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ABSTRACT
In this paper we present techniques for generating targeted mit-
igation strategies for network side-channel vulnerabilities in IoT
applications. Our tool IoTPatch profiles the target IoT application
by capturing the network traffic and labeling the network traces
with the corresponding user actions. It extracts features such as
packet sizes and times from the captured traces, and quantifies the
information leakage by modeling the distribution of feature val-
ues. In order to mitigate the side-channel vulnerabilities, IoTPatch
uses the information leakage measure over features to prioritize
specific features and synthesizes a packet padding and delaying
strategy based on an objective function for minimizing information
leakage and time and space overhead. IoTPatch provides a tunable
mitigation strategy where the trade-off between the information
leakage and performance overhead can be adjusted to accommo-
date needs of different applications. We evaluate IoTPatch on three
network benchmarks and demonstrate that IoTPatch can discover
and quantify the information leakage and synthesize a set of Pareto
optimal mitigation strategies performing better than the prior work
in terms of reducing leakage and overhead.
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1 INTRODUCTION
Internet of Things (IoT) devices are becoming more popular with
increasing internet connectivity and bandwidth and they allow
users to control or get information from sensors or appliances such
as motion sensors, smart locks, and smart lights via smartphone
apps. Although IoT devices present many benefits, they also carry
the risk of being vulnerable to malicious actors [4]. Even with
encryption, eavesdroppers can monitor the network traffic and use
the metadata of the traffic, such as the amount of bytes transmitted
or duration of transmission, to leak information about user actions.
A sleep sensor that sends more packets when the user is awake
reveals the sleeping habits of its user [7] or device type can be
revealed via network traffic characteristics [24]. These types of
information leaks due to non-functional characteristics of computer
systems are called side-channels, and in this paper, we investigate
mitigating the side-channel vulnerabilities in IoT applications due
to network traffic.

If information leakage is detected in an IoT application, measures
such as padding the packets with extra bytes, delaying packets
and injecting extra packets can be used to obfuscate the relation
between the network traffic and device or user activity which in
turn reduces the information leakage. Too much padding or delays
degrade the performance of the system and increase the power
consumption, therefore a trade-off must be achieved to balance
privacy and usability of the system.

We propose a black-box side channel analysis tool called IoT-
Patch to mitigate side-channel vulnerabilities in IoT applications.
As described in Figure 1, IoTPatch works by collecting encrypted
network traces and labeling them with the secret value of the cor-
responding trace (which can be user actions or a device state such
as a motion sensor’s status at the time of the trace capture). IoT-
Patch analyzes the traces by extracting features such as packet
sizes and timings, and quantifies the information leakage. Using
the information leakage quantification, IoTPatch prioritizes which
features to target and iteratively develop a mitigation strategy with
respect to a tunable objective function balancing the information
leakage reduction and overhead. The tunable objective function can
be customized by the user by changing the parameter that controls
the trade-off between information leakage and mitigation overhead.
This enables IoTPatch to synthesize a set of Pareto optimal [10]
mitigation strategies corresponding to different trade-offs between
privacy and performance.
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Compared to prior work on network side-channel mitigation
approaches [11, 20, 26, 27], we present the following novel contri-
butions in this paper:

(1) A method to prioritize the features for mitigation using met-
rics measuring information leakage, targeting the packets
related with features that leak the most information (Sec-
tions 3.1, 3.2).

(2) A search-based, tunable side-channel vulnerability mitiga-
tion method which finds the optimal packet padding and
delaying strategy for mitigating both space and time net-
work side-channels while keeping the overhead low, with
the ability to adjust the trade-off between the leakage and
the mitigation overhead (Section 4).

(3) Implementation and experimental evaluation of the novel tar-
geted black-box network side-channel mitigation approach
we present in this paper (Section 5).

Our experimental evaluation of IoTPatch on three IoT bench-
marks demonstrates that our approach overall performs better than
the prior work in terms of reducing information leakage and over-
head. Our evaluation shows that we can obtain a Pareto optimal
mitigation strategy set where the user can select the strategy that
fits their leakage and overhead constraints.

The rest of the paper is organized as follows. In Section 2, we
give an overview of the network structure and protocols for the IoT
applications, our system model and assumptions on the attacker
behavior. In Section 3, we go over the feature extraction and priori-
tization methods. In Section 4, we go over the targeted mitigation
technique. In Section 5, we discuss the implementation details, IoT
benchmarks, experimental evaluation of our approach, and its limi-
tations. In Section 6, we discuss the related work. In Section 7, we
conclude the paper.
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Figure 1: IoTPatch workflow describing the main building
blocks of our approach.

2 IOT NETWORK MODEL
In this paper, we focus on network communications to and from
IoT middleware or backend servers. IoT device users send com-
mands to or get updates from their devices using clients such as
their smart phones. The servers relay this information to and from
the devices or the hubs. We are not interested in monitoring the
local wireless communication or personal area networks (PAN),
therefore the standard local protocols for IoT like Zigbee, Z-Wave,
Bluetooth, or Wi-Fi are beyond the scope of our analysis. Focusing
on communications over the internet increases the attack surface
by enabling remote attacks. An eavesdropper on the local network
can only collect encrypted packets when they are close to the sig-
nals of emitters or when they have access to the devices of the
victims. Communication with remote hosts via the internet enables
eavesdroppers to attack at various points during data transmission.

There are several IoT protocols for communicating over the inter-
net. gRPC [2] is a remote procedure call (RPC) framework based on
HTTP/2.0. It encodes data with Protobuf, a serialization library that
converts objects to binary streams. MQTT [1] is an open-source
protocol standard designed to support communications between
two or more separated devices. It has several implementations like
RabbitMQ, HiveMQ, and AWS IoT. Since no default serialization
method is provided, developers commonly conduct JSON serial-
ization on objects sent in request and response. STOMP [3] is an
alternative to MQTT, commonly used in low-energy devices as it
provides minimal functionality. Similar to MQTT, developers have
full freedom on deciding which serialization methods to use. Other
protocols such as Websocket, AMQP, JMS, and CoAP are also com-
monly used in the IoT ecosystem. However, since they share most
patterns of the aforementioned protocols [16], in our experimental
evaluation, we only focused on the three protocols listed above.
Our side-channel analysis technique is applicable to applications
written using any of these communication protocols.

Network packets and network traces. Our representation of a packet
is an abstraction of the actual TCP/IP network packets. Network
packets consist of layers and headers that contain information to
help with the transportation of the packet over the internet. In our
abstraction, a packet 𝑝 has a timestamp field (𝑝.time), denoting the
time it was sent, a payload size field (𝑝.size), denoting the size of
its content in bytes, and its direction as the source and destination
IPs and ports (𝑝.src, 𝑝.dst, 𝑝.sport, 𝑝.dport). The packet contents are
encrypted in the UDP/TCP layer and not visible (since we are not
considering crypto attacks), therefore we do not use packet payload
content in our abstraction.

We represent each packet 𝑝 as a tuple that consists of packet
meta-data: 𝑝 = (𝑝.time, 𝑝.size, 𝑝.src, 𝑝.dst, 𝑝.sport, 𝑝.dport)

A network trace 𝑡 is a list of packets sorted in the ascending
order of packet times. A network trace can also be split into smaller
traces based on packet direction or other constraints for analy-
sis. Each trace 𝑡 consists of an ordered sequence of packets, 𝑡 =

⟨𝑝1, 𝑝2, ..., 𝑝 |𝑡 | ⟩.
We also label the traces based on user interactions such as the

action the user is taking or the device type to find the correlation
between them.When a developer or an attacker wants to profile the
IoT system for analysis, they need to run each possible action mul-
tiple times and obtain different traces for each action. The reason
for multiple runs are that the network traffic can be influenced by
other factors such as packet drops, delays, time-of-day or device up-
date affecting traffic. We can represent the trace list obtained from
profiling as 𝑇 = (𝑡 (1) , 𝑡 (2) , ..., 𝑡 ( |𝑇 | ) ), and the corresponding labels
as the secret information as a vector ®𝑦 = (𝑦 (1) , 𝑦 (2) , ..., 𝑦 ( |𝑇 | ) ).

Assumptions about attacker capabilities. In our attack model, we
assume that an eavesdropper is able to capture traces of user ac-
tions using duplicate IoT devices (which is possible for commercial
devices) and train classifiers using the captured traces to identify
devices or user actions. To perform the attack, we assume that the
attacker is either in the same local area network or on a network
switch between the device and server to monitor the victim’s net-
work traffic. We also assume that the attacker has a way to identify
different device or client application traffic by either observing the
MAC addresses of IoT devices if they are in the local area network or
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using separate classifiers for device identification, which is feasible
as shown in literature [18] and our experiments. The attacker pas-
sively observes each trace associated with the action once and uses
the classifiers to obtain the secret information (device type/action
depending on the task). We assume that observation of the trace
associated with the action happens only once because the attacker
cannot cause the user to perform an action. This prevents the am-
plification strategy to circumvent packet padding as the attacker
cannot cause the user to perform the same action multiple times
knowingly. We also assume that the attacker has no prior informa-
tion that can impact its information gain such as sleep patterns or
job schedules of the users.

3 FEATURE EXTRACTION AND
PRIORITIZATION

In this section, we describe the initial steps of our targeted miti-
gation approach (see Figure 1), the feature extraction and feature
prioritization techniques.

3.1 Feature Extraction from Network Traces
To have an accurate information leakage analysis, we have to pro-
cess the traces obtained from capturing network packets and extract
meaningful features from the network packets. Based on our defini-
tion of traces and the corresponding secrets in Section 2, we define
feature functions 𝑓 : T→ R (where T is the domain of traces) which
map each trace 𝑡 to a numerical feature value that can potentially
correlate with the corresponding action label 𝑦. We extract packet-
based features such as size of each packet and inter-arrival time to
the consecutive packet. We also extract trace-level features such as
the total size and total duration of trace, mean, standard deviation,
min and max of packet size and time differences. These feature def-
initions are based on the leakage sources in the prior work [14, 20].
Our feature function definitions are described in Table 1. For each
function 𝑓𝑖 , we apply it to the trace set 𝑇 to obtain the vector of
values for that feature, 𝐹𝑖 = ⟨𝑓𝑖 (𝑡 (1) ), 𝑓𝑖 (𝑡 (2) ), . . . , 𝑓𝑖 (𝑡 ( |𝑇 | ) )⟩ which
we use to determine the probability distributions.

Table 1: Definition of network trace features.

Feature Function Definition Description

𝑓 sum−size (𝑡 ) ∑
𝑝∈𝑡 𝑝.size Sum of sizes of packets in trace 𝑡 .

𝑓 max−size (𝑡 ) max𝑝∈𝑡 𝑝.size Max. of sizes of packets in trace 𝑡 .

𝑓 min−size (𝑡 ) min𝑝∈𝑡 𝑝.size Min. of sizes of packets in trace 𝑡 .

𝑓 size (𝑡, 𝑖 ) 𝑝𝑖 .size Size of packet 𝑖 .

𝑓 num−pkt (𝑡, 𝑘 ) ∑
𝑝∈𝑡 [𝑝.size = 𝑘 ] Number of packets with size 𝑘 .

𝑓 var−size (𝑡 ) 𝜎 (𝑝.size | ∀𝑝 ∈ 𝑡 ) Variance of sizes of packets in trace 𝑡 .

𝑓 avg−size (𝑡 ) ∑
𝑝∈𝑡 𝑝.size/|𝑡 | Avg. of sizes of packets in trace 𝑡 .

𝑓 duration (𝑡 ) 𝑝𝑛 .time − 𝑝1 .time Total time of trace 𝑡 .

𝑓 Δtime (𝑡, 𝑖 ) 𝑝𝑖+1 .time − 𝑝𝑖 .time Time diff. of packets 𝑖 & 𝑖 + 1.

3.2 Feature Prioritization via Leakage
Quantification

To target mitigation to specific features, we need to have a metric
of importance where mitigating more important features would

reduce the information leakage more than mitigating less important
features. To measure importance of each feature, we use an infor-
mation theoretic measure, Shannon entropy [23] which quantifies
information in terms of amount of bits. If we have 𝑛 unique secret
values, log2 𝑛 will be the maximum amount of information leakage
for that secret according to Shannon entropy. We define a feature
vector 𝐹𝑖 = ⟨𝑓𝑖 (𝑡 (1) ), 𝑓𝑖 (𝑡 (2) ), . . . , 𝑓𝑖 (𝑡 ( |𝑇 | ) )⟩ to represent the value
of feature 𝑖 over each trace 𝑡 ( 𝑗 ) in𝑇 . Recall that, we use a secret vec-
tor ®𝑦 = (𝑦 (1) , 𝑦 (2) , ..., 𝑦 ( |𝑇 | ) ) which represents the secret value 𝑦 ( 𝑗 )
of the corresponding trace 𝑡 ( 𝑗 ) . We use mutual information 𝐼 (Y; F𝑖 )
to quantify the information leakage for feature 𝑖 , where Y is the
domain of all secret values and F𝑖 is the domain of feature values
for feature 𝑖 . The mutual information for feature 𝑖 , 𝐼𝑖 , is defined as

𝐼𝑖 = 𝐼 (Y; F𝑖 ) = −
∑︁
𝑦∈Y

𝑝 (𝑦) log2 𝑝 (𝑦) −
©­«−

∑︁
𝑥 ∈F𝑖

𝑝𝑖 (𝑥 )
∑︁
𝑦∈Y

𝑝𝑖 (𝑦 |𝑥 ) log2 𝑝𝑖 (𝑦 |𝑥 )
ª®¬

where the first part of the equation, initial entropy, represents the
initial uncertainty about the secret. Second part of the equation,
conditional entropy, represents the uncertainty after observing
a feature value. The difference of these two measures gives the
amount of information leaked by observing feature 𝐹𝑖 .

We do not have the exact probability distributions 𝑝𝑖 (𝑥), 𝑝𝑖 (𝑦 |𝑥).
Therefore, we first compute the estimated probability distribution
𝑝𝑖 (𝑥 |𝑦) using the feature vector 𝐹𝑖 and the corresponding secret vec-
tor ®𝑦. We use Kernel Density Estimation (KDE) with k-fold cross val-
idation [12] to estimate the probability distribution 𝑝𝑖 (𝑥 |𝑦) [12, 14].
We assume the secret distribution 𝑝 (𝑦) to be uniform to represent
the attacker has no prior information about the secret. It can be
modified in the cases of prior information to reduce the initial
amount of information. We compute 𝑝𝑖 (𝑥) and 𝑝𝑖 (𝑦 |𝑥) using 𝑝 (𝑦)
and 𝑝𝑖 (𝑥 |𝑦) and the Bayes’ rule.

After quantifying the information leakage of each feature sep-
arately, IoTPatch ranks them from the highest amount of infor-
mation leaked to the lowest, which we then use in our targeted
mitigation strategy. Algorithm 1 describes the feature ranking
method where the highest ranked feature 𝑓𝑚 is found by the for-
mula:𝑚 = argmax𝑖 𝐼𝑖 .

Algorithm 1 FeaturePrioritization(𝑇, L𝑓 ) Given a set of traces
𝑇 , and a list of feature functions L𝑓 , FeaturePrioritization ex-
tracts features over traces, ranks them based on the information
leakage per feature and returns a list of feature rankings.

1: 𝐿ranked
𝑓

← ⟨⟩
2: for each 𝑓𝑖 in L𝑓 do
3: 𝐹𝑖 ← ⟨𝑓𝑖 (𝑡 (1) ), 𝑓𝑖 (𝑡 (2) ), . . . 𝑓𝑖 (𝑡 ( |𝑇 | ) )⟩ ⊲ Extract feature 𝑓𝑖

from traces
4: 𝑄𝑖 ←QuantifyLeakage(𝐹𝑖 ) ⊲ Quantify information

leakage for feature 𝑓𝑖
5: 𝐿ranked

𝑓
.append(𝑄𝑖 , 𝑓𝑖 )

6: Sort(𝐿ranked
𝑓

) ⊲ Sort features based on the information
leakage amount

7: return 𝐿ranked
𝑓
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4 PARETO OPTIMAL MITIGATION FOR
MULTIPLE FEATURES

To obtain a mitigation strategy that balances the trade-off between
added network overhead and remaining information leakage, we
define an optimization problem based on obtaining low cost and
low information leakage. We describe our cost models and tunable
mitigation search below.

4.1 Cost Models
To measure the impact of any mitigation method on the cost of the
transmission, we use metrics based on byte overhead and timing
overhead and find how much our mitigation technique impacts
the network traffic. To compare two trace sets, we use 𝑇 to denote
the original trace set and 𝑇 ′ to denote traces where the mitigation
strategy is applied.

Cost for space mitigation on two sets of traces can be measured
as

𝐶space (𝑇,𝑇 ′) =
∑ |𝑇 ′ |
𝑖=0 𝑓 sum−size (𝑡 ′(𝑖 ) ) −

∑ |𝑇 |
𝑖=0 𝑓

sum−size (𝑡 (𝑖 ) )∑ |𝑇 |
𝑖=0 𝑓

sum−size (𝑡 (𝑖 ) )
Similarly, cost for time mitigation on two sets of traces can be

measured as

𝐶time (𝑇,𝑇 ′) =
∑ |𝑇 ′ |
𝑖=0 𝑓 duration (𝑡 ′(𝑖 ) ) −

∑ |𝑇 |
𝑖=0 𝑓

duration (𝑡 (𝑖 ) )∑ |𝑇 |
𝑖=0 𝑓

duration (𝑡 (𝑖 ) )
These cost metrics represent the average increase in number of
bytes transmitted and duration of the traces respectively. Increase
in duration of user interaction for the same action or increase in
number of bytes transmitted would impact power usage, quality of
service and total used bandwidth.

4.2 Tunable Mitigation on Targeted Features
Using the feature ranking obtained over traces, we can generate
a mitigation strategy based on the top leaking features. This gen-
erated strategy needs to balance the constraints of the user on
information leakage and overhead of the leakage on the communi-
cations. In addition, this strategy needs to be applicable to unseen
traces as well, therefore our strategy should not be specific to miti-
gating information leakage in our dataset. With these constraints
in mind, we present our targeted mitigation strategy. It takes a set
of traces 𝑇 = (𝑡 (1) , 𝑡 (2) , ...), iteratively modifies 𝑇 to 𝑇 ′ based on
the feature ranking 𝐿ranked

𝑓
, and generates mitigation rules if the

modification is improving the user constraints.
We use three tunable parameters, 𝛼 , 𝛽 , and 𝛾 to define the objec-

tive function to minimize. These parameters specify the user con-
straints on leakage and overhead. The objective function Θ(𝑇 ′,𝑇 )
is defined as

𝛼 ×QuantifyLeakage(𝑇 ′) + 𝛽 ×𝐶space (𝑇,𝑇 ′) + 𝛾 ×𝐶time (𝑇,𝑇 ′) .
The parameter 𝛼 denotes the weight of the information leakage
of the modified set of traces 𝑇 ′ (higher 𝛼 corresponds to higher
emphasis on lowering leakage). The parameter 𝛽 denotes the weight
of the space cost of mitigation (higher 𝛽 corresponds to higher
emphasis on low space overhead), and the parameter 𝛾 denotes

the weight of the time cost of mitigation (higher 𝛾 corresponds to
higher emphasis on low time overhead).

We describe our mitigation approach in Algorithm 2. Our ap-
proach iterates over the ranked feature list 𝐿ranked

𝑓
, modifies the

traces based on the feature (which we explain in the following sub-
section), quantifies the information leakage of the modified trace
and calculates the objective function valueΘ.QuantifyLeakage(𝑇 ′)
performs feature extraction and quantification over the modified set
of traces 𝑇 ′ and returns the highest information leakage measure
over all features as described in Sections 3.1 and 3.2 (Lines 3–6).
If the objective function is minimizing compared to the previous
iteration (Lines 7–10), our approach updates the current minimum
value Θmin to Θ, updates the trace set 𝑇 to the modified trace set
𝑇 ′ and saves the feature for the revised feature ranking 𝐿revised

𝑓
. If

the modification based on the feature does not improve the objec-
tive function (it could be because the modification increases the
overhead too much), we exclude the feature from the revised fea-
ture ranking. After the execution, our approach returns the revised
feature ranking 𝐿revised

𝑓
which can be used to modify unseen traces.

Algorithm 2 TargetedMitigation(𝑇, 𝐿ranked
𝑓

, 𝛼, 𝛽,𝛾 ) Given a set

of traces 𝑇 , list of ranked features 𝐿ranked
𝑓

, leakage weight 𝛼 , space
cost weight 𝛽 and time cost weight𝛾 ,TargetedMitigation iterates
over the features and shapes the traffic to reduce the information
leakage while minimizing the objective function, returning the list
of features 𝐿revised

𝑓
that improve the objective function (whereΘmin

denotes the current minimum value of the objective function).
1: Θmin ←∞
2: 𝐿revised

𝑓
← ⟨⟩

3: for 𝑗 ← 1 to |𝐿ranked
𝑓

| do
4: for each 𝑡 (𝑘 ) in 𝑇 do
5: 𝑡 ′(𝑘 ) ← Modify(𝑡 (𝑘 ) , 𝐿ranked𝑓

[ 𝑗]) ⊲ Modify trace to

reduce leakage from feature 𝐿ranked
𝑓

[ 𝑗] from Section 4.3

6: Θ← 𝛼 ×QuantifyLeakage(𝑇 ′) + 𝛽 ×𝐶space (𝑇,𝑇 ′) + 𝛾 ×
𝐶time (𝑇,𝑇 ′)

7: if Θ < Θmin then
8: Θmin ← Θ
9: 𝑇 ← 𝑇 ′

10: 𝐿revised
𝑓

.append(𝐿ranked
𝑓

[ 𝑗])

11: return 𝐿revised
𝑓

⊲ List of features that improve the objective
function

4.3 Targeted Trace Modification
For obfuscating space and time side-channels, we define and utilize
three methods to modify the traces. First method Pad(𝑡, 𝐷) pads
every packet with a padding size based on the distribution 𝐷 . This
function helps with defining padding over all packets to mitigate
information leakage of aggregate features such as 𝑓 sum−size. It
takes a trace 𝑡 = (𝑝1, 𝑝2, ..., 𝑝𝑛) and returns 𝑡 ′ = (𝑝′1, 𝑝

′
2, ..., 𝑝

′
𝑛)

where 𝑝′
𝑖
.size← 𝑝𝑖 .size + 𝑥𝑖 and 𝑥𝑖 ∼ 𝐷 .

Second method,Delay(𝑡, 𝑑limit ), delays each packet based on the
uniform delaying up to a certain limit. This helps with mitigating
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Algorithm 3 OnlineMitigation(𝑝, 𝐿revised
𝑓

) Given a packet 𝑝 and

the revised feature set 𝐿revised
𝑓

, OnlineMitigation modifies the
packet based on the targeted features. We do not include dummy
packet injections in this description, those packets are sent without
processing any packets.
1: i← i + 1 ⊲ Packet index counter
2: for 𝑗 ← 1 to |𝐿revised

𝑓
| do

3: 𝑝 ← ModifyPacket(𝑝, 𝑖, 𝐿revised
𝑓

[ 𝑗]) ⊲

Modify packet to apply mitigation strategy based on feature
𝐿revised
𝑓

[ 𝑗], described in Section 4.3

4: return 𝑝 ⊲ Modified packet based on padding and delays

delays over multiple packets such as 𝑓 duration. It takes a trace 𝑡 =
(𝑝1, 𝑝2, ..., 𝑝𝑛) and returns 𝑡 ′ = (𝑝′1, 𝑝

′
2, ..., 𝑝

′
𝑛) where if 𝑝𝑖 .src ←

𝑝𝑖+1 .src, 𝑝′𝑖 .time←U(𝑝𝑖 .time, 𝑝𝑖+1 .time) if and 𝑝𝑖 .dst← 𝑝𝑖+1 .src,
for all 𝑗 ≥ 𝑖 , 𝑝′

𝑗
.time← 𝑝′

𝑗
.time+U(0.0,max(𝜇𝛿time/2, 𝑑limit ). This

delay injection assumes two party communication (e.g. between
server and client). If two packets are sent from the same source,
the first one can be delayed at most until the next packet. If the
destination of one packet is the source for the next packet, we
assume the second packet is a response to the first. In this case,
delaying the request would delay the response and all the packets
that come after it. In this case, we delay those packets at most half
of the average time difference between consequent packets or the
delay limit 𝑑limit if the time difference is too large.

Our third method, Inject(𝑡, 𝑘, 𝑠), injects 𝑘 random packets with
size 𝑠 into the trace. It takes a trace 𝑡 = (𝑝1, 𝑝2, ..., 𝑝𝑛) and re-
turns 𝑡 ′ = (𝑝′1, 𝑝

′
2, ..., 𝑝

′
𝑛+𝑘 ) where 𝑘 packets are added to the trace

where for any injected packet 𝑝′
𝑖
, its source, destination and ports

are sampled from existing packets, and size and timing of the in-
jected packet is defined as 𝑝′

𝑖
.size← 𝑠 and 𝑝′

𝑖
.time←U(𝑝1 .time,

𝑝𝑛 .time). Injecting extra packets can obfuscate side-channels caused
by both timing and space side-channels such as number of packets
with a specific size or timing delays between certain packets and we
use this method to obfuscate various types of information leakages.

For obfuscating different types of features, we employ differ-
ent packet modifications such as changing the size of packets by
padding the content, delaying the packets or injecting new packets
as explained using the aforementioned methods. Using these modi-
fications, we explain howModify(𝑡, 𝑓 ) works for each feature type
to mitigate side-channels based on each type of feature.
• For feature 𝑓 size (𝑖), we equalize the size of 𝑖th packet in
each trace to avoid information leakage. For each trace 𝑡 ,
we modify the size of 𝑖th packet 𝑝𝑖 to the maximum size
of 𝑖th packet over all traces. It can be described as ∀𝑡 ′ ∈
𝑇 ′, 𝑝′

𝑖
.size← max𝑡 ∈𝑇 𝑓 𝑠𝑖𝑧𝑒 (𝑡, 𝑖).

• For feature 𝑓 Δtime (𝑖), we delay the (𝑖+1)th packet to equalize
the delta between them. For each trace 𝑡 , we modify the
response time for the (𝑖 + 1)th packet to maximum delay
between 𝑖th and (𝑖 + 1)th packets. It can be described as
𝑝′
𝑖+1 .time← max𝑡 ∈𝑇 𝑓 Δtime (𝑡, 𝑖) + 𝑝𝑖 .time.

• For feature 𝑓 max−size, for each trace 𝑡 , we inject a packet
to 𝑡 with size equal to maximum size over all packets to

obfuscate this feature. For each 𝑡 , we modify it to create 𝑡 ′
where 𝑡 ′ ← Inject(𝑡, 1,max𝑡 ∈𝑇 𝑓 max−size (𝑡)).
• For feature 𝑓 min−size, we pad all packets with size below
a threshold to equalize the sizes of minimum packets. It
can be described as ∀𝑝 ∈ 𝑡, 𝑝.size < max𝑡 ∈𝑇 𝑓 min−size (𝑡) :
𝑝′ .size← max𝑡 ∈𝑇 𝑓 min−size (𝑡).
• For feature 𝑓 num−pkt (𝑘), we inject packets to equalize the
number of packets with size 𝑘 . For each 𝑡 , we pick a random
number of packets 𝑛 ∼ U(0, 2×max𝑡 ∈𝑇 𝑓 num−pkt (𝑡, 𝑘)) and
modify the original trace to create 𝑡 ′ where 𝑡 ′ ← Inject(𝑡, 𝑛, 𝑘).
• For the size and timing based aggregate features, (𝑓 sum−size,
𝑓 var−size, 𝑓 avg−size, 𝑓 duration) we search for a padding strat-
egy to apply to all packets by searching for best parame-
ters 𝐷 or 𝑑limit over a set of parameters for Pad(𝑡, 𝐷) and
Delay(𝑡, 𝑑limit ) respectively. We describe the set of parame-
ters used for the search method in Section 5.1.

4.4 Online Mitigation
As shown in the previous subsections, while performing the search
in Algorithm 2, trace modification (Modify(𝑡, 𝑓 )) and leakage quan-
tification (QuantifyLeakage(𝑇 ′)) is done offline and applied to
each trace. In real traffic, this is not possible as the traces must
be processed and modified as each packet arrives. To address this,
using the modified feature set, we implement a packet-based mit-
igation system that modifies each packet based on the results of
the search in Algorithm 2. Using the results of the search, we can
synthesize the online mitigation that takes a packet and modifies it
based on the features we should modify to reduce the information
leakage.

Algorithm 3 describes a method that processes each packet based
on the mitigations and returns the modified packet. It takes a packet
𝑝 , modifies it based on the packet index 𝑖 and each leaking feature
in the revised feature list. Instead of the Modify(𝑡, 𝑓 ) described in
Section 4.3, we use a method calledModifyPacket(𝑝, 𝑖, 𝑓 ) which
extendsModify(𝑡, 𝑓 ) on a packet 𝑝𝑖 rather than the full trace 𝑡 . For
Pad and Delay functions, there’s no change as both methods apply
same modifications to each packet of the trace indiscriminately. For
Inject(𝑡, 𝑘, 𝑠), as we limit it to injecting 𝑘 packets of size 𝑠 within a
trace 𝑡 , we obtain the average number of packets per trace from the
training set 𝑇 as 𝜇num−pkt and inject a packet for each 𝜇num−pkt/𝑘
packets.

A router that processes packets can use this method to apply
padding and delays to each received packet that is transmitted
between IoT device, server and smartphone application. In a real
world implementation, this algorithm would need to be optimized
to apply the mitigation quickly and send the packet with minimal
delays and it can be done as shown in prior work [20] and we will
demonstrate it in our experimental evaluation.

5 IMPLEMENTATION AND EXPERIMENTS
In this section we first describe our implementation, followed by
the discussion of benchmarks we used in our experiments, and then
describe the results of our experimental evaluation.
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5.1 Implementation
IoTPatch is implemented in Python. For trace capture, automation
of analysis, mutual information calculation, and feature ranking
capabilities, we use tools described in [14, 21]. For online mitigation,
we used Scapy’s network capture, padding and packet sending
capabilities [9]. For measuring the effectiveness of the mitigation,
we used existing implementations of random forest classifier, 𝑘-
nearest neighbor, and fully connected neural network algorithms
in scikit-learn library [17]. For the random forest classifier, we set
the number of decision trees to 100 which we obtained after testing
the random forest with 50, 100, 150 and 200 and picking the value
maximizing accuracy after cross validation.

For the mitigation parameters 𝐷 and 𝑑limit of Pad(𝑡, 𝐷) and
Delay(𝑡, 𝑑limit ), we use grid search over a set of fixed parameters,
picking the parameter that minimizes the objective function. For 𝐷 ,
we use uniform distributionU(0, 𝑘) where𝑘 ∈ {25, 50, 100, 150, 200,
250} bytes and existing packet padding methods in the related work
we compare against in the next section. We also calculate the per
packet size difference between the largest and smallest traces and
use that value as 𝑘 for the search. For the delay parameter 𝑑limit
search, we use the set of parameters {10ms, 20ms, 50ms, 100ms,
200ms, 300ms} to test the impact of low and high delay approaches.

For the experimental evaluation of IoTPatch against related
work, we set 𝛾 to ∞ and only use 𝛼 and 𝛽 parameters to focus
on space cost and accuracy in the objective function to have a
fair comparison between IoTPatch and most of the prior work
which focuses on only packet padding. For quantification, we use
the default parameters in [14] implementation which works for
estimating distributions of space and time features. We ran each
experiment 3 times and averaged the results over 3 runs.

5.2 IoT Benchmarks
5.2.1 IoT protocol benchmarks. To cover the common design and
architecture patterns, we used the gRPC, MQTT, and STOMP pro-
tocols discussed in Section 2 to create applications with various
protocols. We created 10 applications using the protocols repre-
senting both smart home and industrial IoT systems such as ovens,
air conditioners, smart locks and electrical switches. Details of the
applications can be examined in this repository [6].

To create the trace dataset for evaluation, we captured 2000
traces per secret value for each application by inducing the action
or system state. For the user-controlled applications, we obtained
the traffic generated by both the client and the device, and we
analyze them separately as the attacker could have access to only
one stream. For sensors, we only captured the traffic between server
and device as there is no client to give commands.

5.2.2 IoT real-world benchmarks. We used an existing IoT applica-
tion benchmark from previous work, the UNSW device identifica-
tion dataset [24] which contains network traces collected from a
variety of IoT devices in which the task is to identify devices.

In addition to the UNSW benchmark, we also used four IoT
devices, a Samsung SmartThings camera, a SmartThings magnetic
motion sensor, a Sengled smart light bulb, and MyQ garage door,
to generate network traffic with various user actions. To sniff the
network traffic, we used a computer with Ubuntu 20.04 OS as a
Wi-Fi hotspot to monitor and capture the device traffic. For each

user action, we generated 100 traces where each trace is 15 seconds
long. For the SmartThings camera, we generated traces where no
action and no motion is detected, the sound is detected without
motion, and both sound and motion is detected. For the motion
sensor, we generated traces where the motion happened or did not
happen in front of the sensor. For the smart light bulb, we obtained
traces where the user performs the action of turning on or turning
off the lights or doing nothing. For the garage door, we generated
traces for opening, closing the garage door, and where nothing
happens.

5.3 Experimental Evaluation
We compare our approach against prior mitigation methods which
use a fixed or randomized packet padding strategy for each packet [11,
20, 26, 27] such as linear padding (increasing size to the nearest
increment of 128) [11], exponential padding (increasing size to the
nearest power of 2) [11], uniform padding (padding with 1-1500
bytes randomly) [11, 27], uniform-255 padding (padding with 1-255
bytes randomly) [11], maximum transmission unit (MTU) padding
(increasing size to maximum transmission unit of 1500 bytes for
TCP/UDP packets) [11], MTU padding with 0-20 ms delay to each
packet (MTU-20ms) [26], mice & elephants padding (increasing size
of each packet with size less than 100 to 100, to 1500 bytes other-
wise) [11], Level-X where X is 100, 500, 700 or 900 (increasing size
of each packet with size less than X to X, pad them randomly oth-
erwise) [20]. None of the aforementioned approaches had a public
implementation, therefore we implemented the methods ourselves.

To evaluate IoTPatch against the various related work and com-
pare its performance against advanced attacks, we trained random
forest classifiers [13], k-nearest neighbors [5] and fully-connected
neural networks [22] on the traces. Random forest classifiers per-
formed the best in terms of accuracy, therefore we used random
forest classifiers in our evaluations. Hence, we are evaluating the
ability of different mitigation strategies against the best performing
classifier’s ability to infer the secret from network traces.

For a fair evaluation, we split the trace set 𝑇 into two trace sets
with equal size called seen traces, 𝑇seen, and unseen traces, 𝑇unseen,
simulating the case where the mitigation strategy is synthesized of-
fline and then deployed on the device. We synthesize our mitigation
strategy only on seen traces and apply our mitigation strategy and
transmit the packets of unseen traces using the online mitigation.
To compare IoTPatch and the prior work, we split the unseen trace
set 𝑇unseen to training trace set 𝑇train and testing trace set 𝑇test in
80%/20% split with 5-fold cross-validation to alleviate cases where
the arbitrary splitting of trace sets can affect the classification re-
sults. We train the classifier on 𝑇train and measure the accuracy,
precision, recall, F1 score of the classifier on 𝑇test .

5.3.1 Comparison of IoTPatch to prior work. To compare IoT-
Patch to prior work, we trained random forest classifiers over the
mitigated traffic using various mitigation approaches over all the
aforementioned benchmarks. As a baseline, we also include the
performance of the classifier when no mitigation and full mitiga-
tion (padding all packets to full size, delaying packets to make the
transmission like heartbeat and injecting packets to make trace size
equal overall) and random guessing probability.
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Table 2 shows the average testing accuracy, precision, recall,
F1-score [25] and space cost using the random forest classifier.
The results show that when our mitigation approach, IoTPatch, is
used, mitigated traces leak less information and induce less over-
head compared to the prior work. As seen in the table, IoTPatch
with different objective functions represent a trade-off between
overhead and accuracy and the user can select the solution fitting
their constraints. IoTPatch (Overhead) achieves lowest overhead
compared to other works while reducing leakage some amount. IoT-
Patch (Balanced) has similar overhead compared to linear padding
while reducing leakage metrics close to MTU with 20ms delay. IoT-
Patch (Leakage) has very high overhead while reducing leakage
only 1-2% compared to IoTPatch (Balanced). Our method is able
to mitigate sources of side-channels by padding a single packet
or injecting a few packets which help our methods achieve low
overhead when that is prioritized. The search based mitigation min-
imizes the objective function at each step, enabling IoTPatch to
achieve lower overhead, leakage or both. On all of the mitigation
approaches, online mitigation adds in average 4% time overhead
with packet processing. This processing delay is similar to mitiga-
tion time delays in previous work such as [19] which shows the
main reason of transmission delay is network congestion rather
than packet processing.

Table 2: Average testing accuracy, precision, recall, F1-score
and packet size overhead results of the prior work and IoT-
Patch with 6 objective functions on all benchmarks, trained
on a random forest classifier. Overhead, Balanced and Leak-
age results of IoTPatch represent cases where the objective
function weights 𝛼 and 𝛽 are 1 and 1, 1 and 0.1, 1 and 0.01
respectively. Bold values are minimum values among the
methods within their category (related work, IoTPatch) sepa-
rated with bold lines.

Mitigation Method Accuracy Precision Recall F1-Score 𝐶space

No mitigation 0.82 0.83 0.82 0.82 0.00

Full mitigation 0.44 0.44 0.44 0.44 113.39

Random Guess 0.30 0.30 0.30 0.30 N/A

Uniform 0.53 0.52 0.51 0.51 7.51

Uniform255 0.54 0.54 0.53 0.53 1.36

Mice & Elephants 0.55 0.54 0.53 0.53 2.62

Linear 0.55 0.55 0.54 0.54 0.94

Exp 0.55 0.56 0.55 0.54 0.32

MTU 0.53 0.53 0.52 0.52 15.01

MTU-20ms 0.50 0.48 0.48 0.48 15.01

Level-100 0.56 0.56 0.55 0.55 0.76

Level-500 0.54 0.53 0.52 0.52 4.57

Level-700 0.53 0.53 0.52 0.52 6.62

Level-900 0.54 0.52 0.52 0.52 8.70

IoTPatch (Overhead) 0.58 0.58 0.58 0.58 0.16

IoTPatch (Balanced) 0.50 0.49 0.48 0.48 0.80

IoTPatch (Leakage) 0.49 0.48 0.47 0.46 8.87

IoTPatch (Overhead w/Time) 0.57 0.57 0.56 0.56 0.14

IoTPatch (Balanced w/Time) 0.50 0.50 0.49 0.49 0.44

IoTPatch (Leakage w/Time) 0.46 0.46 0.45 0.44 1.32

5.3.2 Pareto optimality of IoTPatch. Figure 2 shows the accuracy
(x-axis) and space overhead (y-axis) results for the prior work and
IoTPatchwith different objective function parameters whichweigh
overhead and leakage at different levels with simulated and actual
traffic results. Both plots show that IoTPatchwith various objective
functions provides a Pareto optimal solution set, where different ob-
jective functions result in different points in the accuracy-overhead
space and the simulated results and actual traffic show similar re-
sults. The users can run IoTPatchwith different objective functions,
get the mitigation strategies with various results and pick the one
that fits their needs and requirements. For example, in the MyQ
garage door example in Figure 2, they can pick the strategy with
low overhead where the attacker can guess accurately with 65%
accuracy or pick the strategy with higher overhead while reducing
the accuracy of the attacker to 50%, making it a random guess.

Figure 2: Average accuracy (x-axis) and total overhead (y-
axis) results of prior work and IoTPatch using the random
forest classifier. Red pluses represent the results of prior
approaches, blue crosses and green dots represent the results
of IoTPatch with different weights for objective function
when online mitigation and simulated mitigation is applied
respectively. Lower values are the better results.

5.3.3 Effectiveness of targeting timing side-channels. To demon-
strate the value of targeting timing side-channels, we set the timing
overhead weight 𝛾 equal to 0.1 for the objective function and com-
pared IoTPatch with and without timing information leakages.

Table 2 shows the results of IoTPatch with/without the timing
mitigation. Compared to IoTPatch without any timing mitiga-
tion, timing mitigation either reduces the space overhead while
obtaining similar results, reduces information leakage or both. IoT-
Patch (Leakage w/Time) improves both metrics compared to IoT-
Patch (Leakage) where modifying both time and space features
helps the search process have more options to improve the objective
function with only 5% average time overhead. Compared to MTU
with 0-20 ms delays which have a 90% average time overhead, our
version achieves better results with lower time and space overheads
with 5-10% time overhead. Results of both approaches demonstrate
the importance of targeting timing side-channels.

5.3.4 Limitations. Our results on feature prioritization and side-
channel mitigation depend on the quality of the captured network
trace set that contains a variety of user behaviors. If the number of
traces are low or they are captured in a way such that some other
unrelated event (such as time of day, device updates, etc.) correlates
with the action, IoTPatch can try to mitigate the traffic, assuming
it leaks information when in fact it does not leak information in
the real world. To alleviate validity concerns, in our evaluations we
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split the trace sets such that we synthesize the mitigation strategy
on seen traces and demonstrate effectiveness of mitigation against
attacks on another set of unseen traces.

IoTPatch detects and quantifies the information leakage and it
can find the optimum mitigation strategy to reduce leakage, how-
ever implementing that strategy is left to the user. We propose a
method for the code synthesis for the mitigation strategy in ex-
perimental evaluation and it can be implemented similar to the
prior works [20, 26] which use software defined networking to
manipulate network traffic data

6 RELATED WORK
In the network side-channel mitigation area, there are several pro-
posed mitigation techniques based on packet padding and delay-
ing [11, 20, 26, 27]. We compared our work against the proposed
techniques and experimentally demonstrated that our work synthe-
sizes mitigation strategies with better accuracy and overhead due
to feature prioritization and refinement on an objective function.

Apthorpe et al.’s work Stochastic Traffic Padding [8] mitigates
side-channels caused by a burst of packets (such as a camera up-
loading a photo, Amazon Echo downloading music files for play,
etc.) where the timing of the burst of packets leaks when the event
happens. They obfuscate the timing of the event by sending fake
bursts of packets over a trace and tune the amount of bursts based
on guessing accuracy. Their method is tailored on mitigating a
specific type of information leakage based on user taking or not
taking an action whereas we try to mitigate information leakages in
general with lower overhead. The padding method is not publicly
available to use and the authors did not respond to our requests for
their implementation.

Liu et al.’s work, SniffMislead [15] aims to obfuscate the correla-
tion between network side channels and user actions by simulating
dummy users over the network. They capture traces and use classi-
fiers to identify which packets are relevant to the action and replay
those packets over the trace as phantom users to confuse any eaves-
droppers. Our approach is more general as it can be used to reduce
information leakage for device fingerprinting or action fingerprint-
ing as we evaluate our approach over a variety of benchmarks.
We also provide a tunable mitigation strategy for the privacy and
overhead constraints of the user.

7 CONCLUSIONS
We presented a targeted black-box side-channel mitigation ap-
proach for IoT applications called IoTPatch which analyzes cap-
tured network traces by extracting features based on packet sizes
and timings, and ranks features based on the quantified informa-
tion leakage. IoTPatch uses this feature ranking to synthesize a
mitigation strategy based on the needs of the user, balancing the
trade-off between the information leakage and mitigation overhead.
We evaluate our approach on network traces collected from a set
of IoT applications with various protocols, four IoT devices and a
device identification dataset. Our experimental results demonstrate
that IoTPatch outperforms the prior work and provides Pareto
optimal mitigation strategies based on user’s constraints.
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