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A B S T R A C T

Herein, we develop a acile strategy to synthesize one-dimensional Sn-incorporated CsMnCl3 microcrystals (MCs)
via an acid dissolution method under high humidity. The prepared CsMnCl3(H2O)α:0.50%Sn (α = 0 or 2, noted as
CMCH:0.50%Sn) MCs exhibit an intense red emission assigned to 4T1g→6A1g transition o Mn2+ with a photo-
luminescence (PL) quantum yield (QY) o 15.77%, which is our times than that o pristine CsMnCl3(H2O)2 MCs,
with an activation energy o 160 meV determined rom a temperature-dependent PL Boltzmann analysis. Sn2+
ions incorporation can promote the ormation o anhydrous CsMnCl3 and are likely bonded to Cl ions. A red LED
device based on CMCH:0.50%Sn MCs shows ultra-high color purity at a drive current o 300 mA and good
stability. This work successully addresses the issue o typically low PL QY o lead-ree manganese halide
perovskite-analogues (MHPAs) and provides insight into the undamental optical properties and phase trans-
ormation mechanisms o all-inorganic MHPAs.

1. Introduction

Divalent manganese (Mn)-based halide perovskite-analogues
(MHPAs), with a common ormula AnMnXn+2 (where A = alkali metal
ions or large organic cations; X = Cl, Br or I), have emerged as a
promising alternative to toxic lead-based halide perovskites [1,2] due to
their strong light absorption capacity in the blue and ultraviolet (UV)
regions, tunable luminescence rom green to red, and large Stokes shits
[3,4]. Ecient MHPAs emitters, like C4H12NMnCl3 [5], (BTPP)2MnCl4
[6], Cs3MnBr5 [7], and (ABI)4MnBr6 [8], have been successully applied
in light-emitting diode (LED), photoelectric sensor, X-ray imaging, and
other elds. Nevertheless, the long photoluminescence (PL) decay lie-
time (millisecond) oMHPAs remains an urgent problem that limits their
superior practical applications [8,9]. Generally, the PL and associated
decay dynamics in MHPAs governed by the 4T1g→6A1g electron transi-
tion o Mn2+ with a 3d5 electron conguration are highly
structure-dependent and primarily depend on the coordinated envi-
ronment oMn2+ [10]. Rodríguez and co-workers [11] ound that when
the tetrahedral-coordinated [(CH3)4N]2MnCl4 (green emission) is con-
verted to the octahedral-coordinated [(CH3)4N]MnCl3 (red emission),
the PL decay lietime oMn2+ decreased by two orders omagnitude due

to the decrease o the distance o Mn–Mn (dMnMn) and the increase o
the crystal-eld splitting, while the excitation and emission oMn2+ are
mainly aected by the strength oMnX bonds [3,11,12]. However, the
existence o labile organic components in hybrid MHPAs is non-ideal or
practical applications and the all-inorganic MHPAs commonly present a
low PL quantum yield (QY). Thereore, it is vital to develop all-inorganic
MHPAs with hexa-coordinated structures and optimize the coordinated
environment oMn2+ to improve their luminescence properties, then to
ulll the application demand in light-emitting devices.

CsMnCl3 and its hydrate CsMnCl3(H2O)2 have been widely studied as
a typical example o one-dimensional (1D) Heisenberg antierromag-
netic materials in cryophysics but rarely reported as an all-inorganic
perovskite-analogue optical unctional material. Both o them exhibit
a chain structure linked by hexagonal [MnX6]4 (X = Cl or OH) octa-
hedral units. The distinction is that the [MnCl4(OH)2]4 octahedron in
CsMnCl3(H2O)2 [Pcca (54)] is connected along the a-axis by sharing Cl
atoms and orming O–H⋯Cl hydrogen bonds, while the [MnCl6]4 oc-
tahedron in CsMnCl3 [R3m (166)] along the c-axis by sharing aces and
angles without hydrogen bonds [13]. The loss o crystalline water re-
duces dMnMn rom 4.563 Å to 3.156 Å, thus enhancing the crystal-eld
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splitting around Mn2+ and causing a redshit on the emission peak [14].
Thereore, CsMnCl3(H2O)2 typically emits around 625–640 nm while
CsMnCl3 emits at a deeper red wavelength o 660–670 nm, which is
useul or improving human vision [15]. Meanwhile, the PL lietime o
inorganic cesium manganese halides is 1–2 orders o magnitude shorter
than that o most organic-inorganic hybrid manganese halides, and
CsMnBr3 nanocrystals have even been reported to possess a picosecond
lietime [2,13]. The deeper inrared fuorescence and shorter fuores-
cence decay lietime o inorganic manganese halides are conducive to
the abrication o body-riendly red LED devices. However, during the
preparation o CsMnCl3, hydrate CsMnCl3(H2O)2 impurities with a low
PL QY are oten spontaneously generated instead o CsMnCl3 at ambient
conditions. There is little research on phase transormations rom
CsMnCl3(H2O)2 to anhydrous CsMnCl3 by metal ions incorporation
strategy. Designing ecient approaches to synthesize high-perorming
MHPAs is highly desired.

In this work, a acile synthesis o CsMnCl3(H2O)2 microcrystals
(MCs) was demonstrated via room-temperature acid dissolution
recrystallization at ambient conditions with high relative humidity. The
crystalline structural transormation rom CsMnCl3(H2O)2 MCs to
anhydrous CsMnCl3 MCs was realized by incorporating Sn2+ ions.
Thereore, the activation energy o the crystal increases and PL QY was
enhanced to 15.77% due to Sn2+ ions incorporation-induced
CsMnCl3(H2O)2–CsMnCl3 phase transition and crystal-eld changes
around Mn2+. Furthermore, a red LED device based on Sn-incorporated
powder was abricated and showed stable luminous properties even at a
high drive current.

2. Experimental section

2.1. Materials

All chemicals were used without urther purication. Manganese (II)
chloride tetrahydrate (MnCl2•4H2O, 99.99%), cesium chloride (CsCl,
99.99%), stannous chloride (SnCl2, ≥99.99%), stannous bromide
(SnBr2, ≥99%), isopropyl alcohol (≥99.5%), and potassium bromide
(KBr, ≥99.5%) were purchased rom Aladdin. Hydrochloric acid
(36.0–38.0%) was purchased rom Knowles o Chengdu Kelong Chemi-
cal Co., Ltd.

2.2. Synthesis

For pristine CsMnCl3(H2O)2 MCs, 2.0 mmol MnCl2•4H2O was dis-
solved entirely in 5.0 mL hydrochloric acid. CsCl (2.0 mmol) was then
added to the precursor solution under vigorous stirring and rose pink
sediments o CsMnCl3(H2O)2 MCs were obtained immediately. Ater 10
min, the solution was centriuged at 6000 rpm or 10 min. Finally,
sediments were dispersed into isopropyl alcohol, washed twice, and
ully ground ater vacuum drying at 45 ◦C or 3 h. The whole process
took place in Nanning, China, where the average relative humidity was
above 80%.

Sn-incorporated MCs were synthesized by the identical approach,
but the proper amount o SnCl2 or SnBr2 was added into the Mn2+ ions
precursor solutions with nominal Sn/Mn atomic ratios (x%) as 0.25%,
0.50%, 0.75%, 1.00%, 1.25%, 1.50%, and 5.00%, respectively. With the
content o Sn increasing, the sediments glowed bright red under 365 nm
ultraviolet light and then weakened ater reaching the maximum. The
centriugation and purication methods o the acquired solutions and
sediments were the same as pristine CsMnCl3(H2O)2 MCs.

2.3. Structural and chemical characterization

X-ray diraction (XRD) was carried out on a SmartLab3KW powder
diractometer using Cu Kα radiations source at 40 kV and 30 mA.
Raman spectra were measured with a LabRAM HR Evolutions instru-
ment o HORIBA Jobin Yvon using a 532 nm laser source. Electron

paramagnetic resonance (EPR) spectrum was obtained at X-band on a
Bruker-A300-10/12 spectrometer at room temperature. Field emission
scanning electron microscope (FESEM) images were taken using a
Quanta 450 FEG microscope o FEI at an accelerated voltage o 20 kV
(gold-sprayed beore the test). Transmission electron microscopy (TEM)
and high-resolution TEM (HRTEM) images were measured using a JEOL
JEM-2100 Plus operating at an acceleration voltage o 200 kV, equipped
with a sensitive TVIPS (XF416) CMOS camera. Energy disperse spec-
troscopy (EDS) element imaging, andmapping analyses were carried out
on an Oxord X-MAX 80 microscope, with sample solutions dropped on
200 mesh copper mesh. X-ray photoelectron spectroscopy (XPS) was
measured with Thermal Fisher Escalab 250Xi spectrometer. Inductively
coupled plasma optical emissions spectrometer (ICP-OES) analyses were
perormed by Agilent 730, and the Fourier Transorm Inrared (FT-IR)
spectra were conducted using a TENSOR II o Bruker using the KBr pellet
technique (ater being dried completely) with the wavenumber range o
400–3700 cm1.

2.4. Optical measurements

Ultraviolet–visible diuse refection (UV–vis DRS) electronic ab-
sorption spectra were recorded with a Techcomp UV2600 variable slit
UV–vis spectrophotometer equipped with an integrating sphere. Steady-
state PL spectra and PL excitation (PLE) spectra were measured using an
FLS1000 spectrofuorometer o Edinburgh Instruments with a Xenon
lamp (450 W). Absolute PL QY was determined by employing a barium
sulate-coated integrating sphere (Edinburgh). Time-resolved PL (TRPL)
data were collected on an Edinburgh μF2 lamp or μs lietime mea-
surements, and the TRPL decay curves oMn2+ emission were t with a
single exponential unction:

I(t)=A et
τ (1)

where A is the amplitude and τ represents the decay lietime. For
temperature-dependent PL measurements, the samples were put inside
an Oxord Instruments OptistatDN-V cryostat with a tunable tempera-
ture range rom 100 to 400 K. Photographs o the samples were taken
under 365 nm UV excitation without using any lter.

2.5. Fabrication of LED

50mg 0.50%Sn-incorporated MCs powder was mixed with ZWL8820
organic silica gel at a powder/gel ratio o 0.3:1. The mixture was then
coated on a commercial 370 nm GaN UV chip o San’an Optoelectronics
Co., Ltd. or the capsulation o the LED device. Parameters o the device
were reported using an HP9000 LED spectrum analyzer with an oper-
ating current ranging rom 20 to 300 mA.

3. Results and discussion

Pristine CsMnCl3(H2O)2 MCs were synthesized via a acile method in
hydrochloric acid at room temperature with an average relative hu-
midity o over 80%, ollowing the modied procedure [16]. We intro-
duced additional SnCl2 to the precursor solution o Mn2+ ions with the
molar ratio (x%) o Sn to (Sn+Mn) set to 0.25%–5.00%. All peaks in the
XRD pattern o the pristine sample shown in Fig. 1(a) can be indexed to
CsMnCl3(H2O)2 (ICSD 24083) parameters with orthorhombic phase
structure [14] without discernible impurity peaks. With the introduction
o SnCl2, a set o peaks assigned to (105), (110), (204), and (205)
crystalline planes can be observed, which are representative o the
trigonal CsMnCl3 (ICSD 21105) phase [17], and the prepared product
was converted to a mixture o CsMnCl3(H2O)2 and CsMnCl3. The
mixture was redened as CsMnCl3(H2O)α:x%Sn (α = 0 or 2, noted as
CMCH:x%Sn) MCs. When x was less than 1.00, the strongest charac-
teristic peak at 30.7◦ was attributed to (122) plane o CsMnCl3(H2O)2,
while the strongest diraction peak at 24.4◦ was ascribed to (110) plane
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o CsMnCl3 when x reached 1.00. Thereore, CsMnCl3 becomes the
major crystalline phase at x = 1.00 or above. When the incorporation
amount o Sn reaches 5.00%, the pure phase o CsMnCl3 was observed,
indicating that a higher concentration o Sn ions can promote the or-
mation o anhydrous CsMnCl3 MCs eectively. Since the reaction was
carried out in a Cl-rich hydrochloric acid environment, the infuence o
the Cl component o SnCl2 on the reaction environment can be ignored,
which will be demonstrated later. During this process, there is only a
slim chance that the introduced Sn ions are doped and replace the Mn o
CsMnCl3(H2O)2 since there is no observable change in the lattice con-
stants. The concentration o Sn2+ ions in the nal products o CMCH:x%
Sn MCs was measured by ICP-OES (Table S1). For CMCH:0.50%Sn MCs,
the content o Sn ions was determined to be 0.37%.

To urther monitor the evolution o crystal structure beore and ater
incorporating Sn ions, we used Raman spectroscopy to study the samples
with a 532 nm laser, with results shown in Fig. 1(b). Peaks at 34.2, 71.1,
104.0, 134.2, 159.7, and 204.3 cm1 are identied as characteristic
vibration peaks o CsMnCl3(H2O)2, identical to the results reported in
literature ormerly [18,19]. However, or Sn-incorporated samples,
extra peaks appear at 253.3 cm1 and 307.2 cm1. The signal at 253.3
cm1 can be attributed to symmetric stretching and deormation vi-
bration o Sn–Cl [20,21], while the signal at 307.2 cm1 is derived rom
the strong chemisorption o Sn species [22,23]. Raman results show that
the introduced Sn ions may be bonded to the Cl ions in the prepared
MCs. We suggest that the incorporated Sn ions hinder the ormation o
O–H⋯Cl hydrogen bonds and inhibit the interaction between crystalline
water and [MnCl6]4 octahedron in CsMnCl3(H2O)2, and thus acilitate
the ormation o the CsMnCl3 crystalline phase.

Furthermore, we conducted an FT-IR study or a qualitative analysis
o the content changes o crystalline water in the samples beore and
ater Sn ion incorporation (Fig. 1(c)). A broad and strong absorption
band related to the stretching vibration owater molecules was observed
in the high requency inrared spectral area (36003000 cm1), which
exhibits two absorption peaks at 3366 cm1 and 3244 cm1. These two

peaks can be identied as the characteristic peaks o the crystalline
water molecules [24]. In contrast, the characteristic peaks o the ree
water molecules appear around 3429 cm1 and 3475 cm1 [24]. The
sharp and strong peak observed at 1624 cm1 is attributed to the
in-plane bending vibration o the O–H bonds o water molecules, while
the weaker peaks at 622 cm1, 568 cm1, and 465 cm1 are assigned to
the out-o-plane bending vibration o O–H bonds [24,25]. It is evident
that with the increase in the amount o incorporated Sn ions, the in-
tensity o inrared absorption peaks o crystalline water in the samples
decreases continuously, conrming that the Sn ion incorporation has a
practical inhibition eect on the ormation o CsMnCl3(H2O)2 MCs
under high relative humidity.

The chemical composition and electronic characteristics o O, Sn,
and Cl elements in pristine and Sn-incorporated samples were studied
via XPS (Fig. 1(d-)). The O 1s spectrum o CsMnCl3(H2O)2 MCs in Fig. 1
(d) can be tted by Gaussian tting at 533.4 eV and 531.8 eV, corre-
sponding to hydroxy-O o surace adsorption water (OHs) and crystalline
water (OHc), respectively [26–28]. Notably, the OHc peak shits to the
higher binding energy o 532.1 eV while the OHs peak remains un-
changed with the introduction o Sn ions. In the meantime, compared
with pristine CsMnCl3(H2O)2 MCs, two peaks o CMCH:0.50%Sn MCs
appear at 496.3 eV and 487.8 eV in Fig. 1(e), attributed to Sn 3d3/2 and
Sn 3d5/2, conrming the eective incorporation o Sn ions [21]. Fig. 1(d)
and (e) suggest that the interaction between crystalline water and
[MnCl6]4 weakens and Sn incorporation can restrain the procedure o
crystalline water or CsMnCl3(H2O)2 MCs with eect. Moreover, as
shown in Fig. 1(), with the incorporation o Sn, the peaks o Cl 2p1/2 and
Cl 2p3/2 shit by 0.2 and 0.3 eV in the direction o high binding energy,
indicating the strong interaction between Sn and Cl ions, which corre-
sponds to the results o Sn–Cl bonds in Raman spectra. Although the
lattice constant in the XRD patterns had no signicant shit ater Sn
incorporation, the possibility that Sn replaced Mn in the crystal lattice
cannot be ruled out. In addition, the shit o the Cl 2p peak might also be
caused by the absence o crystalline water in CMCH:0.50%Sn MCs.

Fig. 1. (a) XRD patterns, (b) Raman spectra, (c) FT-IR spectra (the insert shows magnied IR peaks o the associated hydroxyl group), high-resolution XPS spectra o
(d) O, (e) Sn, and () Cl o samples with and without Sn incorporation.
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Based on the above analysis, a proposed crystal growth mechanism and
schematic diagram o the atomic structure o CMCH:x%Sn were drawn
in Fig. S1. Besides, Table S2 lists the atomic ratios o elements on the
surace o CMCH:0.50%Sn MCs obtained by XPS, and the proportion o
Sn atom is 0.52%. Furthermore, we investigated the surrounding envi-
ronment oMn2+ ions in CMCH:0.50%SnMCs via X-band EPR spectrum.
As shown in Fig. S2, the EPR spectrum shows one broad ormant rom
divalent manganese centers rather than distinct six-old hyperne
splitting peaks [29], which is caused by severe d-electron spin relaxation
o Mn–Mn magnetic coupling in the MCs since MHPAs are generally
expected to be paramagnetic materials at room temperature [13,30,31].

The pristine CsMnCl3(H2O)2 MCs show poor crystallinity and irreg-
ular morphology in the SEM images (Fig. 2(a)), with a grain size o about
0.7–1.0 μm and non-uniorm grain distribution. Some grains agglom-
erate together to orm massive block particles. Ater the Sn ion incor-
poration, as shown in Fig. 2(b) and (c), when x = 0.50%, in addition to
small-sized particles similar to CsMnCl3(H2O)2 MCs, additional large-
sized rhombohedral particles with a diameter o about 2.5–3.5 μm
appear, which are the newly generated CsMnCl3 MCs consistent with the
XRD result. When x rises to 1.50%, rhombohedral particles account or
the primary phase, while small-sized CsMnCl3(H2O)2 MCs particles
disperse around them. According to the HRTEM image o Fig. 2(d),
there are lattice ringes with a spacing o 0.291 nm in the samples x =
0%, 0.50%, and 1.50%, in accord with the (122) planes o the orthog-
onal CsMnCl3(H2O)2 crystal. With the increase o Sn ion amount,

spacing o 0.288 nm (x = 0.50%) and 0.274 nm (x = 1.50%) are
observed, corresponding to (204) and (205) crystalline planes o
tripartite CsMnCl3 crystal, respectively. The inormation obtained by
SEM and HRTEM images is in line with XRD data, suggesting that the
crystal structure o CsMnCl3(H2O)2 MCs transorms into the second
crystalline phase o CsMnCl3 MCs via Sn incorporation. Atomic EDS-
mapping images o CMCH:0.50%Sn MCs indicate uniorm distribu-
tions o Cs, Mn, Cl, O, and Sn elements (Fig. 2(gl)). The presence o Sn
ions is urther conrmed as an atomic percentage o 0.42% (Table S2).

UV–vis absorption spectra o the pristine and Sn-incorporated sam-
ples in Fig. 3(a) show semblable absorption peaks representing the dd
electron transition o Mn2+ ions. However, ater Sn ion incorporation,
the loss o crystalline water shortens dMnMn and increases the strength
o the crystal-eld splitting around Mn2+ ions resulting in a strong
coupling optical conversion between Mn2+Mn2+, which enhances the
absorption intensity o CMCH:Sn MCs and causes a slight red shit o 4
nm [14]. Due to the low spin-orbidden in Mn octahedral coordination
([MnX6]4), the 6A1g→4T1g transition band (near 540 nm) makes
CsMnCl3(H2O)2 MCs a broad red PL emission band (FWHM~ 97 nm, λex
= 417 nm) at 638 nm, as shown in Fig. 3(b) [32,33]. Whereas the intense
Mn–Mn crystal-eld splitting o CMCH:SnMCs causes the emission band
to redshit to 660 nm (λex = 420 nm) with an FWHM o ~ 93 nm while
the peak symmetry shows no obvious change. Surprisingly, thanks to the
ideal proportion o CsMnCl3 and CsMnCl3(H2O)2 and the passivation
eect o the incorporated Sn ions, the PL intensity o samples with Sn

Fig. 2. SEM and HRTEM images o samples with (a, d) 0% Sn, (b, e) 0.50% Sn and (c, ) 1.50% Sn. (g–l) Atomic EDS-mapping images o the sample with 0.50% Sn.

Q. Meng et al.



Journal of Luminescence 255 (2023) 119613

5

ions is remarkably improved, and we obtain the maximum emission
when the molar ratio o Sn ions reaches 0.50%. The absolute PL QY rises
rom 4.11% (pristine) to 15.77% (Sn-incorporated), achieving a nearly
our-old enhancement. Meanwhile, such a large Stokes shit indicates
that the sel-absorption o CMCH:Sn MCs is negligible and avorable or
its practical application to light-emitting devices [8].

TRPL was perormed to clariy the infuence o Sn ion incorporation
on optical properties and dynamics. The TRPL decay proles or Mn2+
emission shown in Fig. 3(c) are can be t with a single exponential
unction, and the PL lietime parameters are summarized in Table S3.
The observed decay lietime (τobs) derived rom the 4T1g→6A1g transition
o samples is on the time scale omicrosecond and the lietime o pristine
CsMnCl3(H2O)2 MCs is 31.9 μs. The latter increases with the incorpo-
ration o Sn ions, reaching the maximum o 75.1 μs at x= 0.50%with the
highest PL QY, and then decreases. Based on the PL QY and τobs, we can
evaluate the radiative lietime (τr) and non-radiative lietime (τnr) o
samples using the ollowing equations [19,34]:

PL QY = τobs

τr
(2)

1
τobs

= 1
τr
+ 1

τnr
(3)

Calculated lietime results are listed in Table 1. The Sn ion incor-
poration aects both the intrinsic electronic band structure (related to

radiative decay, rom 476.2 μs to 776.2 μs) and extrinsic deect trap
states (related to non-radiative decays, rom 33.3 μs to 89.3 μs). On one
hand, more water molecules in CsMnCl3(H2O)2 MCs give them “soter” 
lattice characteristics and higher vibration requency under photoexci-
tation than CsMnCl3 MCs, which generally results in a aster τobs [13,
35]. On the other hand, the appearance o a shorter τr and a longer τnr
usually maniests that non-radiative decays are restrained, availing o
the radiative recombination and leading to a high PL QY [36]. We
suggest that appropriate Sn ion incorporation helps to passivate Cl
deect sites in the lattice and inhibit the non-radiative pathway to reduce
energy loss and higher PL QY.

To investigate the underlying mechanism o the aorementioned
emission behavior in CMCH:0.50%Sn MCs, we employed dierent
excitation wavelengths or PL measurements. As shown in Fig. 3(d), no
shit is ound in the PL emission band with excitation wavelength
changing rom 334 to 529 nm. The independence o PL spectra to
excitation wavelength conrms that the red emission o CMCH:0.50%Sn
MCs originates rom the same Mn2+ ion 4T1g→6A1g excited state relax-
ation as pristine octahedrally coordinated Mn-based perovskite-ana-
logues [16]. At the same time, we can intuitively visualize six excitation
peaks stem rom the dd electron transitions in Mn2+ ions rom Fig. 3
(e), corresponding to the absorption bands in Fig. 3(a) [2]. The relevant
energy levels and PL emission rom the ree and octahedrally coordi-
nated Mn2+ o CMCH:Sn MCs are shown in Fig. 3(). Peaks located at
335, 356, 374, 420, 448, and 529 nm in the PLE spectra are the results o
electron transitions rom the ground state 6A1(6S) to excited states
4T1g(4P), 4Eg(4D), 4T2g(4D), [4A1g(4G), 4Eg(4G)], 4T2g(4G), and 4T1g(4G),
respectively.

In addition, as a control experiment, CMCH:SnBr2 MCs were syn-
thesized with SnBr2 used to introduce Sn ions into CsMnCl3(H2O)2 MCs.
Their luminescent properties and surace chemical composition were
measured as shown in Fig. S3. Changes in PL and TRPL spectra beore

Fig. 3. (a) UV–vis absorption spectra, (b) PL spectra (CsMnCl3(H2O)2: λex = 417 nm, CMCH:x%Sn: λex = 420 nm), and (c) TRPL decay curves (CsMnCl3(H2O)2: λem =
638 nm, CMCH:x%Sn: λem = 660 nm) o samples with dierent x% Sn. (d) Emission-wavelength-dependent PL spectra, (e) excitation-wavelength-dependent PLE
spectra, and () energy level diagram or d–d transitions and the PL emission rom the ree and octahedrally coordinated Mn2+ o CMCH:0.50%Sn MCs.

Table 1
Calculated radiative and non-radiative lietimes or pristine and Sn-incorporated
samples.
Samples τobs (μs) τr (μs) τnr (μs) PL QY

CsMnCl3(H2O)2 31.9 776.2 33.3 4.11%
CMCH:0.50%Sn 75.1 476.2 89.3 15.77%
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and ater the introduction o SnBr2 are similar to that o introducing
SnCl2. When the molar ratio o SnBr2 is 0.50%, the sample reaches the
highest absolute PL QY (14.95%) and the longest τobs (74.6 μs) with a λex
o 420 nm and a λem o 660 nm, similar to the sample o CMCH:0.50%Sn
prepared with SnCl2, proving the eective incorporation and passivation
o SnBr2 on CsMnCl3(H2O)2 MCs. In the XPS spectra o CMCH:0.50%
SnBr2 MCs, two peaks o Sn 3d at 496.2 eV and 487.7 eV appear, while
no signal o Br 3d could be detected. The results maniest that only Sn
ions can successully incorporate into CsMnCl3(H2O)2 MCs and passivate
the Cl deects in the lattice, acting as a brake or the ormation o
crystalline water.

We ound major dierences between the temperature-dependent PL
spectra o CsMnCl3(H2O)2 MCs and CMCH:0.50%Sn MCs, with the
temperature varying rom 100 to 440 K, as shown in Fig. 4. Both the PL
intensities o the samples decrease with elevating temperature under
300 K because o the thermal quenching eect caused by the increasing
dynamic thermal vibration [37,38], and a blue shit occurs due to the
crystalline lattice expansion and the weakened crystal-eld splitting
strength [13]. Further elevating the temperature rom 300 to 440 K, the
PL intensity o pristine CsMnCl3(H2O)2 MCs (λex = 417 nm) begins to
rebound, and the PL wavelength shows an apparent redshit, which is
ascribed to the enhancement o the crystal-eld splitting strength o
Mn–Mn led by the loss o crystalline water and the phase transormation
rom CsMnCl3(H2O)2 MCs to CsMnCl3 MCs at high temperature [14].
The FWHM o the emission bands shows a broadening trend, which is
ascribed to an increasing number o higher vibration levels or the
excited state o 4T1g with elevating the temperature [13,39]. When the
temperature reaches 400 K, the thermal quenching eect becomes the
dominant actor again, bringing a continuous decline in PL intensity.
However, or CMCH:0.50%Sn MCs (λex = 420 nm), the PL intensity
merely possesses a monotonic downward trend with a broadened FWHM
showing no sign o phase transition, and the PL wavelength shits rom
670 nm (100 K) to 658 nm (440 K) due to the lattice thermal expansion.
Simultaneously, as the aorementioned phenomenon that the PL bands
showed no apparent shit or change in the peak symmetry at x =
0.25–1.50, it suggests that the PL bands o CMCH:0.50%Sn MCs at 660
nm are mainly derived rom CsMnCl3 rather than CsMnCl3(H2O)2, and
the contribution o CsMnCl3(H2O)2 MCs to the PL at 660 nm is very
slight.

The activation energies (Ea) o CsMnCl3(H2O)2 MCs and
CMCH:0.50%Sn MCs are calculated by the ollowing Arrhenius ormula
using temperature-dependent PL spectra data [6,39–41]:

I(T)= I0

1 + Ae
Ea

kB T
(4)

where I(T) and I0 represent the integrated PL intensity at the experi-
mental temperature T (K) and 0 K kB represents the Boltzmann constant,
and A is a constant. As a result, the Ea value o pristine CsMnCl3(H2O)2
MCs is calculated to be ~107 meV (100–300 K) while that o
CMCH:0.50%Sn MCs is approximately 160 meV (100–440 K) which is
heightened by nearly 50%, indicating that the excited electrons gener-
ated in CMCH:0.50%Sn MCs are more dicult to overcome the energy
barrier or the non-radiative transition but more possible to recombine
directly. This corresponds to the aster radiation recombination lietime
o CMCH:0.50%Sn MCs [39]. The results explain the enhancement o PL
QY ater Sn ion incorporation and clariy the non-negligible role o Sn
ions in the system. It shows simultaneously that it is benecial to the
application o red light-emitting devices.

Although Mn-based perovskite-analogues exhibit more intense
excitation bands at blue wavelength, the commercial lighting industry is
moving towards a higher drive current. Compared with blue LED chips,
near-UV LED chips possess lesser current attenuation and better per-
ormance at higher drive currents [42]. CMCH:0.50%Sn MCs powder
was mixed with organic silica gel and coated on a 370 nm near-UV GaN
chip to abricate a red LED device to veriy its application potential in
solid-state lighting. Fig. 5(a) shows the PL spectra (λex = 370 nm) and
lists the chromaticity coordinates and correlated color temperature
(CCT) parameters o the abricated device at drive currents in 20–300
mA. It can be observed that the PL intensity at ~655 nm increases
steadily with the ascent o the drive current, and the PL band shape and
position exhibit no distinct change, projecting quite excellent lumines-
cence stability [39]. Chromaticity coordinates in CIE 1931 system are
drawn in Fig. 5(b). By raising the drive current rom 20 mA to 300 mA,
the luminous eciency o the device is improved rom 10.67 lm W1 to
11.21 lm W1, and the color rendering index goes up rom 23.3 to 38.4
with the color purity remaining at 99.9%, which ensures the stable lu-
minous property o the red LED device under high drive currents. The
illustration in Fig. 5(c) presents photos o the LED device based on
CMCH:0.50%Sn MCs operating under indoor natural light (let) and a
20 mA drive current (right), and bright red light emitted by the device is
in sight under operating conditions. These results demonstrate the po-
tential o ecient and stable red LED devices based on CMCH:Sn MCs.

Fig. 4. Temperature-dependent PL spectra o (a) CsMnCl3(H2O)2 MCs (λex = 417 nm) and (b) CMCH:0.50%Sn MCs (λex = 420 nm) in the temperature range o
100–440 K. Inserts: Boltzmann analyses o PL intensity vs T.
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4. Conclusions

In summary, we employed a acile Sn ions incorporation strategy to
control the crystalline phase transormations between CsMnCl3(H2O)2
MCs and CsMnCl3 MCs under high relative humidity. The results rom
XRD, Raman, XPS, and FT-IR indicate that Sn ions are likely bonded to
the Cl ions in the CsMnCl3 MCs. This prevents the interaction between
crystalline water and [MnCl6]4 octahedron in CsMnCl3(H2O)2 MCs by
blocking the ormation o O–H⋯Cl hydrogen bonds, thus inducing the
ormation o CsMnCl3 MCs. Due to the high lattice symmetry and crystal-
eld splitting strength o CsMnCl3 MCs, the sample with 0.50% Sn
incorporation possesses an activation energy o 160 meV, and a red
emission with PL QY o 15.77%, nearly ourold enhanced than the
pristine CsMnCl3(H2O)2 MCs. The red LED device based on
CMCH:0.50%Sn MCs showed stable luminescence perormance and
ultra-high color purity at a high drive current, showing promise o all-
inorganic manganese halide perovskite-analogues or LED applications.
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