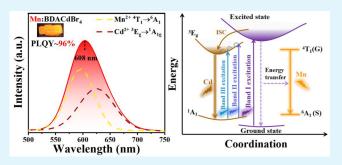


Research Article www.acsami.org

Competing Energy Transfer in Two-Dimensional Mn²⁺-Doped BDACdBr₄ Hybrid Layered Perovskites with Near-Unity **Photoluminescence Quantum Yield**

Canxu Chen, Shuai Zhang, Ruosheng Zeng,* Binbin Luo, Yuanjie Chen, Sheng Cao, Jialong Zhao, Bingsuo Zou, and Jin Zhong Zhang*

Cite This: ACS Appl. Mater. Interfaces 2022, 14, 45725-45733


ACCESS I

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Two-dimensional (2D) hybrid layered perovskites (HLPs) have attracted extensive attention due to their excellent optoelectronic properties. Herein, we successfully prepared highquality Mn-doped BDACdBr₄ (BDA = $NH_2(CH_2)_4NH_2$, butylene diammonium) HLP single crystals (SCs). The incorporation of Mn²⁺ ions modulates the electronic band structure of BDACdBr₄ perovskites and tailors the energy transfer process of excited states. A near-unity photoluminescence (PL) quantum yield of 96% from the Mn²⁺ emission at 608 nm is achieved. Excitation wavelengthdependent spectroscopic characterizations help to clarify the energy transfer mechanism of Mn-doped BDACdBr₄, in which

competing PL from the ${}^3E_g \rightarrow {}^1A_{1g}$ transition of Cd^{2+} and the ${}^4T_1(G) \rightarrow {}^6A_1(S)$ transition of Mn^{2+} dopants is observed. Temperature-dependent PL spectroscopic characterizations indicate that the efficient energy transfer from BDACdBr₄ perovskite host to Mn2+ dopants requires thermal activation to overcome a potential barrier. This work provides new insight into the photophysics and optical properties of 2D HLPs, especially the influence of Mn²⁺ doping on competing energy transfer in hybrid

KEYWORDS: two-dimensional hybrid perovskites, Mn-doped, photoluminescence, energy transfer, excitation wavelength-dependent optical properties, thermal activation

1. INTRODUCTION

In recent years, two-dimensional (2D) halogenated layered perovskites have attracted extensive attention due to their high photoluminescence (PL) quantum yield (QY), high carrier mobility, long exciton diffusion length, and outstanding stability. 1-5 This class of materials has been used in solar cells, 6-8 light-emitting diodes (LEDs), 9-12 and photodetectors, 13-15 demonstrating excellent optoelectronic performance. More recently, 2D hybrid layered perovskites (HLPs) with covalently bonded metal monolayers have shown tunable electronic and optical properties of interest for various photonic applications. 16,17 The assembly of organic cations can not only expand the diversity of 2D layered perovskites but also modulate the band structure and photophysical properties. 18-20 Therefore, in-depth understanding of the fundamental optoelectronic properties of 2D HLPs is highly desired. 21,22

2D A₂MX₄ HLPs (A: organic ammonium; M: divalent metal; X: halogen) are composed of organic ammonium chain cation A+ monolayers altering with inorganic corner-sharing metal halide octahedron [MX₄]²⁻ backbone monolayers, where the adjacent layers are weakly bound through a weak van der Waals force. ^{23,24} Recently, HLPs with such a layered structure have shown excellent optical properties and device performance. 16 BA₂PbBr₄ (BA = C₄H₉NH₂, butylamine) is an example of such HLPs with a large band gap of 3.0 eV. Due to its large band gap, its application in the photovoltaic field is limited. However, it shows great prospects in photodetector applications. For example, the high-performance UV photodetector based on BA₂PbBr₄ perovskite single crystals (SCs) shows extremely low dark current and high stability of multiple-cycle UV response. 25,26 Similarly, 2D BDACdBr₄ (BDA = $NH_2(CH_2)_4NH_2$, butylene diammonium) HLPs also demonstrated prominent photoelectric detection performance.²⁷ The photodetector based on 2D BDACdBr₄ perovskite SC exhibits a stable UV-visible photoelectric response. More recently, the optical performance of 2D BDACdBr4 HLPs is greatly improved through Pb²⁺/Sb³⁺ doping with ns² electrons.

Received: August 2, 2022 Accepted: September 23, 2022 Published: October 3, 2022

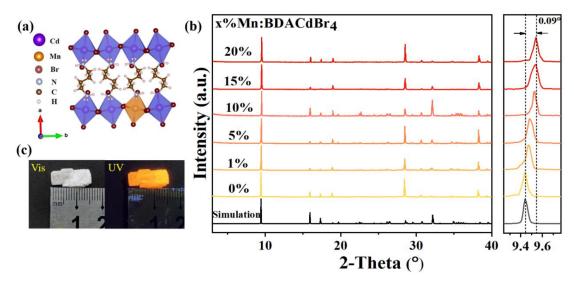


Figure 1. (a) The simulated crystal structure of Mn-doped BDACdBr₄, (b) PXRD patterns of Mn-doped BDACdBr₄ with different Mn²⁺ feeding concentrations, (c) digital photographs of 15%Mn-doped BDACdBr₄ bulk SC under room and UV light (λ_{ex} = 365 nm).

The differences of the photophysical mechanism between Pb²⁺- and Sb³⁺-doped BDACdBr₄ were revealed through femtosecond transient absorption. ^{28,29} Likewise, as efficient luminescent dopants, Mn2+ ions are widely used to modulate the optical and magnetic properties of doped semiconductors. 30-36 On this basis, Mn²⁺ may be a potentially good candidate for doping BDACdBr₄ HLP. However, the effect of Mn²⁺ without the ns² electrons on the optical properties of BDACdBr₄ still needs further research.

In this work, we successfully prepared highly luminescent Mn-doped BDACdBr₄ perovskite SCs with the near-unity PLQY of 96%. The incorporation of Mn²⁺ ions tailors the energy transfer processes and results in strong PL from the Mn ${}^{4}T_{1}(G) \rightarrow {}^{6}A_{1}(S)$ transition. A model is proposed to explain competing energy transfer in Mn-doped BDACdBr₄. Besides, the LED application with excellent color stability indicates this class of novel materials should be a promising candidate for light-emitting devices. Our results provide new insights into the influence of Mn²⁺ doping on energy transfer and related optical properties of doped HLPs.

2. EXPERIMENTS

- **2.1. Materials.** 1,4-Diaminobutane $[NH_2(CH_3)_4NH_2, 98\%]$ was purchased from Aladdin; cadmium acetate (Cd(CH₃COO)₂, 99%), manganese acetate (Mn(CH₃COO)₂, 99%) and hydrobromic acid (HBr, 48 wt %) were purchased from Macklin; ethanol (EtOH, 99%) was purchased from Nanning Blue Sky Experimental Equipment Co., Ltd. All chemicals were used directly without further purification.
- 2.2. Synthesis of Mn-Doped BDACdBr₄ SCs. Mn-doped BDACdBr₄ SCs were synthesized by a natural cooling thermal solvent method (Scheme S1). 1.00 mmol of 1,4-butanediamine (BDA), 1.00 mmol of $[Cd(CH_3COO)_2 + Mn(CH_3COO)_2]$ at a designed feed ratio of $x\% = Mn/(Cd + Mn) \times 100 = 0\%$, 1%, 3%, 5%, 10%, 15%, and 20%, and 3 mL of HBr were added into a 15 mL glass vial in turn. And then, the mixture solution was heated and stirred at 100 °C and 300 rpm for 0.5 h until it became clear and transparent. Small-size flake SCs precipitated while naturally cooling to room temperature. Finally, the flake SCs were filtered, washed with ethanol, and dried overnight at 60 °C.
- 2.3. Synthesis of Mn-Doped BDACdBr₄ Bulk SCs. High-quality Mn-doped BDACdBr₄ bulk SCs were synthesized by a combination of natural cooling thermal solvent and seed crystallization (Scheme S1). A clear precursor solution was obtained by heating and stirring a

mixture of BDA/ $[Cd(CH_3COO)_2 + Mn(CH_3COO)_2]/HBr = 1.00$ mmol:1.00 mmol:3.00 mL at 100 $^{\circ}$ C and 300 rpm for 0.5 h. And then the hot clear precursor solution was slowly cooled to 50 °C before a small microcrystal was put in the solution as a seed. The solution with a seed was kept at a constant temperature of 50 °C without any disturbance. After 3 d, the seed crystal could grow into a high-quality bulk SC. Finally, the bulk single crystal was filtered, washed with ethanol, and dried overnight at 60 °C.

2.4. Characterizations. The crystal structure was characterized by powder X-ray diffraction (PXRD, Bruker D8 Discover). The morphology of samples was observed by scanning electron microscopy (SEM, Hitachi SU8020). The molar concentrations of Cd²⁺ and Mn²⁺ were detected by inductively coupled plasma atomic emission spectrometry (ICP-AES, ICPE-9000, Shimadzu). Element composition and distribution were collected by energy-dispersive spectrometry (EDS, Oxford X-Max Aztec). The elemental composition and chemical state were identified by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific ESCALAB 250Xi). The photoluminescence (PL) spectra, photoluminescence excitation (PLE) spectra, PL decay profiles, PLQY, temperature-dependent PL spectra, and temperature-dependent PL decay profiles were obtained on an Edinburgh FLS-1000 spectrofluorometer and Horiba Jobin Yvon Fluorolog-3 spectrometer. The absorption spectrum was measured by the Lambda 750 ultraviolet-visible spectrophotometer. The photoelectric properties of the as-fabricated LED device, including the emission spectra, correlated color temperature (CCT), and Commission Internationale de L'Eclairage (CIE) chromaticity coordinate, were obtained on an ATA-1000 (Everfine) optoelectronic analyzer.

3. RESULTS AND DISCUSSION

3.1. Structure of 2D Mn-Doped BDACdBr₄ HLPs. 2D Mn-doped BDACdBr4 HLP adopts the crystal space group of monoclinic P2₁/c. As shown in Figure 1a, angle-shared inorganic metal octahedral [CdBr₆]⁴⁻ backbone monolayers stack with organic BDA monolayers, and the Mn²⁺ ions that are introduced partially substitute for Cd2+ ions by forming [MnBr₆]⁴⁻ octahedra in inorganic layers of BDACdBr₄. Mn-Doped BDACdBr₄ SCs are synthesized by a naturally cooling thermal solvent (see Experimental Materials and Methods). Figure 1b shows the PXRD patterns of 0-20%Mn-doped BDACdBr₄. The PXRD pattern of pristine BDACdBr₄ sample matches well with the simulated pattern. The absence of additional diffraction peaks confirms the high purity of

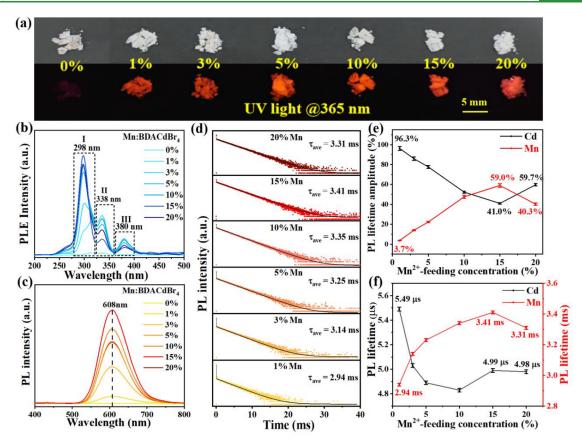


Figure 2. (a) Digital photographs of 0-20%Mn-doped BDACdBr₄ SCs under visible and 365 nm UV light, (b) PLE ($\lambda_{em}=608$ nm) and (c) PL ($\lambda_{ex}=298$ nm) spectra of 0-20%Mn-doped BDACdBr₄ samples, (d) the PL decay profiles of 1-20%Mn-doped BDACdBr₄ samples ($\lambda_{ex}=298$ nm, $\lambda_{em}=608$ nm), (e) the fitting amplitudes of the fast and slow lifetimes in PL decay profiles of 1-20%Mn-doped BDACdBr₄ samples, (f) the fitting values of fast and slow lifetimes in PL decay profiles of 1-20%Mn-doped BDACdBr₄ samples.

prepared samples. Upon incorporation of Mn^{2+} , the diffraction peak in the range of 9.4–9.6° shifts toward a higher angle, and the maximum offset of 0.09° is reached at 20% Mn^{2+} -feeding concentration. Due to the smaller atomic radius of Mn^{2+} ion (~0.67 Å) than that of Cd^{2+} ion (~0.95 Å), the incorporation of Mn^{2+} ions results in lattice contraction and the PXRD diffraction peaks moving toward a higher angle. Furthermore, high-quality large Mn -doped BDACdBr₄ bulk SCs were successfully synthesized through a combination of natural cooling thermal solvent and seed crystallization. The SC with a maximum length of ~15 mm shows a uniform bright orange emission under UV light (Figure 1c), indicating homogeneous distribution of Mn^{2+} in BDACdBr₄.

The EDS mapping of 15%Mn-doped BDACdBr₄ shows that N, Cd, Mn, and Br elements are evenly distributed in the assynthesized microcrystal (Figure S1). From total spectrum (Figure S2), the element ratio of N/(Cd+Mn)/Br of 15%Mndoped BDACdBr₄ is very close to the stoichiometric ratio of 2:1:4. Furthermore, the actual doping concentrations of all Mn-doped samples were detected by ICP-AES. As shown in Table S1, the actual doping concentration is lower than the feeding concentration, especially for Mn²⁺ feeding concentration greater than 10%. Figure S3 shows XPS results of pristine and 15%Mn-doped BDACdBr₄. In the survey spectra, the shared peaks of N 1s, Cd 3d, and Br 3d in pristine and 15% Mn-doped samples can be clearly observed, while Mn 2p characteristic peaks can only be observed in the 15%Mn-doped sample. Figure S4a-c shows the high-resolution XPS spectra and peak fitting of N 1s, Cd 3s, and Br 3d in the pristine and

15%Mn-doped samples. Mn^{2+} doping slightly increases the electron binding energy around N, Cd, and Br, indicating stronger binding and more compact electron distribution. From Figure S4d, the new peaks at 652.1 and 641.9 eV are attributed to $2P_{1/2}$ and $2P_{3/2}$ of Mn^{2+} dopants.

3.2. Optical Properties of 2D Mn-Doped BDACdBr₄ HLPs. Figure 2a shows digital photographs of 0-20%Mndoped BDACdBr₄ SCs under visible and 365 nm UV light. The pristine BDACdBr₄ SC exhibits a faint emission, while the introduction of Mn²⁺ ions results in a strong orange emission. From the absorption spectra (Figure S5), the pristine BDACdBr₄ exhibits a weak flat absorption tail in the range of 300-650 nm. Three bands that peaked at 316, 338, and 380 nm and a weak shoulder at 298 nm are observed in the PLE spectra of the pristine BDACdBr₄ by monitoring the 625 nm emission (Figure S6a). According to previous reports, 28,29 the three bands at 316, 338, and 380 nm are assigned to the spinforbidden and parity-allowed ${}^{1}A_{1g} \rightarrow {}^{3}E_{g}$ triplet-to-singlet transition absorptions of Cd2+, while the weak shoulder at 298 nm derives from the absorption transition of the BDACdBr₄ perovskite host. A weak broad emission band peak at 625 nm is observed under 338 nm excitation (Figure S6b), which has an average PL lifetime of ~4.67 µs (Figure S7), consistent with triplet ${}^{3}E_{g} \rightarrow {}^{1}A_{1g}$ transition emission of $Cd^{2+37-39}$

As for the 15%Mn-doped BDACdBr₄ sample, a series of new absorption bands are observed in the 300–650 nm region, attributed to transitions from the ground state $^6A_1(S)$ to excited states $^4E(D)$, $[^4E(G), ^4A_1(G)]$, $^4A_1(G)$, $^4T_2(G)$, and $^4T_1(G)$ of Mn²⁺ ions (Figure S5). 32,37,38 From the PLE spectra

(Figure 2b), a strong excitation band peak at 298 nm appears after Mn²⁺ incorporation and is labeled as band I. With increasing Mn²⁺ feeding concentration, the intensity of band I increases substantially and reaches the highest value at 15% Mn²⁺ feeding concentration (Figure S8). Based on similar works, ²⁹ the intensified band I induced by Mn²⁺ incorporation is attributed to the fact that the energy absorbed by the host is transferred to Mn²⁺ d-state for relaxation. In addition, the two other excitation bands that peaked at 338 and 380 nm labeled as bands II and III are assigned to the $^1A_{1g}\to {}^3E_g$ triplet transition absorption of $Cd^{2+}\,{}^{28,29,40}$ The incorporation of Mn²⁺ ions also enhances the photoexcitation intensity of these two bands, possibly related to the overlapping self-absorption of Mn²⁺ ions.

With respect to the weak emission of a pristine sample, all Mn²⁺-doped samples show an intense orange emission at 608 nm under 298 nm (band I) excitation (Figure 2c). This orange emission has a narrower full width at half maxima (fwhm) value (~0.28 eV) compared to the emission of a pristine sample (~0.59 eV) (Figure S9), which is attributed to the introduction of d-d transition emission from Mn2+ dopants.41-43 The pristine sample exhibits a low PLQY (<1%), while the incorporation of Mn²⁺ ions greatly improves the emission efficiency, and a near-unity value (~96%) is achieved for the 15%Mn-doped sample. However, the sample with excessive Mn-feeding concentration (20%Mn) shows a low PLQY (~60%) due to the effect of concentration quenching (Figure S10).

Figure 2d shows the PL decay profiles monitored at 608 nm emission for all Mn-doped BDACdBr₄ samples, and the fitting parameters are summarized in Table S2. All the PL decay profiles are composed of a fast microsecond decay component and slow millisecond decay one. The slow millisecond component originates from the spin-forbidden ${}^{4}T_{1}(G) \rightarrow$ ⁶A₁(S) transition of Mn²⁺, ⁴⁴ while the fast microsecond component should be attributed to the $^3E_g \rightarrow {}^1A_{1g}$ transition of Cd²⁺ (Figure S7). Interestingly, the fast microsecond component is still retained in all PL decay profiles of Mndoped samples, indicating the introduction of Mn2+ ions does not completely quench the ${}^3E_g \rightarrow {}^1A_{1g}$ triplet emission of Cd^{2+} . The fitting amplitudes and lifetimes of decay profiles of all Mndoped samples are shown in Figure 2e,f, respectively. As the Mn²⁺ feeding concentration increases from 1% to 15%, an increase in the amplitude of millisecond PL lifetime from Mn²⁺ is accompanied by a decrease in the amplitude of microsecond PL lifetime from Cd²⁺, suggesting the emission from Mn²⁺ gradually becomes dominant. As the Mn2+ feeding concentration reaches 15%, the PL lifetime and amplitude of Mn²⁺ emission achieve the highest values of 3.41 ms and 59.0%, respectively. The average PL lifetime of 15%Mn-doped BDACdBr₄ is also 3.41 ms due to the large amplitude of millisecond PL lifetime, indicating the emission from Mn²⁺ has a great contribution to the overall luminescence under excitation of band I excitation. However, for higher Mn2+ concentration (20%Mn), the lifetime and amplitude of Mn²⁺ emission are reduced to 3.32 ms and 40.3%, respectively, which is probably related to the self-absorption quenching resulting from the formation of Mn²⁺-Mn²⁺ pairs.³¹,

3.3. Excitation Wavelength-Dependent Spectroscopic Characterization and Mechanism of Energy Transfer. To investigate the underlying emission mechanism of Mn-doped BDACdBr₄, emission wavelength-dependent PLE spectra and excitation wavelength-dependent PL spectra

were measured. As shown in emission wavelength-dependent PLE spectra (Figure 3a), the bands II and III fall more slowly

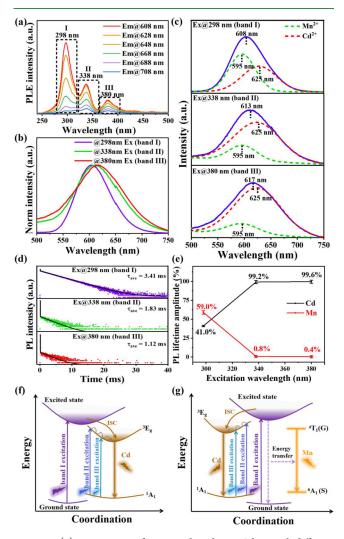


Figure 3. (a) PLE spectra of 15%Mn-doped BDACdBr₄ with different monitored emission wavelengths ($\lambda_{\rm em}$ = 608–708 nm). (b) Normalized PL spectra with different excitation wavelengths (λ_{ex} = 298-380 nm). (c) Deconvolution of PL bands. (d) PL decay profiles and (e) the fitting amplitudes of the fast and slow PL lifetimes in PL decay profiles of 15%Mn-doped BDACdBr₄ upon different excitation wavelengths ($\lambda_{\rm ex}$ = 298–380 nm, $\lambda_{\rm em}$ = 608 nm), and the schematic photophysical mechanism of (f) pristine and (g) Mn-doped BDACdBr4.

than band I as the monitored emission wavelength is changed from 608 to 708 nm. The synchronous changes of bands II and III indicate the same physical emission origin, while band I derives from another excited state of the host. Consistent with normalized excitation wavelength-dependent PL spectra (Figure 3b), the PL band becomes wider and red-shifted upon excitation wavelength changing from band I to III, further indicating the existence of other emission centers besides Mn²⁺ in Mn-doped BDACdBr₄.

To determine the contribution from the different emission centers in PL of Mn-doped BDACdBr4, the emission spectra were deconvoluted as shown in Figure 3c. The PL band consists of two broad emissions that peaked at 595 and 625 nm, respectively. Moreover, the contribution from the emission peak at 625 nm improves sharply upon excitation

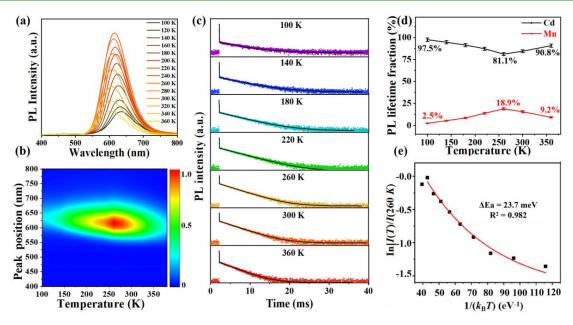


Figure 4. (a) The temperature-dependent PL spectra, (b) pseudocolor map, (c) temperature-dependent PL decay profiles, (d) fitting amplitudes of the fast and slow PL lifetimes of Mn-doped BDACdBr₄ (T = 100-360 K, $\lambda_{ex} = 298 \text{ nm}$), and (e) Boltzmann analysis of the integrated PL intensity above a function of thermal activation temperature (k_BT) yields an activation energy $\Delta E_a \approx 23.7 \text{ meV}$.

changing from band I to III. The emission peak at 625 nm should derive from the $Cd^{2+}{}^3E_g \rightarrow {}^1A_{1g}$ transition, ^{29,40} while another emission peak at 595 nm probably comes from the $Mn^{2+} {}^{4}T_{1}(G) \rightarrow {}^{6}A_{1}(S)$ transition. The PL decay spectra and fitting parameters confirm the attributions of two emission bands (Figure 3d, Table S3), in which both Mn²⁺ and Cd²⁺ PL lifetimes coexist throughout the whole relaxation process. The evolution of PL is attributed to the variation of contributions of Mn²⁺ and Cd²⁺ emissions (Figure 3c). Upon excitation at band I, the millisecond PL lifetime has a larger amplitude (~59.0%) (Figure 3e), indicating the recombination of excitons via Mn2+ d-d transition dominants. The higher proportion of Mn²⁺ emission component results in PL with a narrow fwhm and a blue-shifted peak position (Figure 3b). However, upon longer excitation wavelengths at bands II and III, the microsecond PL lifetime has a near-unity amplitude (~99.2-99.6%) (Figure 3e), indicating that the PL of Mndoped BDACdBr₄ is mainly contributed from the Cd^{2+} $^3E_g \rightarrow$ $^1A_{1\mathfrak{g}}$ transition emission component, whose PL band becomes wider and red-shifted (Figure 3b).

Based on the above discussion, a schematic illustration of the photophysical mechanisms behind the optical properties of pristine BDACdBr₄ is given in Figure 3f. Under excitation at band I, electrons are excited from the valence band (VB) to the conduction band (CB) of the BDACdBr₄ host. However, upon excitation at bands II and III, electronic transition into the ³E_g state of Cd2+ occurs. In the meantime, the electrons in the excited state of the host can intersystem-cross (ISC) to the ³E_o state of Cd2+. Therefore, all excited states have the same relaxation process $(^3E_g \rightarrow {}^1A_{1g})$ back to the ground state. The photophysical mechanism of Mn-doped BDACdBr₄ is shown schematically in Figure 3g. Upon excitation at band I of the host, energy transfer from the excited state of the host to Mn dopants results in emission from the ${}^{4}T_{1}(G) \rightarrow {}^{6}A_{1}(S)$ transition with a near-unity PLQY. However, when the excitation wavelength is changed to bands II and III, the ³E_o state of Cd2+ is excited. The photoexcited energy mainly

relaxes via the Cd ${}^3E_g \rightarrow {}^1A_{1g}$ transition, similar to the pristine sample PL.

3.4. PL Thermal Activation in Mn-doped BDACdBr₄ **HLPs.** Figure 4a,b shows the temperature-dependent PL spectra and corresponding pseudocolor map in the range of 100-360 K. Unlike the behaviors of the temperature-dependent PL of metal ions with ns^2 electron configuration (such as Sb^{3+}), 29,46 the main PL peak blue-shifts significantly, and the PL intensity exhibits a volcano-like change with increasing temperature. The detailed changes in the PL peak position and intensity are clearly shown in Figure S11. Throughout the heating process, the thermal expansion of the lattice can reduce the crystal field intensity and result in an increase in the $^4T_1(G) \rightarrow ^6A_1(S)$ transition energy of Mn^{2+} ions; thus, the emission peak blue-shifts. 47

The PL intensity increases in the range of 100-260 K and decreases in the range of 260-360 K with increasing temperature. To clarify the change of this anomalous PL intensity, temperature-dependent PL decay curves are collected in Figure 4c, and the detailed fitting parameters are shown in Table S4. The low-temperature environment is more conducive to the radiative recombination due to the weakening of phonon scattering and fewer defects. Thus, the emission from Cd²⁺ and Mn²⁺ dopants have longer PL lifetimes of 16.13 us and 5.47 ms at 100 K, respectively (Figure S12). The emission from Mn²⁺ is the critical component of the PL of Mndoped BDACdBr₄ under excitation of band I (Figure 3c). However, the amplitude of the Mn²⁺ PL lifetime is only 2.5% at 100 K (Figure 4d), which is responsible for the low PL intensity at low temperature. Based on previous studies, 37,48,49 the temperature dependence of the Mn²⁺ PL arises from vibronic activation of the radiative d-d transition. With increasing temperature from 100 to 260 K, the sensitization of the Mn²⁺ d-d transition is gradually thermally activated by lattice vibration, so that an increase in emission intensity can be observed. The thermal activation energy (E_a) required for transferring excitons from host to Mn2+ dopants can be estimated using a Boltzmann analysis of the integrated PL

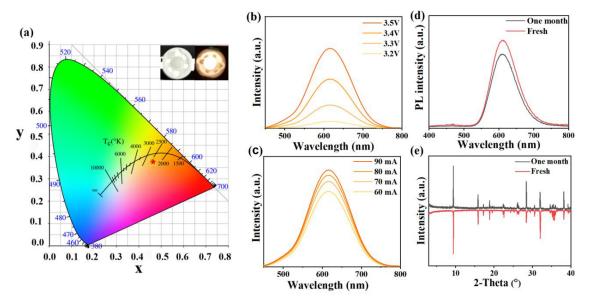


Figure 5. (a) CIE chromaticity diagram of the LED lamp. Inset images are the photos of LED lamp off (left) and on (right), (b) PL spectra with different driving voltages, (c) PL spectra with different driving currents, and (d) PL spectra and (e) XRD patterns of fresh and air-exposed for one month samples.

intensity as a function of temperature $(1/k_BT)$ through the following equation 50-52

$$I_{\rm Mn}(T) = I_0 \cdot e^{-\Delta E_{\rm a}/k_{\rm B}T} \tag{1}$$

where $I_{Mn}(T)$ is the integrated PL intensity at different temperature (100-280 K) and $k_{\rm B}$ is the Boltzmann constant. The ΔE_a of Mn-doped BDACdBr₄ is calculated to be ~23.7 meV at 260 K (Figure 4e), which is comparable with the thermal energy of \sim 22.4 meV at 260 K ($k_{\rm B}T$). Such a small potential barrier enables the efficient transfer of excitons to Mn²⁺ dopants and leads to maximum PL intensity. It is wellknown that high temperature usually results in PL quenching due to thermal quenching. Therefore, further increasing the temperature from 260 to 360 K will reduce the PL intensity.

3.5. Electronic Band Structure of Mn-Doped BDACdBr₄ HLPs. Based on the crystal structure of pristine BDACdBr₄ (Figure S13a), we modeled the structure of Mndoped BDACdBr4 by replacing Cd2+ with Mn2+ equivalently (Figure S13b). Comparing the bond lengths between triad angle-shared $[CdBr_6]^{4-}$ - $[CdBr_6]^{4-}$ - $[CdBr_6]^{4-}$ and $[CdBr_6]^{4-}$ - $[MnBr_6]^{4-}$ - $[CdBr_6]^{4-}$ octahedra (Figure S13c,d), Mn^{2+} incorporation results in a more compact inorganic metal layer, which is mainly manifested in a shorter Mn-Br bond that brings the [MnBr₆]⁴⁻ octahedra closer to the [MnBr₆]⁴⁻ octahedra.

First-principle calculations based on density functional theory (DFT) are carried out to investigate the electronic band structures of pristine and Mn-doped BDACdBr4. The band structure of pristine BDACdBr4 is consistent with that of a recent report and exhibits an indirect band gap of about 2.83 eV (Figure S14a).^{28,29} Due to the indirect band gap nature of the pristine BDACdBr4, the PL process is dipole-forbidden. From the density of states (DOS) of pristine BDACdBr₄ (Figure S14b), the conduction band minimum (CBM) mainly consists of the Cd-s and Br-p orbitals, while Br-p orbital is the main component of the valence band maximum (VBM). The incorporation of Mn²⁺ introduces new localized Mn-d and Br-p orbitals in the band gap (Figure S14c), which facilitates energy transfer to the Mn²⁺ orbital during the relaxation process from

CBM to VBM. Besides, the VB of Mn-doped BDACdBr₄ is relatively flat, leading to strong localization of the holes. The DOS of Mn-doped BDACdBr₄ shows that the Mn-3d orbital contributes little to the VB, but it hybridizes with Br-p and Cds orbitals of the host elements in the CB (Figure S14d), which enables the energy absorbed by the host to easily transfer to Mn, thus allowing for radiative d-d transition.

3.6. LED Lamp and Stability of Mn-Doped BDACdBr₄ **HLPs.** The LED based on 15%Mn-doped BDACdBr₄ powder shows excellent color stability and emits stable bright orange light under different driving voltages and currents. The color coordinates of emission based on CIE 1931 is (0.4658,0.3784) with a correlated color temperature (CCT) of 2366 K (Figure 5a-c). These results show that Mn-doped BDACdBr₄ HLPs is promising for solid-state lighting and backlight displays.

The fresh samples were ground into powder and completely exposed to air with a humidity of about 50-70% for one month. The PL intensity did not attenuate significantly and remained above 80% of the initial value (Figure 5d). To determine whether the sample decomposed, we compared the PXRD pattern of the fresh sample with the sample exposed to air for a month (Figure 5e). Their PXRD patterns are almost the same with no impurity diffraction peaks observed, indicating good stability of the Mn-doped BDACdBr4 HLPs in air.

4. CONCLUSION

In summary, we have successfully prepared Mn-doped BDACdBr₄ SCs with different doping concentrations (1-20%). The incorporation of Mn²⁺ ions modulates the electronic band structure of BDACdBr4 and tailors the relaxation energy of excited states, resulting in an orange emission at 608 nm with near-unity PLQY of 96%. The underlying energy transfer mechanisms in pristine and Mndoped BDACdBr4 are determined through excitation wavelength-dependent spectral studies. Competing energy transfer processes between ${}^3E_g \rightarrow {}^1A_{1g}$ of Cd^{2+} and ${}^4T_1(G) \rightarrow {}^6A_1(S)$ of Mn²⁺ affect the overall emission process of Mn-doped BDACdBr₄. The solid-state lighting LED prepared using 15%

Mn-doped BDACdBr₄ powder shows good luminous performance and color stability, indicating this class of novel materials should be a promising candidate for light-emitting devices. Our results provide new insight for the photophysics of 2D HLPs, especially the influence of Mn²⁺ dopant on energy transfer in luminescent hybrid materials with potential application in optoelectronics.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.2c13878.

Additional experimental details and data, including the computational details, the preparation of LED lamp, schematic illustration of the synthesis, SEM image, EDS mapping, ICP-AES results, XPS spectra, absorption spectra, the change of excitation bands intensity, PL spectra, PLQY, PL lifetime tables, peak position and intensity of temperature-dependent PL, temperature-dependent fitting PL lifetime, the crystal structure, the electronic band structures and DOS (PDF)

AUTHOR INFORMATION

Corresponding Authors

Ruosheng Zeng — School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China; orcid.org/0000-0002-8536-326X; Email: zengrsh@guet.edu.cn

Jin Zhong Zhang — Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064 California, United States; orcid.org/0000-0003-3437-912X; Email: Zhang@ucsc.edu

Authors

Canxu Chen – School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China

Shuai Zhang — School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China

Binbin Luo – Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063 Guangdong, China; orcid.org/0000-0001-9652-7998

Yuanjie Chen — School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China

Sheng Cao – School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China; orcid.org/0000-0002-6203-9088

Jialong Zhao — School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China

Bingsuo Zou — School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China; orcid.org/0000-0003-4561-4711

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.2c13878

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (22175043, 52162021), the Natural Science Foundation of Guangxi Province (2017GXNSF-GA198005), and the special fund for "Guangxi Bagui Scholars". J.Z.Z. is grateful to the United States National Science Foundation for financial support (CHE-2203633). B.L. is thankful for the financial support from the Open Foundation of Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials (Grant No. 2022GXYSOF14). The calculation was supported by the high-performance computing platform of Guangxi University.

REFERENCES

- (1) Mao, L.; Stoumpos, C. C.; Kanatzidis, M. G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. *J. Am. Chem. Soc.* **2019**, *141*, 1171–1190.
- (2) Gu, Z.; Wang, Y.; Wang, S.; Zhang, T.; Zhao, R.; Hu, X.; Huang, Z.; Su, M.; Xu, Q.; Li, L.; Zhang, Y.; Song, Y. Controllable Printing of Large-scale Compact Perovskite Films for Flexible Photodetectors. *Nano Res.* **2022**, *15*, 1547–1553.
- (3) Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y.; Liu, D.; Li, S.; Penty, R. V.; White, I. H. Flexible Optoelectronic Devices Based on Metal Halide Perovskites. *Nano Res.* **2020**, *13*, 1997–2018.
- (4) Zhang, L.; Yuan, M. Lanthanide Doped Lead-Free Double Perovskites as the Promising Next Generation Ultra-Broadband Light Sources. *Light-Sci. Appl.* **2022**, *11*, 99.
- (5) Bae, Y.; Ryu, J.; Yoon, S.; Kang, D. Recent Progress in Quasi-Two-Dimensional and Quantum Dot Perovskite Light-Emitting Diodes Harnessing the Diverse Effects of Ligands: a Review. *Nano Res.* **2022**, *15*, 6449–6465.
- (6) Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Gratzel, M.; Hagfeldt, A. The Rapid Evolution of Highly Efficient Perovskite Solar Cells. *Energy Environ. Sci.* **2017**, *10*, 710–727.
- (7) Kim, J. Y.; Lee, J.; Jung, H. S.; Shin, H.; Park, N. High-Efficiency Perovskite Solar Cells. *Chem. Rev.* **2020**, *120*, 7867–7918.
- (8) Gong, Y.; Yu, R.; Gao, H.; Ma, Z.; Dong, Y.; Su, Y.; Chen, T.; Hsu, C.; Tan, Z. Improving Charge Transport and Reducing Non-Radiative Energy Loss via a Nonacyclic Carbazole-Based Third Component for over 18% Efficiency Polymer Solar Cells. *J. Mater. Chem. A* 2022, *10*, 7090–7098.
- (9) Ren, M.; Cao, S.; Zhao, J.; Zou, B.; Zeng, R. Advances and Challenges in Two-Dimensional Organic-Inorganic Hybrid Perovskites Toward High-Performance Light-Emitting Diodes. *Nano-Micro Lett.* **2021**, *13*, 40–75.
- (10) Zhang, F.; Zhang, X.; Wang, C.; Sun, M.; Luo, X.; Yang, Y.; Chang, S.; Zhang, D.; Duan, L. Chlorine Distribution Management

- for Spectrally Stable and Efficient Perovskite Blue Light-Emitting Diodes. *Nano Energy* **2021**, *79*, 105486.
- (11) Li, M.; Zhao, Y.; Qin, X.; Ma, Q.; Lu, J.; Lin, K.; Xu, P.; Li, Y.; Feng, W.; Zhang, W.; Wei, Z. Conductive Phosphine Oxide Passivator Enables Efficient Perovskite Light-Emitting Diodes. *Nano Lett.* **2022**, 2490–2496.
- (12) Luo, J.; Yang, L.; Tan, Z.; Xie, W.; Sun, Q.; Li, J.; Du, P.; Xiao, Q.; Wang, L.; Zhao, X.; Niu, G.; Gao, L.; Jin, S.; Tang, J. Efficient Blue Light Emitting Diodes Based on Europium Halide Perovskites. *Adv. Mater.* **2021**, 33, 2101903.
- (13) Tian, W.; Zhou, H.; Li, L. Hybrid Organic-Inorganic Perovskite Photodetectors. *Small* **2017**, *13*, 1702107.
- (14) Zhang, Y.; Ma, Y.; Wang, Y.; Zhang, X.; Zuo, C.; Shen, L.; Ding, L. Lead-Free Perovskite Photodetectors: Progress, Challenges, and Opportunities. *Adv. Mater.* **2021**, *33*, 2006691.
- (15) Yu, D.; Cao, F.; Gu, Y.; Han, Z.; Liu, J.; Huang, B.; Xu, X.; Zeng, H. Broadband and Sensitive Two-Dimensional Halide Perovskite Photodetector for Full-Spectrum Underwater Optical Communication. *Nano Res.* **2021**, *14*, 1210–1217.
- (16) Ma, L.; Dai, J.; Zeng, X. C. Two-Dimensional Single-Layer Organic-Inorganic Hybrid Perovskite Semiconductors. *Adv. Energy Mater.* **2017**, *7*, 1601731.
- (17) Liu, F.; Zhang, T.; Mondal, D.; Teng, S.; Zhang, Y.; Huang, K.; Wang, D.; Yang, W.; Mahadevan, P.; Zhao, Y.; Xie, R.; Pradhan, N. Light-Emitting Metal-Organic Halide 1D and 2D Structures: Near-Unity Quantum Efficiency, Low-Loss Optical Waveguide and Highly Polarized Emission. *Angew. Chem.-Int. Ed.* **2021**, *60*, 13548–13553.
- (18) Kieslich, G.; Sun, S.; Cheetham, A. K. Solid-State Principles Applied to Organic-Inorganic Perovskites: New Tricks for an Old Dog. Chem. Sci. 2014, 5, 4712–4715.
- (19) Shi, C.; Yu, C.-H.; Zhang, W. Predicting and Screening Dielectric Transitions in a Series of Hybrid Organic-Inorganic Double Perovskites via an Extended Tolerance Factor Approach. *Angew. Chem.-Int. Ed.* **2016**, *55*, 5798–5802.
- (20) Fu, P.; Sun, Y.; Xia, Z.; Xiao, Z. Photoluminescence Behavior of Zero-Dimensional Manganese Halide Tetrahedra Embedded in Conjugated Organic Matrices. *J. Phys. Chem. Lett.* **2021**, *12*, 7394–7300
- (21) Xu, Y.; Cao, M.; Huang, S. Recent Advances and Perspective on the Synthesis and Photocatalytic Application of Metal Halide Perovskite Nanocrystals. *Nano Res.* **2021**, *14*, 3773–3794.
- (22) Xu, K.; Vickers, E. T.; Luo, B.; Wang, Q.; Allen, A. C.; Wang, H.; Cherrette, V.; Li, X.; Zhang, J. Z. Room Temperature Synthesis of Cesium Lead Bromide Perovskite Magic Sized Clusters with Controlled Ratio of Carboxylic Acid and Benzylamine Capping Ligands. Sol. Energy Mater. Sol. C 2020, 208, 110341.
- (23) Geim, A. K.; Grigorieva, I. V. Van der Waals Heterostructures. *Nature* **2013**, 499, 419–425.
- (24) Mitzi, D. B. Synthesis, Crystal Structure, and Optical and Thermal Properties of $(C_4H_9NH_3)_2MI_4$ (M = Ge, Sn, Pb). *Chem. Mater.* **1996**, *8*, 791–800.
- (25) Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T.; Ginsberg, N. S.; Wang, L.; Alivisatos, A. P.; Yang, P. Atomically Thin Two-Dimensional Organic-Inorganic Hybrid Perovskites. *Science* **2015**, *349*, 1518–1521.
- (26) Tan, Z.; Wu, Y.; Hong, H.; Yin, J.; Zhang, J.; Lin, L.; Wang, M.; Sun, X.; Sun, L.; Huang, Y.; Liu, K.; Liu, Z.; Peng, H. Two-Dimensional (C₄H₉NH₃)₂PbBr₄ Perovskite Crystals for High-Performance Photodetector. *J. Am. Chem. Soc.* **2016**, *138*, 16612–16615.
- (27) Wang, Y.; Ji, C.; Liu, X.; Han, S.; Zhang, J.; Sun, Z.; Khan, A.; Luo, J. (1,4-Butyldiammonium)CdBr₄: a Layered Organic-Inorganic Hybrid Perovskite with a Visible-Blind Ultraviolet Photoelectric Response. *Inorg. Chem. Front.* **2018**, *5*, 2450–2455.
- (28) Liang, D.; Lian, X.; Li, X.; Luo, B. Pb Alloying Enables Efficient Broadband Emission of Two Dimensional [NH₃(CH₂)₄NH₃]CdBr₄. *J. Solid State Chem.* **2021**, 293, 121772.
- (29) Wu, J.; Li, X.; Lian, X.; Su, B.; Pang, J.; Li, M.; Xia, Z.; Zhang, J. Z.; Luo, B.; Huang, X. Ultrafast Study of Exciton Transfer in Sb(III)-

- Doped Two-Dimensional [NH₃(CH₂)₄NH₃]CdBr₄ Perovskite. *ACS Nano* **2021**, *15*, 15354–15361.
- (30) Yan, J.; Zhang, S.; Wei, Q.; Cao, S.; Zhao, J.; Zou, B.; Zeng, R. Stoichiometry-Controlled Phase Engineering of Cesium Bismuth Halides and Reversible Structure Switch. *Adv. Opt. Mater.* **2022**, *10*, 2101406.
- (31) Peng, C.; Wei, Q.; Chen, L.; Zeng, R.; Zhang, Q.; Hu, Q.; Zou, B. Efficient Energy Transfer in Cs₄Mn_xCd_{1-x}Sb₂Cl₁₂ Layered Perovskites and Anomalously Responsive Photodetectors. *J. Mater. Chem. C* **2021**, *9*, 15522–15529.
- (32) Su, B.; Molokeev, M. S.; Xia, Z. Unveiling Mn²⁺ Dopant States in Two-Dimensional Halide Perovskite toward Highly Efficient Photoluminescence. *J. Phys. Chem. Lett.* **2020**, *11*, 2510–2517.
- (33) Vargas, B.; Reyes-Castillo, D. T.; Coutino-Gonzalez, E.; Sanchez-Ake, C.; Ramos, C.; Falcony, C.; Solis-Ibarra, D. Enhanced Luminescence and Mechanistic Studies on Layered Double-Perovskite Phosphors: Cs₄Cd_{1-x}Mn_xBi₂Cl₁₂. *Chem. Mater.* **2020**, 32, 9307–9315.
- (34) Ren, J.; Zhou, X.; Wang, Y. Water Triggered Interfacial Synthesis of Highly Luminescent CsPbX₃:Mn²⁺ Quantum Dots from Nonluminescent Quantum Dots. *Nano Res.* **2020**, *13*, 3387–3395.
- (35) Wang, P.; Dong, B.; Cui, Z.; Gao, R.; Su, G.; Wang, W.; Cao, L. Synthesis and Characterization of Mn-doped CsPb(Cl/Br)₃ Perovskite Nanocrystals with Controllable Dual-Color Emission. *RSC Adv.* **2018**, *8*, 1940–1947.
- (36) Xu, K.; Vickers, E. T.; Luo, B.; Allen, A. L. C.; Chen, E.; Roseman, G.; Wang, Q.; Kliger, D. S.; Millhauser, G. L.; Yang, W.; Li, X.; Zhang, J. First Synthesis of Mn-Doped Cesium Lead Bromide Perovskite Magic Sized Clusters at Room Temperature. *J. Phys. Chem. Lett.* 2020, 11, 1162–1169.
- (37) Yu, Z.; Peng, H.; Wei, Q.; Huang, T.; Yao, S.; Tian, Y.; Peng, C.; Zou, B. The Magnetic Polaron Modulated Luminescence Bands of Organic-Inorganic Hybrid Ferroelectric Anti-Perovskite (C₃H₉N)₃Cd₂Cl₇ Doped with Mn²⁺. *Mater. Today Chem.* **2022**, 24, 100781.
- (38) Jia, W.; Wei, Q.; Ge, S.; Peng, C.; Huang, T.; Yao, S.; Tian, Y.; Chang, T.; Zeng, R.; Zou, B. Polaronic Magnetic Excitons and Photoluminescence in Mn²⁺-Doped CsCdBr₃ Metal Halides. *J. Phys. Chem. C* **2021**, *125*, 18031–18039.
- (39) Jin, J.; Peng, Y.; Xu, Y.; Han, K.; Zhang, A.; Yang, X.; Xia, Z. Bright Green Emission from Self-Trapped Excitons Triggered by Sb³⁺ Doping in Rb₄CdCl₆. *Chem. Mater.* **2022**, *34*, 5717–5725.
- (40) Cai, T.; Yang, H.; Hills-Kimball, K.; Song, J.; Zhu, H.; Hofman, E.; Zheng, W.; Rubenstein, B. M.; Chen, O. Synthesis of All-Inorganic Cd-Doped CsPbCl₃ Perovskite Nanocrystals with Dual-Wavelength Emission. *J. Phys. Chem. Lett.* **2018**, *9*, 7079–7084.
- (41) Ito, H.; Takano, T.; Kuroda, T.; Minami, F.; Akinaga, H. Two-Dimensional Confinement Effect on Mn²⁺ Intraionic Transition. *J. Lumin.* **1997**, 72–74, 342–343.
- (42) Majher, J. D.; Gray, M. B.; Strom, T. A.; Woodward, P. M. Cs₂NaBiCl₆:Mn²⁺—A New Orange-Red Halide Double Perovskite Phosphor. *Chem. Mater.* **2019**, *31*, 1738–1744.
- (43) Hu, M.; Luo, J.; Li, S.; Liu, J.; Li, J.; Tan, Z.; Niu, G.; Wang, Z.; Tang, J. Broadband Emission of Double Perovskite Cs₂Na_{0.4}Ag_{0.6}In_{0.995}Bi_{0.005}Cl₆:Mn²⁺ for Single-Phosphor White-Light-Emitting Diodes. *Opt. Lett.* **2019**, *44*, 4757–4760.
- (44) Su, B.; Zhou, G.; Huang, J.; Song, E.; Nag, A.; Xia, Z. Mn²⁺-Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application. *Laser Photonics Rev.* **2021**, *15*, 2000334.
- (45) Zhang, R.; Wang, Z.; Xu, X.; Mao, X.; Xiong, J.; Yang, Y.; Han, K. All-Inorganic Rare-Earth Halide Double Perovskite Single Crystals with Highly Efficient Photoluminescence. *Adv. Opt. Mater.* **2021**, *9*, 2100689.
- (46) Su, B.; Li, M.; Song, E.; Xia, Z. Sb³⁺-Doping in Cesium Zinc Halides Single Crystals Enabling High-Efficiency Near-Infrared Emission. *Adv. Funct. Mater.* **2021**, *31*, 2105316.
- (47) Yuan, X.; Zheng, J.; Zeng, R.; Jing, P.; Ji, W.; Zhao, J.; Yang, W.; Li, H. Thermal Stability of Mn²⁺ Ion Luminescence in Mn-doped Core-Shell Quantum Dots. *Nanoscale* **2014**, *6*, 300–307.

- (48) Yuan, X.; Ji, S.; De Siena, M. C.; Fei, L.; Zhao, Z.; Wang, Y.; Li, H.; Zhao, J.; Gamelin, D. R. Photoluminescence Temperature Dependence, Dynamics, and Quantum Efficiencies in Mn²⁺-Doped CsPbCl₃ Perovskite Nanocrystals with Varied Dopant Concentration. Chem. Mater. 2017, 29, 8003-8011.
- (49) Zhou, G.; Liu, Z.; Molokeev, M. S.; Xiao, Z.; Xia, Z.; Zhang, X. Manipulation of Cl/Br Transmutation in Zero-Dimensional Mn²⁺-Based Metal Halides toward Tunable Photoluminescence and Thermal Quenching Behaviors. J. Mater. Chem. C 2021, 9, 2047-2053.
- (50) Luo, B.; Guo, Y.; Li, X.; Xiao, Y.; Huang, X.; Zhang, J. Z. Efficient Trap-Mediated Mn2+ Dopant Emission in Two Dimensional Single-Layered Perovskite (CH₃CH₂NH₃)₂PbBr₄. J. Phys. Chem. C 2019, 123, 14239-14245.
- (51) Wei, J.; Liao, J.; Wang, X.; Zhou, L.; Jiang, Y.; Kuang, D. All-Inorganic Lead-Free Heterometallic Cs₄MnBi₂Cl₁₂ Perovskite Single Crystal with Highly Efficient Orange Emission. Matter 2020, 3, 892-
- (52) Pinchetti, V.; Anand, A.; Akkerman, Q. A.; Sciacca, D.; Lorenzon, M.; Meinardi, F.; Fanciulli, M.; Manna, L.; Brovelli, S. Trap-Mediated Two-Step Sensitization of Manganese Dopants in Perovskite Nanocrystals. ACS Energy Lett. 2019, 4, 85-93.

□ Recommended by ACS

Elucidating the Mn²⁺ Dopant Sites in Two-Dimensional Na-In Halide Perovskite

Priyesh Yadav, Sameer Sapra, et al.

FEBRUARY 08, 2023

THE JOURNAL OF PHYSICAL CHEMISTRY C

READ 2

Triangulating Dopant-Level Mn(II) Insertion in a Cs2NaBiCl6 **Double Perovskite Using Magnetic Resonance Spectroscopy**

Abhoy Karmakar, Vladimir K. Michaelis, et al.

FEBRUARY 14, 2023

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ

Codoped 2D All-Inorganic Halide Perovskite Cs₃Cd₂Cl₇:Sb³⁺:Mn²⁺ with Ultralong Afterglow

Guangkuo Dai, Zhiyong Ma, et al.

MAY 12, 2023

INORGANIC CHEMISTRY

READ **C**

Photoluminescent Properties of Two-Dimensional Manganese(II)-Based Perovskites with Different-Length **Arylamine Cations**

Shihui He, Quanlin Liu, et al.

JULY 20, 2022

INORGANIC CHEMISTRY

READ 🗹

Get More Suggestions >