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1 Introduction

The discovery of the Higgs boson was a major success for the Standard Model (SM) and
an important breakthrough in understanding electroweak symmetry breaking [1, 2]. It
also opened new ways to search for physics beyond the Standard Model (BSM physics).
Despite its success the SM is not without problems that may require extensions and new
concepts. One natural extension common to many BSM physics models is an extended
Higgs sector, which leads to the introduction of additional Higgs bosons. In such models,
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the lightest Higgs boson (h) often has properties similar to those of the observed SM Higgs
boson. Additional Higgs bosons have been introduced to explain a very wide range of
BSM phenomena, from the observed baryon asymmetry in the universe, and how to solve
the strong CP problem with the help of axions, to the generation of non-zero neutrino
masses [3–7]. Some models have incorporated recent potential deviations from the SM
seen in muon g − 2 and W mass measurements [8].

Several searches for additional heavy Higgs bosons (H) have already been carried out
with the ATLAS and CMS detectors at the Large Hadron Collider (LHC) [9–15]. These
searches mainly relied on the gluon–gluon fusion (ggF) and vector-boson fusion (VBF)
production mechanisms, which are the dominant production modes for the SM Higgs boson
at the LHC. In ggF production, the gluons couple to the Higgs boson mainly via a top-
quark loop, so the non-observation of an additional Higgs boson in this channel could point
to a reduced fermionic coupling.

This analysis concentrates on the production of a heavy Higgs boson in association with
a vector boson (V H, where V = W,Z) andH → V V decays. By utilising a general effective
Lagrangian that includes dimension-six operators in an effective field theory (EFT), it can
be shown that, relative to VBF production, the V H production mode benefits from having
smaller SM backgrounds, and the production cross-section may be enhanced by higher-
order contributions, especially at high Higgs boson mass and vector-boson momenta [16–
18]. The observed Higgs boson h, is assumed to have the production and decay modes as
in the SM, with production through H → Zh negligible.

Rather than focusing on any specific model, a generic search is performed for the
same-sign dilepton signature (SS2L), targeting the W±H → W±W±W∓ → !±ν!±νjj

decay channel. The corresponding Feynman diagram is shown in figure 1. In this article,
the term ‘lepton’, unless stated otherwise, refers to either an electron or a muon. Electrons
and muons from τ -lepton decays are also considered. The hadronically decaying W boson
is reconstructed either as two small-radius jets or as a single large-radius jet for higher-
momentum W bosons. The presence of neutrinos prevents the full reconstruction of the
heavy Higgs boson’s mass and is the main drawback of the W±W±W∓ channel with
leptonic decays of the W bosons. It is ameliorated with the help of the reconstruction
methods described in section 6. Compared with other bosonic V H decay channels, the
chosen channel has the highest signal sensitivity thanks to low SM backgrounds and a
sizeable branching fraction for H → WW decay [18, 19]. SM processes produce same-sign
lepton pairs at the LHC at a rate that is orders of magnitude below that of opposite-sign
lepton-pair production in the SM.

2 Phenomenology

In theories with multiple Higgs fields, the fields in the multi-Higgs potential interact and
the mass eigenstates are formed from a mixture of the fields. In the simple case of a lightest
(h) and next-to-lightest (H) neutral Higgs doublet, the couplings of the Higgs boson to
the SM gauge bosons are scaled relative to SM gauge couplings because of the mixing.
In addition to the leading-order dimension-four (dim-4) operators, dimension-six (dim-6)
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Figure 1. Feynman diagram of the W±H → W±W±W∓ process.

effective operators as described in refs. [16–18] are also considered. After electroweak
symmetry breaking, the effective Lagrangian terms can be written as

L(4)
hWW = ρhgmWhWµWµ,

L(4)
hZZ = ρh

gmW

2c2W
hZµZµ,

L(4)
HWW = ρHgmWHWµWµ,

L(4)
HZZ = ρH

gmW

2c2W
HZµZµ,

L(6)
HWW = ρHgmW

fW
2Λ2

(
W+

µνW
−µ∂νH + h.c.

)
− ρHgmW

fWW

Λ2 W+
µνW

−µνH,

L(6)
HZZ = ρHgmW

c2W fW + s2W fB
2c2WΛ2 ZµνZ

µ∂νH − ρHgmW
c4W fWW + s4W fBB

2c2WΛ2 ZµνZ
µνH,

where h,H,W and Z are the fields of the light and heavy Higgs bosons and the W and
Z bosons, respectively; mW is the W boson mass; g is the SM coupling constant of the weak
interaction; fW , fWW , fB, and fBB are anomalous couplings to W and B fields; ρh and ρH
are scaling factors; sW = sin θW and cW = cos θW , where θW is the weak mixing angle; and
Λ is the scale below which the effective Lagrangian holds. For a light Higgs boson similar
to the one in the SM, ρh is close to 1. The simplest two-Higgs-doublet model (2HDM) [20]
has ρh = cos(β − α) and ρH = sin(β − α), where α is the mixing angle between the CP-
even Higgs bosons, and β is the rotation angle, with tan β defined as the ratio of vacuum
expectation values of the two Higgs doublets. In this analysis, the scaling factor ρH is set to
0.05 and the scale Λ is set to 5 TeV, which is much larger than the mass of the heavy Higgs
boson in this search. The choice of ρH is motivated by the observation that ρh ∼ 1. To
further simplify the parameter space, the small terms of O(s2W ) and O(s4W ) are neglected,
and the anomalous coupling coefficients fB and fBB are set to zero, following ref. [16].
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The operator multiplied by the fW anomalous coupling is proportional to derivatives of
the Higgs field and hence production is enhanced with increasing Higgs boson momentum.
Results for the heavy Higgs boson’s production cross-section are provided as a function of
the heavy Higgs boson’s mass and the two BSM HV V coupling strengths ρHfW /Λ2 and
ρHfWW /Λ2.

3 ATLAS detector and data samples

The ATLAS detector [21] at the LHC covers nearly the entire solid angle around the colli-
sion point.1 It consists of an inner tracking detector surrounded by a thin superconducting
solenoid, electromagnetic and hadron calorimeters, and a muon spectrometer incorporating
three large superconducting air-core toroidal magnets.

The inner-detector system (ID) is immersed in a 2T axial magnetic field and provides
charged-particle tracking in the range |η| < 2.5. The high-granularity silicon pixel detector
covers the vertex region and typically provides four measurements per track, the first
hit normally being in the insertable B-layer (IBL) installed before Run 2 [22, 23]. It is
followed by the silicon microstrip tracker (SCT), which usually provides eight measurements
per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to |η| = 2.0. The TRT
also provides electron identification information based on the fraction of hits (typically 30
in total) above a higher energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the region
|η| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering
|η| < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadron
calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three bar-
rel structures within |η| < 1.7, and two copper/LAr hadron endcap calorimeters. The
solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter
modules optimised for electromagnetic and hadronic energy measurements, respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking
chambers measuring the deflection of muons in a magnetic field generated by the supercon-
ducting air-core toroidal magnets. The field integral of the toroids ranges between 2.0 and
6.0Tm across most of the detector. Three layers of precision chambers, each consisting
of layers of monitored drift tubes, covers the region |η| < 2.7, complemented by cathode-
strip chambers in the forward region, where the background is highest. The muon trigger

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in
the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from
the IP towards the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,φ) are
used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in
terms of the polar angle θ as η = − ln tan(θ/2). The distance in (η,φ) coordinates, ∆R =

√
(∆φ)2 + (∆η)2,

is also used to define cone sizes. Rapidity is defined as y = (1/2) ln[(E + pz)/(E − pz)], where E is the
energy and pz is the z-component of the momentum. Transverse momentum and energy are defined as
pT = p sin θ and ET = E sin θ, respectively.
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system covers the range |η| < 2.4 with resistive-plate chambers in the barrel, and thin-gap
chambers in the endcap regions.

Interesting events are selected by the first-level trigger system implemented in custom
hardware, followed by selections made by algorithms implemented in software in the high-
level trigger [24]. The first-level trigger accepts events from the 40MHz bunch-crossings at
a rate below 100 kHz, which the high-level trigger further reduces in order to record events
to disk at about 1 kHz.

The data used in this analysis were collected using single-lepton triggers during the
2015–2018 proton–proton (pp) collision running periods at a centre-of-mass energy of
13 TeV. Events are selected for analysis only if they are of good quality and if all the
relevant detector components are known to have been in good operating condition, which
corresponds to a total integrated luminosity of 139 fb−1 [25, 26]. The recorded events
contain an average of 34 inelastic pp collisions per bunch-crossing.

An extensive software suite [27] is used in data simulation, in the reconstruction and
analysis of real and simulated data, in detector operations, and in the trigger and data
acquisition systems of the experiment.

4 Simulation of signal and background processes

Monte Carlo (MC) simulated event samples are used to model heavy Higgs boson signals
and to estimate the SM background with two same-sign leptons and/or at least three
prompt leptons. Data-driven methods are used to estimate charge-flip, non-prompt and
photon-conversion backgrounds, as discussed in section 7.

The heavy Higgs boson signal process pp→V H→V V V was modelled at leading order
(LO) in QCD by the MadGraph5_aMC@NLO 2.7.3 generator [28]. The full decays of V
bosons were simulated in MadSpin [29]. Parton showers and hadronisation were handled
by Pythia 8.244 [30] using the A14 set of tuned parameters [31] and theNNPDF2.3lo [32]
parton distribution function (PDF). Events were filtered such that at least one same-sign
lepton pair was produced. Each lepton was required to have transverse momentum larger
than 18 GeV, and be within |η| < 2.7. The samples were produced with mH from 300 GeV
to 1.5 TeV, fW from −2480 to 2510 and fWW from −15000 to 15000. The event samples are
normalised to calculations at next-to-leading order (NLO) using a Higgs characterisation
model [33]. The NLO K-factor increases the expected event yields by a factor of 1.3,
independently of the heavy Higgs boson’s mass and BSM HV V coupling strengths.

Samples of diboson final states (V V ) were simulated with the Sherpa 2.2.2 [34] gen-
erator, including off-shell effects and Higgs boson contributions, where appropriate. Fully
leptonic final states were generated using matrix elements at NLO accuracy in QCD for
up to one additional parton and at LO accuracy for up to three additional parton emis-
sions. Samples for the loop-induced processes gg → V V were generated using LO-accurate
matrix elements for up to one additional parton emission for both the fully leptonic and
semileptonic final states. The matrix element calculations were matched and merged with
the Sherpa parton shower based on Catani–Seymour dipole factorisation [35, 36] using
the MEPS@NLO prescription [37–40]. The virtual QCD corrections are provided by the
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OpenLoops library [41–43]. The NNPDF3.0nnlo set of PDFs was used [44], along with
the dedicated set of tuned parton-shower parameters developed by the Sherpa authors.

The production of triboson (V V V ) events was simulated with the Sherpa 2.2.2 gen-
erator using factorised gauge-boson decays. Matrix elements, accurate to NLO for the
inclusive process and to LO for up to two additional parton emissions, were matched and
merged with the Sherpa parton shower based on Catani–Seymour dipole factorisation us-
ing the MEPS@NLO prescription. The virtual QCD corrections for matrix elements at
NLO accuracy are provided by the OpenLoops library. Samples were generated using the
NNPDF3.0nnlo PDF set, along with the dedicated set of tuned parton-shower parame-
ters developed by the Sherpa authors. Contributions with an off-shell W boson through
Wh → WWW ∗ were generated using PowhegBox v2 [45–48] interfaced to Pythia 8.235
to model the parton shower with the NNPDF2.3lo PDF and the AZNLO set of tuned
parameters [49].

The production of tt̄h events was modelled using the PowhegBox v2 generator at
NLO with the NNPDF3.0nlo PDF set. The events were interfaced to Pythia 8.230 with
parameters set according to the A14 tune and using theNNPDF2.3lo set of PDFs. The de-
cays of bottom and charm hadrons were performed by EvtGen 1.6.0 [50]. The production
of tt̄V , tWZ and tZq events was modelled using the MadGraph5_aMC@NLO 2.3.3 [28]
generator at NLO with the NNPDF3.0nlo PDF. The events were interfaced to
Pythia 8.210, which used the A14 tune and the NNPDF2.3lo PDF set. The decays
of bottom and charm hadrons were simulated using the EvtGen 1.2.0 program.

Events from tt̄, V+ jets and V γ processes contribute to the !±!± signal region when a
lepton charge is mismeasured, or leptons are produced from non-prompt decays or photon
conversions. These backgrounds are estimated with data-driven methods, as detailed in
section 7, with MC simulation used for validation and to estimate systematic uncertainties.
These MC simulations are briefly introduced in the following paragraphs.

The production of tt̄ events was modelled by the PowhegBox v2 generator at NLO
with the NNPDF3.0nlo PDF set and the hdamp parameter2 set to 1.5 times the top-quark
mass, mtop [51]. The events were interfaced to Pythia 8.230 to model the parton showers,
hadronisation, and underlying event, with parameters set according to the A14 tune and
using the NNPDF2.3lo set of PDFs. The decays of bottom and charm hadrons were
performed by EvtGen 1.6.0 [50].

The production of V+ jets events was simulated with the Sherpa 2.2.1 generator using
NLO matrix elements for up to two partons, and LO matrix elements for up to four
partons calculated with the Comix and OpenLoops libraries. They were matched with
the Sherpa parton shower using the MEPS@NLO prescription and the set of tuned
parameters developed by the Sherpa authors. The NNPDF3.0nnlo set of PDFs was used
and the samples are normalised to a next-to-next-to-leading-order (NNLO) prediction [52].

The production of V γ final states was simulated with the Sherpa 2.2.2 generator.
Matrix elements at NLO accuracy in QCD for up to one additional parton and LO accuracy

2The hdamp parameter is a resummation damping factor and one of the parameters that controls the
matching of Powheg matrix elements to the parton shower and thus effectively regulates the high-pT
radiation against which the tt̄ system recoils.
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for up to three additional parton emissions were matched and merged with the Sherpa
parton shower as described for the diboson processes.

The generated events were passed through a simulation of the ATLAS detector and its
response [53] based on Geant4 [54], and reconstructed using the same software framework
as for data [27]. The effect of multiple interactions in the same and neighbouring bunch-
crossings (pileup) was modelled by overlaying each simulated hard-scattering event with
inelastic pp events generated with Pythia 8.186 [55] using the NNPDF2.3lo set of PDFs
and the A3 set of tuned parameters [56].

5 Object reconstruction and identification

Proton–proton interaction vertices are reconstructed from charged-particle tracks with
transverse momenta pT > 500 MeV [57, 58]. The vertex with the highest sum of squared
transverse momenta of associated tracks is selected as the primary vertex of the hard
interaction.

Electrons are reconstructed from topological clusters of energy deposits in the electro-
magnetic calorimeter which are matched to a track in the inner detector [59]. Electrons are
required to have pT > 20 GeV and to be reconstructed within |η| < 2.47, excluding electrons
in the transition region between the barrel and endcap calorimeters (1.37 < |η| < 1.52).
The electron identification is based on a multivariate likelihood-based discriminant that
uses the shower shapes in the electromagnetic calorimeter and the associated ID track
properties. Electrons are required to satisfy the Tight identification criterion for better
rejection of non-prompt electrons [59]. Muon candidates are identified by matching ID
tracks to full tracks or track segments reconstructed in the muon spectrometer or by using
only information from the muon spectrometer outside of the ID acceptance [60]. Muons
are required to have pT > 20 GeV, to be reconstructed within |η| < 2.5, and to satisfy
the Medium cut-based identification criterion as defined in ref. [61]. To have an origin
compatible with the primary vertex, electrons (muons) must satisfy |d0/σd0 | < 5 (3) and
|z0 sin(θ)| < 0.5 mm. Here d0 is the transverse impact parameter, σd0 is its uncertainty,
z0 is the distance along the z-axis from the primary vertex to the point where d0 is mea-
sured, and θ is the polar angle of the track. In order to reject leptons likely to have
originated from non-prompt hadronic decays, leptons are required to satisfy a criterion
based on ID and calorimeter isolation variables and the output of a boosted-decision tree
(BDT) in a prompt-lepton-veto tagger algorithm [62]. Electrons must also pass a charge
misidentification suppression BDT which rejects electrons likely to have a wrongly mea-
sured electric charge [59]. Furthermore, in order to reduce the number of electrons likely to
have originated from photon conversion, additional requirements are applied to the electron
candidate (referred to as ‘photon-conversion electron suppression requirements’) [59, 63].
It must not be associated with a reconstructed photon-conversion vertex in the detector
material nor have a reconstructed displaced vertex with radius r > 20 mm whose recon-
struction uses the track associated with the electron. Finally the electron candidate’s track
and the closest track in ∆R at the primary vertex or a conversion vertex must not have an
invariant mass below 100 MeV.
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The anti-kt algorithm [64, 65] with a radius parameter of 0.4 is used to reconstruct
small-radius (small-R) jets up to |η| = 4.9. It uses particle-flow objects, which combine
tracking and calorimetric information, as input [66]. Energy- and η-dependent correction
factors derived from MC simulations are applied in order to correct jets back to the particle
level [67]. Jets are required to have pT > 20 GeV and |η| < 2.5. To suppress jets from
pile-up, a jet vertex tagger [68] applied to jets with pT < 120 GeV and |η| < 2.5 uses
information about tracks associated with the primary vertex and pile-up vertices. Jets
containing b-flavoured hadrons are identified in the region |η| < 2.5 with a b-tagging algo-
rithm based on a recurrent neural network [69]. It makes use of the impact parameters of
tracks associated with the jet, the position of reconstructed secondary vertices and their
compatibility with the decay chains of such hadrons. At the chosen working point, the b-
tagging algorithm provides light-flavour (u,d,s-quark and gluon) and c-jet rejection factors
of 33 and 3, respectively, for an average 85% b-jet tagging efficiency, as estimated from
simulated tt̄ events [69].

Hadronically decaying τ -leptons are reconstructed [70, 71] as jets by applying the anti-
kt algorithm with a radius parameter of 0.4 to noise-suppressed energy clusters. They are
required to have exactly one or three tracks in the ID within a cone of size ∆R = 0.2
around the jet axis, to have pT > 20 GeV and |η| < 2.5, and to be outside the transition
region between the barrel and endcap calorimeters (1.37 < |η| < 1.52). To prevent jets
from being reconstructed and misidentified as τ -leptons, a multivariate approach using
boosted decision trees, based on information from the calorimeters and tracking detectors,
is employed. The ‘medium’ quality criteria described in ref. [71] are applied. Hadronically
decaying τ -leptons are only used in the analysis in the overlap-removal procedure described
at the end of this section.

Large-radius (large-R) jets are reconstructed from noise-suppressed topological clusters
(topoclusters) of calorimeter energy depositions [72], using the anti-kt algorithm with a
radius parameter of 1.0, with the topoclusters calibrated at the local hadronic scale [72].
Large-R jets are groomed using trimming [73, 74] to improve the jet mass resolution and its
stability with respect to pile-up by discarding the softer components of jets that originate
from initial-state radiation, pile-up interactions, or the underlying event. Large-R jets are
required to have pT > 200 GeV and |η| < 2.0. Only large-R jets with a jet mass mJ

between 50 GeV and 200 GeV are considered in the analysis.
The missing transverse momentum ( ,Emiss

T ) is defined as the negative vector sum of the
transverse momenta of electrons, muons, hadronically decaying τ -leptons and small-R jets
in the event, plus a ‘soft-term’ built from additional tracks associated with the primary
vertex [75, 76]. The magnitude of ,Emiss

T is denoted by Emiss
T .

An overlap-removal procedure is applied to the selected leptons and jets. Any hadron-
ically decaying τ -lepton reconstructed closer than ∆R = 0.2 to an electron or muon is
removed. Electrons that fall within ∆R = 0.2 of a selected muon are also discarded.
For electrons and nearby small-R jets, the jet is removed if the separation between the
electron and jet satisfies ∆R < 0.2; the electron is removed if the separation satisfies
0.2 < ∆R < 0.4. For muons and nearby small-R jets, the jet is removed if the separation
between the muon and jet satisfies ∆R < 0.2 and the jet has less than three tracks or the
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energy and momentum differences between the muon and the jet are small; otherwise the
muon is removed if the separation satisfies ∆R < 0.4. Small-R jets that are reconstructed
within a cone of size ∆R = 0.2 around the axis of a hadronically decaying τ -lepton are
removed. To prevent double-counting of energy from an electron inside the large-R jet,
the large-R jet is removed if the separation between the electron and the large-R jet satis-
fies ∆R < 1.0.

6 Event classification and selection

The experimental signature of the !±ν!±νqq signal process requires the presence of two
same-sign leptons, Emiss

T , and depending on the reconstruction of the qq final state, two
small-R jets or one large-R jet with an invariant mass close to 80 GeV. The selection
requirements used to define the signal regions are optimised to maximise the sensitivity to
the !±ν!±νqq signal process while reducing contributions from SM background processes.

Events are required to satisfy a logical OR of single-electron [77] and single-muon [78]
triggers with pT thresholds ranging from 20 GeV to 26 GeV and increasing from 2015 to
2018. All events must contain at least one lepton with pT > 27 GeV that triggered the
event, which ensures that the trigger efficiency reached its plateau. Events are required
to have exactly two nominal leptons meeting the object criteria described in section 5 and
they must have the same electric charge. The invariant mass of the dilepton system is
required to be larger than 100 GeV to reduce the contributions coming from the Z + jets
process. To reduce the SM background contributions from processes that have more than
two leptons, a ‘veto lepton’ definition is introduced. Compared with the nominal lep-
ton selection criteria, the veto electron (muon) pT threshold is lowered to 7 (4.5) GeV,
and the isolation, charge misidentification suppression BDT, and photon-conversion elec-
tron suppression requirements are removed. For veto electrons, the Loose likelihood-based
identification definition is used [59]. For veto muons, the Loose cut-based identification
definition is used [60]. Events with additional veto leptons are removed.

For the hadronically decaying W boson, the energy deposits of the two resulting jets are
either well separated or can largely overlap in the detector, depending on the momentum of
the parent boson. Thus the W → qq decay can either be reconstructed from two resolved
small-R jets (W → jj) for low-momentum bosons or identified as one merged large-R jet
(W → J) for higher momentum, boosted bosons. An event is assigned to the boosted
category if it contains at least one large-R jet satisfying the object criteria described in
section 5; otherwise the event is assigned to the resolved category. In turn, two signal
regions are defined: the boosted signal region (boosted SR) and the resolved signal region
(resolved SR).

In the boosted SR, the large-R jet with the highest pT is selected as the candidate
for the hadronically decaying W boson and must satisfy pT > 200 GeV. A boson tagger
is subsequently applied to distinguish between jets from hadronically decaying W bosons
(which decay to two partons), and jets originating from a single quark or gluon [79]. In
this analysis, the boson tagger is configured to have 80% identification efficiency for the
hadronically decaying W boson. An Emiss

T > 80 GeV selection is applied in this region.
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Selections Boosted SR Resolved SR ssWW CR Boosted WZ CR Resolved WZ CR
Trigger Single lepton

Leptons

two same-sign leptons with three leptons with
pT > 27, 20 GeV pT > 27, 20, 20 GeV

at least one SFOS lepton pair
zero additional veto leptons

m"" > 100 GeV -
m""" — > 100 GeV
b-jets zero b-tagged small-R jets
Emiss

T > 80 GeV > 60 GeV > 40 GeV

Large-R jets

at least one large-R jet with zero large-R jets with at least one large-R jet with zero large-R jets with
pT > 200 GeV, |η| < 2.0 pT > 200 GeV, |η| < 2.0 pT > 200 GeV, |η| < 2.0 pT > 200 GeV, |η| < 2.0
50 GeV < mJ < 200 GeV 50 GeV < mJ< 200 GeV 50 GeV < mJ < 200 GeV 50 GeV < mJ < 200 GeV

and pass 80% W -tagger WP

Small-R jets — at least two small-R jets with — at least two small-R jets with
pT > 20 GeV and |η| < 2.5 pT > 20 GeV and |η| < 2.5

mjj — 50 GeV < mjj < 110 GeV > 200 GeV — —

Table 1. Overview of the event selection criteria for the signal and control regions.

In the resolved SR, at least two small-R jets with pT > 20 GeV and |η| < 2.5 are
required. The invariant mass of the dijet system, formed by the two small-R jets with the
largest pT, is required to be consistent with the W boson mass: 50 GeV < mjj < 110 GeV.
In both the boosted and resolved SRs, the events are required to have no b-tagged small-R
jet present to reduce the background from top-quark production. An Emiss

T > 60 GeV
selection is applied in this region.

One of the dominant sources of SM background in the SRs is the WZ + jets process.
Control regions enriched in this process (WZ CRs) are defined for both the boosted and
resolved categories, and are used in the global likelihood fit as detailed in section 9, in
order to constrain the normalisation of this background. The WZ CRs require events with
three leptons, of which two form a same-flavour opposite-sign (SFOS) pair. Similarly to
the SRs, the WZ CRs veto any events with b-jets to reduce backgrounds coming from top-
quark processes and they veto events containing a fourth veto lepton to reduce background
coming from the ZZ process. Requirements of Emiss

T > 40 GeV and trilepton invariant mass
m""" > 100 GeV are applied in order to further reduce background coming from Drell–Yan
and ZZ processes. In the WZ CRs, more than 90% of the events are expected to be from
WZ + jets production.

The same-sign WW + jets process is another important SM background in the SRs. A
control region enriched with this background is defined (ssWW CR) in the resolved category
by requiring a dijet invariant mass mjj > 200 GeV, and is also used in the global likelihood
fit as detailed in section 9 to constrain the normalisation of this background. The mjj

requirement enhances the fraction of same-sign WW + jets events from electroweak VBF
production, as the two forward jets tend to have a large invariant mass [80]. In order to
reduce the statistical uncertainties, the Emiss

T requirement is loosened to Emiss
T > 40 GeV.

In the ssWW CR, about 40% of the events are expected to originate from same-sign
WW + jets production.

The event selection criteria for the signal and control regions are summarised in ta-
ble 1. The average product of acceptance times efficiency for signal events in the combined
SR is roughly 0.2%–0.5%, with little variation over the probed mass range for a heavy
Higgs boson.
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It is not possible to reconstruct the heavy Higgs boson’s mass because of the two
undetected neutrinos in the final states. The ‘effective mass’ meff is found to be a powerful
discriminant between the signal and most SM backgrounds since a high mass scale is
expected for the signal, and it is thus used as the main observable to extract the signal
in the statistical analysis described in section 9. The effective mass is defined to be the
scalar sum of the Emiss

T and the transverse momenta of the leptons and either the leading
large-R jet or the leading two small-R jets for the boosted category and resolved category,
respectively:

boosted category meff =
∑

i

piT(lepton) + pT(leading J) + Emiss
T ,

resolved category meff =
∑

i

piT(lepton) + pT(leading j) + pT(sub-leading j) + Emiss
T .

7 Background estimation

The SM processes that mimic the !±ν!±νqq signal signature can be mainly grouped into
four categories:

• Processes that produce at least three prompt leptons or two prompt leptons with
the same electric charge. The main contributions come from WZ + jets (referred to
as ‘WZ background’), same-sign WW + jets (referred to as ‘ssWW background’),
WWW (referred to as ‘WWW background’), with other small contributions from
ttV , tZq, tth, WWZ, WZZ, ZZZ (referred to as ‘Other background’). These back-
grounds are estimated with MC simulations, except for the backgrounds from WZ

and ssWW production, for which the normalisations are corrected using data in
dedicated CRs as defined in section 6.

• Processes that produce two or three prompt charged leptons, but the charge of one
lepton is misidentified (referred to as ‘charge-flip background’). A data-driven method
is used to estimate this background and details are provided in section 7.1.

• Processes that have one or two non-prompt leptons originating either from misiden-
tified jets or from semileptonic decays of heavy-flavour hadrons (referred to as ‘non-
prompt background’). A data-driven method is used to estimate this background
and details are provided in section 7.2

• The Wγ + jets or Zγ + jets processes where the photon converts to an electron–
positron pair (referred to as ‘photon conversion background’). A data-driven method
is used to estimate this background and details are provided in section 7.3

7.1 Electron charge-flip background
The charge-flip background originates from processes that produce oppositely charged
prompt leptons, where one lepton’s charge is misidentified and results in final states recon-
structed as having two same-sign leptons. The charge-flip background is only significant
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for electrons and is mainly due to interactions of the electron with material in the ID.
The dominant contributions for this background come from tt̄, W+W−+ jets, and Z + jets
processes, and are strongly suppressed by the charge misidentification suppression BDT
and the kinematic requirements on Emiss

T and m"".
The electron charge misidentification rate is measured in a data sample enriched in

Z → e+e− events (referred to as the Zee CR) selected by requiring two nominal electrons
with an invariant mass between 75 GeV and 105 GeV. Non-Zee backgrounds are estimated
from the total number of events in two sideband regions, defined by 60GeV < mee < 75GeV
and 105 GeV < mee < 120 GeV. The non-Zee backgrounds are then subtracted from the Z
mass region. The sample contains mostly opposite-charge di-electron events, with a small
fraction of same-sign di-electron events. The fraction of same-sign di-electron events is used
to extract the charge misidentification rate as a function of the electron pT and |η| using a
likelihood fit method described in ref. [59], taking into account that either electron in the
same-sign pair could be the misidentified one. This rate is found to range between 0.01%
and 4%, where higher values are obtained at large rapidities because of the larger amount
of material traversed by the electrons, and at high pT because of the larger probability of an
incorrect determination of the track curvature. The charge-flip background is estimated in
a given region by applying the misidentification rates to data events satisfying all selection
criteria except that the two electrons must be oppositely charged.

The statistical uncertainty of this estimate varies between 1% and 10%. Additional
systematic uncertainties are considered by comparing the estimated nominal rate with the
rate derived by: i) varying the sidebands by 4 GeV, ii) using the Z + jets MC simulation
directly, and iii) using MC simulation for background subtraction in the Zee CR. The
impact of systematic uncertainties on the charge-flip background yield is approximately
10%, and is dominated by the uncertainty from using the Z + jets MC simulation directly.

7.2 Non-prompt background
The estimation of the non-prompt background assumes that these contributions can be
extrapolated from a fake-lepton CR, enriched in non-prompt leptons, with a so-called fake-
factor. Events that pass the kinematic requirements of the signal regions but contain
one nominal lepton and one ‘jet-like’ lepton are selected in the fake-lepton CR. Jet-like
electrons have to satisfy the likelihood-based Medium identification [59], while the isolation
requirement is removed. Jet-like muons have the impact parameter requirement loosened to
|d0/σd0 | < 10, and the isolation requirement removed. Jet-like leptons are also required to
fail at least one of the nominal lepton selections to ensure that the definitions of nominal and
jet-like leptons are mutually exclusive. Simulation shows that the dominant contribution
to this background stems from real muons or electrons from heavy-flavour hadrons that
undergo semileptonic decays, and is heavily suppressed by the isolation and zero b-tagged
small-R jet requirements, as well as the kinematic requirements on m"".

Events in the fake-lepton CR are scaled by fake-factors to predict the non-prompt-
lepton background in the SR. The fake-factors are calculated in control regions with se-
lections designed to enhance the contribution from backgrounds with non-prompt leptons.
The control region selections require two same-sign leptons and exactly one b-tagged small-
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R jet. One of the same-sign leptons must fulfil either the nominal criteria or those of a
jet-like lepton, while the other lepton must satisfy the nominal lepton criteria. The fake-
factor is defined as the ratio of the number of events in the control region with all selected
leptons fulfilling the nominal lepton criteria, to the number of events in the same region
with one of the selected leptons satisfying the requirements of a jet-like lepton. The fake-
factors are calculated separately for electrons and muons as a function of the lepton pT
and |η|. The SM processes with prompt leptons and the charge-flip contributions are sub-
tracted in the CR. For the electron and muon fake-factor measurements, the lepton with
the second-highest pT is assumed to be the non-prompt one. This assumption is true for
more than 90% of events, based on generator-level information in the MC event record,
and the potential bias can be covered by the systematic uncertainties as discussed below.
The fake-factor dependency on the electron |η| is found to be negligible. The electron
fake-factors are then measured in three different electron pT bins separated by boundaries
at 30 GeV and 40 GeV. The statistical uncertainty is found to be approximately 20% in
each bin. A strong |η| dependency is found for the muon fake-factors, and their values
are estimated in three |η| bins: 0 < |η| < 0.5, 0.5 < |η| < 1.5 and |η| > 1.5. The sta-
tistical uncertainty is approximately 20% in the first two bins, and approximately 30% in
the last bin. The fake-factor dependency on the muon pT was also checked and found to
be negligible.

Apart from the statistical uncertainty, a set of systematic uncertainties is also consid-
ered for the estimation of the fake-factors as follows: i) estimating the fake-factors in the
inclusive pT and |η| region; ii) varying the normalisation of the SM processes with prompt
leptons and electron charge-flip background when doing the subtraction; iii) varying the
b-tagging algorithm working points used for the tt̄-enriched CR definition; iv) estimating
the fake-factors with MC simulation directly in both the SRs and tt̄-enriched regions, and
treating the difference as a systematic uncertainty to take into account any potential fake-
factor difference between SRs and tt̄-enriched regions. The overall systematic uncertainty
amounts to approximately 13% (10%) for the electron (muon) fake-factors, with the dom-
inant contribution coming from fake-factor estimation in the inclusive pT and |η| region.

7.3 Photon conversion background

The photon conversion background can contribute in the SRs if the photon is misrecon-
structed as an electron. This background originates primarily from the Wγ process and
is evaluated using a data-driven method similar to the non-prompt-lepton background
estimation by introducing ‘photon-like’ electrons. A photon-like electron is an object re-
constructed like a nominal electron except that the track has no hit in the innermost layer
of the pixel detector and the photon-conversion electron suppression requirements are not
applied. In order to determine the photon fake-factors, a Zγ-enriched region is selected
by requiring two nominal muons, no b-tagged small-R jets, and one nominal or photon-like
electron. The trilepton invariant mass must satisfy 80 GeV < mµµe < 100 GeV. The pho-
ton fake-factor is defined as the ratio of the number of events in the Zγ-enriched region with
the selected electron required to fulfil nominal electron criteria, to the number of events
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in the same region with the selected electron satisfying photon-like electron requirements.
The SM processes with prompt leptons are subtracted in the Zγ-enriched region.

The photon fake-factors are measured in two electron pT bins separated by a boundary
at 25 GeV. The statistical uncertainty is found to be approximately 10% in each bin. The
fake-factor dependency on the electron |η| was also checked and found to be negligible. A
photon-conversion electron CR is then filled with events passing the signal region kinematic
requirements, but containing one nominal lepton and one photon-like electron. Events in
this CR are scaled by the photon fake-factor to predict the photon conversion background
in the SR.

In a similar way to the non-prompt background, the photon conversion background
fake-factor derived from the inclusive pT region is considered as one of the systematic uncer-
tainties, together with the uncertainties from background subtraction. In addition, possible
differences between Wγ and Zγ photon fake-factors are checked with MC simulation and
found to be negligible. The overall systematic uncertainty is found to be approximately 8%.

7.4 Validation of background estimates

Two validation regions (VR) are used to test the general background predictions in the
boosted and resolved categories. They are defined to be close to the signal regions, with
the large-R jet W -tagging requirement inverted in the boosted category and the mjj re-
quirement inverted in the resolved category. Events with mjj > 200 GeV in the resolved
category are removed in order to avoid overlap with the ssWW CR. Kinematic distributions
are checked and good agreement between the data and the prediction is observed in the
boosted and resolved VRs, as shown in figure 2. Data-driven methods detailed in this sec-
tion are used to estimate the charge-flip, non-prompt and photon-conversion backgrounds
in the VRs. Predictions from simulation are scaled to the integrated luminosity of the data
using the theoretical cross-section of each sample. The WZ and ssWW backgrounds are
also scaled by normalisation factors from the global likelihood fit as detailed in section 9.
Only the statistical uncertainty is shown in figure 2.

8 Systematic uncertainties

The sources of systematic uncertainty can be broadly divided into three groups: those of
experimental nature and related to the detector and reconstruction performance, those of
theoretical origin and associated with modelling of the simulated background and signal
processes, and those related to the data-driven background estimation. The effect of the
systematic uncertainties are described together with the results in section 9 and table 3,
respectively.

8.1 Experimental uncertainties

Experimental uncertainties arise from the measurement of the luminosity, the modelling
of pile-up in the simulation, the trigger selection, the reconstruction and identification of
electrons, muons and jets, and the Emiss

T calculation.
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Figure 2. Comparison between data and SM predictions for the large-R jet pT (top left) and the
sub-leading lepton pT (top right) in the boosted VR, and for the leading small-R jet pT (bottom
left) and Emiss

T (bottom right) in the resolved VR. Predictions from simulation are scaled to the
integrated luminosity of the data using the theoretical cross-section of each sample. WZ and
ssWW backgrounds are also scaled by the normalisation factors from the global likelihood fit. The
background predictions are shown as filled histograms. The size of the statistical uncertainty for
the sum of the backgrounds is indicated by the hatched band. The lower panel displays the ratio
of data to the total prediction. The blue triangles indicate bins where the ratio is non-zero and
outside the vertical range of the plot.

The uncertainty in the combined 2015–2018 integrated luminosity is 1.7%. It is de-
rived following a methodology described in ref. [25], and using the LUCID-detector for
the baseline luminosity measurements [81]. An uncertainty associated with the modelling
of pile-up in the simulation is included to cover the difference between the predicted and
measured inelastic pp collision cross-sections [82].

Uncertainties in the reconstruction, identification, isolation and trigger efficiencies of
electrons [59] and muons [60] are considered, along with the uncertainty in their energy
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scale and resolution. These are found to have only a small impact on the result. The
lepton and jet identification efficiencies are well modelled in the simulation, and remaining
differences are corrected to values measured in data. The uncertainties in the energy scale
and resolution of the jets and leptons are propagated to the calculation of Emiss

T , which also
has additional uncertainties from the modelling of the underlying event and momentum
scale, momentum resolution and reconstruction efficiency of the tracks used to compute
the soft-term [75, 76].

The uncertainties in the small-R jet energy scale and resolution have contributions
from in situ calibration studies, from the dependency on pile-up activity and on the flavour
composition of the jets [67, 83].

Uncertainties in the efficiencies for tagging b-jets and for mis-tagging light-flavour jets
are determined from tt̄ and jet control samples, respectively [69, 84, 85]. For large-R
jets, the uncertainties in the energy and mass scales rely on a comparison of the ratio of
calorimeter-based to track-based measurements in dijet data and simulation, as described
in ref. [86]. The efficiency of the W boson tagging is estimated using data control samples,
following the technique described in ref. [87]. The efficiency for large-R jet selection from
W boson decays is estimated using tt̄ control samples for pT < 600 GeV. The measure-
ment is extrapolated to the higher pT region with additional uncertainties estimated from
simulations [79]. The efficiency for background large-R jets from gluons or light quarks is
estimated using dijet and γ + jets samples.

8.2 Theoretical uncertainties

Theoretical uncertainties affect the normalisations and shapes of meff distributions of signal
and background processes. They arise from sources such as our choices of event genera-
tors, PDFs, parton shower models, and underlying-event tunes. The effects of scale and
PDF uncertainties are estimated by varying the renormalisation/factorisation scales and
PDF sets, respectively. The parton shower uncertainty is evaluated at generator level by
comparisons of different parton showers or corresponding scales.

The normalisations of the WZ background, separated into the resolved and boosted
categories, as well as the ssWW background normalisation, are free to float in the global
likelihood fit, as detailed in section 9. The theoretical uncertainties of these two back-
grounds are not applied to the corresponding CRs, since only normalisation information
is used for these CRs in the global fit. Apart from their impact on the shape of the meff
distribution, theoretical uncertainties in the WZ and ssWW backgrounds also impact the
SR normalisations, and can be treated as uncertainties in extrapolating from high-purity
CRs to the SRs.

The combined effect of the scale and PDF uncertainties, as well as the parton shower
uncertainties of the WZ background, is calculated by adding in quadrature the differences
between the nominal Sherpa 2.2.2 sample and its associated systematic variations, includ-
ing variations of i) the renormalisation scale by factors of 0.5 and 2, ii) the factorisation
scale by factors of 0.5 and 2, iii) the CKKW merging scale from 30 GeV to 15 GeV, and
iv) the parton-shower/resummation scale by factors of 0.5 and 2. The total theoretical
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uncertainty in the WZ background yield in the boosted SR (resolved SR) is found to be
29% (20%), and is dominated by the scale uncertainty.

The same approach as used for the WZ background is also used to estimate the
effect of scale and PDF uncertainties for the ssWW background. The effect of the parton
shower uncertainty on the ssWW background is estimated by comparing the nominal MC
sample with a sample generated with MadGraph5_aMC@NLO + Herwig 7. The total
theoretical uncertainty in the ssWW background yield is 31% in the boosted SR and 25%
in the resolved SR.

The estimation of the theoretical uncertainties in the on-shell WWW background,
and of the effect of PDF and scale uncertainties on the off-shell WWW (Wh → WWW ∗)
background, uses the same approach as for the WZ backgrounds. The effect of the par-
ton shower uncertainty on the off-shell WWW background is estimated by comparing
the nominal sample generated by PowhegBox + Pythia 8 with a sample generated by
PowhegBox + Herwig 7. The total theoretical uncertainty in the WWW background
yield is 16% in the boosted SR and 8% in the resolved SR.

The theoretical uncertainties of the WZ, ssWW and WWW backgrounds are decor-
related between the resolved and boosted regions in the global likelihood fit to allow for
possible differences between the two regions. Given the small contributions from the pro-
cesses included in the ‘Other’ background category, only overall normalisation uncertainties
are assigned. The uncertainties vary from 10% to 20% based on the latest measurements
of these processes [88–91].

For the signal samples, the effects of scale and PDF uncertainties are estimated by vary-
ing the renormalisation/factorisation scales, as well as the PDF set and parameter values
used for the nominal MC samples. Parton shower uncertainties are estimated by comparing
the nominal samples (MadGraph5_aMC@NLO + Pythia 8) with alternative samples
using a different parton-shower generator (MadGraph5_aMC@NLO + Herwig 7). The
total theoretical uncertainty in the yields from different signal samples varies between 10%
and 40% in the SRs.

8.3 Data-driven background estimation uncertainties
Uncertainties in data-driven background evaluations come mainly from statistical and sys-
tematic uncertainties in the charge misidentification rate, lepton fake-factor, and photon-
like electron fake-factor. More details can be found in section 7.

9 Results

9.1 Statistical analysis
The statistical analysis is based on the HistFitter framework [92]. A binned likelihood
function is constructed as the product of Poisson probability terms over the bins of the
input distributions involving the numbers of data events and the expected signal and back-
ground yields, taking into account the effects of the floating background normalisations
and the systematic uncertainties. A profile-likelihood-ratio test statistic is used to deter-
mine whether the background-only hypothesis is compatible with the observed data. The
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signal-plus-background hypothesis for the production of a heavy Higgs boson is tested,
parameterised with the signal-strength parameter, µ, defined as the ratio of the extracted
cross-section to the injected hypothesised signal cross-section. Maximum-likelihood fits
to the observed binned distributions of the meff discriminants in the two SRs and to the
numbers of observed events in CRs are performed simultaneously. The meff distributions
are divided into 3 (5) bins for the boosted (resolved) SRs. The bins are of variable size to
optimise the fit performance, while keeping the statistical uncertainty of the background
contributions in each bin no larger than 10%. The normalisations of the WZ background,
separated into boosted and resolved regions, as well as the normalisations of the ssWW

background, are free parameters in these fits and are constrained by the data in both the
high-purity CRs and the SRs. The effect of systematic uncertainties in the signal and back-
ground predictions is described by nuisance parameters, which are constrained by Gaussian
or log-normal probability density functions. For each nuisance parameter, the constraint
is added as a penalty term to the likelihood, which decreases as soon as the nuisance pa-
rameter is shifted away from its nominal value. The statistical uncertainties of background
predictions from simulation are included through one nuisance parameter per bin, using
the Beeston–Barlow technique [93].

9.2 Data and background comparisons

To test the compatibility of the data and the background expectations, the data are first
fit to the background-only hypothesis. Good agreement between the data and the post-fit
background contributions is found for the meff distributions in the SRs and event yields
in CRs. The post-fit normalisation factors of the unconstrained WZ background in the
boosted and resolved regions are 0.93± 0.07 and 0.83± 0.03, respectively. For the ssWW

background, the extracted normalisation factor is 1.54 ± 0.18. The errors represent the
combined statistical and systematic uncertainties, but do not include theoretical uncertain-
ties related to normalisation in the respective CRs. The extracted normalisation factors
are consistent with the results from dedicated WZ + jets [94] and ssWW + jets [80] mea-
surements. Table 2 shows the post-fit background event yields from different sources in all
SRs and CRs, compared with the numbers of events in data. The post-fit meff distributions
in the SRs are shown in figure 3, where good agreement between the data and the post-fit
background contributions is observed. Figure 4 shows a few selected post-fit kinematic
distributions in the SRs. No significant discrepancies are observed.

Good overall normalisation agreement between data and post-fit background contri-
butions in CRs is seen in table 2, and a few selected post-fit kinematic distributions in the
CRs are shown in figure 5.

Table 3 summarises the systematic uncertainties in the background expectation for each
SR. The individual sources of systematic uncertainty detailed in section 8 are combined
into categories. In the resolved SR, the largest uncertainty comes from the data-driven
background estimation, followed by theoretical uncertainties in background modelling, the
uncertainty due to the limited size of the simulated samples, and the small-R jet un-
certainty. In the boosted SR, the systematic uncertainties associated with the theoretical
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Yields Boosted SR Resolved SR Boosted WZ CR Resolved WZ CR ssWW CR
Observed events 24 191 236 2094 567
Fitted bkg events 26.8± 2.7 189.0± 7.8 235± 15 2095± 46 566± 24
WWW 5.8± 1.0 30.4± 2.9 1.30± 0.31 11.2± 2.1 28.5± 5.5
ssWW 7.5± 2.3 16.5± 1.9 − − 254± 27
WZ 6.71± 0.76 68.7± 5.0 221± 15 1956± 50 150.6± 5.7
Non-prompt 3.20± 0.36 39.6± 6.3 − − 48.6± 8.8
Charge-flip 0.43± 0.03 8.61± 0.57 − − 22.8± 1.3
Photon conversion 0.73± 0.07 17.2± 1.7 − − 46.7± 4.7
Other 2.50± 0.45 9.0± 1.5 12.3± 1.6 130± 20 14.3± 2.0

Table 2. Background predictions and data yields for each signal region and control region. The
background predictions are obtained through a background-only simultaneous fit. All systematic
uncertainties are included. The individual uncertainties can be correlated, and do not necessarily
add in quadrature to equal the total background uncertainty. An entry of ‘–’ indicates that a specific
background component is negligible in a certain region, or that no simulated events are left after
the analysis selections.
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Figure 3. Comparison between data and SM predictions for themeff distributions in the boosted SR
(left) and the resolved SR (right). The background predictions are obtained through a background-
only simultaneous fit and are shown as filled histograms. The last bin includes overflow entries. The
size of the combined statistical and systematic uncertainty for the sum of the fitted backgrounds
is indicated by the hatched band. The ratio of the data to the sum of the fitted backgrounds is
shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also
shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using
the theoretical cross-sections.

– 19 –



J
H
E
P
0
7
(
2
0
2
3
)
2
0
0

Figure 4. Comparison between data and SM predictions for the large-R jet pT (top left) and Emiss
T

(top right) in the boosted SR, and for the leading lepton pT (bottom left) and the sub-leading
small-R jet pT (bottom right) in the resolved SR. The background predictions are obtained through
a background-only simultaneous fit and are shown as filled histograms. The size of the combined
statistical and systematic uncertainty for the sum of the fitted backgrounds is indicated by the
hatched band. The ratio of the data to the sum of the fitted backgrounds is shown in the lower
panel. The blue triangles indicate bins where the ratio is non-zero and outside the vertical range
of the plot.

modelling of the background and with the W -tagger play a dominant role, followed by size-
able effects from the limited size of the simulated samples and the large-R jet uncertainty.

9.3 Limits on the production of heavy Higgs bosons

Constraints on the production of heavy Higgs bosons are derived by repeating the fit to
the signal-plus-background hypothesis. Upper limits on the production cross-sections of
heavy Higgs bosons are calculated with a modified frequentist method [95], known as CLs,
using the q̃µ test statistic in the asymptotic approximation [96].
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Figure 5. Comparison between data and SM predictions for Emiss
T (top left) in the boosted WZ

CR, for the invariant mass of the three-lepton system (top right) in the resolved WZ CR, and for
the leading small-R jet pT (bottom) in the ssWW CR. The background predictions are obtained
through a background-only simultaneous fit and are shown as filled histograms. The size of the
combined statistical and systematic uncertainty for the sum of the fitted backgrounds is indicated
by the hatched band. The ratio of the data to the sum of the fitted backgrounds is shown in the
lower panel.

Figure 6 shows the expected and observed exclusion contours at the 95% confidence
level (CL) for signals from heavy Higgs bosons with masses of 300 GeV, 600 GeV and
900 GeV as a function of the coupling strengths ρHfW /Λ2 and ρHfWW /Λ2. The scaling
factor ρH is set to 0.05 and the scale Λ is set to 5 TeV as mentioned in section 2. The
hypotheses are tested for each mass value in each of the 16 radial directions of the (fW ,
fWW ) space. The local p0-value for the observation to be compatible with the background-
only hypothesis reaches its smallest value at 300 GeV with (ρHfW /Λ2, ρHfWW /Λ2) = (0,
4.9 TeV−2), corresponding to 1.3 standard deviation. For a heavy Higgs boson with a
mass of 300 GeV, |ρHfW /Λ2| > 2.7 TeV−2 and |ρHfWW /Λ2| > 10 TeV−2 can be excluded
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Uncertainty of channel Boosted SR Resolved SR
Total systematic uncertainties 10.0% 4.1%
Data driven non-prompt 1.3% 3.3%
Theoretical uncertainties 8.9% 2.6%
MC statistical uncertainties 3.0% 1.9%
Floating normalisations 3.5% 1.2%
Data driven photon conversion 0.2% 0.9%
Emiss

T 0.2% 0.7%
b-tagging 0.8% 0.5%
Data driven charge-flip 0.1% 0.3%
Electron 0.5% 0.2%
Muon 0.6% 0.2%
Pile-up reweighting 0.2% 0.2%
Large-R jet 1.1% 0.2%
W -tagger 3.7% —
Small-R jet — 1.1%

Table 3. Breakdown of the dominant systematic uncertainties in background estimates in both
the boosted and resolved signal regions. The background predictions are obtained through a
background-only simultaneous fit. The individual uncertainties can be correlated, and do not
necessarily add in quadrature to equal the total background uncertainty. The percentages show the
size of the uncertainty relative to the total expected background. An entry of ‘–’ indicates that a
specific uncertainty component is not relevant in a certain region.

at 95% CL. Couplings of |ρHfW /Λ2| > 2.5 TeV−2 and |ρHfWW /Λ2| > 12 TeV−2 can be
excluded for the production of a heavy Higgs boson with a mass of 600 GeV. Similarly, for
a heavy Higgs boson with a mass of 900 GeV, |ρHfW /Λ2| > 2.9 TeV−2 and |ρHfWW /Λ2| >
15 TeV−2 can be excluded.

The overall excess, at the level of approximately 1σ, observed for a 300 GeV heavy
Higgs boson is mostly due to the small excess observed in data in the rightmost bin of
the resolved SR’s meff distribution, as shown in figure 3. This is because the resolved SR
dominates the sensitivity to lower-mass heavy Higgs bosons.

From the ellipse of expected limits in figure 6, two sets of couplings
(ρHfW /Λ2, ρHfWW /Λ2) with values (0, 12.4 TeV−2) and (2.7 TeV−2, 0) are chosen as
benchmark examples with which to explore the dependence of the results on the heavy
Higgs boson’s mass. Coupling combinations on this ellipse are expected to have similar
phenomenology. Although the two points chosen on the ellipse are somewhat arbitrary,
they are representative. Figure 7 shows the expected and observed 95% CL upper limits
on the heavy Higgs boson’s production cross-section as a function of its mass for those
two sets of anomalous couplings. The mass hypotheses are tested at 60 GeV steps be-
tween 300 and 900 GeV, and three additional mass points at 1000 GeV, 1200 GeV and
1500 GeV. For both of sets of couplings, the local p0-value is smallest at 300 GeV,
corresponding to 1.3 and 0.9 standard deviations, respectively. For the coupling choice
(ρHfW /Λ2, ρHfWW /Λ2) = (0, 12.4 TeV−2), a heavy Higgs boson with mass up to 700 GeV
can be excluded, while for the choice (2.7 TeV−2, 0), the range of excluded masses extends
to 900 GeV.
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Figure 6. Observed (black solid curve) and expected (black dashed curve) 95% CL upper limits
on the production of a heavy Higgs boson as a function of ρHfW /Λ2 and ρHfWW /Λ2 for a mass
of 300 GeV (top left), 600 GeV (top right) and 900 GeV (bottom). The green (inner) and yellow
(outer) bands represent the ±1σ and ±2σ uncertainties of the expected limits.

10 Summary

This paper presents a search for heavy Higgs bosons produced in association with a W

boson and decaying into a pair of W bosons. The search uses proton–proton collisions
at centre-of-mass energy of 13TeV corresponding to an integrated luminosity of 139 fb−1.
The data were recorded by the ATLAS experiment between 2015 and 2018 at the LHC.
The search is performed in the final states with two leptons of the same electric charge,
missing transverse momentum and jets. The W → qq decay is reconstructed from two
resolved small-R jets or one boosted large-R jet, and two corresponding signal regions are
defined. The data are found to be in good agreement with the estimated backgrounds.

Upper limits on the production of heavy Higgs bosons are derived as a function of
the heavy Higgs boson’s mass and coupling strengths to vector bosons. For heavy Higgs
bosons with masses ranging from 300 GeV to 900 GeV, the 95% CL upper limits on the
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Figure 7. Observed (black solid curve) and expected (black dashed curve) 95% CL upper limits on
the production cross-section times decay branching fraction of a heavy Higgs boson as a function
of its mass with (ρHfW /Λ2, ρHfWW /Λ2) fixed to (0, 12.4 TeV−2) (left) and (2.7 TeV−2, 0) (right).
The green (inner) and yellow (outer) bands represent the ±1σ and ±2σ uncertainties of the expected
limits. The unevenness in the expected limits reflects the variations in the estimated systematic
uncertainties. Theoretical predictions (red solid curve) as a function of the heavy Higgs boson’s
mass are overlaid.

coupling strengths |ρHfW /Λ2| and |ρHfWW /Λ2| are in the range 2.5–2.9 TeV−2 and 10–
15 TeV−2, respectively. The most stringent exclusion ranges for the coupling strengths,
|ρHfW /Λ2| > 2.5 TeV−2 and |ρHfWW /Λ2| > 10 TeV−2, are set for the production of heavy
Higgs bosons with a mass of 600 GeV or 300 GeV, respectively. The scaling factor ρH is
set to 0.05 and Λ is set to 5 TeV in the analysis. Heavy Higgs bosons are excluded at
95% CL for masses up to 700 GeV or 900 GeV with anomalous couplings to vector bosons
(ρHfW /Λ2, ρHfWW /Λ2) fixed at (0, 12.4 TeV−2) or (2.7 TeV−2, 0), respectively.
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