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ABSTRACT

Starting with a random initial seed, fuzzers search for inputs that
trigger bugs or vulnerabilities. However, fuzzers often fail to gen-
erate inputs for program paths guarded by restrictive branch con-
ditions. In this paper, we show that by first identifying rare-paths
in programs (i.e., program paths with path constraints that are
unlikely to be satisfied by random input generation), and then, gen-
erating inputs/seeds that trigger rare-paths, one can improve the
coverage of fuzzing tools. In particular, we present techniques 1)
that identify rare paths using quantitative symbolic analysis, and 2)
generate inputs that can explore these rare paths using path-guided
concolic execution. We provide these inputs as initial seed sets to
three state of the art fuzzers. Our experimental evaluation on a set
of programs shows that the fuzzers achieve better coverage with
the rare-path based seed set compared to a random initial seed.
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1 INTRODUCTION

Fuzz testing has emerged as one of the effective testing techniques
for achieving code coverage and finding bugs and vulnerabilities in
software [8, 14, 25, 31, 33, 36, 38, 47]. Mutation-based fuzzers [25]
and hybrid fuzzers [47] focus on improving coverage using muta-
tion strategies or symbolic execution, respectively. Both of these
techniques try to identify unexplored behaviors based on the inputs
generated and branches covered during fuzzing. Note that, it may
take a long time to generate a value that triggers a branch if the
branch condition is very restrictive, and it is difficult to separate
infeasible paths from feasible but rare paths via input mutation.

In this paper, we propose a lightweight whitebox analysis to
identify rare paths in programs and then guide symbolic execution
to generate inputs to explore these rare paths. Our approach avoids
the shortcomings of mutation-based greybox fuzzers [8, 14, 25, 31,
33, 36] and hybrid fuzzers [38, 47] by generating inputs for rare
paths beforehand, and it avoids the shortcomings of (symbolic
execution based) whitebox fuzzers [17, 39] by reducing the cost of
symbolic analysis.

We present a heuristic for identifying rare paths where we use
control flow analysis, dependency analysis and model counting on
branch constraints to transform a control flow graph to a proba-
bilistic control flow graph. Then, we estimate path probabilities by
traversing the probabilistic control flow graph and identify the rare
(low-probability) paths.

Although our heuristic for estimating path probabilities and iden-
tifying rare paths is not sound and does not provide guarantees, our
experimental results demonstrate that it is effective in generating
seeds that trigger rare behaviors and it improves the coverage of
existing fuzzers without even modifying them.

To improve the rare path analysis we introduce a new type of
control flow paths (which we call II-paths) which is a combination
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if ((int )id1 != (int )id2) {
if ((int )id1 = (int )id3) {
if ((int )id2 != (int )id3) {
if ((int )idl >= @) {

T if (Cint )r1 == @) ¢

if ((int )max1 == (int )id1) {
if ((int )max2 == (int )id2) {
if ((int )max3 (int )id3) {
if ((int )st1 == @) {
if ((int )st2 == @) {

if ((int )nl3 == @) {

if ((int )model == 0) {
if ((int )mode2 == 0) {
if ((int )mode3 == @) {
tmp___5 = 1;
} else {

Figure 1: A code fragment from pals_floodmax.3.1.ufo.
BOUNDED-6.pals.c in the SV benchmarks.

of intra- and inter-procedural program paths, providing a balance
between breadth first and depth first traversal of program paths.
Our intuition is that II-paths-based analysis can generate more rare
inputs compared to both intra- and inter-paths given a time budget.

We guide concolic execution using rare paths to generate inputs
that trigger rare behaviors. As the last step of our approach, we
provide the set of inputs generated by our analysis as the initial
seed set to a fuzzer. This enables the fuzzer to explore the rare paths
immediately, resulting in better coverage compared to randomly
generated initial seed sets. Our approach can be integrated with all
existing fuzzers that rely on initial seeds.

Our contributions in this paper are as follows:

o A novel technique for estimating path probabilities to iden-
tify rare paths in programs using a lightweight quantitative
symbolic analysis.

A new type of control flow paths (II-paths) to improve effi-
ciency and effectiveness of the rare path analysis.
Algorithms for path-guided concolic execution.

Rare-path guided fuzzing approach where the initial seed
set for a given fuzzer is generated with rare-path analysis.
Experimental evaluation of the proposed techniques on ex-
isting fuzzers AFL++, FairFuzz and DigFuzz, demonstrat-
ing coverage improvement achieved by the proposed rare-
path guided fuzzing approach, without even modifying the
fuzzers.

The paper is organized as follows. We provide an overview in
section 2. We explain program path analysis, heuristic to identify
rare paths and input generation using the rare paths on section 3, 4
and 5, respectively. We discuss our implementation and experimen-
tal evaluations in section 6 and 7 respectively. We discuss related
work in section 8 and provide our conclusions in section 9.

2 OVERVIEW

Fig. 1 is a code snippet from a program in the seq-mthreaded
dataset of SV (software verification) benchmarks [6] used in soft-
ware verification and testing competitions (SV-COMP and Test-
Comp) [12, 13]. This code fragment contains a set of nested branch
conditions leading to assignment of 1 to the tmp__5 variable. If
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that variable is not set, the program will not exhibit a large set of
behaviors. For a code fragment like this, it is difficult for fuzzers to
generate a seed that triggers a program path reaching the assign-
ment statement. Our experiments show that our approach improves
performance of existing fuzzers (without modifying them) by gen-
erating seeds for rare paths that are unlikely to be covered by
mutating randomly generated seeds.

Consider the running example in Fig. 2 which is a shortened
version of a code structure found in 1ibxm12. The main procedure
of the program reads a string as an argument. It checks if the first
3 characters of the string is DOC or not. If the first 3 characters of
the string is DOC, it parses the string starting from the 4th character.
First, it goes inside the parse_cmt procedure and it checks if the 4th
character is < or > and skips if it is. Then, the program comes back to
the main procedure and goes inside the parse_att procedure. In the
parse_att procedure, the program looks for the character sequence
ATT. If it finds this sequence, it goes deeper into the program and
executes more functionalities. To summarize, the program is trying
to find two specific sequences of characters: first DOC and then
ATT and if it can find these two sequences, it can execute more
functionalities.

A mutation based fuzzer, such as AFL, starting with a random
initial seed will require a lot of mutations to get to an input con-
taining sequences DOC and ATT. We run AFL 5 times on the running
example for an hour. We do not enable any additional options of
AFL other than basic input output options. Length of the input is
considered unknown, hence the input can be of any length. As an
initial random seed/input we provide a single space. For 4 out of
5 times, AFL cannot generate an input containing sequences DOC
and ATT. AFL can generate inputs such as DOC, DOC<, DOC>, DOCA etc.
Though coverage guided mutation helps to reach these inputs, AFL
is not able to generate the desired sequences as it mutates randomly
and breaks already found sequences to inputs like DAC and DOCQ.

Now, let us explain how rare path analysis can guide a mutation-
based fuzzer to achieve more coverage given a time budget. To
perform rare path analysis on the running example program, we
first extract the control flow graph and then we collect control flow
paths of the program. At this point, we can use two well known
existing techniques for control flow analysis to collect paths: intra-
procedural control flow analysis and inter-procedural control flow
analysis. Control flow graphs for the code in Fig. 2 are shown in
Fig. 3.

First, we collect paths using intra-procedural control flow analy-
sis (paths from 1 to 5 in Table 1). Among these paths, we find that
path 4 is the rarest one. We identify rarity of the paths by comput-
ing path probability and we say that a path is the rarest if it has
the lowest probability. Note that, to compute path probability, one
can collect the path constraints using symbolic execution. In this
paper, we do not use symbolic execution to collect path constraints.
Instead we use a heuristic to compute path probabilities (discussed
in section 4) that focuses on branch conditions and their selectivity.

After identifying the rare paths, we guide concolic execution
(discussed in section 5) to generate inputs that trigger the rare paths.
For example, for path 4 in Table 1, concolic execution generates
the input DOC. We provide this input as the initial seed to AFL and
we find that AFL can generate the sequences DOC and ATT within



Rare Path Guided Fuzzing

char *CUR;
#define CMP3( s, c1,
( ((unsigned char
((unsigned char
((unsigned char
int main(int argc,
CUR = argv[1];
if (CMP3(CUR, 'D',
CUR = CUR + 3;
parse_cmt();
if(parse_att())
/* go deeper x/

c2, c3 )\

*) s)L 0 1 == c1 && \
*) s)L 11 == c2 && \
*) s)L 2 1 == ¢c3 )
char *xargv) {

0, et {

}
return 0;
}
void parse_cmt() {
if (*xCUR == '<' || *CUR
CUR++;

>0
}
int parse_att() {
if (CMP3(CUR, 'A', 'T'
return 1;
return 0;

}

Figure 2: A code fragment based on the libxml file parser.c.

40 minutes (on average) whereas AFL with a random seed cannot
generate these sequence in an hour.

We also collect paths using inter-procedural control flow analy-
sis (paths from 20 to 43 in Table 1). Using our rare path analysis,
we identify path 35 as the rarest one. Guiding concolic execution
using path 35, the input generated is DOC<ATT. Providing this
input as initial seed, fuzzer immediately explores the path covering
sequences DOC and ATT.

Using inter-procedural control flow analysis, we can generate
the rarest paths in the program. However, paths based on inter-
procedural analysis also traverse parse_cmt which is not necessary
to generate the desired sequences DOC and ATT that enable us to
explore deeper behaviors. Although, for our small running exam-
ple, analyzing the procedure parse_cmt will not waste too much
analysis time, for larger real world cases like 1ibxml2, focusing
only on inter-procedural paths is likely be costly and can increase
the cost of rare path analysis significantly.

To improve the effectiveness of rare path analysis (in order to
generate a higher number of rare seeds within a given time budget)
we introduce a new kind of control flow path in this paper which
we call II-paths (discussed in section 3). II-paths subsume intra-
procedural and inter-procedural control flow paths, and include
more paths that combine their characteristics. All the paths in
Table 1 are II-paths, where paths 1 to 5 are intra-procedural control
flow paths, and paths 20 to 43 are inter-procedural control flow
paths. Furthermore, paths 6 to 19 are also II-paths. Let us assume
that, given a time budget, we can generate the paths from 1 to
20 only. Then, we will identify II-path 13 as the rarest one and
concolic execution can generate the input DOCATT. As a result, we
will able to generate an input containing sequences DOC and ATT
while analyzing a relatively small number of paths.

3 PROGRAM PATHS

First step in rare-path guided fuzzing is identification of rare paths.
The paths we identify are control flow paths that are generated by
traversing control flow graphs of programs.
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entry_
parse_cmt

'
CALL parse_att |
rgo
deeper */
exit_
parse_att g

Figure 3: Control flow graphs for the code from Fig. 2.

3.1 Control Flow Graphs and Paths

Fig. 3 shows the control flow graphs for procedures shown in Fig. 2
in boxes a (main), b (parse_cmt) and ¢ (parse_att). We define the
control flow graph (CFG) [7] Gpy for a procedure pr as follows:

DEFINITION 1. A control flow graph for a procedure pr is a directed
graph Gpr = (V, E) where each vertexv € V represents a basic block
of pr, and each directed edge e € E : v — v’ represents a possible
flow of control from vertex v to vertexv’ € E . Control flow graph Gpy
has a unique entry vertex entry-pr € V with no incoming edges and
a unique exit vertex exit-pr € V with no outgoing edges. Furthermore,
for each procedure call statement C to a procedure pr’, Gpy contains a
call vertex call-pr’c € V and a return-site vertex return-pr'c € V, and
an edge call-pr'c — return-pr’c € E that represents the procedure
call.

An inter-procedural control flow graph represents control flow
of the whole program by combining the control flow graphs of all
procedures of the program.

DEFINITION 2. An Inter-Procedural Control Flow Graph (IP-CFG)
for a program P, G;{, (V,E), contains the vertices and edges of
the CFGs of all procedures in P, except the edges that correspond
to procedure calls. Instead, for each procedure call statement C to a
procedure pr in P, GIJS contains an edge from the call vertex to the
entry vertex of the called procedure, call-pro — entry-pr € E, and
an edge from the exit vertex of the called procedure to the return-site
vertex for the call, exit-pr — return-pr- € E, but it does not contain
an edge between the call vertex and the return-site vertex, call-pro —
return-pr- € E. G; also contains a vertex entry-global € V with
no incoming edges (entry point of the program) and another vertex
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exit-global € V with no outgoing edges (exit point of the program),
and connects them to the main procedure of the program P with edges
entry-global — entry-main € E and exit-main — exit-global € E.

Fig. 3 shows the IP-CFG for the code from Fig. 2 (the dashed edges
are not part of the IP-CFG). For the call to procedure parse_cmt,
there are two edges. One edge from call vertex 5 (which corre-
sponds to call-prc) to entry-parse_cmt and one from exit-parse_cmt
to return-site vertex 6 (which corresponds to return-prc).

We define intra- and inter-procedural control flow paths as fol-
lows:

DEFINITION 3. Given a control flow graph Gpr = (V,E) for a
procedure pr, an intra-procedural control flow path (intra-path) is a
sequence of vertices (v1, 02,03, . ..,0n) wWhereVi,v; € V,0; — vj41 €
E, v1 = entry_pr and v, = exit_pr.

DEFINITION 4. Given an inter-procedural control flow graph G,
(V,E) for a program P, an inter-procedural control flow path (inter-
path) is a sequence of vertices (v1, v2,v3, . . ., 0n) WhereVi,v; € V,0; —
vi+1 € E, v = entry-global and v, = exit-global.

Paths 1 to 5 in Table 1 correspond to all the intra-paths for the
CFG of procedure main, and paths 20 to 43 in Table 1 are all the inter-
paths for the IP-CFG of the whole program based on the control
flow graphs shown in Fig. 3 for our running example. To save space,
we only show the vertices with numeric labels in Table 1.

3.2 Intra-Inter Control Flow Paths (II-Paths)

We introduce a new type of control flow paths by combining both
intra-paths and inter-paths. We call these paths intra-inter control
flow paths (II-paths). Intuitively, for each procedure call, inter-
paths have to choose a path inside the called procedure’s CFG. On
the other hand, intra-paths do not explore the CFGs of the called
procedures. When visiting a procedure call statement, II-paths have
the option to either behave like intra-paths (i.e., do not explore
the CFG of the called procedure), or behave like inter-paths (i.e.,
explore the CFG of the called procedure).

In order to formally define II-paths we add back an extra edge
to the IP-CFG between the call vertex call-pr and return-site ver-
tex return-pr for each call statement C (as we had for the intra-
procedural control flow graphs in Definition 1). We call the resulting
control flow graph Extended Inter-Procedural Control Flow Graph
(EIP-CFG):

DEFINITION 5. The Extended Inter-Procedural Control Flow Graph
(EIP-CFG) for program P, denoted as G, = (V',E’), is defined using
the IP-CFG G}, = (V, E) of the program P, where V' =V and E C E'.
The only edges that are in E’ and not in E are: For each procedure
call statement C, a single edge between the call vertex call-pr and
the return-site vertex return-pre is included in E’, ie., call-pro —
return-pr € E’ whereas call-pro — return-pro ¢ E.

Fig. 3 shows the EIP-CFG for our running example from Fig. 2
where the dashed edges are also part of the EIP-CFG. In the EIP-CFG,
there are two edges from each call vertex call-pr, for a procedure
call: 1) to the entry vertex of called procedure pr entry_pr, ie., edge
call-pro — entry-pr and 2) to the return-site vertex return-prc,
ie., edge call-pro — return-pro. For example, in Fig. 3, the call
vertex 5 has two outgoing edges corresponding to these two cases
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1) 5 — entry-parse_cmt and 2) 5 — 6. As a result, whenever a
call vertex is reached, there are two different paths to explore: 1)
path taken via edge call-pro — entry-pr which is similar to inter-
paths, and 2) path taken via edge call-pro — return-pr- which is
similar to intra-paths. Intuitively, every time a procedure call vertex
is reached, II-paths can choose between considering or ignoring
the control flow inside the called procedure. Whereas, intra-paths
never explore the control flow of called procedures, and inter-paths
always have to explore the control flow of the called procedures.
We define II-paths as follows:

DEFINITION 6. Given an EIP-CFG GI’; = (V,E) for a program
P, an intra-inter control flow path (II-path) is a sequence of vertices
(v1,02,03,...,0,) whereVi,v; € V,0; — vj41 € E, v1 = entry-global
and vy, = exit-global.

Again, let us consider the paths (listed in Table 1) of the EIP-CFG
shown in Fig. 3 for our running example from Fig. 2. As we noted
before, paths 1 to 5 in Table 1 are all the intra-paths for procedure
main, and paths 20 to 43 in Table 1 are all the inter-paths for the
program. Note that, based on the II-paths definition these paths are
also II-paths. Furthermore, using the II-paths definition, in addition
to II-paths from 1 to 5 and from 20 to 43, we now have additional
II-paths from 6 to 19 where paths from 6 to 13 that ignore the
control flow inside procedure parse_cmt but consider the control
flow inside procedure parse_att and paths from 14 to 19 that
ignore the control flow inside procedure parse_att but consider
the control flow inside procedure parse_cmt.

Table 1: II-paths for the extended inter-procedural control
flow graph shown in Fig. 3.

Path Probability
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entry_
parse_cmt

Figure 4: Probabilistic inter-procedural control flow graph
for the code from Fig. 2.

4 IDENTIFYING RARE PATHS

In this section, we describe construction of a probabilistic control
flow graph to compute path probabilities. Then, we identify the
rare paths based on path probabilities.

4.1 Path Probability

Given a program P, let i denote the input for the program, and I
denote the domain of inputs (i.e., i € I). Given a path t in program
P, the goal of path probability analysis is to determine how likely
it is to execute the path t. We do this by determining the likelihood
of picking inputs that result in the execution of path t. In order to
determine the likelihood of picking such inputs, we compute the
probability of picking such inputs if the inputs are chosen randomly.
We define P (P, t) as:

DEFINITION 7. P(P,t) denotes the probability of executing the
path t of program P where the input i of the program P is randomly
selected from the input domain I.

To compute path probability, we assume that inputs are uni-
formly distributed. However, one can extend our technique for path
probability computation by integrating usage profile [18], used in
other probabilistic analysis techniques.

Path probabilities can be computed using quantitative extensions
of symbolic execution such as probabilistic and statistical symbolic
execution [18, 21]. However, these symbolic execution based tech-
niques have a high computation complexity and poor scalibility due
to the cost of path constraint solving and model counting over an
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exponentially increasing number of paths. Recently, a new heuristic-
based technique has been proposed for probabilistic reachability
analysis [37], which reduces the complexity of probabilistic analysis
using a concept called branch selectivity. In this paper, we focus
on computing path probabilities using branch selectivity instead of
computing reachability probabilities of program statements using
a Discrete-Time Markov Chain model as in [37].

4.2 Probabilistic Control Flow Graph

To compute path probabilities, we introduce the concept of the
probabilistic control flow graph (Prob-CFG). One can interpret a
probabilistic control flow graph as a weighted control flow graph
where the edge weights are probability estimates. Prob-CFG is not a
discrete time Markov chain; the sum of probabilities of the outgoing
edges of a Prob-CFG node does not always add up to one.

Prob-CFG PG; for a program P is constructed using the extended
inter-procedural control flow graph (EIP-CFG) Gl’; for P. We define
the probabilistic control flow graph PGI’,‘ as follows:

DEFINITION 8. Given a program P and its EIP-CFG GI”,‘ = (V,E),
the probabilistic control flow graph PG; for program P is defined
as PGZ,‘ (V,E, F) where the set of vertices and edges for PG}’; are
same as the set of vertices and edges of G%, and F is a function
F: E — [0,1] that assigns a probability score to each edge in E.

As we describe below, we use dependency analysis and branch
selectivity to compute probability scores of the edges in probabilistic
control flow graphs.

Dependency Analysis. A branch condition in the program is input
dependent if the evaluation of the branch condition depends on
the value of the program input. Given a program and input(s) to
the program, we use static dependency analysis to identify the
input dependent branch vertices in the control flow graph. Static
dependency analysis over-approximates the set of input-dependent
branch vertices. As a result, the path probability we compute is an
estimation of the actual path probability. Anyway, we use branch
selectivity, a heuristic to estimate path probability.

Branch Selectivity. To compute the probability for each edge
in the control flow graph, we use branch selectivity. We use the
definition of branch selectivity S(b) as in [37]:

DEFINITION 9. Given a branch condition b, let Dy, denote the
Cartesian product of the domains of the variables that appear in b,
and let T, C Dy, denote the set of values for which branch condition b
evaluates to true. Let |Dy,| and |Ty,| denote the number of elements in

these sets, respectively. Then, S(b) = ||T—l’| and0 < S(b) < 1.

Dy |

We compute |Tj, | using a model counting constraint solver. Branch
selectivity gets closer to 0 as the number of values that satisfy the
branch condition decreases and gets closer to 1 as the number of
values that satisfy the branch condition increases.

We define the probability score function F for the probabilis-
tic control flow graph PGp = (V, E, F) using the combination of
dependency analysis and branch selectivity as follows:

o If there is only one edge starting from a vertex v to u, then
the probability of the edge e : v — u is 1, i.e, F(e) = 1.
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e If v is a vertex with branch condition b, there are two edges
from source vertex v: e; : v — uy and ez : v — uy, where e;
is the true evaluation and ey is the false evaluation of branch
condition b:

— If branch condition b is dependent on program input, then
probability of edge e; is the branch selectivity, S(b) =
% and the probability of edge ez is 1-S(b), i.e., F(e1) =
S(b) and F(ez) =1-S(b).

— If branch condition b is not dependent on program input,
then probability of both edges e; and e; is 1, i.e., F(e1) =
F(ey) = 1.

Probabilities of edges that have a call vertex as their source

e1 : call-pro — entry-prand ey : call-pro — return-pr. are

1,i.e., F(e;) = F(ep) = 1.

By adding probabilities to all the edges in a control flow graph,

we transform it to a probabilistic control flow graph. For the cases

where we assign probability score function F as F(e;) = F(ez) =1,
only one of the two edges is viable during the program execution,
and such edges do not influence path probability.

Consider the EIP-CFG in Fig. 3. Each branch vertex is associated
with a branch condition. For example, vertex 2 is associated with
branch condition CUR[@] D. We consider that the inputs are
uniformly distributed and domain for each character in a string has
256 values. Branch selectivity S for the branch condition at vertex
21is % = 0.004. Hence, probability for the edges 2 — 3 is 0.004
and probability for the edge 2 — 10 is 1 — 0.004 = 0.996. We add
all the edge probabilities to the EIP-CFG G;,‘ in Fig. 3 and construct
the probabilistic EIP-CFG PG}, shown in Fig. 4. Once we construct
the probabilistic control flow graph PG¥X, we can compute path
probabilities as follows:

DEFINITION 10. Given a control flow path t of length n for pro-
gram P which corresponds to a sequence of vertices {v1,v2,03,...,0,}
in the probabilistic control flow graph PG}‘ = (V,E,F), then path
probability P (P, t) for patht is computed as

n-1

P(P,t) = HF(Ui,vin)
i=1

Path probabilities computed for the II-paths for our running
example using the probabilistic control flow graph in Fig. 4 are
shown in Table 1.

4.3 Rare Paths

We call a program path a rare path if it is unlikely to be executed
when the program input is randomly chosen. Since there may be
an unbounded number of paths in a program, given a depth bound
b, we identify the set of k rare paths among all paths with length
less than or equal to b.

In order to identify a set of rare paths R with size k for a given
execution depth b, we compute path probabilities of all paths of
length less than or equal to b and choose the k paths with the
smallest path probabilities.

For example, traversing through the probabilistic control flow
graph in Fig. 3 we generate 43 II-paths and compute corresponding
path probabilities as shown in Table 1. Now, if we sort these paths
in an ascending order based on the path probability and pick the
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set of rare paths R for k = 3, we identify paths 34, 35 and 26 as
the paths in the rare path set R. A fuzzer that randomly generates
inputs would be very unlikely to explore these rare paths.

5 INPUT GENERATION FOR RARE PATHS

The analysis we described above results in the set R of k rare paths in
the program. However, it does not identify k inputs that can trigger
these rare paths in the program. The input generation process we
describe in this section identifies inputs to trigger the rare paths in
the set R. In order to generate the set of rare inputs I for the set
of rare paths R we guide concolic execution using each rare path
tgr € R and generate input ig for each tp (if path tg is a feasible
execution path). We add all these inputs to the set of rare inputs Ig.

Note that, the rare paths we compute are based on an estimation
of path probability and some of the rare paths might not be feasible.
But, concolic execution captures the original program execution
semantics. Hence, if a rare path is not feasible, it will be eliminated
in the input generation step using concolic execution.

We use path-guided concolic execution to collect path constraints
for a rare path. We then use a SMT solver to solve the path con-
straints and generate the input that can be fed to the program
to execute the rare path. We provide two different algorithms for
path-guided concolic execution for input generation: 1) Inter-path
guided concolic execution, 2) II-path guided concolic execution.

Algorithm 1 IP-GCE(P, tg)
Takes a program P and an inter-procedural path tg as input and
generates an input for P to execute the path tg

: input < Ranpom()
: tc « ExecuTe(P, input)
: index «— 2
: while index < LEN(t¢) A index < LEN(tgR) do
if tc (index) # tg(index) then
path_cond < NEGATEDPATH (Z(, index)
if ISFEASIBLE (path_cond) then
input < SOLVE (path_cond)
tc < Execute(P, input)
else
return input

0N U W

_om s
M 2ow

index « index + 1
: return input

—
w

5.1 Inter-path Guided Concolic Execution

For inter-path guided concolic execution (IP-GCE), we run the pro-
gram on a concrete random input and generate the corresponding
inter-path tc. In order to generate input for the rare path tg, we
compare all branches for t¢ and tg in the same order. If there is
a mismatch between any of the branches, we negate the branch
and solve it to check feasibility of the path negating the branch.
If the path is feasible, we solve the path constraint and generate
the new input. We then execute the program using the new input
and update tc by the inter-path generated by the new input. The
process continues as long as there are branches left to compare
both in t¢ and tg or there are no branches that can lead to a feasible
path. At the end of the process, the input is the input that will either
take path tg or take a path that is close to the rare path tg if ¢y is
not feasible.
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Algorithm 2 IIP-GCE(P, tg)
Takes a program P and an II-path g as input and generates an input
for P to execute a path that has high overlap with tg

1: input < Ranpom()
2: tc < ExecuTE(P, input)
3: max_overlap < OVERLAP(Zc, IR)
4: max_input « input
5: index < 1
6: while index < Len(Z¢) do
7: if IsBraNCH (¢ (index)) A DIFrer(fc (index), tr) then
8: path_cond < NEGATEDPATH (¢, index)
9: if ISFEASIBLE (path_cond) then
10: input «— SoLVE(path_cond)
11: tc < Executke(P, input)
12: overlap <— OVERLAP(tc, IR)
13: if overlap > max_overlap then
14: max_overlap < overlap
15: max_input «— input
16: else
17: input «— max_input
18: tc « ExecuTE(P, input)
19: index « index+ 1

20: return input

Algorithm 1 shows the process of guiding concolic execution
using rare inter-path. EXECUTE executes the program P first on a
random input and returns the corresponding execution path t¢. The
algorithm looks for the first vertex where tc and tg differ (all paths
start with the same vertex). NEGATEDPATH(tc, index) generates a
path constraint corresponding to the path tc where the branch
condition between the vertex index— 1 and index is negated and all
the branches before index — 1 remain the same. ISFEASIBLE checks
the feasibility of a given path constraint and SOLVE generates an
input value satisfying the given path constraint.

5.2 II-Path Guided Concolic Execution

In this section we discuss II-Path guided concolic execution (IIP-
GCE) which can also handle intra-paths since intra-paths are also II-
paths. An II-path can be infeasible, so it may not represent a concrete
execution path. Hence, IIP-GCE algorithm is not guaranteed to
generate an input exercising the given II-path. IP-GCE algorithm
we discussed in the previous section uses branch matching and
branch negation for mismatched branches, but this approach is not
sufficient for guiding the concolic execution to explore the rare
II-paths since II-paths may not represent a concrete execution path.

Similar to the IP-GCE algorithm, in the IIP-GCE algorithm (Algo-
rithm 2), we first run the program on a concrete random input and
collect the execution path tc. Note that, there may be branches in
tc that are in a procedure that is not explored in the input II-path
tr. In such situations, we compare the inputs that trigger both the
branch and its negation, and see which one creates an execution
path that overlaps more with tg (i.e., increases the number of ver-
tices that are common in both), and then we pick the branch which
results in higher overlap with tg.

Lines 1-5 in Algorithm 2 generate the initial concrete path ¢
with a random input, and calculate the initial overlap between t¢
and tg using the function Overrap. The while loop in lines 6-19
iterates over the nodes in t¢. It looks for branch nodes in ¢ that
differ from the corresponding branch node in tg. The function
DIFFER returns true under two conditions: 1) there is a branch
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in tR that corresponds to complement of tc(index) (ie., tg and
tc take different branches for the same branch statement), or 2)
there is no branch in tg that corresponds to the branch t¢ (index)
(this branch node in t¢ corresponds to a branch in a procedure
that was not explored in tg). In both of these cases we negate the
branch condition at ¢¢ (index) and see if we can improve the overlap
between tc and tg, and update the input and t¢ if the overlap can
be improved. Note that, if the overlap cannot be improved, then the
input is restored to the previous input in lines 17-18.

Algorithm 2 makes a single pass on the branches in t¢ without
backtracking and therefore it is not guaranteed to find an execution
that maximizes the overlap between final ¢ and tg. Looking for
maximum overlap would require a search on all execution paths,
resulting in path explosion that we have to avoid for scalability.

For the running example, guiding concolic execution using path
35, input generated is DOCATT. whereas guiding concolic execution
using path 34, we find out that path 34 is infeasible. Hence, path-
guided concolic execution algorithms we provide does not only
generate inputs but also checks feasibility of the rare paths. Even
though our techniques for identifying rare paths in the programis a
heuristic approach, infeasible rare paths will be always filtered out
in the input generation phase. The inputs we generate are always
valid inputs and they help fuzzer in exploring rare program paths.

6 IMPLEMENTATION

We implement our techniques (rare path analysis and path-guided
concolic execution) to analyze programs written in the C program-
ming language. We extract branch conditions and control flow
graph for a program using the concolic execution tool CREST [16]
and underlying program transformation tool CIL [34]. To collect
branch conditions from the program, we modify the OCaml code
in CIL. We transform the branch conditions into constraints in
SMT-LIB format. To model count the branch constraints, we use
Automata-based Model Counter (ABC) [9]. To identify branches
that are input-dependent, we perform dependency analysis using
CodeQL [3], a code analysis engine.

After extracting the control flow graph and collecting the model
counts for the input-dependent branches, we transform the control
flow graph to a probabilistic control flow graph. We write python
scripts to traverse the probabilistic control flow graph and collect
intra-, inter-, and II-paths.

We guide concolic execution tool CREST [16] using the rare
paths we collect from our control flow analysis. We implement
algorithms IP-GCE and IIIP-GCE in C on top of the existing con-
colic search strategies in CREST. We use existing coverage-guided
fuzzers AFL++ [19] and FairFuzz [25] without modification. We
implement the proposed technique of the fuzzing tool DigFuzz [47]
using AFL++ and QSym [46]. To collect edge coverage we use
afl-showmap as used in [41].

Note that, as with any approach that builds on other techniques,
our approach does have limitations that are due to its building
blocks (for example, the program transformation tool CIL cannot
support some program constructs and model counting techniques
have limitations similar to constraint solvers used in symbolic exe-
cution). These limitations can be lifted with progress in the building
blocks we use.
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7 EXPERIMENTAL EVALUATION

To evaluate our techniques for rare path-guided fuzzing we ex-
periment on three different sets of programs. The first set of pro-
grams we use are from the seq-mthreaded directory [6] of the SV
benchmark used in SV-COMP and Test-Comp [12, 13]. We run our
experiments on 62 programs from the seq-mthreaded directory
since, in prior work [26], they are identified as a set of programs
for which randomly-picked seed inputs are ineffective. These pro-
grams contain lots of nested restricted branch conditions which are
challenging to handle for existing fuzzers.

The second set of programs has been used in the experimental
evaluation of a parser-directed fuzzer [32]. These programs deal
with structured inputs and contain a lot of restrictive branch condi-
tions. We add calculator [2] in this set which contains numerous
restrictive branch conditions.

The third set consists of two well-known libraries for parsing xslt
and xml files, libxslt and libxml2, respectively. libxslt has been used
in [40] and libxmi2 has been used to evaluate many coverage-guided
fuzzing techniques [14, 25, 33].

The criteria for selecting these three sets of programs is to demon-
strate that if there are restrictive branch conditions in a program,
existing fuzzing techniques have difficulty exploring program be-
haviors, and our proposed rare path analysis can help existing
fuzzers to increase code coverage without modifying them.

We use baseline random seeds for these programs following the
approaches used in prior works [25, 27, 32]. For example, when
fuzzing libxmli2 or libxslt, as a random seed we use structured xml
and xslt content respectively as the random input.

As we focus on edge coverage in our experimental evaluation, we
set loop bound as 1 when analyzing rare paths in these programs.

We experimentally evaluate based on the following research
questions:

RQ1. Can our rare path analysis (without using any fuzzer) gener-
ate inputs that AFL++ can not?

RQ2. Can we improve mutation-based fuzzing effectiveness using
the seed set we generate from our rare path analysis?

RQ3. Can rare path-guided fuzzing achieve better coverage com-
pared to sampling-based hybrid fuzzers?

RQ4. Can we improve the effectiveness of rare path analysis using
[I-paths?

Note that, similar to prior work on fuzzing (and testing in gen-
eral), we rely on the hypothesis that the ability to find bugs is
directly related to increasing code coverage [10]. We do not test
this hypothesis in this paper rather we focus to help fuzzers by
generating inputs for rare program paths (as most fuzzers struggle
to exercise such paths [25, 38]), and we evaluate this by measuring
the increase in coverage. Moreover, in our experimental evaluation,
we focus on fuzzers like FairFuzz [25] and DigFuzz [47]. The goal
of these fuzzers is to increase code coverage by exploring rare pro-
gram paths which also helps these fuzzers to find more bugs. For
example, FairFuzz was not experimentally evaluated for finding
bugs, it was only evaluated for finding rare branches and increasing
code coverage.
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7.1 Experimental Setup

We run our experiments on a virtual box equipped with an Intel
Core i7-8750H CPU at 2.20GHz and 16 GB of RAM running Ubuntu
Linux 18.04.3 LTS. We use dockers for AFL++ [4] and FairFuzz
[5] to run all the fuzzing experiments. The Test-Comp benchmark
assumes that programs consume inputs via VERIFIER _nondet func-
tion calls. We redefine these functions in a wrapper so that programs
can be fed with input from a file. For the first set of programs, we
fuzz each program for 10 minutes and for the other two sets of
programs, we fuzz each program for 24 hours. To compensate for
nondeterminism we test each program at least three times and re-
port the maximum number of edges covered. We set the upper limit
for our rare path guidance technique (branch selectivity computa-
tion, rare path identification, and seed generation) to 25% of the
total time (2.5 minutes for the first set and 6 hours for the second
and third set) and use the remaining 75% time for fuzzing (7.5 min-
utes and 18 hours respectively) with the seed set generated by our
analysis. We set the path depth limit to 60 for our rare path analy-
sis. In this paper we do not experimentally evaluate the trade-off
between rare path exploration and fuzzing time, however, it might
be an interesting direction to explore in the future. After collecting
the rare paths, we provide all the inputs from the feasible rare paths
(filtered by path-guided concolic execution) to the fuzzer as the
seed set.

7.2 Experimental Results

To answer RQ1, RQ2 and RQ3, we use [I-Path based analysis and
algorithm ITP-GCE to generate rare seeds.

7.2.1  RQI: Effectiveness of Rare Path Analysis to Generate Rare
Inputs. Our experimental results show that the proposed rare path
analysis and path-guided concolic execution generates inputs in 6
hours (without running AFL++) which AFL++ itself cannot generate
in 24 hours by mutating inputs. Our results in detail are as follows.

seq-mthreaded. For 60 out of 62 programs in this set of pro-
grams, our rare path analysis generates inputs that cannot be gen-
erated by AFL++.

tinyC. Rare path analysis generates inputs containing if-else
structure. AFL++ generates if structure by mutating inputs but
cannot generate the if-else structure.

inih. AFL++ generates inputs generated by rare path analysis
as the input sequence is trivial containing opening and closing
brackets, and key-value pairs separated by a colon (:) or an equal
sign (=).

calculator. Rare path analysis generates inputs containing key-
words such as arcsin, arccos, and arctan but AFL++ cannot generate
these keywords even after running for 24 hours.

cJSON. AFL++ generates inputs containing basic JSON structure
with left and right braces, colon (:), and quotations(""). Rare path
analysis generates inputs containing keywords such as false, true,
and null that AFL++ cannot generate.

libxslt. We provide XSLT file containing opening and closing tag
for stylesheet to AFL++. However, running AFL++ for 24 hours,
it cannot generate inputs containing keywords to explore deeper
functionalities. Rare path analysis generates inputs containing key-
words: attribute-set, preserve-space, and decimal-format.
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libxml2. To explore deeper paths in libxml2, a xml file needs
to contain keywords like DOCTYPE, ATTLIST, ENTITY, NOTATION
etc. Running AFL++ for 24 hours, it generates inputs containing
structures like DOCTYPE and ATTLIST. Rare path analysis generates
inputs containing not only DOCTYPE and ATTLIST but also ENTITY
and NOTATION.

7.2.2  RQ2: Effectiveness of Rare Path Analysis to Improve Mutation-
based Fuzzing Effectiveness. Our experimental results on the first set
of programs are shown in Table 3. Rare path analysis achieves better
coverage compared to both AFL++ and FairFuzz. For 60 out of 62
programs, AFL++ with rare seed achieves better coverage compared
to AFL++ with a random seed. For 48 out of 62 programs, FairFuzz
with rare seed achieves better coverage compared to FairFuzz with
arandom seed. We see an average coverage improvement of 9.27%
over AFL++ and 5.03% over FairFuzz.

Experimentally evaluating on second and third sets of programs
(as shown in Fig. 5 and Table 2) we see coverage improvement over
AFL++ for 5 out of 6 of the benchmarks. We do not see a lot of
improvement for calculator (1.13%). We generate rare inputs: arcsin,
arccos, and arctan and then mutating these rare inputs AFL++ gen-
erates 3 more inputs: asin, acos, and atan. However, there are not
many program paths passing through these rare branches. Only 13
additional edges are covered and hence an improvement of 1.33% is
achieved. For tinyC and cJSON, we see an improvement of 6.47% (13
additional edges) and 4.19% (25 additional edges), respectively. For
libxslt, our rare path guidance helps AFL++ to cover 162 additional
edges (18.86% coverage improvement). For libxmi2, we achieve the
maximum coverage improvement of 1170 additional edges (20.35%).
This indicates that for larger programs with lots of program paths,
if restrictive branches in the program can be passed through, ex-
isting mutation-based fuzzers can achieve significantly more code
coverage.

We then experimentally evaluate using FairFuzz [25] and see
similar results as AFL++. For 5 out of 6 cases, we see improve-
ment, 0.51% for calculator 0.94% for tinyC, 4.14% for cJSON, 31.86%
for libxslt, and 18.29% for libxml2 (shown in Fig. 5 and Table 2).
Moreover, for cJSON, libxslt and libxml2, our rare path analysis can
generate inputs that FairFuzz cannot. These results indicate that
FairFuzz (which uses branch hit counts to identify rare branches)
can not generate rare inputs that our analysis can.

From our experimental evaluation, we also see that rare path
guided FairFuzz performs the best (1.33%, 5.36%, 7.46%, 22.82% and
58.00% more coverage than AFL++ for calculator, cJSON, tinyC,
libxslt and libxml2 respectively). These results indicate that seed
generation using lightweight quantitative symbolic analysis and
input generation using mutation techniques is complementary to
each other and a combination of these techniques is one of the
promising future directions to focus on.

7.2.3  RQ3: Comparison to Hybrid Fuzzer. To answer RQ3, we eval-
uate our rare path analysis on top of the hybrid fuzzing technique,
DigFuzz [47]. DigFuzz [47] identifies the hardest paths to explore
for AFL using the samples collected using AFL and then uses sym-
bolic execution tool angr [39] to solve constraints for the hardest
paths. However, DigFuzz is not publicly available. We contacted the
authors of DigFuzz but could not get access to the implementation.
Hence, we implement the technique in DigFuzz using AFL++ and
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Figure 5: Coverage comparison between AFL++, rare-path
guided AFL++, FairFuzz and rare-path guided FairFuzz

Table 2: Percentages of coverage improvement for rare path-
guided fuzzing over AFL++, FairFuzz

Benchmarks | Number of lines | % coverage improvement over

AFL++ | FairFuzz

tinyC 190 6.47% 0.94%
inih 243 0.00% 0.00%
calculator 1312 1.33% 0.51%
cJSON 3845 4.19% 4.14%
libxslt 33371 18.86% 31.86%
libxml2 186116 20.35% 18.29%

QSym [46]. In our evaluation we use an unoptimized binary for
fuzzing (to associate branch flip in concolic execution with hitcount
collected in fuzzing). We experiment on the 3 largest benchmarks,
cJSON, libxslt and libxmlI2. Results from our experimental evalua-
tion (Table 4) show that rare path guided DigFuzz achieves better
coverage compared to DigFuzz, 66.86% improvement for c¢JSON,
2.18% improvement for libxslt and 30.22% improvement for libxmi2.
There are multiple reasons behind our implementation of DigFuzz
not being able to achieve better coverage compared to AFL++ and
FairFuzz: 1) building the execution tree takes hours for larger pro-
grams like libxml2 as the tree grows exponentially over time, 2)
concolic execution fails to generate inputs for a lot of paths and
hence generates very few inputs to guide AFL++ and 3) DigFuzz at-
tempts to solve branches that are not dependent on the inputs rather
used for sanity check of the program. These findings are aligned
with the findings of DigFuzz for larger programs [47]. Nonethe-
less, our experiments on DigFuzz still demonstrate that rare path
analysis improves the effectiveness of DigFuzz..

7.2.4  RQ4: Effectiveness of Il-path to Improve Efficiency of Rare
Path Analysis. To answer RQ4, we guide fuzzers using our rare
path analysis based on intra-paths, inter-paths and II-paths. Our
experimental evaluation shows that II-paths based analysis can
generate more or same number of rare inputs in comparison to
both intra- and inter-paths based analysis. Experimental results
for c¢JSON, libxslt and libxml2 are shown in (Fig. 6). There is no
improvement using intra paths for cJSON as it cannot generate any
new inputs. However, inter paths based analysis can generate new
inputs and hence improvement of 4.19%. II-paths based analysis can
generate new inputs compared to intra-paths but not compared to
inter-paths. For libxslt, there is no improvement using intra-paths as
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Table 3: Coverage improvement for rare path-guided fuzzing
over AFL++ and FairFuzz on seq-mthreaded programs

Rare |coverage || Fair | Rare coverage
Program LOC || AFL++ | AFL++ | increase || Fuzz | FairFuzz | increase
floodmax.3.1 536 223 250 | 12.11% 203 223 9.68%
floodmax.3.2 559 286 307 7.34% 262 282 7.50%
floodmax.3.3 559 270 310 14.81% 282 282 0.00%
floodmax.3.4 559 280 309 10.36% 282 282 0.00%
floodmax.3 559 285 310 8.77% 275 282 2.38%
floodmax.4.1 | 1204 323 364 | 12.69% 288 328 | 13.64%
floodmax.4.2 | 1252 680 739 8.68% 714 754 5.50%
floodmax.4.3 | 1252 698 738 5.73% 708 747 5.56%
floodmax.4.4 | 1252 663 736 11.01% 695 747 7.55%
floodmax.4 1252 681 739 8.52% 708 747 5.56%
floodmax.5.1 | 2762 428 500 16.82% 400 452 13.11%
floodmax.5.2 | 2842 1937 2144 10.69% || 1815 1887 3.97%
floodmax.5.3 | 2842 2076 2148 3.47% || 1835 1914 4.29%
floodmax.5.4 | 2842 1987 2152 8.30% || 1868 1907 2.11%
floodmax.5 2842 2067 2150 4.02% || 1828 1914 4.66%
ler-var.3.1 315 186 194 4.30% 177 177 0.00%
ler-var.3.2 310 186 190 2.15% 170 170 0.00%
ler-var.3 313 185 193 4.32% 177 177 0.00%
ler-var.4.1 395 223 231 3.59% 210 216 3.12%
ler-var.4.2 390 217 227 4.61% 203 210 3.23%
ler-var.4 393 222 231 4.05% 210 216 3.12%
ler-var.5.1 482 250 267 6.80% 249 256 2.63%
ler-var.5.2 477 235 264 12.34% 236 249 5.56%
ler-var.5 480 244 269 10.25% 242 256 5.41%
ler-var.6.1 570 273 307 12.45% 275 301 9.52%
ler-var.6.2 565 261 300 | 14.94% 269 295 9.76%
ler-var.6 568 271 303 11.81% 275 301 9.52%
ler.3.1 286 170 170 0.00% 144 144 0.00%
ler.3 284 170 170 0.00% 144 144 0.00%
ler.4.1 355 181 191 5.52% 170 170 0.00%
ler.4 353 179 191 6.70% 164 170 3.66%
ler5.1 431 204 220 7.84% 197 203 3.05%
ler.5 429 197 221 12.18% 197 203 3.05%
ler.6.1 508 215 252 | 17.21% 216 236 9.26%
ler.6 506 219 252 | 15.07% 223 236 5.83%
ler.7.1 589 242 280 15.70% 236 262 11.02%
ler.7 587 240 282 17.50% 236 262 11.02%
ler8.1 677 265 316 | 19.25% 275 301 9.45%
ler.8 675 272 301 | 10.66% 256 295 | 15.23%
opt-f-max.3.2 604 304 329 8.22% 315 321 1.90%
opt-f-max.3.3 604 300 330 10.00% 315 321 1.90%
opt-f-max.3.4 | 604 300 329 9.67% 315 315 0.00%
opt-f-max.3 604 302 331 9.60% 315 321 1.90%
opt-f-max.4.1 | 1272 330 389 17.88% 334 374 11.98%
opt-f-max.4.2 | 1320 688 760 10.47% 754 800 6.10%
opt-f-max.4.3 | 1320 729 769 5.49% 754 793 5.17%
opt-f-max.4.4 | 1320 701 768 9.56% 747 800 7.10%
opt-f-max.4 1320 722 767 6.23% 760 800 5.23%
opt-f-max.5.1 | 2862 471 542 15.07% 452 518 14.55%
opt-f-max.5.2 | 2942 2082 2187 5.04% || 1927 1979 2.71%
opt-f-max.5.3 | 2942 1955 2180 | 11.51% || 1914 1973 3.10%
opt-f-max.5.4 | 2942 2031 2176 7.14% || 1894 1979 4.49%
opt-f-max.5 2942 2003 2191 9.39% || 1881 1979 5.23%
Standby.1 623 197 215 9.14% 170 190 | 11.54%
Standby.4.1 615 188 214 | 13.83% 164 184 | 12.00%
Standby.4.2 623 194 219 12.89% 190 190 0.00%
Standby.5 619 191 207 8.38% 190 190 0.00%
Standby 623 189 216 | 14.29% 190 190 0.00%
Triplicated.1 539 192 197 2.60% 170 170 0.00%
Triplicated.2 535 196 199 1.53% 170 170 0.00%
Triplicated 543 200 203 1.50% 177 177 0.00%

it can not generate new inputs. Using inter-paths, there is improve-
ment of 9.08% as new inputs are generated containing keywords
preserve-space and decimal-format. However, using II-paths,
improvement of 17.93% is achieved as inputs containing keyword
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Table 4: Percentages of coverage improvement for rare path-
guided fuzzing over DigFuzz

Benchmarks | DigFuzz Rare Pgth—gmded % coverage
DigFuzz improvement
cJSON 344 574 66.86%
libxslt 719 735 2.18%
libxml2 3297 4270 30.22%

(attribute-set) is generated, not generated by both intra- and
inter- paths. For libxmi2, identifying rare paths based on intra-paths
can generate an input containing the specific value DOCTYPE and
hence, there is coverage improvement. Intra-paths based analysis
can generate DOCTYPE as the branch conditions comparing to this
specific value are present in the initial starting procedure. There is
no improvement using inter-paths, rather coverage is reduced as
inter-paths can not find any rare inputs. Inter-paths based analy-
sis explores program paths deep inside the nested procedures and
most of these paths are not rare paths and due to the exponential
increase in the number of program paths, analysis time is increased.
On the other side, II-paths can generate inputs containing specific
values DOCTYPE, ATTLIST, ENTITY and NOTATION. These inputs help
to achieve better coverage compared to both intra- and inter- paths
based analysis.

8 RELATED WORK

Mutation-based coverage guided Fuzzers. AFL [33] is a well-known
mutation-based coverage guided fuzzer. AFL++ [19] is the latest
version of AFL. In this work, we use default version of AFL++ which
uses power schedule of AFLFast [14]. MOPT [31] focuses on muta-
tion scheduling by providing different probabilities to the mutation
operators. LAF-INTEL [1] focuses on bypassing hard multibyte com-
parisons, by splitting them into multiple single-byte comparison.
REDQUEEN [8] focuses on bypassing Input-To-State (I12S) defined
comparisons. Steelix[28] performs static analysis and extra instru-
mentation to produce inputs satisfying multi-byte comparisons.
VUzzer [36] identifies input positions used in the comparison and
immediate values using a Markov Chain model and decides which
parts of the program should be targeted. FairFuzz [25] identifies the
rare branches in the program based on the hitcounts of branches.
If a rare branch is identified by FairFuzz, it applies input mutation
masking. In this paper, we focus on identifying rare program paths.
We neither use a fuzzer to identify rare paths, nor modify mutation
strategies inside the fuzzer. We show that we can improve the ef-
fectiveness of state of the art fuzzers without making any changes
to the internals of fuzzers.

Symbolic execution guided fuzzers. Hybrid fuzzing techniques [30,
38, 47] use symbolic execution and constraint solvers to generate
inputs to pass complex checks in the program. Driller [38] uses se-
lected symbolic execution when fuzzer can not cover new branches.
DigFuzz [47] uses the fuzzer itself to statistically identify hardest
paths for the fuzzer to explore and then uses symbolic execution to
solve path constraints for the hardest paths. DeepFuzzer [30] uses
lightweight symbolic execution to pass initial complex checks and
then it relies on seed selection and mutation techniques. In this
work, we do not use the path samples from fuzzer to identify rare
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Figure 6: Coverage improvement comparison between different types of path-guided fuzzing. II-paths can generate more
number of rare inputs compared to both intra and inter paths within a given amount of time and hence highest edge coverage

is achieved by II-path guided fuzzing.

paths, rather we statically analyze programs. Moreover, we do not
symbolically execute the whole program, instead guide symbolic
execution using the rare paths.

Grammar-based Fuzzers. Grammar-based fuzzing techniques
generate well-formed inputs based on a user provided grammar [22,
44]. These fuzzing techniques mutate inputs using the derivative
rules in the grammar. As a result, the mutated input is also guar-
anteed to be well-formed [29]. Grammar-based fuzzers are very
effective to fuzz programs that are heavily dependent on structured
inputs [22, 42]. However, grammar-based fuzzers require applica-
tion specific knowledge of the program under test. There are several
fuzzers [15, 24, 32, 40, 43] focus specifically on structured inputs.
Our technique does not require any knowledge about the program
and it is fully automated. We neither need to provide an input
grammar, nor feed inputs to the parser [32, 42] or collect large data
samples [40] like techniques that specialize on structured inputs.

Seed generation for fuzzers. There are fuzzing techniques that
focus on seed selection and seed prioritization to improve fuzzing
efficiency [23, 35, 45]. SpotFuzz [35] identifies invalid execution and
time consuming edges as hot spots based on hitcounts of different
inputs on the edges. SLF [45] is a technique which focuses on valid
seed input generation. It performs sophisticated input mutation to
get through the validity checks. [23] systematically investigates
and evaluates the affect of seed selection on fuzzer’s ability to find
bugs and demonstrates that fuzzing outcomes vary depending on
the initial seeds used. In this work, we also demonstrate that rare
inputs as initial seeds bootstraps the fuzzer. However, we focus on
generating seeds that can execute rare paths.

Static program analysis for fuzzing. A large number of fuzzing
techniques [8, 11, 20, 28, 32, 36] use static program analysis tech-
niques to guide fuzzers. Most of these techniques use either control
flow analysis or taint analysis. In this work, we also use control flow
analysis and dependency analysis to identify rare paths. However
we introduce a novel technique we call rare path analysis and a new
kind of control flow paths (II-paths). Although different, our defi-
nition of II-paths is inspired by the control flow directed concolic
search techniques provided in [16].
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9 CONCLUSIONS

In this paper, we provide techniques to identify rare program paths
that are difficult for a fuzzer to explore generating random inputs.
To identify the rare paths, we use lightweight static analysis. We
use the identified rare paths to guide a concolic execution tool
to generate inputs that can execute these rare paths. Finally, we
provide these inputs as the initial seed set to the fuzzer. From our
experimental evaluation on 3 different set of benchmarks, we find
that our approach generates inputs that a fuzzer cannot generate by
mutations. Inputs generated by our analysis guide existing fuzzers
to achieve better coverage compared to an initial random seed.
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