
Rare Path Guided Fuzzing∗

Seemanta Saha
University of California Santa Barbara

Santa Barbara, CA, USA

seemantasaha@ucsb.edu

Laboni Sarker
University of California Santa Barbara

Santa Barbara, CA, USA

labonisarker@ucsb.edu

Md Sha�uzzaman
University of California Santa Barbara

Santa Barbara, CA, USA

mdsha�uzzaman@ucsb.edu

Chaofan Shou
University of California Santa Barbara

Santa Barbara, CA, USA

shou@ucsb.edu

Albert Li
University of California Santa Barbara

Santa Barbara, CA, USA

albert_li@ucsb.edu

Ganesh Sankaran
University of California Santa Barbara

Santa Barbara, CA, USA

ganesh@ucsb.edu

Tev�k Bultan
University of California Santa Barbara

Santa Barbara, CA, USA

bultan@ucsb.edu

ABSTRACT

Starting with a random initial seed, fuzzers search for inputs that

trigger bugs or vulnerabilities. However, fuzzers often fail to gen-

erate inputs for program paths guarded by restrictive branch con-

ditions. In this paper, we show that by �rst identifying rare-paths

in programs (i.e., program paths with path constraints that are

unlikely to be satis�ed by random input generation), and then, gen-

erating inputs/seeds that trigger rare-paths, one can improve the

coverage of fuzzing tools. In particular, we present techniques 1)

that identify rare paths using quantitative symbolic analysis, and 2)

generate inputs that can explore these rare paths using path-guided

concolic execution. We provide these inputs as initial seed sets to

three state of the art fuzzers. Our experimental evaluation on a set

of programs shows that the fuzzers achieve better coverage with

the rare-path based seed set compared to a random initial seed.

CCS CONCEPTS

• Software and its engineering → Software veri�cation; Soft-

ware reliability.

KEYWORDS

Fuzz testing, Control �ow analysis, Model counting, Probabilistic

analysis, Concolic execution.

∗This material is based on research sponsored by NSF under grants CCF-2008660,
CCF-1901098 and CCF-1817242, and by DARPA under the agreement number N66001-
22-2-4037. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the o�cial policies or endorsements, either
expressed or implied, of the U.S. Government.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598136

ACM Reference Format:

Seemanta Saha, Laboni Sarker, Md Sha�uzzaman, Chaofan Shou, Albert Li,

Ganesh Sankaran, and Tev�k Bultan. 2023. Rare Path Guided Fuzzing. In

Proceedings of the 32nd ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3597926.3598136

1 INTRODUCTION

Fuzz testing has emerged as one of the e�ective testing techniques

for achieving code coverage and �nding bugs and vulnerabilities in

software [8, 14, 25, 31, 33, 36, 38, 47]. Mutation-based fuzzers [25]

and hybrid fuzzers [47] focus on improving coverage using muta-

tion strategies or symbolic execution, respectively. Both of these

techniques try to identify unexplored behaviors based on the inputs

generated and branches covered during fuzzing. Note that, it may

take a long time to generate a value that triggers a branch if the

branch condition is very restrictive, and it is di�cult to separate

infeasible paths from feasible but rare paths via input mutation.

In this paper, we propose a lightweight whitebox analysis to

identify rare paths in programs and then guide symbolic execution

to generate inputs to explore these rare paths. Our approach avoids

the shortcomings of mutation-based greybox fuzzers [8, 14, 25, 31,

33, 36] and hybrid fuzzers [38, 47] by generating inputs for rare

paths beforehand, and it avoids the shortcomings of (symbolic

execution based) whitebox fuzzers [17, 39] by reducing the cost of

symbolic analysis.

We present a heuristic for identifying rare paths where we use

control �ow analysis, dependency analysis and model counting on

branch constraints to transform a control �ow graph to a proba-

bilistic control �ow graph. Then, we estimate path probabilities by

traversing the probabilistic control �ow graph and identify the rare

(low-probability) paths.

Although our heuristic for estimating path probabilities and iden-

tifying rare paths is not sound and does not provide guarantees, our

experimental results demonstrate that it is e�ective in generating

seeds that trigger rare behaviors and it improves the coverage of

existing fuzzers without even modifying them.

To improve the rare path analysis we introduce a new type of

control �ow paths (which we call II-paths) which is a combination

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1295

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598136
https://doi.org/10.1145/3597926.3598136
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598136&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li, Ganesh Sankaran, and Tevfik Bultan

if ((int)id1 != (int)id2) {

if ((int)id1 != (int)id3) {

if ((int)id2 != (int)id3) {

if ((int)id1 >= 0) {

...

if ((int)r1 == 0) {

...

if ((int)max1 == (int)id1) {

if ((int)max2 == (int)id2) {

if ((int)max3 == (int)id3) {

if ((int)st1 == 0) {

if ((int)st2 == 0) {

...

if ((int)nl3 == 0) {

if ((int)mode1 == 0) {

if ((int)mode2 == 0) {

if ((int)mode3 == 0) {

tmp___5 = 1;

} else {

......

Figure 1: A code fragment from pals_�oodmax.3.1.ufo.

BOUNDED-6.pals.c in the SV benchmarks.

of intra- and inter-procedural program paths, providing a balance

between breadth �rst and depth �rst traversal of program paths.

Our intuition is that II-paths-based analysis can generate more rare

inputs compared to both intra- and inter-paths given a time budget.

We guide concolic execution using rare paths to generate inputs

that trigger rare behaviors. As the last step of our approach, we

provide the set of inputs generated by our analysis as the initial

seed set to a fuzzer. This enables the fuzzer to explore the rare paths

immediately, resulting in better coverage compared to randomly

generated initial seed sets. Our approach can be integrated with all

existing fuzzers that rely on initial seeds.

Our contributions in this paper are as follows:

• A novel technique for estimating path probabilities to iden-

tify rare paths in programs using a lightweight quantitative

symbolic analysis.

• A new type of control �ow paths (II-paths) to improve e�-

ciency and e�ectiveness of the rare path analysis.

• Algorithms for path-guided concolic execution.

• Rare-path guided fuzzing approach where the initial seed

set for a given fuzzer is generated with rare-path analysis.

• Experimental evaluation of the proposed techniques on ex-

isting fuzzers AFL++, FairFuzz and DigFuzz, demonstrat-

ing coverage improvement achieved by the proposed rare-

path guided fuzzing approach, without even modifying the

fuzzers.

The paper is organized as follows. We provide an overview in

section 2. We explain program path analysis, heuristic to identify

rare paths and input generation using the rare paths on section 3, 4

and 5, respectively. We discuss our implementation and experimen-

tal evaluations in section 6 and 7 respectively. We discuss related

work in section 8 and provide our conclusions in section 9.

2 OVERVIEW

Fig. 1 is a code snippet from a program in the seq-mthreaded

dataset of SV (software veri�cation) benchmarks [6] used in soft-

ware veri�cation and testing competitions (SV-COMP and Test-

Comp) [12, 13]. This code fragment contains a set of nested branch

conditions leading to assignment of 1 to the tmp__5 variable. If

that variable is not set, the program will not exhibit a large set of

behaviors. For a code fragment like this, it is di�cult for fuzzers to

generate a seed that triggers a program path reaching the assign-

ment statement. Our experiments show that our approach improves

performance of existing fuzzers (without modifying them) by gen-

erating seeds for rare paths that are unlikely to be covered by

mutating randomly generated seeds.

Consider the running example in Fig. 2 which is a shortened

version of a code structure found in libxml2. The main procedure

of the program reads a string as an argument. It checks if the �rst

3 characters of the string is DOC or not. If the �rst 3 characters of

the string is DOC, it parses the string starting from the 4th character.

First, it goes inside the parse_cmt procedure and it checks if the 4th

character is < or > and skips if it is. Then, the program comes back to

the main procedure and goes inside the parse_att procedure. In the

parse_att procedure, the program looks for the character sequence

ATT. If it �nds this sequence, it goes deeper into the program and

executes more functionalities. To summarize, the program is trying

to �nd two speci�c sequences of characters: �rst DOC and then

ATT and if it can �nd these two sequences, it can execute more

functionalities.

A mutation based fuzzer, such as AFL, starting with a random

initial seed will require a lot of mutations to get to an input con-

taining sequences DOC and ATT. We run AFL 5 times on the running

example for an hour. We do not enable any additional options of

AFL other than basic input output options. Length of the input is

considered unknown, hence the input can be of any length. As an

initial random seed/input we provide a single space. For 4 out of

5 times, AFL cannot generate an input containing sequences DOC

and ATT. AFL can generate inputs such as DOC, DOC<, DOC>, DOCA etc.

Though coverage guided mutation helps to reach these inputs, AFL

is not able to generate the desired sequences as it mutates randomly

and breaks already found sequences to inputs like DAC and DOCQ.

Now, let us explain how rare path analysis can guide a mutation-

based fuzzer to achieve more coverage given a time budget. To

perform rare path analysis on the running example program, we

�rst extract the control �ow graph and then we collect control �ow

paths of the program. At this point, we can use two well known

existing techniques for control �ow analysis to collect paths: intra-

procedural control �ow analysis and inter-procedural control �ow

analysis. Control �ow graphs for the code in Fig. 2 are shown in

Fig. 3.

First, we collect paths using intra-procedural control �ow analy-

sis (paths from 1 to 5 in Table 1). Among these paths, we �nd that

path 4 is the rarest one. We identify rarity of the paths by comput-

ing path probability and we say that a path is the rarest if it has

the lowest probability. Note that, to compute path probability, one

can collect the path constraints using symbolic execution. In this

paper, we do not use symbolic execution to collect path constraints.

Instead we use a heuristic to compute path probabilities (discussed

in section 4) that focuses on branch conditions and their selectivity.

After identifying the rare paths, we guide concolic execution

(discussed in section 5) to generate inputs that trigger the rare paths.

For example, for path 4 in Table 1, concolic execution generates

the input DOC. We provide this input as the initial seed to AFL and

we �nd that AFL can generate the sequences DOC and ATT within

1296

Rare Path Guided Fuzzing ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

char *CUR;

#define CMP3(s, c1 , c2 , c3) \

(((unsigned char *) s)[0] == c1 && \

((unsigned char *) s)[1] == c2 && \

((unsigned char *) s)[2] == c3)

int main(int argc , char **argv) {

CUR = argv [1];

if (CMP3(CUR , 'D', 'O', 'C')) {

CUR = CUR + 3;

parse_cmt ();

if(parse_att ())

/* go deeper */

}

return 0;

}

void parse_cmt () {

if(*CUR == '<' | | *CUR == '>')

CUR ++;

}

int parse_att () {

if (CMP3(CUR , 'A', 'T', 'T'))

return 1;

return 0;

}

Figure 2: A code fragment based on the libxml �le parser.c.

40 minutes (on average) whereas AFL with a random seed cannot

generate these sequence in an hour.

We also collect paths using inter-procedural control �ow analy-

sis (paths from 20 to 43 in Table 1). Using our rare path analysis,

we identify path 35 as the rarest one. Guiding concolic execution

using path 35, the input generated is DOC<ATT. Providing this

input as initial seed, fuzzer immediately explores the path covering

sequences DOC and ATT.

Using inter-procedural control �ow analysis, we can generate

the rarest paths in the program. However, paths based on inter-

procedural analysis also traverse parse_cmtwhich is not necessary

to generate the desired sequences DOC and ATT that enable us to

explore deeper behaviors. Although, for our small running exam-

ple, analyzing the procedure parse_cmt will not waste too much

analysis time, for larger real world cases like libxml2, focusing

only on inter-procedural paths is likely be costly and can increase

the cost of rare path analysis signi�cantly.

To improve the e�ectiveness of rare path analysis (in order to

generate a higher number of rare seeds within a given time budget)

we introduce a new kind of control �ow path in this paper which

we call II-paths (discussed in section 3). II-paths subsume intra-

procedural and inter-procedural control �ow paths, and include

more paths that combine their characteristics. All the paths in

Table 1 are II-paths, where paths 1 to 5 are intra-procedural control

�ow paths, and paths 20 to 43 are inter-procedural control �ow

paths. Furthermore, paths 6 to 19 are also II-paths. Let us assume

that, given a time budget, we can generate the paths from 1 to

20 only. Then, we will identify II-path 13 as the rarest one and

concolic execution can generate the input DOCATT. As a result, we

will able to generate an input containing sequences DOC and ATT

while analyzing a relatively small number of paths.

3 PROGRAM PATHS

First step in rare-path guided fuzzing is identi�cation of rare paths.

The paths we identify are control �ow paths that are generated by

traversing control �ow graphs of programs.

Figure 3: Control �ow graphs for the code from Fig. 2.

3.1 Control Flow Graphs and Paths

Fig. 3 shows the control �ow graphs for procedures shown in Fig. 2

in boxes a (main), b (parse_cmt) and c (parse_att). We de�ne the

control �ow graph (CFG) [7] �pr for a procedure pr as follows:

Definition 1. A control �ow graph for a procedure pr is a directed

graph �pr = (+ , �) where each vertex E ∈ + represents a basic block

of pr, and each directed edge 4 ∈ � : E → E ′ represents a possible

�ow of control from vertex E to vertex E ′ ∈ � . Control �ow graph�pr

has a unique entry vertex entry-pr ∈ + with no incoming edges and

a unique exit vertex exit-pr ∈ + with no outgoing edges. Furthermore,

for each procedure call statement � to a procedure pr’,�pr contains a

call vertex call-pr’� ∈ + and a return-site vertex return-pr’� ∈ + , and

an edge call-pr’� → return-pr’� ∈ � that represents the procedure

call.

An inter-procedural control �ow graph represents control �ow

of the whole program by combining the control �ow graphs of all

procedures of the program.

Definition 2. An Inter-Procedural Control Flow Graph (IP-CFG)

for a program % , �+
%

= (+ , �), contains the vertices and edges of

the CFGs of all procedures in % , except the edges that correspond

to procedure calls. Instead, for each procedure call statement � to a

procedure pr in % , �+
%
contains an edge from the call vertex to the

entry vertex of the called procedure, call-pr� → entry-pr ∈ �, and

an edge from the exit vertex of the called procedure to the return-site

vertex for the call, exit-pr → return-pr� ∈ �, but it does not contain

an edge between the call vertex and the return-site vertex, call-pr� →

return-pr� ∉ �. �+
%
also contains a vertex entry-global ∈ + with

no incoming edges (entry point of the program) and another vertex

1297

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li, Ganesh Sankaran, and Tevfik Bultan

exit-global ∈ + with no outgoing edges (exit point of the program),

and connects them to the main procedure of the program % with edges

entry-global → entry-main ∈ � and exit-main → exit-global ∈ �.

Fig. 3 shows the IP-CFG for the code from Fig. 2 (the dashed edges

are not part of the IP-CFG). For the call to procedure parse_cmt,

there are two edges. One edge from call vertex 5 (which corre-

sponds to call-pr�) to entry-parse_cmt and one from exit-parse_cmt

to return-site vertex 6 (which corresponds to return-pr�).

We de�ne intra- and inter-procedural control �ow paths as fol-

lows:

Definition 3. Given a control �ow graph �pr = (+ , �) for a

procedure pr, an intra-procedural control �ow path (intra-path) is a

sequence of vertices (E1, E2, E3, . . . , E=) where ∀8, E8 ∈ + , E8 → E8+1 ∈

�, E1 = entry_pr and E= = exit_pr.

Definition 4. Given an inter-procedural control �ow graph�+
%
=

(+ , �) for a program % , an inter-procedural control �ow path (inter-

path) is a sequence of vertices (E1, E2, E3, . . . , E=) where∀8, E8 ∈ + , E8 →

E8+1 ∈ �, E1 = entry-global and E= = exit-global.

Paths 1 to 5 in Table 1 correspond to all the intra-paths for the

CFG of proceduremain, and paths 20 to 43 in Table 1 are all the inter-

paths for the IP-CFG of the whole program based on the control

�ow graphs shown in Fig. 3 for our running example. To save space,

we only show the vertices with numeric labels in Table 1.

3.2 Intra-Inter Control Flow Paths (II-Paths)

We introduce a new type of control �ow paths by combining both

intra-paths and inter-paths. We call these paths intra-inter control

�ow paths (II-paths). Intuitively, for each procedure call, inter-

paths have to choose a path inside the called procedure’s CFG. On

the other hand, intra-paths do not explore the CFGs of the called

procedures. When visiting a procedure call statement, II-paths have

the option to either behave like intra-paths (i.e., do not explore

the CFG of the called procedure), or behave like inter-paths (i.e.,

explore the CFG of the called procedure).

In order to formally de�ne II-paths we add back an extra edge

to the IP-CFG between the call vertex call-pr� and return-site ver-

tex return-pr� for each call statement � (as we had for the intra-

procedural control �ow graphs in De�nition 1).We call the resulting

control �ow graph Extended Inter-Procedural Control Flow Graph

(EIP-CFG):

Definition 5. The Extended Inter-Procedural Control Flow Graph

(EIP-CFG) for program % , denoted as �★

%
= (+ ′, �′), is de�ned using

the IP-CFG�+
%
= (+ , �) of the program % , where + ′

= + and � ⊆ �′.

The only edges that are in �′ and not in � are: For each procedure

call statement � , a single edge between the call vertex call-pr� and

the return-site vertex return-pr� is included in �′, i.e., call-pr� →

return-pr� ∈ �′ whereas call-pr� → return-pr� ∉ �.

Fig. 3 shows the EIP-CFG for our running example from Fig. 2

where the dashed edges are also part of the EIP-CFG. In the EIP-CFG,

there are two edges from each call vertex call-pr� for a procedure

call: 1) to the entry vertex of called procedure ?A entry_pr, i.e., edge

call-pr� → entry-pr and 2) to the return-site vertex return-pr� ,

i.e., edge call-pr� → return-pr� . For example, in Fig. 3, the call

vertex 5 has two outgoing edges corresponding to these two cases

1) 5 → entry-parse_cmt and 2) 5 → 6. As a result, whenever a

call vertex is reached, there are two di�erent paths to explore: 1)

path taken via edge call-pr� → entry-pr which is similar to inter-

paths, and 2) path taken via edge call-pr� → return-pr� which is

similar to intra-paths. Intuitively, every time a procedure call vertex

is reached, II-paths can choose between considering or ignoring

the control �ow inside the called procedure. Whereas, intra-paths

never explore the control �ow of called procedures, and inter-paths

always have to explore the control �ow of the called procedures.

We de�ne II-paths as follows:

Definition 6. Given an EIP-CFG �★

%
= (+ , �) for a program

% , an intra-inter control �ow path (II-path) is a sequence of vertices

(E1, E2, E3, . . . , E=) where ∀8, E8 ∈ + , E8 → E8+1 ∈ �, E1 = entry-global

and E= = exit-global.

Again, let us consider the paths (listed in Table 1) of the EIP-CFG

shown in Fig. 3 for our running example from Fig. 2. As we noted

before, paths 1 to 5 in Table 1 are all the intra-paths for procedure

main, and paths 20 to 43 in Table 1 are all the inter-paths for the

program. Note that, based on the II-paths de�nition these paths are

also II-paths. Furthermore, using the II-paths de�nition, in addition

to II-paths from 1 to 5 and from 20 to 43, we now have additional

II-paths from 6 to 19 where paths from 6 to 13 that ignore the

control �ow inside procedure parse_cmt but consider the control

�ow inside procedure parse_att and paths from 14 to 19 that

ignore the control �ow inside procedure parse_att but consider

the control �ow inside procedure parse_cmt.

Table 1: II-paths for the extended inter-procedural control

�ow graph shown in Fig. 3.

Path Probability

1 1 → 2 → 10 → 11 9.96 × 10
−1

2 1 → 2 → 3 → 10 → 11 3.98 × 10
−3

3 1 → 2 → 3 → 4 → 10 → 11 1.59 × 10
−5

4 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 11 3.20 × 10
−8

5 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 24 3.20 × 10
−8

6 1 → 2 → 3 → 4 → 5 → 6 → 7 → 18 → 22 → 23 → 8 → 9 → 11 3.19 × 10
−8

7 1 → 2 → 3 → 4 → 5 → 6 → 7 → 18 → 22 → 23 → 8 → 24 3.19 × 10
−8

8 1 → 2 → 3 → 4 → 5 → 6 → 7 → 18 → 19 → 22 → 23 → 8 → 9 → 11 1.27 × 10
−10

9 1 → 2 → 3 → 4 → 5 → 6 → 7 → 18 → 19 → 22 → 23 → 8 → 24 1.27 × 10
−10

10 1 → 2 → 3 → 4 → 5 → 6 → 7 → 18 → 19 → 20 → 22 → 23 → 8 → 9 → 11 5.10 × 10
−13

11 1 → 2 → 3 → 4 → 5 → 6 → 7 → 18 → 19 → 20 → 22 → 23 → 8 → 24 5.10 × 10
−13

12 1 → 2 → 3 → 4 → 5 → 6 → 7 → 18 → 19 → 20 → 21 → 23 → 8 → 9 → 11 2.05 × 10
−15

13 1 → 2 → 3 → 4 → 5 → 6 → 7 → 18 → 19 → 20 → 21 → 23 → 8 → 24 2.05 × 10
−15

14 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 8 → 9 → 11 1.28 × 10
−10

15 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 8 → 24 1.28 × 10
−10

16 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 8 → 9 → 11 1.27 × 10
−10

17 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 8 → 24 1.27 × 10
−10

18 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 8 → 9 → 11 3.17 × 10
−8

19 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 8 → 24 3.17 × 10
−8

20 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 18 → 22 → 23 → 8 → 9 → 11 1.27 × 10
−10

21 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 18 → 22 → 23 → 8 → 24 1.27 × 10
−10

22 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 18 → 19 → 22 → 23 → 8 → 9 → 11 5.10 × 10
−13

23 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 18 → 19 → 22 → 23 → 8 → 24 5.10 × 10
−13

24 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 18 → 19 → 20 → 22 → 23 → 8 → 9 → 11 2.04 × 10
−15

25 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 18 → 19 → 20 → 22 → 23 → 8 → 24 2.04 × 10
−15

26 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 18 → 19 → 20 → 21 → 23 → 8 → 9 → 11 8.19 × 10
−18

27 1 → 2 → 3 → 4 → 5 → 12 → 13 → 17 → 6 → 7 → 18 → 19 → 20 → 21 → 23 → 8 → 24 8.19 × 10
−18

28 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 18 → 22 → 23 → 8 → 9 → 11 1.27 × 10
−10

29 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 18 → 22 → 23 → 8 → 24 1.27 × 10
−10

30 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 18 → 19 → 22 → 23 → 8 → 9 → 11 5.08 × 10
−13

31 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 18 → 19 → 22 → 23 → 8 → 24 5.08 × 10
−13

32 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 18 → 19 → 20 → 22 → 23 → 8 → 9 → 11 2.03 × 10
−15

33 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 18 → 19 → 20 → 22 → 23 → 8 → 24 2.03 × 10
−15

34 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 18 → 19 → 20 → 21 → 23 → 8 → 9 → 11 8.16 × 10
−18

35 1 → 2 → 3 → 4 → 5 → 12 → 14 → 15 → 17 → 6 → 7 → 18 → 19 → 20 → 21 → 23 → 8 → 24 8.16 × 10
−18

36 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 18 → 22 → 23 → 8 → 9 → 11 3.16 × 10
−8

37 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 18 → 22 → 23 → 8 → 24 3.16 × 10
−8

38 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 18 → 19 → 22 → 23 → 8 → 9 → 11 1.26 × 10
−10

39 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 18 → 19 → 22 → 23 → 8 → 24 1.26 × 10
−10

40 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 18 → 19 → 20 → 22 → 23 → 8 → 9 → 11 5.06 × 10
−13

41 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 18 → 19 → 20 → 22 → 23 → 8 → 24 5.06 × 10
−13

42 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 18 → 19 → 20 → 21 → 23 → 8 → 9 → 11 2.03 × 10
−15

43 1 → 2 → 3 → 4 → 5 → 12 → 14 → 16 → 17 → 6 → 7 → 18 → 19 → 20 → 21 → 23 → 8 → 24 2.03 × 10
−15

1298

Rare Path Guided Fuzzing ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 4: Probabilistic inter-procedural control �ow graph

for the code from Fig. 2.

4 IDENTIFYING RARE PATHS

In this section, we describe construction of a probabilistic control

�ow graph to compute path probabilities. Then, we identify the

rare paths based on path probabilities.

4.1 Path Probability

Given a program % , let 8 denote the input for the program, and �

denote the domain of inputs (i.e., 8 ∈ �). Given a path C in program

% , the goal of path probability analysis is to determine how likely

it is to execute the path C . We do this by determining the likelihood

of picking inputs that result in the execution of path C . In order to

determine the likelihood of picking such inputs, we compute the

probability of picking such inputs if the inputs are chosen randomly.

We de�ne P(%, C) as:

Definition 7. P(%, C) denotes the probability of executing the

path C of program % where the input 8 of the program % is randomly

selected from the input domain � .

To compute path probability, we assume that inputs are uni-

formly distributed. However, one can extend our technique for path

probability computation by integrating usage pro�le [18], used in

other probabilistic analysis techniques.

Path probabilities can be computed using quantitative extensions

of symbolic execution such as probabilistic and statistical symbolic

execution [18, 21]. However, these symbolic execution based tech-

niques have a high computation complexity and poor scalibility due

to the cost of path constraint solving and model counting over an

exponentially increasing number of paths. Recently, a new heuristic-

based technique has been proposed for probabilistic reachability

analysis [37], which reduces the complexity of probabilistic analysis

using a concept called branch selectivity. In this paper, we focus

on computing path probabilities using branch selectivity instead of

computing reachability probabilities of program statements using

a Discrete-Time Markov Chain model as in [37].

4.2 Probabilistic Control Flow Graph

To compute path probabilities, we introduce the concept of the

probabilistic control �ow graph (Prob-CFG). One can interpret a

probabilistic control �ow graph as a weighted control �ow graph

where the edge weights are probability estimates. Prob-CFG is not a

discrete time Markov chain; the sum of probabilities of the outgoing

edges of a Prob-CFG node does not always add up to one.

Prob-CFG %�★

%
for a program % is constructed using the extended

inter-procedural control �ow graph (EIP-CFG) �★

%
for % . We de�ne

the probabilistic control �ow graph %�★

%
as follows:

Definition 8. Given a program % and its EIP-CFG �★

%
= (+ , �),

the probabilistic control �ow graph %�★

%
for program % is de�ned

as %�★

%
= (+ , �, �) where the set of vertices and edges for %�★

%
are

same as the set of vertices and edges of �★

%
, and � is a function

� : � → [0, 1] that assigns a probability score to each edge in �.

As we describe below, we use dependency analysis and branch

selectivity to compute probability scores of the edges in probabilistic

control �ow graphs.

Dependency Analysis. A branch condition in the program is input

dependent if the evaluation of the branch condition depends on

the value of the program input. Given a program and input(s) to

the program, we use static dependency analysis to identify the

input dependent branch vertices in the control �ow graph. Static

dependency analysis over-approximates the set of input-dependent

branch vertices. As a result, the path probability we compute is an

estimation of the actual path probability. Anyway, we use branch

selectivity, a heuristic to estimate path probability.

Branch Selectivity. To compute the probability for each edge

in the control �ow graph, we use branch selectivity. We use the

de�nition of branch selectivity S(1) as in [37]:

Definition 9. Given a branch condition 1, let �1 denote the

Cartesian product of the domains of the variables that appear in 1,

and let)1 ⊆ �1 denote the set of values for which branch condition 1

evaluates to true. Let |�1 | and |)1 | denote the number of elements in

these sets, respectively. Then, S(1) =
|)1 |
|�1 |

and 0 ≤ S(1) ≤ 1.

We compute |)1 | using amodel counting constraint solver. Branch

selectivity gets closer to 0 as the number of values that satisfy the

branch condition decreases and gets closer to 1 as the number of

values that satisfy the branch condition increases.

We de�ne the probability score function � for the probabilis-

tic control �ow graph %�% = (+ , �, �) using the combination of

dependency analysis and branch selectivity as follows:

• If there is only one edge starting from a vertex E to D, then

the probability of the edge 4 : E → D is 1, i.e, � (4) = 1.

1299

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li, Ganesh Sankaran, and Tevfik Bultan

• If E is a vertex with branch condition 1, there are two edges

from source vertex E : 41 : E → D1 and 42 : E → D2, where 41
is the true evaluation and 42 is the false evaluation of branch

condition 1:

– If branch condition 1 is dependent on program input, then

probability of edge 41 is the branch selectivity, S(1) =

|)1 |
|�1 |

and the probability of edge 42 is 1−S(1), i.e., � (41) =

S(1) and � (42) = 1 − S(1).

– If branch condition 1 is not dependent on program input,

then probability of both edges 41 and 42 is 1, i.e., � (41) =

� (42) = 1.

• Probabilities of edges that have a call vertex as their source

41 : call-pr� → entry-pr and 42 : call-pr� → return-pr� are

1, i.e., � (41) = � (42) = 1.

By adding probabilities to all the edges in a control �ow graph,

we transform it to a probabilistic control �ow graph. For the cases

where we assign probability score function � as � (41) = � (42) = 1,

only one of the two edges is viable during the program execution,

and such edges do not in�uence path probability.

Consider the EIP-CFG in Fig. 3. Each branch vertex is associated

with a branch condition. For example, vertex 2 is associated with

branch condition CUR[0] = D. We consider that the inputs are

uniformly distributed and domain for each character in a string has

256 values. Branch selectivity S for the branch condition at vertex

2 is 1

256
≡ 0.004. Hence, probability for the edges 2 → 3 is 0.004

and probability for the edge 2 → 10 is 1 − 0.004 = 0.996. We add

all the edge probabilities to the EIP-CFG�★

%
in Fig. 3 and construct

the probabilistic EIP-CFG %�★

%
, shown in Fig. 4. Once we construct

the probabilistic control �ow graph %�★

%
, we can compute path

probabilities as follows:

Definition 10. Given a control �ow path C of length = for pro-

gram % which corresponds to a sequence of vertices {E1, E2, E3, . . . , E=}

in the probabilistic control �ow graph %�★

%
= (+ , �, �), then path

probability P(%, C) for path C is computed as

P(%, C) =

=−1∏

8=1

� (E8 , E8+1)

Path probabilities computed for the II-paths for our running

example using the probabilistic control �ow graph in Fig. 4 are

shown in Table 1.

4.3 Rare Paths

We call a program path a rare path if it is unlikely to be executed

when the program input is randomly chosen. Since there may be

an unbounded number of paths in a program, given a depth bound

1, we identify the set of : rare paths among all paths with length

less than or equal to 1.

In order to identify a set of rare paths ' with size : for a given

execution depth 1, we compute path probabilities of all paths of

length less than or equal to 1 and choose the : paths with the

smallest path probabilities.

For example, traversing through the probabilistic control �ow

graph in Fig. 3 we generate 43 II-paths and compute corresponding

path probabilities as shown in Table 1. Now, if we sort these paths

in an ascending order based on the path probability and pick the

set of rare paths ' for : = 3, we identify paths 34, 35 and 26 as

the paths in the rare path set '. A fuzzer that randomly generates

inputs would be very unlikely to explore these rare paths.

5 INPUT GENERATION FOR RARE PATHS

The analysis we described above results in the set' of: rare paths in

the program. However, it does not identify : inputs that can trigger

these rare paths in the program. The input generation process we

describe in this section identi�es inputs to trigger the rare paths in

the set '. In order to generate the set of rare inputs �' for the set

of rare paths ' we guide concolic execution using each rare path

C' ∈ ' and generate input 8' for each C' (if path C' is a feasible

execution path). We add all these inputs to the set of rare inputs �' .

Note that, the rare paths we compute are based on an estimation

of path probability and some of the rare paths might not be feasible.

But, concolic execution captures the original program execution

semantics. Hence, if a rare path is not feasible, it will be eliminated

in the input generation step using concolic execution.

We use path-guided concolic execution to collect path constraints

for a rare path. We then use a SMT solver to solve the path con-

straints and generate the input that can be fed to the program

to execute the rare path. We provide two di�erent algorithms for

path-guided concolic execution for input generation: 1) Inter-path

guided concolic execution, 2) II-path guided concolic execution.

Algorithm 1 IP-GCE(%, C')

Takes a program % and an inter-procedural path C' as input and

generates an input for % to execute the path C'

1: input ← Random()
2: C� ← Execute(%, input)
3: index ← 2

4: while index < Len(C�) ∧ index < Len(C') do
5: if C� (index) ≠ C' (index) then
6: path_cond ← NegatedPath(C� , index)
7: if IsFeasible(path_cond) then
8: input ← Solve(path_cond)
9: C� ← Execute(%, input)
10: else
11: return input

12: index ← index + 1
13: return input

5.1 Inter-path Guided Concolic Execution

For inter-path guided concolic execution (IP-GCE), we run the pro-

gram on a concrete random input and generate the corresponding

inter-path C� . In order to generate input for the rare path C' , we

compare all branches for C� and C' in the same order. If there is

a mismatch between any of the branches, we negate the branch

and solve it to check feasibility of the path negating the branch.

If the path is feasible, we solve the path constraint and generate

the new input. We then execute the program using the new input

and update C� by the inter-path generated by the new input. The

process continues as long as there are branches left to compare

both in C� and C' or there are no branches that can lead to a feasible

path. At the end of the process, the input is the input that will either

take path C' or take a path that is close to the rare path C' if C' is

not feasible.

1300

Rare Path Guided Fuzzing ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Algorithm 2 IIP-GCE(%, C')

Takes a program % and an II-path C' as input and generates an input

for % to execute a path that has high overlap with C'

1: input ← Random()
2: C� ← Execute(%, input)
3: max_overlap ← Overlap(C� , C')
4: max_input ← input
5: index ← 1

6: while index < Len(C�) do
7: if IsBranch(C� (index)) ∧ Differ(C� (index), C') then
8: path_cond ← NegatedPath(C� , index)
9: if IsFeasible(path_cond) then
10: input ← Solve(path_cond)
11: C� ← Execute(%, input)
12: overlap ← Overlap(C� , C')
13: if overlap > max_overlap then
14: max_overlap ← overlap
15: max_input ← input
16: else
17: input ← max_input
18: C� ← Execute(%, input)

19: index ← index + 1

20: return input

Algorithm 1 shows the process of guiding concolic execution

using rare inter-path. Execute executes the program % �rst on a

random input and returns the corresponding execution path C� . The

algorithm looks for the �rst vertex where C� and C' di�er (all paths

start with the same vertex). NegatedPath(C� , index) generates a

path constraint corresponding to the path C� where the branch

condition between the vertex index− 1 and index is negated and all

the branches before index − 1 remain the same. IsFeasible checks

the feasibility of a given path constraint and Solve generates an

input value satisfying the given path constraint.

5.2 II-Path Guided Concolic Execution

In this section we discuss II-Path guided concolic execution (IIP-

GCE) which can also handle intra-paths since intra-paths are also II-

paths. An II-path can be infeasible, so it may not represent a concrete

execution path. Hence, IIP-GCE algorithm is not guaranteed to

generate an input exercising the given II-path. IP-GCE algorithm

we discussed in the previous section uses branch matching and

branch negation for mismatched branches, but this approach is not

su�cient for guiding the concolic execution to explore the rare

II-paths since II-paths may not represent a concrete execution path.

Similar to the IP-GCE algorithm, in the IIP-GCE algorithm (Algo-

rithm 2), we �rst run the program on a concrete random input and

collect the execution path C� . Note that, there may be branches in

C� that are in a procedure that is not explored in the input II-path

C' . In such situations, we compare the inputs that trigger both the

branch and its negation, and see which one creates an execution

path that overlaps more with C' (i.e., increases the number of ver-

tices that are common in both), and then we pick the branch which

results in higher overlap with C' .

Lines 1-5 in Algorithm 2 generate the initial concrete path C�
with a random input, and calculate the initial overlap between C�
and C' using the function Overlap. The while loop in lines 6-19

iterates over the nodes in C� . It looks for branch nodes in C� that

di�er from the corresponding branch node in C' . The function

Differ returns true under two conditions: 1) there is a branch

in C' that corresponds to complement of C� (index) (i.e., C' and

C� take di�erent branches for the same branch statement), or 2)

there is no branch in C' that corresponds to the branch C� (index)

(this branch node in C� corresponds to a branch in a procedure

that was not explored in C'). In both of these cases we negate the

branch condition at C� (index) and see if we can improve the overlap

between C� and C' , and update the input and C� if the overlap can

be improved. Note that, if the overlap cannot be improved, then the

input is restored to the previous input in lines 17-18.

Algorithm 2 makes a single pass on the branches in C� without

backtracking and therefore it is not guaranteed to �nd an execution

that maximizes the overlap between �nal C� and C' . Looking for

maximum overlap would require a search on all execution paths,

resulting in path explosion that we have to avoid for scalability.

For the running example, guiding concolic execution using path

35, input generated is DOC<ATT. whereas guiding concolic execution

using path 34, we �nd out that path 34 is infeasible. Hence, path-

guided concolic execution algorithms we provide does not only

generate inputs but also checks feasibility of the rare paths. Even

though our techniques for identifying rare paths in the program is a

heuristic approach, infeasible rare paths will be always �ltered out

in the input generation phase. The inputs we generate are always

valid inputs and they help fuzzer in exploring rare program paths.

6 IMPLEMENTATION

We implement our techniques (rare path analysis and path-guided

concolic execution) to analyze programs written in the C program-

ming language. We extract branch conditions and control �ow

graph for a program using the concolic execution tool CREST [16]

and underlying program transformation tool CIL [34]. To collect

branch conditions from the program, we modify the OCaml code

in CIL. We transform the branch conditions into constraints in

SMT-LIB format. To model count the branch constraints, we use

Automata-based Model Counter (ABC) [9]. To identify branches

that are input-dependent, we perform dependency analysis using

CodeQL [3], a code analysis engine.

After extracting the control �ow graph and collecting the model

counts for the input-dependent branches, we transform the control

�ow graph to a probabilistic control �ow graph. We write python

scripts to traverse the probabilistic control �ow graph and collect

intra-, inter-, and II-paths.

We guide concolic execution tool CREST [16] using the rare

paths we collect from our control �ow analysis. We implement

algorithms IP-GCE and IIIP-GCE in C on top of the existing con-

colic search strategies in CREST. We use existing coverage-guided

fuzzers AFL++ [19] and FairFuzz [25] without modi�cation. We

implement the proposed technique of the fuzzing tool DigFuzz [47]

using AFL++ and QSym [46]. To collect edge coverage we use

afl-showmap as used in [41].

Note that, as with any approach that builds on other techniques,

our approach does have limitations that are due to its building

blocks (for example, the program transformation tool CIL cannot

support some program constructs and model counting techniques

have limitations similar to constraint solvers used in symbolic exe-

cution). These limitations can be lifted with progress in the building

blocks we use.

1301

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li, Ganesh Sankaran, and Tevfik Bultan

7 EXPERIMENTAL EVALUATION

To evaluate our techniques for rare path-guided fuzzing we ex-

periment on three di�erent sets of programs. The �rst set of pro-

grams we use are from the seq-mthreaded directory [6] of the SV

benchmark used in SV-COMP and Test-Comp [12, 13]. We run our

experiments on 62 programs from the seq-mthreaded directory

since, in prior work [26], they are identi�ed as a set of programs

for which randomly-picked seed inputs are ine�ective. These pro-

grams contain lots of nested restricted branch conditions which are

challenging to handle for existing fuzzers.

The second set of programs has been used in the experimental

evaluation of a parser-directed fuzzer [32]. These programs deal

with structured inputs and contain a lot of restrictive branch condi-

tions. We add calculator [2] in this set which contains numerous

restrictive branch conditions.

The third set consists of two well-known libraries for parsing xslt

and xml �les, libxslt and libxml2, respectively. libxslt has been used

in [40] and libxml2 has been used to evaluate many coverage-guided

fuzzing techniques [14, 25, 33].

The criteria for selecting these three sets of programs is to demon-

strate that if there are restrictive branch conditions in a program,

existing fuzzing techniques have di�culty exploring program be-

haviors, and our proposed rare path analysis can help existing

fuzzers to increase code coverage without modifying them.

We use baseline random seeds for these programs following the

approaches used in prior works [25, 27, 32]. For example, when

fuzzing libxml2 or libxslt, as a random seed we use structured xml

and xslt content respectively as the random input.

As we focus on edge coverage in our experimental evaluation, we

set loop bound as 1 when analyzing rare paths in these programs.

We experimentally evaluate based on the following research

questions:

RQ1. Can our rare path analysis (without using any fuzzer) gener-

ate inputs that AFL++ can not?

RQ2. Can we improve mutation-based fuzzing e�ectiveness using

the seed set we generate from our rare path analysis?

RQ3. Can rare path-guided fuzzing achieve better coverage com-

pared to sampling-based hybrid fuzzers?

RQ4. Can we improve the e�ectiveness of rare path analysis using

II-paths?

Note that, similar to prior work on fuzzing (and testing in gen-

eral), we rely on the hypothesis that the ability to �nd bugs is

directly related to increasing code coverage [10]. We do not test

this hypothesis in this paper rather we focus to help fuzzers by

generating inputs for rare program paths (as most fuzzers struggle

to exercise such paths [25, 38]), and we evaluate this by measuring

the increase in coverage. Moreover, in our experimental evaluation,

we focus on fuzzers like FairFuzz [25] and DigFuzz [47]. The goal

of these fuzzers is to increase code coverage by exploring rare pro-

gram paths which also helps these fuzzers to �nd more bugs. For

example, FairFuzz was not experimentally evaluated for �nding

bugs, it was only evaluated for �nding rare branches and increasing

code coverage.

7.1 Experimental Setup

We run our experiments on a virtual box equipped with an Intel

Core i7-8750H CPU at 2.20GHz and 16 GB of RAM running Ubuntu

Linux 18.04.3 LTS. We use dockers for AFL++ [4] and FairFuzz

[5] to run all the fuzzing experiments. The Test-Comp benchmark

assumes that programs consume inputs via VERIFIER_nondet func-

tion calls.We rede�ne these functions in awrapper so that programs

can be fed with input from a �le. For the �rst set of programs, we

fuzz each program for 10 minutes and for the other two sets of

programs, we fuzz each program for 24 hours. To compensate for

nondeterminism we test each program at least three times and re-

port the maximum number of edges covered. We set the upper limit

for our rare path guidance technique (branch selectivity computa-

tion, rare path identi�cation, and seed generation) to 25% of the

total time (2.5 minutes for the �rst set and 6 hours for the second

and third set) and use the remaining 75% time for fuzzing (7.5 min-

utes and 18 hours respectively) with the seed set generated by our

analysis. We set the path depth limit to 60 for our rare path analy-

sis. In this paper we do not experimentally evaluate the trade-o�

between rare path exploration and fuzzing time, however, it might

be an interesting direction to explore in the future. After collecting

the rare paths, we provide all the inputs from the feasible rare paths

(�ltered by path-guided concolic execution) to the fuzzer as the

seed set.

7.2 Experimental Results

To answer RQ1, RQ2 and RQ3, we use II-Path based analysis and

algorithm IIP-GCE to generate rare seeds.

7.2.1 RQ1: E�ectiveness of Rare Path Analysis to Generate Rare

Inputs. Our experimental results show that the proposed rare path

analysis and path-guided concolic execution generates inputs in 6

hours (without running AFL++) which AFL++ itself cannot generate

in 24 hours by mutating inputs. Our results in detail are as follows.

seq-mthreaded. For 60 out of 62 programs in this set of pro-

grams, our rare path analysis generates inputs that cannot be gen-

erated by AFL++.

tinyC. Rare path analysis generates inputs containing if-else

structure. AFL++ generates if structure by mutating inputs but

cannot generate the if-else structure.

inih. AFL++ generates inputs generated by rare path analysis

as the input sequence is trivial containing opening and closing

brackets, and key-value pairs separated by a colon (:) or an equal

sign (=).

calculator. Rare path analysis generates inputs containing key-

words such as arcsin, arccos, and arctan but AFL++ cannot generate

these keywords even after running for 24 hours.

cJSON. AFL++ generates inputs containing basic JSON structure

with left and right braces, colon (:), and quotations(""). Rare path

analysis generates inputs containing keywords such as false, true,

and null that AFL++ cannot generate.

libxslt.We provide XSLT �le containing opening and closing tag

for stylesheet to AFL++. However, running AFL++ for 24 hours,

it cannot generate inputs containing keywords to explore deeper

functionalities. Rare path analysis generates inputs containing key-

words: attribute-set, preserve-space, and decimal-format.

1302

Rare Path Guided Fuzzing ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

libxml2. To explore deeper paths in libxml2, a xml �le needs

to contain keywords like DOCTYPE, ATTLIST, ENTITY, NOTATION

etc. Running AFL++ for 24 hours, it generates inputs containing

structures like DOCTYPE and ATTLIST. Rare path analysis generates

inputs containing not only DOCTYPE and ATTLIST but also ENTITY

and NOTATION.

7.2.2 RQ2: E�ectiveness of Rare Path Analysis to Improve Mutation-

based Fuzzing E�ectiveness. Our experimental results on the �rst set

of programs are shown in Table 3. Rare path analysis achieves better

coverage compared to both AFL++ and FairFuzz. For 60 out of 62

programs, AFL++ with rare seed achieves better coverage compared

to AFL++ with a random seed. For 48 out of 62 programs, FairFuzz

with rare seed achieves better coverage compared to FairFuzz with

a random seed. We see an average coverage improvement of 9.27%

over AFL++ and 5.03% over FairFuzz.

Experimentally evaluating on second and third sets of programs

(as shown in Fig. 5 and Table 2) we see coverage improvement over

AFL++ for 5 out of 6 of the benchmarks. We do not see a lot of

improvement for calculator (1.13%). We generate rare inputs: arcsin,

arccos, and arctan and then mutating these rare inputs AFL++ gen-

erates 3 more inputs: asin, acos, and atan. However, there are not

many program paths passing through these rare branches. Only 13

additional edges are covered and hence an improvement of 1.33% is

achieved. For tinyC and cJSON, we see an improvement of 6.47% (13

additional edges) and 4.19% (25 additional edges), respectively. For

libxslt, our rare path guidance helps AFL++ to cover 162 additional

edges (18.86% coverage improvement). For libxml2, we achieve the

maximum coverage improvement of 1170 additional edges (20.35%).

This indicates that for larger programs with lots of program paths,

if restrictive branches in the program can be passed through, ex-

isting mutation-based fuzzers can achieve signi�cantly more code

coverage.

We then experimentally evaluate using FairFuzz [25] and see

similar results as AFL++. For 5 out of 6 cases, we see improve-

ment, 0.51% for calculator 0.94% for tinyC, 4.14% for cJSON, 31.86%

for libxslt, and 18.29% for libxml2 (shown in Fig. 5 and Table 2).

Moreover, for cJSON, libxslt and libxml2, our rare path analysis can

generate inputs that FairFuzz cannot. These results indicate that

FairFuzz (which uses branch hit counts to identify rare branches)

can not generate rare inputs that our analysis can.

From our experimental evaluation, we also see that rare path

guided FairFuzz performs the best (1.33%, 5.36%, 7.46%, 22.82% and

58.00% more coverage than AFL++ for calculator, cJSON, tinyC,

libxslt and libxml2 respectively). These results indicate that seed

generation using lightweight quantitative symbolic analysis and

input generation using mutation techniques is complementary to

each other and a combination of these techniques is one of the

promising future directions to focus on.

7.2.3 RQ3: Comparison to Hybrid Fuzzer. To answer RQ3, we eval-

uate our rare path analysis on top of the hybrid fuzzing technique,

DigFuzz [47]. DigFuzz [47] identi�es the hardest paths to explore

for AFL using the samples collected using AFL and then uses sym-

bolic execution tool angr [39] to solve constraints for the hardest

paths. However, DigFuzz is not publicly available. We contacted the

authors of DigFuzz but could not get access to the implementation.

Hence, we implement the technique in DigFuzz using AFL++ and

Figure 5: Coverage comparison between AFL++, rare-path

guided AFL++, FairFuzz and rare-path guided FairFuzz

Table 2: Percentages of coverage improvement for rare path-

guided fuzzing over AFL++, FairFuzz

Benchmarks Number of lines % coverage improvement over
AFL++ FairFuzz

tinyC 190 6.47% 0.94%
inih 243 0.00% 0.00%
calculator 1312 1.33% 0.51%
cJSON 3845 4.19% 4.14%
libxslt 33371 18.86% 31.86%
libxml2 186116 20.35% 18.29%

QSym [46]. In our evaluation we use an unoptimized binary for

fuzzing (to associate branch �ip in concolic execution with hitcount

collected in fuzzing). We experiment on the 3 largest benchmarks,

cJSON, libxslt and libxml2. Results from our experimental evalua-

tion (Table 4) show that rare path guided DigFuzz achieves better

coverage compared to DigFuzz, 66.86% improvement for cJSON,

2.18% improvement for libxslt and 30.22% improvement for libxml2.

There are multiple reasons behind our implementation of DigFuzz

not being able to achieve better coverage compared to AFL++ and

FairFuzz: 1) building the execution tree takes hours for larger pro-

grams like libxml2 as the tree grows exponentially over time, 2)

concolic execution fails to generate inputs for a lot of paths and

hence generates very few inputs to guide AFL++ and 3) DigFuzz at-

tempts to solve branches that are not dependent on the inputs rather

used for sanity check of the program. These �ndings are aligned

with the �ndings of DigFuzz for larger programs [47]. Nonethe-

less, our experiments on DigFuzz still demonstrate that rare path

analysis improves the e�ectiveness of DigFuzz..

7.2.4 RQ4: E�ectiveness of II-path to Improve E�iciency of Rare

Path Analysis. To answer RQ4, we guide fuzzers using our rare

path analysis based on intra-paths, inter-paths and II-paths. Our

experimental evaluation shows that II-paths based analysis can

generate more or same number of rare inputs in comparison to

both intra- and inter-paths based analysis. Experimental results

for cJSON, libxslt and libxml2 are shown in (Fig. 6). There is no

improvement using intra paths for cJSON as it cannot generate any

new inputs. However, inter paths based analysis can generate new

inputs and hence improvement of 4.19%. II-paths based analysis can

generate new inputs compared to intra-paths but not compared to

inter-paths. For libxslt, there is no improvement using intra-paths as

1303

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li, Ganesh Sankaran, and Tevfik Bultan

Table 3: Coverage improvement for rare path-guided fuzzing

over AFL++ and FairFuzz on seq-mthreaded programs

Rare coverage Fair Rare coverage

Program LOC AFL++ AFL++ increase Fuzz FairFuzz increase

�oodmax.3.1 536 223 250 12.11% 203 223 9.68%

�oodmax.3.2 559 286 307 7.34% 262 282 7.50%

�oodmax.3.3 559 270 310 14.81% 282 282 0.00%

�oodmax.3.4 559 280 309 10.36% 282 282 0.00%

�oodmax.3 559 285 310 8.77% 275 282 2.38%

�oodmax.4.1 1204 323 364 12.69% 288 328 13.64%

�oodmax.4.2 1252 680 739 8.68% 714 754 5.50%

�oodmax.4.3 1252 698 738 5.73% 708 747 5.56%

�oodmax.4.4 1252 663 736 11.01% 695 747 7.55%

�oodmax.4 1252 681 739 8.52% 708 747 5.56%

�oodmax.5.1 2762 428 500 16.82% 400 452 13.11%

�oodmax.5.2 2842 1937 2144 10.69% 1815 1887 3.97%

�oodmax.5.3 2842 2076 2148 3.47% 1835 1914 4.29%

�oodmax.5.4 2842 1987 2152 8.30% 1868 1907 2.11%

�oodmax.5 2842 2067 2150 4.02% 1828 1914 4.66%

lcr-var.3.1 315 186 194 4.30% 177 177 0.00%

lcr-var.3.2 310 186 190 2.15% 170 170 0.00%

lcr-var.3 313 185 193 4.32% 177 177 0.00%

lcr-var.4.1 395 223 231 3.59% 210 216 3.12%

lcr-var.4.2 390 217 227 4.61% 203 210 3.23%

lcr-var.4 393 222 231 4.05% 210 216 3.12%

lcr-var.5.1 482 250 267 6.80% 249 256 2.63%

lcr-var.5.2 477 235 264 12.34% 236 249 5.56%

lcr-var.5 480 244 269 10.25% 242 256 5.41%

lcr-var.6.1 570 273 307 12.45% 275 301 9.52%

lcr-var.6.2 565 261 300 14.94% 269 295 9.76%

lcr-var.6 568 271 303 11.81% 275 301 9.52%

lcr.3.1 286 170 170 0.00% 144 144 0.00%

lcr.3 284 170 170 0.00% 144 144 0.00%

lcr.4.1 355 181 191 5.52% 170 170 0.00%

lcr.4 353 179 191 6.70% 164 170 3.66%

lcr.5.1 431 204 220 7.84% 197 203 3.05%

lcr.5 429 197 221 12.18% 197 203 3.05%

lcr.6.1 508 215 252 17.21% 216 236 9.26%

lcr.6 506 219 252 15.07% 223 236 5.83%

lcr.7.1 589 242 280 15.70% 236 262 11.02%

lcr.7 587 240 282 17.50% 236 262 11.02%

lcr.8.1 677 265 316 19.25% 275 301 9.45%

lcr.8 675 272 301 10.66% 256 295 15.23%

opt-f-max.3.2 604 304 329 8.22% 315 321 1.90%

opt-f-max.3.3 604 300 330 10.00% 315 321 1.90%

opt-f-max.3.4 604 300 329 9.67% 315 315 0.00%

opt-f-max.3 604 302 331 9.60% 315 321 1.90%

opt-f-max.4.1 1272 330 389 17.88% 334 374 11.98%

opt-f-max.4.2 1320 688 760 10.47% 754 800 6.10%

opt-f-max.4.3 1320 729 769 5.49% 754 793 5.17%

opt-f-max.4.4 1320 701 768 9.56% 747 800 7.10%

opt-f-max.4 1320 722 767 6.23% 760 800 5.23%

opt-f-max.5.1 2862 471 542 15.07% 452 518 14.55%

opt-f-max.5.2 2942 2082 2187 5.04% 1927 1979 2.71%

opt-f-max.5.3 2942 1955 2180 11.51% 1914 1973 3.10%

opt-f-max.5.4 2942 2031 2176 7.14% 1894 1979 4.49%

opt-f-max.5 2942 2003 2191 9.39% 1881 1979 5.23%

Standby.1 623 197 215 9.14% 170 190 11.54%

Standby.4.1 615 188 214 13.83% 164 184 12.00%

Standby.4.2 623 194 219 12.89% 190 190 0.00%

Standby.5 619 191 207 8.38% 190 190 0.00%

Standby 623 189 216 14.29% 190 190 0.00%

Triplicated.1 539 192 197 2.60% 170 170 0.00%

Triplicated.2 535 196 199 1.53% 170 170 0.00%

Triplicated 543 200 203 1.50% 177 177 0.00%

it can not generate new inputs. Using inter-paths, there is improve-

ment of 9.08% as new inputs are generated containing keywords

preserve-space and decimal-format. However, using II-paths,

improvement of 17.93% is achieved as inputs containing keyword

Table 4: Percentages of coverage improvement for rare path-

guided fuzzing over DigFuzz

Benchmarks DigFuzz
Rare Path-guided

DigFuzz
% coverage
improvement

cJSON 344 574 66.86%
libxslt 719 735 2.18%
libxml2 3297 4270 30.22%

(attribute-set) is generated, not generated by both intra- and

inter- paths. For libxml2, identifying rare paths based on intra-paths

can generate an input containing the speci�c value DOCTYPE and

hence, there is coverage improvement. Intra-paths based analysis

can generate DOCTYPE as the branch conditions comparing to this

speci�c value are present in the initial starting procedure. There is

no improvement using inter-paths, rather coverage is reduced as

inter-paths can not �nd any rare inputs. Inter-paths based analy-

sis explores program paths deep inside the nested procedures and

most of these paths are not rare paths and due to the exponential

increase in the number of program paths, analysis time is increased.

On the other side, II-paths can generate inputs containing speci�c

values DOCTYPE, ATTLIST, ENTITY and NOTATION. These inputs help

to achieve better coverage compared to both intra- and inter- paths

based analysis.

8 RELATED WORK

Mutation-based coverage guided Fuzzers. AFL [33] is awell-known

mutation-based coverage guided fuzzer. AFL++ [19] is the latest

version of AFL. In this work, we use default version of AFL++ which

uses power schedule of AFLFast [14]. MOPT [31] focuses on muta-

tion scheduling by providing di�erent probabilities to the mutation

operators. LAF-INTEL [1] focuses on bypassing hardmultibyte com-

parisons, by splitting them into multiple single-byte comparison.

REDQUEEN [8] focuses on bypassing Input-To-State (I2S) de�ned

comparisons. Steelix[28] performs static analysis and extra instru-

mentation to produce inputs satisfying multi-byte comparisons.

VUzzer [36] identi�es input positions used in the comparison and

immediate values using a Markov Chain model and decides which

parts of the program should be targeted. FairFuzz [25] identi�es the

rare branches in the program based on the hitcounts of branches.

If a rare branch is identi�ed by FairFuzz, it applies input mutation

masking. In this paper, we focus on identifying rare program paths.

We neither use a fuzzer to identify rare paths, nor modify mutation

strategies inside the fuzzer. We show that we can improve the ef-

fectiveness of state of the art fuzzers without making any changes

to the internals of fuzzers.

Symbolic execution guided fuzzers. Hybrid fuzzing techniques [30,

38, 47] use symbolic execution and constraint solvers to generate

inputs to pass complex checks in the program. Driller [38] uses se-

lected symbolic execution when fuzzer can not cover new branches.

DigFuzz [47] uses the fuzzer itself to statistically identify hardest

paths for the fuzzer to explore and then uses symbolic execution to

solve path constraints for the hardest paths. DeepFuzzer [30] uses

lightweight symbolic execution to pass initial complex checks and

then it relies on seed selection and mutation techniques. In this

work, we do not use the path samples from fuzzer to identify rare

1304

Rare Path Guided Fuzzing ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

(a) cJSON (b) libxslt (c) libxml2

Figure 6: Coverage improvement comparison between di�erent types of path-guided fuzzing. II-paths can generate more

number of rare inputs compared to both intra and inter paths within a given amount of time and hence highest edge coverage

is achieved by II-path guided fuzzing.

paths, rather we statically analyze programs. Moreover, we do not

symbolically execute the whole program, instead guide symbolic

execution using the rare paths.

Grammar-based Fuzzers. Grammar-based fuzzing techniques

generate well-formed inputs based on a user provided grammar [22,

44]. These fuzzing techniques mutate inputs using the derivative

rules in the grammar. As a result, the mutated input is also guar-

anteed to be well-formed [29]. Grammar-based fuzzers are very

e�ective to fuzz programs that are heavily dependent on structured

inputs [22, 42]. However, grammar-based fuzzers require applica-

tion speci�c knowledge of the program under test. There are several

fuzzers [15, 24, 32, 40, 43] focus speci�cally on structured inputs.

Our technique does not require any knowledge about the program

and it is fully automated. We neither need to provide an input

grammar, nor feed inputs to the parser [32, 42] or collect large data

samples [40] like techniques that specialize on structured inputs.

Seed generation for fuzzers. There are fuzzing techniques that

focus on seed selection and seed prioritization to improve fuzzing

e�ciency [23, 35, 45]. SpotFuzz [35] identi�es invalid execution and

time consuming edges as hot spots based on hitcounts of di�erent

inputs on the edges. SLF [45] is a technique which focuses on valid

seed input generation. It performs sophisticated input mutation to

get through the validity checks. [23] systematically investigates

and evaluates the a�ect of seed selection on fuzzer’s ability to �nd

bugs and demonstrates that fuzzing outcomes vary depending on

the initial seeds used. In this work, we also demonstrate that rare

inputs as initial seeds bootstraps the fuzzer. However, we focus on

generating seeds that can execute rare paths.

Static program analysis for fuzzing. A large number of fuzzing

techniques [8, 11, 20, 28, 32, 36] use static program analysis tech-

niques to guide fuzzers. Most of these techniques use either control

�ow analysis or taint analysis. In this work, we also use control �ow

analysis and dependency analysis to identify rare paths. However

we introduce a novel technique we call rare path analysis and a new

kind of control �ow paths (II-paths). Although di�erent, our de�-

nition of II-paths is inspired by the control �ow directed concolic

search techniques provided in [16].

9 CONCLUSIONS

In this paper, we provide techniques to identify rare program paths

that are di�cult for a fuzzer to explore generating random inputs.

To identify the rare paths, we use lightweight static analysis. We

use the identi�ed rare paths to guide a concolic execution tool

to generate inputs that can execute these rare paths. Finally, we

provide these inputs as the initial seed set to the fuzzer. From our

experimental evaluation on 3 di�erent set of benchmarks, we �nd

that our approach generates inputs that a fuzzer cannot generate by

mutations. Inputs generated by our analysis guide existing fuzzers

to achieve better coverage compared to an initial random seed.

REFERENCES
[1] 2006. laf-intel. https://la�ntel.wordpress.com/. Accessed: 2018-08-21.
[2] 2022. Calculator. https://github.com/btmills/calculator.Accessed: 2022-08-21.
[3] 2022. CodeQL. https://codeql.github.com.Accessed: 2022-08-21.
[4] 2022. Docker for AFL++. https://hub.docker.com/r/a�plusplus/

a�plusplus.Accessed: 2022-08-21.
[5] 2022. Docker for FairFuzz. https://hub.docker.com/r/zjuchenyuan/

fairfuzz.Accessed: 2022-08-21.
[6] 2023. SV-Benchmark:seq-mthreded. https://gitlab.com/sosy-lab/benchmarking/

sv-benchmarks/-/tree/main/c/seq-mthreaded.Accessed: 2023-02-15.
[7] Frances E. Allen. 1970. Control Flow Analysis. SIGPLAN Not. 5, 7 (jul 1970), 1–19.

https://doi.org/10.1145/390013.808479
[8] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and

Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
https://doi.org/10.14722/ndss.2019.23371

[9] Abdulbaki Aydin, Lucas Bang, and Tev�k Bultan. 2015. Automata-Based Model
Counting for String Constraints. 255–272. https://doi.org/10.1007/978-3-319-
21690-4_15

[10] Thomas Bach, Artur Andrzejak, Ralf Pannemans, and David Lo. 2017. The Impact
of Coverage on Bug Density in a Large Industrial Software Project. https:
//doi.org/10.1109/ESEM.2017.44

[11] So�a Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. 2012. A Taint
Based Approach for Smart Fuzzing. Proceedings - IEEE 5th International Conference
on Software Testing, Veri�cation and Validation, ICST 2012 (04 2012). https:
//doi.org/10.1109/ICST.2012.182

[12] Dirk Beyer. 2021. Software Veri�cation: 10th Comparative Evaluation (SV-COMP
2021). 401–422. https://doi.org/10.1007/978-3-030-72013-1_24

[13] Dirk Beyer. 2022. Advances in Automatic Software Testing: Test-Comp 2022. 321–
335. https://doi.org/10.1007/978-3-030-99429-7_18

[14] Marcel Bohme, Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-Based
Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engineering
PP (12 2017), 1–1. https://doi.org/10.1109/TSE.2017.2785841

[15] Sergey Bratus, Axel Hansen, and Anna Shubina. 2008. LZfuzz: a fast compression-
based fuzzer for poorly documented protocols. (2008).

[16] Jacob Burnim and Koushik Sen. 2008. Heuristics for Scalable Dynamic Test Gen-
eration. In 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. 443–446. https://doi.org/10.1109/ASE.2008.69

1305

https://lafintel.wordpress.com/
https://github.com/btmills/calculator
https://codeql.github.com
https://hub.docker.com/r/aflplusplus/aflplusplus
https://hub.docker.com/r/aflplusplus/aflplusplus
https://hub.docker.com/r/zjuchenyuan/fairfuzz
https://hub.docker.com/r/zjuchenyuan/fairfuzz
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/seq-mthreaded
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/seq-mthreaded
https://doi.org/10.1145/390013.808479
https://doi.org/10.14722/ndss.2019.23371
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1109/ESEM.2017.44
https://doi.org/10.1109/ESEM.2017.44
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/ASE.2008.69

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li, Ganesh Sankaran, and Tevfik Bultan

[17] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209–224.

[18] Antonio Filieri, Corina Păsăreanu, Willem Visser, and Jaco Geldenhuys. 2014.
Statistical symbolic execution with informed sampling. 437–448. https://doi.org/
10.1145/2635868.2635899

[19] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, andMarc Heuse. 2020. {AFL++}:
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
O�ensive Technologies (WOOT 20).

[20] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, DongWu, and
Zuoning Chen. 2020. {GREYONE}: Data �ow sensitive fuzzing. In 29th USENIX
Security Symposium (USENIX Security 20). 2577–2594.

[21] Jaco Geldenhuys, Matthew Dwyer, and Willem Visser. 2012. Probabilistic sym-
bolic execution. 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012 - Proceedings (07 2012). https://doi.org/10.1145/2338965.2336773

[22] Patrice Godefroid, Adam Kiezun, and Michael Levin. 2008. Grammar-based
Whitebox Fuzzing. Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) 43, 206–215. https://doi.org/10.1145/
1379022.1375607

[23] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony Hosking. 2021. Seed selection for successful fuzzing. 230–243. https:
//doi.org/10.1145/3460319.3464795

[24] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In 21st USENIX Security Symposium (USENIX Security 12). 445–458.

[25] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage. 475–485. https://doi.org/10.1145/
3238147.3238176

[26] Caroline Lemieux and Koushik Sen. 2021. FairFuzz-TC: a fuzzer targeting rare
branches. International Journal on Software Tools for Technology Transfer 23, 6
(01 Dec 2021), 863–866. https://doi.org/10.1007/s10009-020-00569-w

[27] Caroline Lemieux and Koushik Sen. 2021. FairFuzz-TC: a fuzzer targeting rare
branches. International Journal on Software Tools for Technology Transfer 23, 6
(01 Dec 2021), 863–866. https://doi.org/10.1007/s10009-020-00569-w

[28] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-State Based Binary Fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 627–637. https://doi.org/10.1145/3106237.3106295

[29] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the Art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.
https://doi.org/10.1109/TR.2018.2834476

[30] Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao, Yuanliang Chen, Houbing Song,
and Kim-Kwang Raymond Choo. 2021. DeepFuzzer: Accelerated Deep Greybox
Fuzzing. IEEE Transactions on Dependable and Secure Computing 18, 6 (2021),
2675–2688. https://doi.org/10.1109/TDSC.2019.2961339

[31] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. {MOPT}: Optimized mutation scheduling for fuzzers. In
28th USENIX Security Symposium (USENIX Security 19). 1949–1966.

[32] Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias
Höschele, and Andreas Zeller. 2019. Parser-Directed Fuzzing. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery,
New York, NY, USA, 548–560. https://doi.org/10.1145/3314221.3314651

[33] Michał Zalewski. 2014. American Fuzzy Lop. http://lcamtuf.coredump.cx/a�/.

[34] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer. 2002. CIL:
Intermediate Language and Tools for Analysis and Transformation of C Programs.
In Compiler Construction, R. Nigel Horspool (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 213–228.

[35] Haibo Pang, Jie Jian, Yan Zhuang, Yingyun Ye, and Zhanbo Li. 2021. SpotFuzz:
Fuzzing Based on Program Hot-Spots. Electronics 10 (12 2021), 3142. https:
//doi.org/10.3390/electronics10243142

[36] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giu�rida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. https:
//doi.org/10.14722/ndss.2017.23404

[37] Seemanta Saha, Mara Downing, Tegan Brennan, and Tev�k Bultan. 2022.
PREACH: A Heuristic for Probabilistic Reachability to Identify Hard to Reach
Statements. In 44th IEEE/ACM 44th International Conference on Software En-
gineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 1706–1717.
https://doi.org/10.1145/3510003.3510227

[38] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. https:
//doi.org/10.14722/ndss.2016.23368

[39] Fish Wang and Yan Shoshitaishvili. 2017. Angr - The Next Generation of Binary
Analysis. In 2017 IEEE Cybersecurity Development (SecDev). 8–9. https://doi.org/
10.1109/SecDev.2017.14

[40] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Sky�re: Data-Driven
Seed Generation for Fuzzing. In 2017 IEEE Symposium on Security and Privacy
(SP). 579–594. https://doi.org/10.1109/SP.2017.23

[41] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yuqun Zhang, Guowei Yang, Huixin
Ma, Sen Nie, Shi Wu, Heming Cui, and Lingming Zhang. 2022. Evaluating
and Improving Neural Program-Smoothing-based Fuzzing. In 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE). 847–858. https:
//doi.org/10.1145/3510003.3510089

[42] Jingbo Yan, Yuqing Zhang, and Dingning Yang. 2013. Structurized grammar-
based fuzz testing for programs with highly structured inputs. Security and
Communication Networks 6 (11 2013). https://doi.org/10.1002/sec.714

[43] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Jose, Cali-
fornia, USA) (PLDI ’11). Association for Computing Machinery, New York, NY,
USA, 283–294. https://doi.org/10.1145/1993498.1993532

[44] Hyunguk Yoo and Taeshik Shon. 2016. Grammar-based adaptive fuzzing:
Evaluation on SCADA modbus protocol. 557–563. https://doi.org/10.1109/
SmartGridComm.2016.7778820

[45] Wei You, Xuwei Liu, Shiqing Ma, David Perry, Xiangyu Zhang, and Bin Liang.
2019. SLF: Fuzzing without Valid Seed Inputs. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 712–723. https://doi.org/10.1109/
ICSE.2019.00080

[46] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. {QSYM}:
A practical concolic execution engine tailored for hybrid fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18). 745–761.

[47] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hardest Problems
My Way: Probabilistic Path Prioritization for Hybrid Fuzzing.. In NDSS. https:
//doi.org/10.14722/ndss.2019.23504

Received 2023-02-16; accepted 2023-05-03

1306

https://doi.org/10.1145/2635868.2635899
https://doi.org/10.1145/2635868.2635899
https://doi.org/10.1145/2338965.2336773
https://doi.org/10.1145/1379022.1375607
https://doi.org/10.1145/1379022.1375607
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1007/s10009-020-00569-w
https://doi.org/10.1007/s10009-020-00569-w
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TDSC.2019.2961339
https://doi.org/10.1145/3314221.3314651
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.3390/electronics10243142
https://doi.org/10.3390/electronics10243142
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1145/3510003.3510227
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1145/3510003.3510089
https://doi.org/10.1145/3510003.3510089
https://doi.org/10.1002/sec.714
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/SmartGridComm.2016.7778820
https://doi.org/10.1109/SmartGridComm.2016.7778820
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.14722/ndss.2019.23504
https://doi.org/10.14722/ndss.2019.23504

	Abstract
	1 Introduction
	2 Overview
	3 Program Paths
	3.1 Control Flow Graphs and Paths
	3.2 Intra-Inter Control Flow Paths (II-Paths)

	4 Identifying Rare Paths
	4.1 Path Probability
	4.2 Probabilistic Control Flow Graph
	4.3 Rare Paths

	5 Input Generation for Rare Paths
	5.1 Inter-path Guided Concolic Execution
	5.2 II-Path Guided Concolic Execution

	6 Implementation
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Related Work
	9 Conclusions
	References

