Check for
Updates

TSA: A Tool to Detect and Quantify Network Side-Channels’

Ismet Burak Kadron
kadron@ucsb.edu
University of California, Santa Barbara
Santa Barbara, CA, USA

ABSTRACT

Mobile applications, Internet of Things devices and web services
are pervasive and they all encrypt the communications between
servers and clients to not have information leakages. While the
network traffic is encrypted, packet sizes and timings are still visible
to an eavesdropper and these properties can leak information and
sacrifice user privacy. We present TSA, a black box network side-
channel analysis tool which detects and quantifies side-channel
information leakages. TSA provides the users with the means to
automate trace gathering by providing a framework in which the
users can write mutators for the inputs to the system under analysis.
TSA can also take as input traces directly for analysis if the user
prefers to gather them separately. TSA is open-source and available
as a Python package and a command-line tool. TSA demo, tool and
benchmarks are available at https://github.com/kadron/tsa-tool.

CCS CONCEPTS

« Security and privacy — Software and application security;
Web application security; Network security; « Software and
its engineering — Software testing and debugging.

KEYWORDS

Security and privacy, Side-channel analysis, Network traffic analy-
sis, Software testing

ACM Reference Format:

Ismet Burak Kadron and Tevfik Bultan. 2022. TSA: A Tool to Detect and
Quantify Network Side-Channels. In Proceedings of the 30th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE °22), November 14-18, 2022, Singapore, Sin-
gapore. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3540250.
3558938

1 INTRODUCTION

Information leaks are becoming a threat on privacy as all sensitive
information migrates to online services and side-channel informa-
tion leakages, where private information can be extracted by ana-
lyzing visible side effects of computation, are becoming important.
On encrypted network communications, eavesdroppers can utilize
communication metadata (packet sizes and timings) to infer the user

“This material is based on research supported by NSF under Grants CCF-1901098 and
CCF-1817242.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ESEC/FSE °22, November 14—18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3558938

1760

Tevfik Bultan
bultan@ucsb.edu
University of California, Santa Barbara
Santa Barbara, CA, USA

actions or data on mobile applications, websites or IoT devices [1, 9].
A thorough analysis of these side-channel leakages is needed to
check if they leak any important information. White-box analysis
of these information leakages are difficult due to non-determinism
of the network conditions and difficulty of multi-component static
analysis. This work focuses on black-box analysis where profiling
the application with many inputs and performing analysis on the
resulting network traces is more feasible.

We present TSA, a Tool for detecting and quantifying network
Side-channels Automatically with black-box testing and input gen-
eration methods. TSA is based on the technical approaches pre-
sented in [6, 8]. We extend these prior works into a flexible open
source tool with documented APIs which the users can utilize to
analyze their applications. In network trace analysis, we provide
the option of trace alignment to extract more meaningful features
for trace analysis. For experimental evaluation and demonstration
of the capabilities of TSA, we analyze 3 applications in DARPA
STAC benchmark.

TSA can be used in two ways. If the user is testing an application
and has not collected any traces, they can use TSA to generate in-
puts to test the application, capture the network traces, and analyze
the captured traces in a feedback driven loop where TSA termi-
nates the analysis if the information leakage estimate converges to
a value. If they already captured some traces previously, they can
use TSA to just perform side-channel analysis and quantification.

When using TSA, the user provides some seed inputs for the
target system, and a set of mutators which, given a valid input,
return another one. The user chooses a secret of interest—some
aspect of the input that they consider sensitive, whose leakage
they want to detect and quantify. TSA then repeatedly executes the
target system, generates new inputs, captures network traffic, and
adjusts input generation strategy based on the feedback it obtains
by analyzing captured traffic. For analysis, TSA extracts features
that may leak side-channel information using the size, time and
direction of the captured network packets. Afterwards, it computes
the mutual information using Shannon entropy and finds features
that maximize the information gain about the secret of interest. The
final output from TSA is an automatically generated ranking of the
top n most-leaking features, sorted by how much information they
each leak about the secret of interest.

The envisioned users of TSA include researchers and software
engineers, and other people who want to analyze the side-channel
information leakage of their applications. The challenge we propose
to address is automatically analyzing side-channel information
leakages of applications using a small set of inputs and mutators.
In Section 2, we summarize the differences between our approach
and the prior work. In Section 3, we go over the tool architecture
and API to describe how it can be used for analysis. In Section 4,

http://creativecommons.org/licenses/by/4.0/
https://github.com/kadron/tsa-tool
https://doi.org/10.1145/3540250.3558938
https://doi.org/10.1145/3540250.3558938
https://doi.org/10.1145/3540250.3558938
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3540250.3558938&domain=pdf&date_stamp=2022-11-09

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

User Provided TSA

Components

Y
J Trace Generation Trace Analysis
Collected Traces Framework Framework

Trace Capture via
Running Inputs

i

Mutation-based Input

Trace Alignment

|

Seed Input Set

Feature Extraction

Mutator Set Generation
ighi Leakage
Instrumented App Mutator Weighing

Quantification

Figure 1: Architecture of TSA.

we describe the results of our experimental evaluation. In Section 5,
we conclude the paper.

2 RELATED WORK

There have been prior works for analyzing side-channel informa-
tion leakages on encrypted network traces such as LeakiEst from
Chothia et al. [3], F-BLEAU from Cherubin et al. [2] and WeFDE
from Li et al. [7]. LeakiEst uses histograms to estimate the probabil-
ity distributions and uses min-entropy measure to find the worst
case information leakages on single features. F-BLEAU uses nearest
neighbor classifiers to quantify the information leakage over all fea-
tures. WeFDE uses KDE with Monte Carlo sampling to quantify the
information leakage over all features. All of these approaches pro-
vide information leakage quantification capabilities given extracted
features and labeled traces with various probability estimation and
different quantification measures. In addition to quantifying the
information leakage with a dynamic probability estimation method
similar to WeFDE, TSA uses user provided inputs and mutators
to automate the input generation and trace capture in a feedback-
driven manner.

3 TSA

In this section, we describe TSA’s architecture and main workflow
of TSA’s execution. We also describe how TSA is used on an example
application, how the user provides inputs, mutators and application
orchestration.

3.1 TSA Framework

Figure 1 describes the core framework of TSA and two ways the
user can provide data for the analysis. If the user provides seed
inputs, mutators and an instrumented application, TSA uses its
trace generation framework to generate new inputs and run those
inputs to generate network traces. TSA’s trace analysis framework
takes the generated traces and performs side-channel analysis with
trace alignment, feature extraction and quantifies the information
leakage over each feature. The leakage quantification results are
used to determine the importance of mutators which are used to
generate new inputs in mutation-based input generation. If the user
only provides collected and labeled network traces, TSA’s trace

1761

ismet Burak Kadron and Tevfik Bultan

Network Traces

>
>

Trace Capture via
Running Inputs

Trace Analysis
Framework

Seed Input Set

Mutator Set '—)

Initial Leakage Ranking

v

Mutator Weighing

Weights for Mutators
A 4

Mutation-based Input
Generation

New Inputs | Trace Capture via

Running Inputs

A

New Network Traces

Trace Analysis
Framework

Leakage Estimation
Converged?

Final Leakage
Results

Figure 2: Workflow of TSA. Thick blue arrows denote the
flow of execution.

analysis framework performs side-channel analysis as described
and returns the leakage quantification results.

TSA Workflow Summary. Figure 2 describes the workflow of TSA
when used with a set of seed inputs and mutators. We only describe
the workflow of this use as TSA’s workflow with a set of collected
network traces is explained clearly in Figure 1 and in the previous
section. To obtain an initial leakage estimation, TSA runs the seed
inputs over the instrumented application to obtain an initial set of
traces, uses trace alignment and feature extraction to obtain features
and use quantification methods to quantify the information leakage.
Using this initial leakage estimation, TSA evaluates the influence of
mutators on the leakage estimation based on changes in top feature
or secret and computes weights for mutators which are proportional
to their likelihood of changing secret value or perturbing feature
values.

After this initial setup, for each iteration, TSA generates new
inputs using mutators and previous inputs based on the computed
weights, runs these new inputs over the system to obtain new traces
and runs the analysis over all of the collected traces to obtain the
leakage estimation for that iteration. If the stopping criterion is
satisfied, then it returns the final information leakage estimation
on the application. Otherwise, it starts a new iteration, repeating
the previously described steps. We perform analysis over all the
collected traces and generate new inputs using all the previously
generated inputs but we do not show the accumulation of traces
and inputs on the figure for simplification.

3.2 TSA API

To analyze their applications, users need to define the input model,
provide a set of mutators and write code to orchestrate system
setup and execution. To make this process easier, we provide an

TSA: A Tool to Detect and Quantify Network Side-Channels

API with classes for defining inputs, mutators and application or-
chestration. Listing 1 provides an example code segment the user
may write to test an example shopping application extending TSA
API classes. The TSA codebase contains examples with varying
degrees of complexity, including apps, inputs, and mutators for the
STAC benchmark which the users can refer to as well.

Input model. To help the users write inputs, we provide Input
base class which represents a valid input for the application. Users
can subclass Input and add fields and members to model the rele-
vant characteristics. For example, if the user wants to test if their
purchases are leaked, user can define a shopping list input as
Python class ShoppingInput extending Input with a list named

shoppingcart representing their purchases and string named zipcode

representing the ZIP code of their shipping address. The users can
also write assertions in the constructor such as ZIP code belonging
to a set of valid US ZIP codes to check validity of the input when it
is being created.

Listing 1: Example usage of TSA API

from tool import Platform, Container, Sniffer, App, Input, Mutator

class ExampleApp (App):
def launch(self):
Platform.cleanuphosts (["homer.example.edu", "marge.example
Deploy two containers on two different machines
self.servercontainer Container ("example/server:v1.0")
Container ("example/client:v1.0")
launch(self.servercontainer,
launch(self.clientcontainer,

.edu"])

self.clientcontainer =
Platform.
Platform.
Run the server

"homer
"marge

self.server .example.edu")

.example.edu")

self.client

‘cd /home/server 83 ./startServer.sh'"

detach=True)

server_cmd = "bash -c
self.server.exec(server_cmd,
shutdown (self):
self.server.killrm()
self.client.killrm()
run(self, inputs):
sniffer Sniffer(ports=[8080,
sniffer.start()
for input in inputs:
sniffer.startinteraction(input.secret())
self.client.createfile(input, "/home/client/input.txt")
cmdfmt ‘cd /home/client && ./startClient.sh {} {}'"
self.client.exec(cmdfmt. format("homer.example.edu", "input.txt"))
sniffer.stop()
return sniffer.traces()

80811)

"bash -c

class ShoppingInput(Input):
def __init__(self, shoppingCart,
assert len(shoppingCart) > @
assert len(zipcode) == 5
self.shoppingCart = shoppingCart
self.zipcode = zipcode

zipcode):

self.itemList = ['apple', 'orange', ...]
def __eq__(self, other):
return self.shoppingCart == other.shoppingCart
and self.zipcode == other.zipcode
def __hash__(self):

return hash((self.shoppingCart, self.zipcode))
secret(self):
return len(self.shoppingCart)

def

class AddItem(Mutator):
def mutate(input):
randomItem

random. choice (input.itemList)
input.shoppingCart.append(randomItem)

return input

class Removeltem(Mutator):
def mutate(input):

if len(input.shoppingCart) > 0:
randomIndex = random.randrange(len(input.ShoppingCart))
input.shoppingCart.pop(randomIndex)
return input

else:
return None

class ChangeZIPCode (Mutator):

... etc ...

1762

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

The only mandatory methods to implement are methods hash
and secret. First method hash is used by TSA to check if the newly
generated inputs are unique. A simple way to implement hash is
to pack all relevant class members in a tuple and call Python’s
primitive hash method on that tuple. This ensures that any change
in any member affects the resulting hash value. The second method
secret defines the secret of interest in relation to the input. This
is up to the user and in our example, it can be number of elements
in the shopping cart, the total cost of all items in the shopping cart,
prefix of user’s ZIP code (denoting general area of delivery), or any
other sensitive information.

Mutators. Mutator base class in TSA API represents a mutator that
transforms valid inputs. The users can write their own mutators
extending Mutator and providing their own implementation for
the method mutate, which is a static method that takes an Input
and returns another Input. The method assumes Input is a valid
input for the system and tries to return another valid input. If it
cannot, the method should return None. For example, the user may
write a mutator which adds an item to the shopping cart or another
mutator which removes an item from the shopping cart if possible.

Listing 1 shows an example with three mutators. The first muta-
tor, AddItem, adds an item to the shopping cart field and returns
the new input. The second mutator, RemoveItem, removes a ran-
dom item from the shopping cart field if it is not empty, and re-
turns the new input. If the shopping cart is empty, it returns None
as it cannot remove items from an empty list. The third mutator,
ChangeZIPCode, changes the ZIP code of the input from a set of
valid ZIP codes, returning the new input. We provide the code for
the first two mutators for space reasons as the code to check valid
ZIP codes is complicated.

System Setup and Execution. To execute the system under test, we
provide App base class which can be extended by the users. When
implementing the instrumentation of system execution, the user
must implement three methods, 1aunch, shutdown and run. launch
and shutdown methods set up the system before analysis and shut
down the system after analysis respectively. run method takes a list
of Input objects and runs them one by one over the system under
test, returning a set of captured network traces. The user needs to
provide how the inputs interact with the system by implementing
run method. This imitates how a user might use the input as a
scenario. For example, for ExampleApp. run() might have a script
that searches each item of the input file on a website, puts the first
result on the shopping cart and checks out using the ZIP code in
the input.

To instrument deployment and launching of components such
as clients, servers and peers, we use Docker [5] in our examples.
We provide a classes called Container and Platform which set up
and launch Docker containers respectively. We provide methods
to create containers on hosts and on the containers, we provide
methods to copy files, run commands and shutdown. Using Docker
is optional, but recommended for simplicity and reproducibility.
This also allows running TSA analyses on cloud platforms with
minimal changes.

Packet sniffing. To help with capturing traffic, TSA provides a
Sniffer class that offers a simple interface for capturing traffic

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

and labeling the captured traces. To set up network capture, the
user can create a Sniffer object, denoting specific ports they want
to listen and start the sniffing which runs in a separate thread.
Before starting each interaction, the App’s run method should call
Sniffer.startinteraction(secret) to ensure that the captured
traffic is labeled with the correct secret. Lastly, run should finish
sniffing with Sniffer.stop() method and return the traces ob-
tained from Sniffer.

TSA Setup. Our tool runs in a feedback-driven manner, where it
generates inputs by picking mutators based on a heuristic, generates
new traces by running the inputs on the instrumented app and runs
our analysis on the newly obtained traces. If the leakage estimation
of top-k features do not change below an ¢ value for N steps, then
the estimation stops. To setup this feedback loop, we provide default
values to the stop criterion parameters but the users can provide
their own values for k, € and N variables to set up their own stop
criterion. Users can also provide a parameter to determine how
many times each input will run on the system. Some systems may
exhibit non-deterministic behaviors, therefore running each input
multiple times may be beneficial for the accuracy of the analysis.

3.3 TSA Usage

TSA! is available as a command-line tool and Python package. As a
Python package, TSA can be used as a library that provides classes
for sniffing network communication, parsing network traces and
extracting features, quantifying information leakage and visual-
izing the feature distributions and information leakage. Defining
input models, mutators, system instrumentation and providing
seed inputs require writing them in Python, therefore this is the
recommended way to use TSA for feedback-driven analysis. We pro-
vide examples on how the TSA is used as a Python package in our
repository.

TSA’s command-line interface is used for analyzing already cap-
tured network traces. TSA’s command-line arguments include net-
work trace and label file names, which ports to examine for filtering
traffic, and folder location for generated plots. There are flags for
choosing the leakage quantification options, choosing whether to
use alignment on network traces, and whether to quantify only
space or time features if the user is interested in only one of them.

In both usages, TSA outputs the leakage information as a ranking
over the extracted features. If requested, TSA also provides plots
for the feature distributions per secret to show how features and
secrets correlate.

4 EVALUATION

To demonstate the performance of our approach when input sets
and mutators are given, we used TSA to analyze information leak-
ages of 2 applications in the DARPA STAC benchmark [4] which
contain implementations of various client-server or peer-to-peer
web applications such as a messaging app, or a railyard or air traffic
management system. The applications we analyzed are AIRPLAN,
RAILYARD and GABFEED. This benchmark comes with some ground
truth where some versions are found to be leaking information

IThe tool’s source code, experimental evaluation code, evaluation results, and docu-
mentation are publicly available at https://github.com/kadron/tsa-tool

1763

ismet Burak Kadron and Tevfik Bultan

through manual analysis which we can compare our results against.
We report the leakages in terms of percentages and amount of bits
leaked compared with the full amount of information of the secret
set. Overall, the iterative analysis took at most 5 hours for all cases.

AIRPLAN Results. For AIRPLAN, an air traffic management system
which takes a route map graph as an input, with number of airports
as the secret of interest, we provided 13 seed inputs corresponding
to one for each secret value (a graph with 2 nodes, 3 nodes, etc.) and
12 mutators which add/remove nodes, add/remove flights, modify
airport names and each weight separately.

Using our tool, we find that AIRPLAN 2, the vulnerable applica-
tion leaks 100% (3.70 out of 3.70 bits) of the information within
76 minutes of analysis and 3 iterations. AIRPLAN 5 is a modified
version of AIRPLAN 2 where the vulnerability is patched and TSA
reports that it leaks 89% (3.29/3.70 bits) of the information within
114 minutes of analysis. AIRPLAN 3 is marked not vulnerable in
the DARPA STAC benchmark and TSA reports that it leaks 47%
(1.74/3.70 bits) of the information within 161 minutes of analysis.
These results are consistent with the ground truth where the vul-
nerable application leaks 100% and other versions have less leakage
depending on different versions.

RAILYARD Results. For RAILYARD, a train station management sys-
tem, we provided 64 inputs with different configurations denoting
possible combinations of possible cargo (which is the secret of in-
terest) and 11 mutators that add/remove a train car, a piece of cargo,
a crew member, or a stop, change names of crew or stops. Our
analysis shows that this application leaks 22% (1.32/6.00 bits) of
the information within 202 minutes which is similar to the coarse
ground truth provided by DARPA STAC benchmark where it is
marked non-vulnerable. There is no vulnerable version of RaI-
LYARD in the DARPA STAC benchmark to compare against but
22% leakage shows that the application does not leak a significant
amount of information.

GABFEED Results. For GABFEED, a social messaging tool where
the secret of interest is the Hamming weight or number of 1’s in the
binary representation of the secret key used in login, we provided
5 mutators modifying number of 1’s in the secret key and shuffling
the binary representation to generate a new input. We provided
16 random inputs as seed inputs as well. For the leaking version
of the application, GABFEED 1, we find that it leaks in average 98%
(5.50/5.61 bits) of information within 108 minutes of analysis which
is consistent with the ground truth. For the non-leaking versions,
GABFEED 2 and GABFEED 5, TSA runs longer, exploring more secrets
and finds that they leak 31% (1.86/6.00 bits) of the information with
297 and 240 minutes of analysis time respectively, demonstrating
the low amount of leakage.

5 CONCLUSION

We presented TSA for automatically detecting and quantifying net-
work side-channel information leakages. In our presentation, we
described how TSA works given inputs and mutators, and how
its API can be modified to analyze other applications. In our ex-
perimental evaluation, we showed TSA’s performance against an
existing benchmark.

https://github.com/kadron/tsa-tool

TSA: A Tool to Detect and Quantify Network Side-Channels

REFERENCES

[1] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Mietti-
nen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac. 2020.
Peek-a-Boo: I see your smart home activities, even encrypted!. In Proceedings of
the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
207-218.

Giovanni Cherubin, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.
2019. F-BLEAU: Fast Black-box Leakage Estimation. CoRR abs/1902.01350 (2019).
arXiv:1902.01350 http://arxiv.org/abs/1902.01350

Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. 2013. A Tool for Estimating
Information Leakage. In Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings (Lecture Notes in
Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer,
690-695. https://doi.org/10.1007/978-3-642-39799-8_47

DARPA. 2015. The Space-Time Analysis for Cybersecurity (STAC) program. http:
//www.darpa.mil/program/space- time-analysis-for-cybersecurity

Docker Inc. 2013. Docker SDK and APL. Retrieved June 14, 2022 from https:
//docs.docker.com/engine/api/sdk/

o)

(3

[4

&

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

[6] Ismet Burak Kadron, Nicolas Rosner, and Tevfik Bultan. 2020. Feedback-Driven

Side-Channel Analysis for Networked Applications. In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis.

Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring Information Leakage
in Website Fingerprinting Attacks and Defenses. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM, 1977-1992. https://doi.org/10.1145/3243734.
3243832

Nicolas Rosner, Ismet Burak Kadron, Lucas Bang, and Tevfik Bultan. 2019. Profit:
Detecting and Quantifying Side Channels in Networked Applications. In 26th Net-
work and Distributed System Security Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019.

V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. 2018. Robust Smartphone
App Identification via Encrypted Network Traffic Analysis. IEEE Transactions on
Information Forensics and Security 13, 1 (Jan 2018), 63-78. https://doi.org/10.1109/
TIFS.2017.2737970

https://arxiv.org/abs/1902.01350
http://arxiv.org/abs/1902.01350
https://doi.org/10.1007/978-3-642-39799-8_47
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.docker.com/engine/api/sdk/
https://docs.docker.com/engine/api/sdk/
https://doi.org/10.1145/3243734.3243832
https://doi.org/10.1145/3243734.3243832
https://doi.org/10.1109/TIFS.2017.2737970
https://doi.org/10.1109/TIFS.2017.2737970

	Abstract
	1 Introduction
	2 Related Work
	3 TSA
	3.1 TSA Framework
	3.2 TSA API
	3.3 TSA Usage

	4 Evaluation
	5 Conclusion
	References

