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Abstract—Hybrid program analysis approaches, that combine static and dynamic analysis, have
resulted in powerful tools for automated software testing. However, they are still limited in
practice, where the identification and removal of software errors remains a costly manual
process. In this paper we argue for hybrid techniques that allow minimal but critical intervention
from experts, to better guide software testing. We review several of our works that realize this

vision.

1. Introduction

As all aspects of human society increasingly
rely on software systems, there is an increased
need for scalable techniques and tools that can
detect and eliminate software bugs effectively.
In the last decade, hybrid approaches that com-
bine static and dynamic analysis have resulted
in powerful tools for automated software testing.
However, due to the limited scalability of auto-
mated techniques, in practice, identification and
removal of software errors remains a predomi-
nantly manual process that requires tremendous
amounts of effort by developers. In this article
we argue for software analysis techniques that
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allow minimal but critical intervention from ex-
pert users. The insight is that humans and com-
puters have complementary strengths: automated
techniques excel at repetitive search at a scale
that is hard for humans, whereas humans excel
at contextual and semantic reasoning, which are
hard for computers. By combining these strengths
in a principled way, software testing tools can
achieve error detection at scale. While the idea
of combining automated testing and manual input
is not new, we find that researchers still strive
for push-button technologies, while the human
guidance is seldom acknowledged and often im-
plemented in ad-hoc ways. We put forward a
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Figure 1. Software Testing with Expert Human Input

vision, illustrated in Figure 1, where the central
effort of software testing relies on automated
tools, but where human intervention is envisioned
to be minimal, while still being indispensable.
In this article, we highlight some of our recent
relevant work, that leverages small expert input
to address challenging analysis problems that can
not be solved fully automatically. Specifically we
describe fuzzing with human intervention in the
form of domain-specific generators and feedback
via human-provided metrics; information leakage
analysis based on fuzzing, where the inputs are
modified based on human-defined mutations; a
combination of symbolic execution with fuzzing
for estimating computational complexity of pro-
grams, where the human intervention is provided
through user-defined cost functions to be maxi-
mized by the program analysis, and various differ-
ential analysis types where the user defined cost
functions are leveraged across multiple program
executions.

2. Domain-Specific Fuzzing with
Generators and Waypoints

Fuzz testing or fuzzing is an automated soft-
ware testing method that injects invalid, mal-
formed, or unexpected inputs into a system to re-
veal software defects. Conventional fuzzing tools
such as Google’s AFL are designed to work in
a push-button fashion. At the most, they offer
knobs to control simple fuzzing heuristics such as
timeouts and choice of mutation operators. These
control points do not scale to more complex use

cases when more fine-grained control is desired
in order to customize testing objectives. We argue
that the users of fuzzing tools are often domain
experts who know something about the code they
are testing, the input formats that a program ex-
pects, and/or what constitutes a good or bad input.
Based on this insight, we have been investigating
two extension points for enabling domain experts
to incorporate their knowledge.

2.1. Domain-Specific Input Generation

We enable users to control the type of inputs
generated by fuzzers using arbitrary generator
functions. This requirement is common when
testing programs that process complex input for-
mats, such as compilers that operate on highly
structured input program—conventional binary
fuzzing tools struggle to generate diverse valid
inputs of this form. We piggy-back on the well
known abstraction of property-based testing, pop-
ularized by tools such as Quickcheck [3]. A
property test validates an assertion of the form
Ve € T : p(z) = q(x), where T is some
data type, e.g., abstract syntax-tree (AST) of a
programming language when fuzzing a compiler,
x is an instance of that type (e.g., a program),
p(x) is a precondition (e.g., the program is well-
typed) and ¢(x) is a postcondition (e.g., a com-
piler produces valid assembly for this program).
In tools like Quickcheck, this test is validated by
randomly sampling inputs x € T using a domain-
specific sampling function, say Generator<T>.
For example, an AST generator constructs ran-
dom syntax trees using a recursive procedure
and making pseudo-random choices for the types
of nodes to construct and values to populate.
Our key insight is that we can simply perform
mutations on the pseudo-random choices made by
the input generators; by recording these choice
sequences and replaying input generators with
slightly mutated sequences, we can effectively
produce new structured inputs (e.g., ASTs) that
differ slightly from the original [15]. This trick
allows us to use feedback-directed fuzzing al-
gorithms that are originally designed for mu-
tating inputs represented as bitstreams on user-
specified input formats. Our JQF [14] framework
implements this idea by building on top of a
Java port of Quickcheck. This framework further
allows domain experts to choose from a number
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of search strategies such as a coverage-guided
evolutionary search, reinforcement learning, or a
hybrid approach of integrating a concolic execu-
tion engine.

The JQF framework has enabled several
domain-specific implementations including tar-
geting Apache Spark applications, analyzing
model-driven engineering tools, and for auto-
grading classroom programming assignments.

2.2. Domain-Specific Input Feedback

Coverage-guided fuzzing is used for many
different applications such as differential testing,
discovering vulnerabilities, crashes, directed test-
ing and so on. Researchers have also modified
fuzzing to leverage domain-specific information
to improve their target application. Researchers
implement many of these modifications in an
ad-hoc manner and the implementation of these
modifications is non-trivial.

To unify these approaches with a single frame-
work and help users develop domain-specific
fuzzing applications, we proposed FuzzFac-
tory [16], a framework for developing domain-
specific fuzzing applications without requiring
changes to mutation and search heuristics. To
help with targeting different domains, users can
define domain-specific feedback mechanisms to
specify the metric for optimization. These feed-
back mechanisms map program locations to met-
rics based on the executed input. For example,
if we want to generate inputs that maximize
memory consumption, we can define the feedback
mechanism as mapping program locations where
malloc is called to a set of natural numbers,
representing the amount of memory allocated in
bytes at that program location (computed at run-
time). FuzzFactory uses this information to selec-
tively save intermediate inputs, called waypoints,
to augment coverage-guided fuzzing. These in-
termediate inputs are selected if they improve
on the domain-specific feedback metric. Saving
these intermediate inputs enables the fuzzer to
make progress for challenging input constraints
and to maximize the domain-specific objectives.
Finally, FuzzFactory allows the user to compose
multiple domains. This is done in a manner such
that inputs that improve any one of the domain-
specific objectives are saved to help fuzzing and
generate new inputs. This in turn enables the
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fuzzer to be flexible and to target multiple goals
simultaneously.

We used FuzzFactory to implement six
domain-specific fuzzing applications, three re-
implementations of prior work and three novel
mechanisms: maximizing dynamic memory al-
locations for finding resource consumption is-
sues, surpassing checksums via minimizing ham-
ming distance between integer comparisons, and
targeting coverage beyond a fixed code lo-
cation for validating incremental changes. We
evaluated the effectiveness of these domain-
specific fuzzing applications on benchmarks
from Google’s fuzzer—-test-suite. In these
benchmarks, FuzzFactory can be used to fuzz dif-
ferent types of applications without modifying the
underlying search algorithm. Multiple domains
can be composed to perform better than the sum
of their parts, such as combining domain-specific
feedback about strict equality comparisons and
dynamic memory allocations and to enable the
automatic generation of LZ4 bombs and PNG
bombs [9]: these are tiny inputs that lead to
dynamic allocations of 4GB in libarchive
and 2GB in 1ibpng respectively (more than the
theoretically maximum decompression ratio, due
to an implementation error).

The FuzzFactory has also been used by oth-
ers for directed fuzzing applications, as in KC-
Fuzz [18].

3. Human-Guided Input Generation for
Side-Channel Detection

We discuss here an application of fuzzing to
the challenging problem of finding side chan-
nels in complex software applications. Informa-
tion leaks in cloud-based software services are
an urgent threat, and side-channel leaks, where
private information can be extracted by analyz-
ing observable side effects of computation, are
becoming increasingly important in applications
that communicate over the internet. Well-known
side-channel attacks include those based on phys-
ical side effects such as power, timing, cache
usage or electromagnetic radiation, and CPU-
level branch prediction and race conditions, such
as the Spectre [7] and Meltdown [8] attacks. In
applications that communicate over the network,
the side effects of communication can be ob-
served via network packet sizes and timings even
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when the communication is encrypted.

To perform side-channel analysis for net-
worked applications, we developed AutoFeed [6],
[5]. The tool performs profiling of the system
with valid inputs in order to extract observables
(such as network packet timings and payload
sizes) and to quantify the correlation between the
observables and secret program information. Such
profiling is typically done with manually gen-
erated input sets, requiring significant effort. To
increase automation, AutoFeed uses a feedback-
driven approach similar to fuzzing. However, the
goal is not to reach error states or crash the
system, but rather to generate different program
behaviors using valid inputs in order to discover
side-channels that leak information.

The user helps the analysis by providing
seed inputs for the target system and a set of
mutators which transform valid input into new
valid inputs. As an example, consider Airplan,
an air traffic control system from the DARPA
STAC [6] benchmark where users can upload,
edit, and analyze flight routes by cost, flight time,
passenger and crew capacities. A seed input for
this problem is a (weighted) graph of airports
and flight routes. For this example we wrote two
mutators: a RemoveFlight mutator takes a file
containing a map of flights and removes one of
the direct flights between two airports; similarly,
an AddFlight mutator adds a direct flight to the
map. Such mutators are written by hand, but can
be reused for the analysis of many secrets, for the
same application or for similar applications.

The user also designates the secret of interest,
i.e., some aspect of the program data that they
consider sensitive and whose leakage they want to
detect and quantify. For instance, for Airplan,
the secret is the number of airports in a route
map uploaded by a user. AutoFeed then repeat-
edly executes the target system, generates new
inputs, captures the network traffic, and adjusts
input generation and system execution strategies
based on the feedback it obtains by analyzing the
captured traffic.

Since it is difficult for users to know which
mutators will be most important for a secret,
AutoFeed measures the effect of different muta-
tors on leakage estimation, and weighs them ac-
cordingly in a feedback-driven way. By focusing
the computational effort on those mutators that

have greater effect on the leakage estimation of
the most promising features, the input space is
explored efficiently.

Specifically, AutoFeed first executes the ap-
plication of interest (App) with the initial seed
inputs to generate an initial set of traces. Based
on these traces, it calculates the number of inputs
to generate per iteration that corresponds to a
given input time budget per iteration. Then, it
applies the mutators on the seed inputs to get new
inputs, executes App on these inputs, and uses
the generated traces to obtain an initial estimation
of the information leakage. Using these initial
leakage results, AutoFeed uses heuristics to com-
pute weights for mutators, corresponding to the
likelihood of applying that mutator during input
generation. In computing weights, each mutator is
applied to a variety of the seed inputs to generate
new inputs. After the input generation, AutoFeed
checks if the mutator has changed a field of the
input affecting the secret or the top k features that
leak the most information.

After these initialization steps, AutoFeed
starts executing its main loop for feedback-driven
exploration of the input state space for obtaining
an accurate estimation of information leakage. In
each loop iteration, AutoFeed uses the mutators
to generate new inputs, executes the App on
new inputs to generate traces, and updates the
leakage estimation using all the traces captured
so far. When the change in the leakage estimate
falls below a small value, AutoFeed terminates
execution and reports the computed leakage.

AutoFeed is able to successfully generate
inputs and correctly quantify the information
leakage for challenging benchmarks [6]. Fur-
thermore, experiments conducted with AutoFeed
demonstrate that, with the feedback-driven input
generation, the leakage estimates converge faster
than the version of AutoFeed without mutator
weighing. By combining automated analysis with
manually written mutators, AutoFeed can achieve
better estimates for information leakage, and im-
prove the state of the art in network side-channel
detection and quantification.

4. Hybrid Techniques Combining
Symbolic Execution with Fuzzing

Fuzzers are good at finding so called shallow
bugs but they may fail to execute deep program
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paths, i.e., paths that are guarded by specific
conditions in the code. This is because fuzzers
have little knowledge about the inputs that affect
specific conditions. (Dynamic) symbolic execu-
tion is a program analysis technique that works
by collecting and solving constraints based on
the conditions from the code, and it is thus
particularly well-suited for such cases. However,
it is usually much more costly in computational
resources than plain fuzzing.

Hybrid analysis techniques, that combine
fuzzing with symbolic execution, aim to leverage
the strengths of each technique while mitigating
their limitations. Fuzzing can produce a large
amount of inputs in a short time. Symbolic
execution complements the fuzzer by using its
constraint solving capabilities. At the same time,
it uses the concrete inputs from the fuzzer to
mitigate its own scalability issues.

4.1. Complexity Analysis with User-defined
Costs

We report here on an application of a hybrid
technique to (algorithmic) complexity analysis.
Characterizing the complexity of a program has
many practical applications, ranging from under-
standing and fixing performance bottlenecks, per-
forming compiler optimizations and finding se-
curity vulnerabilities related to denial-of-service
attacks.

In our work on the algorithmic complexity
analysis with BADGER [11], we investigate the
worst-case algorithmic behavior of software with
regard to a cost function. For many program types
it is interesting to maximize the execution time
or the memory consumption. For these cases, the
cost function can be implemented automatically
by measuring the clock time, counting the exe-
cuted instructions, or regularly polling the current
memory consumption.

There are also program types, e.g., smart
contracts for cryptocurrency, for which the focus
needs to be on some other, domain-specific re-
source, such as gas for the Ethereum blockchain.
Exceeding the allocated budget of this resource
might lead to loss of cryptocurrency and com-
plexity analysis can help avoid such situations. To
include domain-specific resources in our analysis,
we use guidance from the user.

Specifically, in BADGER, we allow user-
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defined cost values which are added as an
annotation, i.e., an additional function call
addCost (int). Our fuzzing component picks
up these values and uses them as additional fac-
tors for the fitness evaluation of mutated inputs.
Our symbolic execution component also uses the
values, to prioritize paths for the next exploration.
Additionally, when the user-defined costs include
symbolic values, a constraint solver is instructed
to maximize the cost values for the generated
inputs. While in the described scenario the an-
notations are used to focus the analysis on the
values of single variables, they can be further
used to combine values from several variables,
enabling the developer to combine existing cost
models without any change to the underlying
search engine.

4.2. Differential Hybrid Analysis

The user-defined annotations can also enable
more challenging, differential analyses, that rea-
son over multiple program executions.

For example, in our work on DIFFuzz [10]
we focus on a side-channel analysis using a form
of differential fuzzing, where we measure the
cost difference (§) for two program executions,
obtained by running a program on the same public
inputs, but with different secret values. If for
any public and secret value combination, we can
identify a cost difference 6 > 0, then we have
found a secret-dependent path, which indicates
a potential side-channel vulnerability. For our
fuzzing campaign we define the goal to maximize
this cost difference, which also helps to further
assess the severity of the discovered side-channel
vulnerability.

The work leverages the user-defined cost an-
notations originally developed for single-program
analysis, without requiring modifications to the
cost-guided fuzzer.

We transfer this concept to a general hy-
brid differential analysis framework with HY-
Dirr [12]. To showcase the flexibility of the
approach, we demonstrate three analysis types:
regression analysis, side-channel detection, and
robustness checking for neural networks. For all
three cases, the developer uses annotations to
guide the search.
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5. Related Work and Conclusion

Apart from technical approaches, the success
of human-guided software testing depends on its
deployment and interaction with its environment.
For example, in related work, Bohme et al. [2]
propose an interactive human-in-the-loop repair
approach. To label auto-generated inputs, they
leverage a learning-based mechanism. Whenever
the learner would label an input as failing, it will
query the developer, to manually investigate the
corresponding program behavior. The number of
queries is bounded to limit the manual effort.
While this approach mitigates the general ora-
cle problem, a recent study [13] indicates that
developers in practice would prefer rather low
interaction with such repair tools.

Similarly, there are existing works for de-
bugging [17] and static analysis [4] showing
that assumptions made by automated techniques
often do not hold in practice. Bohme et al. [1]
discuss challenges for human-in-the-loop fuzzing
and raise the question of how to include the
usually highly automated fuzzing in the common
software development workflow. Such consider-
ations include the interaction with developers as
well as the integration into existing CI pipelines.

We conclude that this demonstrates the need
for more user studies to better understand (1) how
much developers want to be involved in human-
guided software testing techniques, (2) what kind
of input and specifications they can provide, and
(3) how they want to interact with the generated
outputs. Such future research can be accom-
plished with, e.g., user surveys, interviews, and
field studies.

In this article we advocated for the need
of minimal, principled human intervention in
making automated program analysis techniques
practical. We have shown that through seemingly
simple devices, such as user-defined generators,
mutations, and cost functions, we can signif-
icantly improve testing and solve challenging
problems, ranging from the traditional testing
objectives of bug finding, to side channel analysis,
algorithmic complexity estimation and differen-
tial analysis applied to complex software systems,
which are difficult, if not impossible, to perform
fully automatically. Both fuzzing and symbolic
execution remain very active areas of research in

the software engineering community, which we
believe can further benefit from other ways of
user intervention.
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