)

The time derivative of the low-rank approximation is now given by composing H with a projection operator. That is,

∂t g̃ = P (H[g̃]), (2.4)

where P is the projection onto the tangent space to the manifold of functions with a rank r representation as in (1.22). It 
can be shown ([14], [17]) that the projection operator takes the form

P (h) =
∑
j

〈V j,h〉v V j −
∑
i j

Xi〈XiV j,h〉xv +
∑
i

Xi〈Xi,h〉x. (2.5)

We now have a three-term expression for the time derivative of our low-rank approximation:

∂t g̃ =
∑
j

〈V j,H[g̃]〉v V j −
∑
i j

Xi〈XiV j,H[g̃]〉xv V j +
∑
i

Xi〈Xi,H[g̃]〉x. (2.6)

This form lends itself to a first-order-in-time Lie-Trotter operator splitting, which we will employ in this paper. Higher-order 
splitting schemes are possible, for example a second-order scheme based on Strang splitting, although this requires extra 
care to properly center the electric field [8]. The first-order-in-time scheme splits (2.6) into the three equations

∂t g̃ =
∑
j

〈V j,H[g̃]〉v V j, (2.7)

∂t g̃ = −
∑
i j

Xi〈XiV j,H[g̃]〉xv V j, (2.8)

∂t g̃ =
∑
i

Xi〈Xi,H[g̃]〉x. (2.9)

We actually implement this scheme in terms of a pair auxiliary bases (making use of (1.23)),

K j(x, t) = 〈g̃, V j〉v =
∑
i

Xi(x, t)Sij(t), (2.10)

Li(v, t) = 〈Xi, g̃〉x =
∑
j

Si j(t)V j(v, t). (2.11)

With this notation the splitting scheme is as follows:

• The first step holds the V j basis constant. Take the inner product of (2.7) with V j to obtain

∂t K j = 〈V j,H[g̃]〉v . (2.12)

Integrate this equation for one time step to obtain a new value for K j . Then perform a QR decomposition of K j to 
obtain a new orthogonal basis Xi and coefficients Sij .

• The second step holds both bases constant. Take the inner product of (2.8) with V j in v , and with Xi in x to obtain

∂t Si j = −〈XiV j,H[g̃]〉xv . (2.13)

Integrate this equation for one time step to obtain a new matrix Sij .
• The third step holds the Xi basis constant. Take the inner product of (2.9) with Xi to obtain

∂t Li = 〈Xi,H[g̃]〉x. (2.14)

Integrate this equation for one time step to obtain a new value for Li . Then perform a QR decomposition of Li to obtain 
a new orthogonal basis V j and coefficient matrix Sij .
5
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The above algorithm has the excellent property that it is robust to “overapproximation”, i.e. small singular values in S [17].
The time splitting scheme for g̃ may be straightforwardly coupled with Ampère’s equation (1.4), which can be written 

in terms of the low-rank components as

∂t E = −〈vM g̃〉v = −
∑
i, j

Xi Si j〈vMV j〉v . (2.15)

Remark 2. In this section we have applied the projector-splitting integrator of [17]. Another choice is the “unconventional” 
integrator proposed in [3]. The unconventional integrator has the advantage of not taking a “backwards” step (viz. the 
negative sign on the right hand side of (2.13)). On the other hand, it is not known how to extend the unconventional 
integrator to higher than first order accuracy in time. Fully exploring the tradeoffs between the two integrators in the 
setting of kinetic equations is a topic for future work.

2.1. Time evolution of low-rank components

In this section we expand the inner products involving H[g̃] which appear in equations (2.12), (2.13), (2.14). The result 
is a self-contained system of r coupled PDEs for K j and Li , and a matrix-valued ODE for Sij of size r × r.

Plugging (2.2) and (1.22) into (2.12) gives

∂t K j = −
∑
k,l

〈V j, v · (∇x Xk)SklVl〉v −
∑
kl

Xk Skl〈V j, VlM〉v

+ 1

ε

(∑
kl

Xk Skl〈V j[(∇v − v + E) · ∇v Vl]〉v
)

= −
∑
l

(∇xKl) · 〈vV jVl〉v −
∑
l

Kl〈V jVlM〉v (2.16)

+ 1

ε

(∑
l

Kl
[〈V j(∇v − v) · ∇v Vl〉v + E · 〈V j∇v Vl〉v

])
.

Plugging (2.2) and (1.22) into (2.13) gives

∂t Si j =
∑
kl

〈Xi Skl∇x Xk · 〈vV jVl〉v〉x +
∑
kl

〈Xi Xk SklVlV jM〉xv

− 1

ε

(∑
kl

〈
Xi Skl Xk〈V j[∇v − v + E] · ∇v Vl〉v

〉
x

)

=
∑
kl

Skl〈Xi∇x Xk〉x · 〈vV jVl〉v +
∑
kl

Skl〈Xi XkVlV jM〉xv (2.17)

− 1

ε

(∑
kl

Skl
[〈Xi Xk〉x〈V j(∇v − v) · ∇v Vl〉v + 〈Xi XkE〉x · 〈V j∇v Vl〉v

])
.

Plugging (2.2) and (1.22) into (2.14) gives

∂t Li = −
∑
kl

v · 〈Xi(∇x Xk)SklVl〉x −
∑
kl

〈Xi Xk SklVlM〉x

+ 1

ε

(∑
kl

〈Xi Xk Skl[(∇v − v + E) · ∇v Vl]〉x
)

= −
∑
k

v · 〈Xi(∇x Xk)〉xLk −
∑
k

〈Xi XkM〉xLk (2.18)

+ 1

ε

(∑
k

[〈Xi Xk〉x(∇v − v) + 〈Xi XkE〉x] · ∇v Lk

)
.

We also expand the terms involving M (defined in (2.3)):

∂tM = (v − E) · (∂t E)M = −M(v − E) · J ,
6
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v · ∇xM = M
∑
i, j

(v j − E j)vi∂xi E j = M
∑
i, j

(v j vi∂xi E j − E j vi∂xi E j) = M(v ⊗ v) : ∇xE − M

2
v · ∇x(E

2).

Note that 12∇x(E2) �= E · ∇xE . (∇xE)i j := ∂x j Ei and A : B := ∑
i j ai jbi j . Putting these together we obtain

M = 1

M
(∂tM + v · ∇xM) = E · J − v · J − 1

2
v · ∇x(E

2) + (v ⊗ v) : ∇xE

:= M1 + v ·M2 + (v ⊗ v) : M3, (2.19)

where

M1 = E · J , M2 = − J − 1

2
∇x(E

2), M3 = ∇xE. (2.20)

Here we use boldface to denote vectors of length d, and sans-serif to denote tensors of size d × d. Both vectors and tensors 
may also vary in x and v . In all cases the tensor contractions ·, : indicate contraction over the length-d dimensions. The 
terms involving M then expand to

〈V jVlM〉v = δ jlM1 + 〈vV jVl〉v ·M2 + 〈(v ⊗ v)V jVl〉v : M3,

〈Xi XkM〉x = 〈Xi XkM1〉x + v · 〈Xi XkM2〉x + (v ⊗ v) : 〈Xi XkM3〉x,
〈Xi XkV jVlM〉xv = δ jl〈Xi XkM1〉x + 〈vV jVl〉v · 〈Xi XkM2〉x + 〈(v ⊗ v)V jVl〉v : 〈Xi XkM3〉x.

3. First order in time scheme

The algorithm described up to this point has been fully continuous, except for the projection onto the low-rank manifold. 
We now present a discretization in time, leaving space continuous for the moment. The time discretization makes use of an 
implicit-explicit (IMEX) scheme for capturing the fast dynamics of the collision operator in the fluid limit (ε � 1).

In the following we report rough estimates of the computational complexity of each substep. To avoid complicating the 
presentation unnecessarily, for these estimates we consider d ∼ 1, so that we are free to ignore both the dimension and 
constant factors in our “big-O” notation.

Suppose we have the quantities (En, Xn
i , V

n
j , S

n
i j) at timestep tn . Then we calculate (En+1, Xn+1

i , V n+1
j , Sn+1

i j ) in the fol-
lowing way.

3.1. Step 1: update E

1. Compute the following integral appearing in (2.15):

Inj (x) := 〈vV n
j M

n〉v = 1

(2π)d/2

∫
vV n

j (v)e− |v−En(x)|2
2 dv. (3.1)

A naive computation of this integral requires O(NxNv) steps, a computational cost that is unacceptably high. However, 
since the Maxwellian is isothermal, the integral has a convolutional structure, and may be computed using a Fast Fourier 
Transform (FFT). The required substeps are:
• Compute the convolution


nj (ζ ) =
[
(v �→ vV n

j (v)) ∗
(
v �→ e−|v|2/2)] (ζ ) (3.2)

using an FFT.
Cost: O(rNv logNv).

• Compute the composition of En with 
nj using any interpolation scheme from the FFT nodes to an arbitrary point 
En(x):

Inj (x) = 1

(2π)d/2

nj (E

n(x)).

Cost: O(rNx).
Exploiting the convolutional structure of Inj (x) with an FFT reduces the total computational cost to O(rNv logNv), which 
is acceptable.

2. Compute the current density:

Jn(x) =
∑
i j

Xn
i (x)S

n
i j I

n
j (x). (3.3)

Cost: O(r2Nx).
7



J. Coughlin and J. Hu Journal of Computational Physics 470 (2022) 111590
3. Perform a Forward Euler step to solve (2.15):

En+1(x) = En(x) − �t Jn. (3.4)

Cost: O(Nx).

Remark 3 (Solving Gauss’s law). If one chooses to solve the Vlasov-Poisson system instead of the Vlasov-Ampère system 
considered here, the E update requires the solution of an elliptic equation for the potential φ:

−∇2
x φn = ρn − η, En+1 = −∇xφ

n. (3.5)

The only aspect requiring special treatment in the low-rank method is the computation of the charge density ρn appearing 
on the right-hand side of Gauss’s law. This can be computed in much the same manner as the current density Jn in 
equations (3.1)-(3.3). Briefly, compute r integrals

Yn
j (x) :=

〈
V n

j M
n
〉
v

= 1

(2π)d/2

∫
V n

j (v)e− |v−En |2
2 dv. (3.6)

This may be done by computing convolutions

ynj (ζ ) =
[(

v �→ V n
j (v)

)


(
v �→ e−|v|2/2)] (ζ ), (3.7)

and interpolating in any desired manner to the arbitrary points En(x):

Yn
j (x) = 1

(2π)d/2
ynj (E

n(x)). (3.8)

Then the charge density is given by

ρn(x) =
∑
i j

Xn
i (x)S

n
i jY

n
j (x). (3.9)

It will be seen that this procedure is nearly identical to that for computing Jn , with the only difference that one computes 
the zeroth moment of f rather than the first moment. Note that in this formulation, one still needs to calculate Jn via the 
corresponding convolutions, since it will be used to update K , S , and L as described below.

Remark 4. The use of the FFT to achieve a fast convolutional algorithm is similar to that proposed in [10]. Computationally 
the approach is nearly identical, with En(x) taking the place of un(x) as the local drift velocity of the Maxwellian.

3.2. Step 2: update X, S, and V

3.2.1. K step
1. Compute integrals in v . We use boldface to denote vector-valued matrices of total size r×r×d, and sans-serif to denote 

tensor-valued matrices of total size r × r × d × d. In both cases the indices running over the length-d dimensions are 
suppressed. The integrals to compute are:

c1jl = 〈vV n
j V

n
l 〉v , c

2
jl = 〈(v ⊗ v)V n

j V
n
l 〉v , (3.10)

d1jl = 〈V n
j (∇v − v) · ∇v V

n
l 〉v , d2

jl = 〈V n
j ∇v V

n
l 〉v . (3.11)

Cost: O(r2Nv).

2. Compute Mn
1, M

n
2, and M

n

3:

Mn
1 = En · Jn, Mn

2 = − Jn − 1

2
∇x((E

n)2), (3.12)

M
n

3 = ∇xE
n. (3.13)

Cost: O(Nx).
3. Compute matrices on the right hand side of (2.16).

A1
jl = δ jlMn

1 + c1jl ·Mn
2 + c

2
jl : M

n

3, (3.14)

A2
jl = d1jl + En · d2

jl. (3.15)

Cost: O(r2Nx).
8
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4. The evolution equation (2.16) for K may now be written as

∂t K j = −
∑
l

c1jl · ∇xKl −
∑
l

A1
jl Kl + 1

ε

∑
l

A2
jl Kl. (3.16)

Advance (3.16) in time, using an IMEX step to handle the stiff term:

∑
l

[
δ jl − �t

ε
A2

jl

]
Kn+1
l = Kn

j − �t

(∑
l

c1jl · ∇xK
n
l +

∑
l

A1
jl K

n
l

)
. (3.17)

Note that the only differential operator, namely ∇x , appearing in this equation is treated explicitly. Therefore the linear 
system appearing in this equation involves no coupling between points in x. When discretized it will consist of Nx

separate systems each of size r × r. We can solve this small system at each point in x using any standard dense linear 
solver—the size is not large enough to warrant any special technique.
Cost: O(r2Nx) for both the right-hand side and the implicit step, due to solving each r × r system separately.

5. Perform a QR decomposition of Kn+1
j to obtain Xn+1

i and S1i j .
Cost: O(r2Nx).

3.2.2. S step
1. Compute the integrals in x, using the new basis Xn+1:

c

ik = 〈Xn+1

i Xn+1
k Mn

1〉x, c


ik = 〈Xn+1

i Xn+1
k Mn

2〉x, c





ik = 〈Xn+1
i Xn+1

k M
n

3〉x, (3.18)

d

ik = 〈Xn+1

i ∇x X
n+1
k 〉x, e


ik = 〈Xn+1
i Xn+1

k En〉x. (3.19)

Cost: O(r2Nx).
2. Compute

c̃i j;kl = 〈Xn+1
i Xn+1

k V n
j V

n
l M

n〉xv = δ jlc


ik + c1jl · c



ik + c
2
jl : c






ik . (3.20)

Cost: O(r4).
3. Compute the order-four tensors

B1
i j;kl = d


ik · c1jl + c̃i j;kl, (3.21)

B2
i j;kl = δikd

1
jl + e


ik · d2
jl. (3.22)

Cost: O(r4).
4. The evolution equation for S may now be written as

∂t Si j =
∑
kl

B1
i j;kl Skl −

1

ε

∑
kl

B2
i j;kl Skl. (3.23)

Perform a Forward Euler step to advance S1i j → S2i j :

S2i j = S1i j + �t
∑
kl

S1kl B
1
i j;kl −

�t

ε

∑
kl

S1kl B
2
i j;kl. (3.24)

Our use of a Forward Euler step here differs from the presentation in [10], where an IMEX step was used to advance 
the S equation in the case of the BGK collision operator. Since the structure of the Fokker-Planck operator is more 
complicated than the BGK type, special care is needed. Heuristically, one can see that something different from the K
and L steps may be required, simply because the S equation runs backwards in time. For a more detailed justification 
and a discussion of how the situation differs from [10], refer to Appendix A.
Cost: O(r4).

3.2.3. L step
1. Compute the r × r matrix

ĉik = c

ik + v · c



ik + (v ⊗ v) : c





ik . (3.25)

Cost: O(r2).
9
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2. The equation (2.18) may now be written as

∂t Li = −
∑
k

v · d

ik Lk −

∑
k

ĉikLk + 1

ε

∑
k

(
δik∇2

v − δik v · ∇v + e

ik · ∇v

)
Lk. (3.26)

Advance (3.26) using an IMEX step by solving the system∑
k

[
δik − �t

ε
(δik∇2

v − δik v · ∇v + e

ik · ∇v)

]
Ln+1
k = Lni − �t

∑
k

(v · d

ik + ĉik)L

n
k . (3.27)

Note that in contrast to (3.17), the left-hand side of this equation does involve differential operators in v , and so the 
linear system may be discretized by a fully coupled (but sparse) matrix of size rNv × rNv . There are O(rNv) non-empty 
entries. Using Krylov subspace methods lets us keep the total cost of solving this system on the order of O(rNv ), 
assuming the number of iterations does not grow unboundedly with r or Nv , which is what we observe in practice.
Cost: O(r2Nv).

3. Perform a QR decomposition of Ln+1
i to obtain V n+1

j and Sn+1
i j .

Cost: O(r2Nv).

Adding together all of our computational complexity estimates, we get a total cost of O(r4 + r2Nx + r2Nv) — compare 
this with the cost of the full tensor method O(NxNv).

4. Fully discrete algorithm

In this section we address the question of physical and velocity space discretization. One of the virtues of the dynamical 
low-rank method is that it decouples the discretization of the two bases, Xi and V j , which may be treated more or less 
independently. The X basis is updated by solving a system of coupled hyperbolic PDEs in (3.17), while the V basis is 
updated by solving a parabolic system in (3.27). These systems are coupled via the matrix of singular values S , as well as 
weighted inner products of whichever basis is being held constant (viz. (3.10), (3.11), etc.). We are free to choose whichever 
discretization is most appropriate for the corresponding evolution equation of each basis. In this work we use second-order 
finite difference discretizations in both x and v for simplicity. In principle, it is easy to choose, for example, a Fourier 
spectral method to take advantage of periodicity in the x direction, or even a more involved method such as Discontinuous 
Galerkin along one or the other basis, without increasing the implementation complexity too greatly.

4.1. Spatial discretization

Our spatial discretization in x is designed to solve the explicit part of the evolution equation for K , which is (3.17). This 
is a linear hyperbolic PDE with the flux matrix c1jl , which is a symmetric matrix. We opt for a second-order finite difference 
discretization with flux limiting, as described in [16], section 16.2. To illustrate, we consider the situation in two spatial 
dimensions, d = 2. The matrix c1jl consists of components c1;mjl for m ∈ {1, 2}, acting on the x and y directions respectively. 
The matrices c1;mjl are symmetric and real; recall their definition (3.10). Therefore they are unitarily diagonalizable, and we 
can write

(Tm)T c1;mTm =
∑
jl

Tm
ij c

1;m
jl Tm

kl = λm
i δik = �m. (4.1)

Left-multiplying (3.17) by (T 1)T , and introducing the eigenbasis K̂ n
i = [(T 1)T Kn]i , gives the system∑

jl

T 1
i j

[
I − �t

ε
A2

jl

]
Kn+1
l = K̂ n

i − �tλ1
i ∂x K̂

n
i − �t

∑
jl

T 1
i j

(
c1;2jl ∂y K

n
l + A1

jl K
n
l

)
. (4.2)

At a grid point xp , the flux-limited finite difference discretization approximates λ1
i ∂x K̂

n
i (xp) by a difference of fluxes at half 

grid points xp+1/2, xp−1/2:

λ1
i ∂x K̂

n
i (xp) ≈ F (λi, K̂ n

i )p+1/2 − F (λi, K̂ n
i )p−1/2

�x
. (4.3)

The flux F is given by the combination of a first-order flux (upwinding) flux,

FL(λ, K̂ )p+1/2 = λ

2
(K̂ p+1 + K̂ p) − |λ|

2
(K̂ p+1 − K̂ p), (4.4)

with a second-order Lax-Wendroff flux. The combination is governed by a flux-limiter φ(θ), which stabilizes the scheme in 
the presence of sharp changes in the gradient:
10
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F (λ, K̂ )p+1/2 = FL(λ, K̂ )p+1/2 + 1

2
φ(θp+1/2)

(
sgn(λ) − λ�t

�x

)
λδ(K̂ )p+1/2, (4.5)

where δ(K̂ )p+1/2 = (K̂ p+1− K̂ p) The quantity θp+1/2 measures how quickly the gradient is changing in the vicinity of xp+1/2, 
and itself uses upwinding based on the sign of λ:

θp+1/2 = δ(K̂ )p+1/2−sgn(λ)

δ(K̂ )p+1/2
. (4.6)

The function φ :R → [0, 2] is called the limiter, and there are many options to choose from. We use the Van Leer limiter,

φ(θ) = |θ | + θ

1+ |θ | . (4.7)

After approximating the term λ1
i ∂x K̂

n
i , for each eigenvalue λi , we can transform back to the original variables by left-

multiplying with (T 1):∑
l

[
I − �t

ε
A2

jl

]
Kn+1
l = Kn

j − �t
∑
i

T 1
i jδx(λi, K̂

n)i − �t
∑
l

(
c1;2jl ∂y K

n
l + A1

jl K
n
l

)
. (4.8)

The discretization in y is handled similarly, by left-multiplying (4.8) by T 2. The above scheme is second-order in smooth 
regions of the solution, and degrades to first order around discontinuities and extrema.

4.2. Velocity discretization

Our discretization in v is designed to effectively solve (3.27), which is a parabolic system (strictly speaking, a convection-
diffusion type equation). We recall the linear system to be solved here:∑

k

[
δik − �t

ε
(δik∇2

v − δik v · ∇v + e

ik · ∇v)

]
Lk = RHS. (4.9)

It is convenient to discretize this operator by splitting the left hand side into a diagonal (i = k) term and an offdiagonal 
term. In the case when i = k, we have(

δik∇2
v − δik v · ∇v + e


kk · ∇v

)
Lk =

(
∇2

v − v · ∇v + e

kk · ∇v

)
Lk

= [
((∇v − v) + e


kk) · ∇v
]
Lk

= 1

Mk
∇v · (Mk∇v Lk)

:= Tk(e


kk)Lk, (4.10)

where Mk is the local Maxwellian

Mk = e− |v−e
kk |2
2 . (4.11)

In one dimension, a second-order-accurate central difference discretization of (4.10) is

(Tk(e


kk)L)p ≈ 1

Mk
p�v

(
Mk

p+1/2
Lp+1 − Lp

�v
− Mk

p−1/2
Lp−1 − Lp

�v

)
(4.12)

= Mk
p+1/2Lp+1 − (Mk

p+1/2 + Mk
p−1/2)Lp + Mk

p−1/2Lp−1

Mk
p�v2

. (4.13)

The off-diagonal terms are simply

e∗
ik · ∇v Lk := UikLk. (4.14)

For simplicity we discretize this using a second-order centered difference operator. Stability is not a concern, since it will 
be coupled to a Backwards Euler timestepping scheme. With these discretizations in hand the implicit step for L takes the 
form ∑[

δik − �t

ε
(δikTk(e



kk) +Uik)

]
Ln+1
k = Lni − �t

∑
(v · d


ik + ĉik)L
n
k . (4.15)
k k

11
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Despite being of size rNv × rNv , this linear system is quite sparse, having roughly O(r2Nv) nonzero entries. It is therefore 
amenable to fast solution by iterative solvers. Since it is not symmetric, we use the Restarted GMRES [21] iterative algorithm. 
We find good results by preconditioning with the constant matrix 

(
δik − δik

�t
ε Tk(0)

)−1
. Timings of our code indicate that 

this step takes on the same order of magnitude as the other components of the algorithm, up to the largest problems we 
consider here.

5. Asymptotic behavior of the discrete scheme

In this section we demonstrate that the discrete scheme described in the preceding sections preserves the asymptotic 
limit (1.19) as ε → 0.

We consider the limit of the discrete system at the level of g , which is advanced via the K , S , and L steps with an 
accuracy that is first-order in time and second-order in space:

gn+1 − gn

�t
= −v · ∇xg

n −Mngn + 1

ε
(Mn)−1∇v · (Mn∇v g

n+1) +O(�t + �x2). (5.1)

Furthermore, the electric field is advanced by

En+1 − En

�t
= − Jn. (5.2)

From (5.1), we can see that

(Mn)−1∇v · (Mn∇v g
n+1) = O(ε) =⇒ gn+1 = c +O(ε), (5.3)

that is to say, after one time step, we expect the solution g to be close to a constant function in v when ε is small. To see 
this, just note the following∫

∇v · [M∇v g] log g dv =
∫

∇v · [Mg∇v log g] log g dv = −
∫

Mg |∇v log g|2 dv ≤ 0, (5.4)

where the equality holds if and only if g is a function independent of v . Moreover, (5.3) implies

ρn+1 =
∫

Mn+1gn+1 dv = c

∫
Mn+1 dv +O(ε) = c +O(ε), (5.5)

Jn+1 =
∫

vMn+1gn+1 dv = c

∫
vMn+1 dv +O(ε) = cEn+1 +O(ε) = ρn+1En+1 +O(ε). (5.6)

On the other hand, we can multiply (5.1) by Mn and integrate in v to obtain∫
Mngn+1 dv − ρn

�t
= −

∫
v · (∇xg

n)Mn dv −
∫

(∂tM
n + v · ∇xM

n)gn dv

+ 1

ε����������∫
∇v · (Mn∇v g

n+1)dv +O(�t + �x2)

= −
∫

[v · (∇xg
n)Mn + (v · ∇xM

n)gn]dv − ∂t E
n ·

∫
(v − En)Mngn dv

+O(�t + �x2)

= −∇x · Jn − c∂t E
n ·
�������∫

(v − En)Mn dv +O(ε + �t + �x2), (5.7)

where we used gn = c +O(ε) for n ≥ 1.
Finally, noticing that

ρn+1 −
∫

Mngn+1 dv =
∫

(Mn+1 − Mn)gn+1 dv = c

∫
(Mn+1 − Mn)dv +O(ε) = O(ε), (5.8)

and using Jn = ρnEn +O(ε) for n ≥ 1 (5.7) becomes

ρn+1 − ρn

�t
= −∇x · (ρnEn) +O

(
ε + �t + �x2 + ε

�t

)
. (5.9)

(5.2) becomes

En+1 − En

�t
= −ρnEn +O(ε). (5.10)

Equations (5.9) and (5.10) form a first-order in time discretization of (1.19) as ε → 0, as expected.
12
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Fig. 1. Convergence of the solution as a function of the grid spacing in both x and v . We achieve second-order convergence in v , and very nearly second-
order convergence in x, as expected.

6. Numerical results

In this section, we present extensive numerical results in 1D1V and 2D2V to illustrate the accuracy and efficiency of 
the proposed low-rank algorithm. We will see that the algorithm becomes quite low rank in the asymptotic limit ε → 0
by our design. On the other hand, in the kinetic and transition regimes, the numerical rank needed appears higher but 
still relatively small compared to Nx or Nv . Therefore, the proposed algorithm presents as a very effective method for the 
Vlasov-Ampère-Fokker-Planck system over a wide range of problems.

6.1. 1D1V examples

6.1.1. Convergence study
To verify second order convergence of our scheme in physical space and velocity space, we perform convergence studies 

comparing the relative errors in f as the grid is refined. In order to evaluate the performance of the discrete Fokker-Planck 
collision operator, we use a nonequilibrium initial condition. The initial distribution consists of two counterstreaming beams 
moving at velocities ±1.5.

f (x, v,0) = ρ0(x)

2
√
2π

[
e

−|v−1.5|2
2 + e

−|v+1.5|2
2

]
, (6.1)

ρ0(x) = √
2π(2 + cos(2πx)). (6.2)

The initial electric field is determined by Poisson’s equation,

E0 = −∇xφ(x), −∇2
x φ(x) = ρ0(x) − η(x), (6.3)

η(x) = 2
√
2π

1.2661
ecos(2πx). (6.4)

We evaluate the convergence in both the kinetic and fluid regimes, with ε = 0.5 and ε = 10−6, respectively. The fluid regime 
is adequately resolved with r = 5, while the kinetic regime requires a higher rank of r = 10. The spatial domain is periodic 
on the interval [0, 1], and the velocity domain is the interval [−10, 10]. Convergence is verified by holding one of Nx, Nv

fixed, while the other is varied. The timestep �t is chosen to give a CFL number of 0.25 at the finest grid, for which we 
use �t = 1.0

(1024)(4vmax)
= 2.44 × 10−5. This is found to be sufficient for the spatial discretization error to dominate. The L1

norm of the difference between f at subsequent levels of approximation is computed by exactly restricting the solution at 
the finer grid onto the coarser grid. Our chosen discretization in the x direction is a high-resolution flux-limited scheme as 
described in Section 4.1, for which we expect between first and second-order convergence depending on the smoothness of 
the solution. Indeed we observe very nearly second-order convergence on this particular problem (Fig. 1a). For convergence 
in the v direction, we find that the method is second-order in the grid spacing �v as expected (Fig. 1b).
13
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Fig. 2. Ratio of the second- through fifth-largest singular values to the largest singular value in the fluid regime, ε = 10−6. There is a clear separation of 
five orders of magnitude between the largest and second largest singular values. This holds whether the solution begins in local equilibrium (left) or in the 
non-equilibrium initial condition (6.1).

6.1.2. Verification that the asymptotic limit is rank-1
In order to verify that our method efficiently captures the asymptotic limit (1.19), we examine the evolution of the 

singular values of the low rank solution for very small ε (ε = 10−6). The singular values of the low rank solution are simply 
the diagonal entries of S . We consider a solution beginning in local equilibrium,

f (x, v,0) = ρ0(x)√
2π

e− |v−E0 |2
2 , (6.5)

ρ0(x) =
√
2π

2
(2 + cos(2πx)), (6.6)

where E0 satisfies (6.3) with

η(x) =
√
2π

1.2661
ecos(2πx). (6.7)

We evolve the initial condition with a rank of 5, until time t = 0.01, which is enough to demonstrate that the asymptotic 
limit is captured. Nx = Nv = 128 grid points are used in each direction. The timestep chosen is �t = 3.9 × 10−4. The 
evolution of singular values in Fig. 2a shows that the solution maintains a clear separation between the first singular value 
and the rest. Fig. 2b demonstrates the same behavior, but for a solution beginning in the counterstreaming beams initial 
condition, (6.1), evolved with rank 10. The solution takes slightly longer to “settle down”, but after three time steps it shows 
the same rank separation as in the equilibrium case.

6.1.3. Comparison of fluid and kinetic regimes
Conversely to the clear singular value separation observed in the fluid regime for very small ε , solutions in the kinetic 

regime exhibit slower singular value decay. To demonstrate, we consider a “bump-on-tail” initial condition evolving in both 
the fluid and kinetic regimes. In the fluid regime, the bump disappears within a single timestep, and the slow time scale 
dynamics of the limiting fluid equation take over. In the kinetic regime, we observe the shearing behavior characteristic of 
low-collision phase space flows. Our method is designed to capture the low-rank structure inherent in the fluid equation, 
and so it is not surprising that the kinetic solution requires a higher rank to capture effectively.

The “bump-on-tail” distribution is defined by

f0(x, v) = ρ0(x)

(2π)1/2

(
e− |v|2

2 + e
− |v−1.5|2

2Tcold

)
, (6.8)

where the temperature of the perturbation is Tcold = .005. The density ρ0(x) is initialized to a Gaussian pulse centered at 
x = 0.3. To induce dynamics in the limiting fluid equation, we initialize the background charge density η with a potential 
well centered at x = 0.6:
14
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Fig. 3. Comparison of the rank r required for a solution in the fluid (left) and kinetic (right) regime. The fluid solution with ε = 10−6 requires significantly 
lower rank, demonstrating the ability of our approach to capture the fluid limit without excessive computation, by seeking a low-rank approximation to 
g = f /M instead of f itself. Solutions are computed with Nv = 128 and Nx = 256. (For interpretation of the colors in the figures, the reader is referred to 
the web version of this article.)

ρ0(x) = 0.3+ e− |x−0.3|2
0.01 , η(x) = 0.3+ e− |x−0.6|2

0.01 . (6.9)

The electric field is initialized via the solution to Poisson’s equation (6.3), as above.
The solution is computed with Nx = 256 grid points in the x coordinate, and Nv = 128 in the v coordinate. We use 

ε = 10−6 to demonstrate the fluid regime behavior, and in the kinetic regime we use ε = 1. Both of our low-rank solutions 
are compared to a full tensor solution of (1.11) with the same discretization parameters, using the scheme proposed in [13]. 
The solution is run until t = 0.1 in the fluid regime, and t = 0.5 in the kinetic regime, with time steps of �t = 3.9 ×10−4 in 
all cases. Results are shown in Fig. 3. We find that as expected, only a handful of ranks are required to obtain good accuracy 
in the fluid regime. On the other hand, the kinetic solution requires around r = 20 for this problem.

6.2. 2D2V examples

6.2.1. Climbing an electrostatic potential hill
To demonstrate that our method can handle nontrivial dynamics in the kinetic regime, we consider the problem of a 

density “pulse” climbing an electrostatic potential hill. We initialize the background density η uniform everywhere except 
for a band through the center of the domain where it is set to zero. This creates a region of negative charge density through 
which the electron fluid cannot pass, unless it has enough inertia to do so. Since in the fluid limit inertial forces vanish, this 
will only occur in the kinetic regime. We use an elongated Gaussian initial density centered to the left of the potential hill 
and oriented obliquely to the grid:

ρ0(x, t) = 0.1+ 0.0003

2π |�| e
− (x−x0)T �−1(x−x0)

2 , x ∈ [0,1]2, (6.10)

where x0 = [0.3, 0.3], � = R�R−1, � is a diagonal matrix with entries [0.006, 0.03], and R a rotation matrix through an 
angle of π/4. We initialize a uniform Maxwellian velocity distribution throughout the domain so that the pulse is traveling 
along the direction of its major axis:

f0(x, v) = ρ0(x)

2π T
e− |v−u0|2

2T , v ∈ [−5,5]2, (6.11)

where T = 0.01 and u0 = [0.5, 0.5]T . The background density η is initialized constant on its support, which is the entire 
domain excluding a band between xl = 0.55 and xr = 0.7. This creates the potential hill which a kinetic distribution is able 
to pass over, while the fluid solution remains on the left side, where it starts.

To illustrate both regimes, we use the values ε = 1.0 and ε = 0.01, and a computational domain with N = 72 grid points 
in each of the four coordinates. We use a fixed time step of �t = 6.9 × 10−4. The results at time T = 0.35 are shown in 
Fig. 4. As expected, the kinetic solution retains a significant flow velocity throughout the domain, and its inertia carries 
it over the x = 0.7 line. On the other hand the fluid solution is pushed out of the region of negative charge density by 
electrostatic forces. The presence of the potential hill in the interval x ∈ [0.55, 0.7] is clearly visible in the density plots for 
the fluid regime.
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Fig. 4. Results of the potential hill problem at T = 0.35, comparing low rank (left) and full tensor (right) solutions. Marginal distributions of f as a function 
of y, vx are obtained by integrating with respect to v y while holding x fixed. The marginals are calculated along two lines at x ≈ 0.4, x ≈ 0.6, indicated 
in red. The marginal distributions are shown in the bottom pair of plots for each case. We see good agreement with the full tensor solution and with our 
heuristic predictions for what each flow should do.

Our dynamical low-rank method shows its computational advantages on this 2D2V problem, even for small problem 
sizes. Timings for a single timestep are detailed in Table 1. We observe that the computational cost of the algorithm is 
O(r2Nx + r2Nv), compared to the O(NxNv) of the full tensor algorithm. The constant factors are small enough to already 
be dominated at Nx = Nv = 242.

6.2.2. Relaxation of a cold beam
To demonstrate the relaxation of the solution towards the local Maxwellian in 2 velocity dimensions, we consider a “cold 

beam” initial condition:

f (x, v,0) = e− |v−u|2
0.5 , (6.12)

u = [4,2]T . (6.13)

This is discretized on a doubly spatially periodic unit domain [0, 1)2 × [−10, 10]2, with Nx = 322 spatial grid points dimen-
sion, and Nv = 1282 velocity grid points. We choose �t ≈ 0.0008, and evolve the distribution until T = 0.3. The difference 
between the solution f and the local equilibrium distribution M is plotted for three intermediate points in time, along with 
the history of the L1 norm of the difference. It can be seen that the deviation from local equilibrium decays exponentially. 
The results are shown in Fig. 5.
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Table 1
Comparison of single-timestep runtimes on the 2D2V potential hill problem 
of Section 6.2.1. N is the number of grid points in each dimension, so that 
Nx = Nv = N2. To facilitate comparison, runtimes are normalized to the run-
time of the r = 5, N = 24 case, which was 16.3 ms. For example, the runtime 
of the full tensor step for N = 24 was 13.8 times longer than that of the rank 
5 low-rank step. The bolded numbers are the empirical exponent of N . We 
see agreement with the expected asymptotic complexity of 2 for the low-rank 
case, compared with 4 for the full tensor solver.
N Low rank Full tensor

r = 5 r = 10 r = 15

24 1.00 / – 2.14 / – 3.89 / – 13.8 / –
48 3.21 / 1.7 7.94 / 1.9 14.4 / 1.9 256 / 4.2
72 10.5 / 2.1 23.6 / 2.2 46.7 / 2.3 1.5× 103 / 4.3
96 18.6 / 2.1 38.3 / 2.1 54.7 / 1.9 5.3× 103 / 4.3
120 29.2 / 2.1 52.2 / 2.0 88.9 / 1.9 1.23× 104 / 4.2

Timings were measured on an 8-core Apple M1 Pro, using Julia 1.7.2. Code is 
available upon request.

Fig. 5. Comparison of the characteristic relaxation rates of a cold beam in two velocity dimensions. Heatmaps are the raw difference between f and f 0, 
demonstrating convergence to the Maxwellian.

7. Conclusion

We have proposed and implemented an efficient algorithm for the electrostatic Vlasov equation with linear Fokker-Planck 
collision operator. By dividing by the Maxwellian, we are able to represent the quotient with a low-rank approximation, 
thereby capturing the fluid limit with very little computational effort. Moreover, our method is also efficient when far from 
the fluid limit, owing to the great reduction in computational complexity afforded by the dynamical low-rank method. In 
order to get an efficient overall algorithm, we used the fact that the Maxwellian limit of our equation is isothermal to quickly 
compute a convolution with the Fast Fourier Transform. Our implementation is found to be multiple orders of magnitude 
faster than a full-tensor numerical solution, with better asymptotic scaling and constant coefficients for moderately sized 
problems.
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Appendix A. Timestepping for the backwards-in-time S step

In this section we motivate the choice of a Forward Euler timestep for the stiff part of the S flow in (3.24). Recall that 
the S step evolves just the singular values of the solution backwards in time, and comes in between the K and L steps:

K step: gn
Xn→Xn+1, Sn→S1−−−−−−−−−−−→ g1

S step: g1
S1→S2−−−−→ g2 (A.1)

L step: g2
V n→V n+1, S2→Sn+1−−−−−−−−−−−−−→ gn+1

Because the S step is backwards in time, strictly speaking it is an ill-posed ODE. However, empirically we find that an IMEX 
step for K followed by a Forwards Euler step for S is stable. To motivate this with a heuristic argument, consider an initial 
condition that is uniform in space, with vanishing electric field and current. We also assume that the solution begins in 
local equilibrium. In terms of our low-rank method, we take

g(x, v, t0) = 1, E(x) = J (x) = 0. (A.2)

The low-rank decomposition of g gives us Sij = δi1δ j1, i.e. S11 is the only nonzero entry of S . With no spatial dependence, 
all but the collisional term of (3.16) drop out, and we are left with

∂t K j = 1

ε

∑
l

d1jl Kl, (A.3)

where d1jl is defined in (3.11). The time evolution equation (3.23) for S also simplifies:

∂t Si j = −1

ε

∑
kl

δikd
1
jl Skl = −1

ε

∑
l

d1jl Sil. (A.4)

It is useful to rewrite these equations in matrix form. Define the matrices X ∈ RNx×r , S ∈ Rr×r , V ∈ RNv×r . Then g =
XSVT = KVT . Further define D = {d1jl}. The K flow and S flow are given by

∂tK = 1

ε
KDT , (A.5)

∂tS = −1

ε
SDT . (A.6)

During the K step and the S step, the respective time derivatives of g are equal and opposite:

K step: ∂t g = (∂tK)VT = 1

ε
KDTVT = 1

ε
XSDTVT , (A.7)

S step: ∂t g = X(∂tS)V
T = −1

ε
XSDTVT . (A.8)

It follows that at the continuous level, our low-rank approximation has the property that gn = g2 for spatially homogeneous 
starting point gn . We choose our time discretization to preserve this invariant. Using the backward Euler for the K flow 
results in

Kn+1 = Kn
(
I − �t

ε
DT

)−1

, (A.9)

while using the forward Euler for the S flow results in

S2 = S1
(
I − �t

DT
)

. (A.10)

ε
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Therefore,

g2 = Xn+1S2(Vn)T

= Xn+1S1
(
I − �t

ε
DT

)
(Vn)T

= Kn+1
(
I − �t

ε
DT

)
(Vn)T

= Kn
(
I − �t

ε
DT

)−1 (
I − �t

ε
DT

)
(Vn)T

= gn.

While we have exact cancellation of the K and S flows for this spatially homogeneous equilibrium, each of these substeps 
is quite large when taken individually. The stiffness of the ε−1 term means that it is quite important to preserve this 
cancellation at the numerical level, otherwise the method is unable to hold even a spatially homogeneous equilibrium. For 
example, if one uses an IMEX step for the S flow, one finds

g2 = Kn
(
I − �t

ε
DT

)−1 (
I + �t

ε
DT

)−1

(Vn)T

= Kn

(
I −

(
�t

ε

)2

(DT )2

)−1

(Vn)T ,

which is very far from the identity indeed. The preceding argument is not a rigorous justification of our choice of timestep-
ping scheme for general solutions g . We simply wish to highlight one subtle numerical aspect of the projector-splitting 
approach which implementors should be aware of.

A.1. Comparison to the BGK operator

In [10], the authors successfully used an IMEX step to advance the S flow. The issues raised above do not arise for the 
BGK-type operators considered there, as we demonstrate here with a simple example. A spatially homogeneous equation 
with BGK-type collision operator is

∂t f = 1

ε
(M − f ),

or, using the fact that M is constant for a spatially homogeneous problem,

∂t g = 1

ε
(1 − g).

Projecting this onto the low-rank approximation gives the following subflows for K and S:

∂t K j = 1

ε
(〈V j〉v − K j), ∂t Si j = −1

ε
(〈Xi V j〉xv − Sij).

An IMEX (backwards Euler) step for each of these subflows will give

Kn+1 =
(
1+ �t

ε

)−1 (
Kn + �t

ε
〈(Vn)T 〉v

)
,

S2 =
(
1− �t

ε

)−1 (
S1 − �t

ε
〈Xn+1(Vn)T 〉xv

)
.

Plugging these into the expression for g2, we find

g2 = Xn+1S2(Vn)T

= Xn+1
(
S1 − �t

ε
〈Xn+1(Vn)T 〉xv

)(
1− �t

ε

)−1

(Vn)T

= Kn+1
(
1− �t

ε

)−1

(Vn)T − Xn+1
( ε

�t
− 1

)−1 〈Xn+1(Vn)T 〉xv(Vn)T

= Xn+1〈1,Xn+1(Vn)T 〉xv(Vn)T + O
( ε

�t

)
.
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Note that we have dropped terms of order ε/�t , to illustrate that g is driven to within ε/�t of its equilibrium value, which 
is 1 (projected onto the low-rank bases). Because the BGK operator on g is affine rather than linear there is no cancellation, 
but the IMEX approach for both flows poses no problems in the ε → 0 limit.
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