Check for
Updates

Quantitative Policy Repair for Access Control on the Cloud”

William Eiers
University of California Santa Barbara
Santa Barbara, CA, USA
weiers@cs.ucsb.edu

ABSTRACT

With the growing prevalence of cloud computing, providing secure
access to information stored in the cloud has become a critical prob-
lem. Due to the complexity of access control policies, administrators
may inadvertently allow unintended access to private information,
and this is a common source of data breaches in cloud based ser-
vices. In this paper, we present a quantitative symbolic analysis
approach for automated policy repair in order to fix overly per-
missive policies. We encode the semantics of the access control
policies using SMT formulas and assess their permissiveness using
model counting. Given a policy, a permissiveness bound, and a set
of requests that should be allowed, we iteratively repair the policy
through permissiveness reduction and refinement, so that the per-
missiveness bound is reached while the given set of requests are still
allowed. We demonstrate the effectiveness of our automated policy
repair technique by applying it to policies written in Amazon’s
AWS Identity and Access Management (IAM) policy language.

CCS CONCEPTS

« Security and privacy — Logic and verification; Access con-
trol.

KEYWORDS
access control, policy analysis, policy repair, quantitative analysis

ACM Reference Format:

William Eiers, Ganesh Sankaran, and Tevfik Bultan. 2023. Quantitative
Policy Repair for Access Control on the Cloud. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA °23), July 17-21, 2023, Seattle, WA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3597926.3598078

1 INTRODUCTION

It is critical to protect privacy of the data stored in software services
that run on compute clouds like Amazon Web Services (AWS) since
data breaches in the cloud can have significant negative impact

“This material is based on research sponsored by NSF under grants CCF-2008660,
CCF-1901098 and CCF-1817242, and by DARPA under the agreement number N66001-
22-2-4037. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the U.S. Government.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598078

Ganesh Sankaran
University of California Santa Barbara
Santa Barbara, CA, USA
ganesh@cs.ucsb.edu

564

Tevfik Bultan
University of California Santa Barbara
Santa Barbara, CA, USA
bultan@cs.ucsb.edu

on millions of users. AWS Identity and Access Management (IAM)
service [15] allows administrators to write policies that specify
authorization and access control rules for the resources available
in a software service. Although IAM provides a convenient lan-
guage for writing policies, specification errors in manually written
complex policies are bound to happen, leading to unintended and
unauthorized access to data. Indeed, errors in access control policies
in cloud storage services have already resulted in the exposure of
millions of customers’ data to the public, such as the exposure of
the data records (including names, addresses, account information,
email addresses, and last four digits of credit card numbers) of more
than 2 million Dow Jones & Co. customers [7], and exposure of
account records of 14 million Verizon customers [26].

Given the ubiquity of software services running on compute
clouds, automated access control policy analysis techniques that
can help administrators are critically important. There has been
prior work on automatically analyzing access control policies for
finding permissiveness errors [4, 5, 9, 10]. In this paper, we go one
step further, and investigate the problem of automatically repairing
overly permissive policies.

The access control policy analysis and repair problems are inher-
ently quantitative since the issue is not whether an access control
policy allows access to data resources, but how much access it al-
lows. We call this the permissiveness of an access control policy. In
particular, we investigate the problem of quantitative policy repair
where the goal is not to completely eliminate all access to data
(which would not be a feasible fix) but to reduce permissiveness to
an acceptable level specified by the service administrator.

In this paper, we present a quantitative symbolic analysis ap-
proach for automated policy repair in order to reduce the permis-
siveness of access control policies. Our repair approach is sound,
i.e., it guarantees that the repaired policy meets the given permis-
siveness constraints. Our contributions are the following:

o A formalization of the access control policy repair problem.

e A quantitative and symbolic policy repair algorithm for au-
tomatically reducing the permissiveness of a given access
control policy.

e Access control policy permissiveness localization and reduc-
tion techniques, including a regular expression generaliza-
tion technique for characterizing the set of resources based
on a given set of access control requests.

e An experimental evaluation of our quantitative policy repair
approach.

The rest of the paper is organized as follows. In Section 2 we for-
malize the policy repair problem and demonstrate its applicability
through motivating examples, in Section 3 we discuss the policy
model for analyzing the semantics of access control policies, in Sec-
tion 4 we introduce our novel approach for policy repair through a
quantitative policy repair algorithm, in Section 5 we discuss how

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598078
https://doi.org/10.1145/3597926.3598078
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598078&domain=pdf&date_stamp=2023-07-13

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

our approach can be applied to the AWS IAM policy language, in
Section 6 we experimentally evaluate our approach, in Section 7
we discuss related work, and in Section 8 we conclude the paper.

2 MOTIVATION AND OVERVIEW

In this section we give an overview of the access control policy
repair problem and provide motivating examples. From a security
perspective, access control policies should grant only the permis-
sions required to perform a task. Overly permissive policies, which
grant more permissions than necessary, can allow attackers un-
fettered access to secure data if the associated role or users are
compromised. Thus, overly permissive policies should be modified,
or repaired, to allow only those requests which are necessary.

2.1 Policy Repair Problem

Access control policies grant permissions to users or services by
allowing requests. The more permissions granted by a policy, the
more requests it allows. The fewer permissions granted by a policy,
the lower the number of requests it allows. In this sense, we can
think of the number of permissions granted, or requests allowed,
by the policy as defining the permissiveness of the policy. A natural
question then is, given an overly permissive policy, is it possible to
modify, or repair the policy so that it is no longer overly permissive?
This gives rise to the Policy Repair Problem: Given an access control
policy, ensure that it only allows the requests necessary to achieve
its intended purpose. However, this is difficult to ensure as complex
policy specifications are difficult to craft and the set of requests to
be allowed or denied may not be explicitly defined or known.

In this paper, we introduce and formalize the following varia-
tion of the access control policy repair problem: Given a policy, a
permissiveness bound, and a set of must-allow requests, check that
the policy meets the permissiveness bound while allowing all the
requests in the must-allow set, or repair it such that it meets the
permissiveness bound and allows all the requests in the must-allow
set. Note that permissiveness bound puts an upper bound on the
desired level of permissiveness while the must-allow request set
puts a lower bound on the desired level of permissiveness.

Permissiveness Bound. The permissiveness bound is a restriction
on the permissiveness of the policy. That is, it is a restriction on
the maximum number of requests allowed by the policy. If the
permissiveness of the policy (number of requests allowed by the
policy) is greater than the permissiveness bound, then we call this
policy an overly permissive policy. Our approach aims to repair
overly permissive policies by reducing the permissiveness of the
policy so that the permissiveness of the policy is less than or equal to
the permissiveness bound. While in this paper we assume that such
a permissiveness bound is given a priori, we also discuss methods
for automatically finding permissiveness bounds later in the paper.

Must-Allow Request Sets. The set of must-allow requests are re-
quests which must be allowed by the policy. Without a must-allow
request set, a policy that does not allow any requests would meet
any permissiveness bound and would be a viable (but meaningless)
solution to the policy repair problem. The must-allow request set
is used to guide the algorithm towards a less permissive but still

565

William Eiers, Ganesh Sankaran, and Tevfik Bultan

"Statement": [{ "Statement": [{
"Effect": "Allow", "Effect": "Allow",
"Action": ["Action": [

"s3:ListBucket",
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject"],
"Resource": [
"backend",
"backend/logs"1},

"s3:ListBucket",
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject"],
"Resource": [
"backend",
"backend/logs"1},

{

"Effect": "Allow", "Effect": "Allow",
"Action": "s3:GetObject", "Action": "s3:GetObject",
"Resource": "backend/*"}] "Resource": [

"backend/user44012/status.log",
"backend/user00000/status.log",
"backend/user12345/status.log",
"backend/user91232/status.log",
"backend/admini2/status.log",
"backend/admin®2/status.log",
"backend/admin443/status.log",
"backend/admin3/status.log"1}]

Figure 1: Original (left, (a)), first repaired policy (right, (b))

"Statement": [{ "Statement": [{
"Effect": "Allow", "Effect": "Allow",
"Action": ["Action": [

"s3:ListBucket",
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject"],

"s3:ListBucket",
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject"],

"Resource": ["Resource": [
"backend", "backend",
"backend/logs"1}, "backend/logs"1},

{ {
"Effect": "Allow", "Effect": "Allow",
"Action": "s3:GetObject", "Action": "s3:GetObject",

"Resource": [
"backend/user*/status.log",
"backend/adminx/status.log"1}]

"Resource": [

"backend/adminx/status.log"]1}]

Figure 2: Second repaired policy (left, (a)), third repaired
policy (right, (b))

useful policy. In our approach, we assume that the set of must-allow
requests is given as input to the policy repair algorithm.

In our approach we assume that the policy developer has access
to a set of must-allow requests. We assume that the policy developer
has knowledge of, and access to, what kinds of requests should be
definitely allowed by the policy. The concept of a must-allow re-
quest set is analogous to the concept of whitelists from the security
domain which explicitly enumerate what should be allowed (e.g., a
firewall only allowing requests from a certain domain). Typically,
policy developers have access to such a whitelist, and we make the
same assumption for the set of must-allow requests [19, 20, 28].

2.2 Motivating Examples

The goal of the repair algorithm is to find a policy repair that
satisfies both of the above constraints (permissiveness bound and
must-allow requests). To illustrate the policy repair problem con-
cretely, we discuss a couple of motivating examples below.

Consider the role of an automated log consolidator in the Ama-
zon Web Services (AWS) cloud, hereafter referred to as simply logger,
which routinely gathers logs and consolidates them into a single
log file for further analysis. The permissions granted to the logger
role are given by the policy attached to the role. The initial policy

Quantitative Policy Repair for Access Control on the Cloud

attached to the logger role is given in Figure 1(a). This policy gives
varied access to the "backend" AWS S3 bucket: The first statement
allows the logger role to list objects within the bucket and gives
read and write access to the “logs” object, while the second state-
ment allows the logger role to read all objects within the “backend”
bucket. Note that broad access is achieved through the use of the
wildcard symbol “*’ (representing any string) within the resource
description “backend/*”. Though not present in this first policy, the
‘?” symbol is used similarly to represent any character.

Essentially, this second statement allows the logger role to gather
all logs in the bucket, while the first statement allows the logger role
to consolidate those logs into a single logs file. This policy allows
the logger role to accomplish its tasks. However, the policy gives
the logger role read access to all objects in the “backend” bucket
using the S3:GetObject action, regardless of whether or not the
object is a log file. Ideally, the policy should be repaired so that it
only allows access to log files within the “backend” bucket.

Repairing the permissiveness of the policy in 1(a) requires some
information to be known regarding the requests fielded (allowed
or denied) by the policy. Without such domain specific knowledge,
the best repair would be to modify the policy to allow no requests.

Suppose that the following requests, which specify action and
resource pairs, should be allowed by the policy:

("s3:ListBucket", "backend"), ("s3:PutObject", "backend/logs")
("s3:DeleteObject", "backend/logs")

("s3:GetObject", "backend/logs")

("s3:GetObject", "backend/user44012/status.log")
("s3:GetObject", "backend/user@0000/status.log")
("s3:GetObject", "backend/user12345/status.log")
("s3:GetObject", "backend/user91232/status.log")
("s3:GetObject", "backend/admin12/status.log")
("s3:GetObject", "backend/admin@2/status.log")
("s3:GetObject", "backend/admin443/status.log")
("s3:GetObject", "backend/admin3/status.log")

These requests represent what kind of actions and resources should
be allowed by the original policy, which we refer to as the must-
allow request set. Any repaired policy must allow these requests.

The simplest way to repair the policy is to explicitly enumerate
the allowed requests within a statement in the policy, as shown in
Figure 1(b). Instead of specifying “bucket/*” in the second statement
(which specified all objects within the bucket), the list of known
resources is explicitly specified by explicitly enumerating them.
While this is a valid repair and does in fact reduce permissiveness,
it does not handle other log files which may exist but were not
captured in the must-allow request set. It simply makes the must-
allow set the policy. In our approach, we remedy this by generalizing
the allowed requests using resource characterization techniques.

The policies in Figure 2 show two repairs which our quantitative
repair approach generates. Both policies reduce the permissive-
ness of the original policy. However, the second and third repaired
policies generalize the resources from the must-allow request set.
The second repaired policy (Figure 2(a)) generalizes requests con-
taining the “user” and “admin” strings, but is more restrictive for
resources containing the “user” string: It allows resources such as
bucket/user44012/status. log which is in the must-allow request
set, but does not allow bucket/user1234567/status.log which is not
in the must-allow request set. The third repaired policy (Figure 2(b))

566

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

"Statement": [{ "Statement": [{
"Effect": "Allow", "Effect": "Allow",
"Action": "s3:GetObject" "Action": "s3:GetObject"
"Resource": "backend/x"1} "Resource":"backend/logs/user*"]}
"Statement": [{
"Effect": "Allow",
"Action": "s3:GetObject"
"Resource": "backend/logs/user??2?2?"]1}

Figure 3: Original policy (top left, (a)), partially repaired pol-
icy (top right, (b)), fully repaired policy (bottom, (c))

also generalizes requests containing the “user” and “admin” strings,
but is equally as restrictive in both cases. Based on the input per-
missiveness constraints and parameters, our approach can generate
repairs with different levels of permissiveness while meeting the
permissiveness constraints. We discuss this further in Section 4.

Permissiveness Bound Example. In this example we discuss the
importance of the permissiveness bound in the repair process. Re-
call that the permissiveness of a policy is the number of requests
allowed by the policy. Given a permissiveness bound, a policy is
determined to be overly permissive if the permissiveness of the
policy is greater than the permissiveness bound. For example, if the
desired permissiveness bound is 1,000 (maximum of 1,000 distinct
requests allowed), and the permissiveness of a given policy is 10,000,
then the permissiveness of the policy exceeds the permissiveness
bound and is in need of repair. While the permissiveness bound
is a bound on the maximum number of requests allowed by the
policy, it can also be used to interpret the maximum number of
wild characters allowed within the policy; that is, the number of
characters which are allowed to be unspecified in the policy.

Consider the policies in Figure 3 together with the following set
of must-allow requests:

("s3:GetObject", "backend/logs/user@0102")
("s3:GetObject", "backend/logs/user94319")
("s3:GetObject", "backend/logs/user22212")
("s3:GetObject", "backend/logs/user30100")
("s3:GetObject", "backend/logs/user49763")

Let us assume that the desired permissiveness bound is 5 wild
characters, which corresponds to a maximum of 256° = 1.1 x 1012
distinct requests which can be allowed by the policy. Note that the
number of wild characters can be obtained by taking the logys, of
the desired permissiveness (since each wild character corresponds
to 256 possible characters). Additionally, assume only ASCII char-
acters are allowed in the resource field, and the length of resources
can be at most 30 characters long. The first policy (Figure 3(a)) has
a permissiveness of 9.6 X 10%2, or 22 wild characters, which far
exceeds the permissiveness bound. The second policy (Figure 3(b))
is a partially repaired version of the first policy, which further re-
stricts the requests allowed by the policy. The permissiveness of this
second policy is 2.0 X 103!, or 13 wild characters which still exceeds
the permissiveness bound. The third policy (Figure 3(c)) shows a
fully repaired policy with a permissiveness of 1.1 x 1012, or 5 wild
characters, which does not exceed the permissiveness bound, and is
thus repaired. In this case, note that the resource field in the policy

wildcard characters to 5, which meets the permissiveness bound.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

3 MODELING ACCESS CONTROL POLICIES

In this section we present a semantic model for access control poli-
cies and the encoding of this semantic model as SMT formulas. The
model and its encoding are expressive enough to capture complex
policy specifications from cloud services; E.g, policies written in
the AWS Identity and Access Management (IAM) policy language.

3.1 Policy Model

An access control policy specifies who can do what under which
conditions. We define an access control model in which declarative
policies field access requests from a dynamic environment, and all
requests are initially denied.

We use the policy model from [10] where an access request is a
tuple (J,a,r,e) € AXAXRXE, Ais the set of all possible principals
making a request, R is the set of all possible resources which access
is allowed or denied, A is the set of all possible actions, and E is the
environment attributes involved in an access request.

An access control policy P = {po, p1,...pn} consists of a set
of rules p; where each rule is defined as a partial function p :
AXAXRXE — {Allow, Deny}. The set of principals specified by
arule pis

p(6)={8e€A:3are: (5 are) cp} (1)
p(a) fora € A, p(r) forr € R, p(e) for e € E are similarly defined.

Given a policy P = {po, p1,...pn}, a request (, a, r, e) is granted

access if and only if
3p; €P:pi(S,a,r.e) =AllowAfp; €P:p;(S,ar e) = Deny

The policy grants access if and only if the request is allowed by a
rule in the policy and is not revoked by any other rule in the policy.
If a request is allowed by one rule and denied by another rule, the
request is denied, i.e., the explicit denies overrules explicit allows.
The set of allow rules and deny rules for P are defined as:

)
Ppeny = {pj € P: (8j.aj,rj.€j) € pj A pj(8j,aj.rj. ;) = Deny} (3)

Patiow = {pi €P: (8i,ai,1i,ei) € pi A pi(Si,ai, i, e;) = Allow}

Given a policy P, the requests allowed by the policy are those in
which a policy rule grants the access through an Allow effect and
is not revoked by any policy rule with a Deny effect:

ArLLow(P) = {(8,a,r,e) e AXAXRXE
:3dp; €P:(S,a,r,e) € pi Api(S,a,r,e) =Allow (4)
ANApj eP: (8,ar.e) €pjApj(d ar,e) =Deny}

The set of principals, resources, or actions allowed by a policy is

ArLLow(P,A) = {6 € A: (S,a,r,e) € ArLow(P) } (5)
ALLow(P,A) = {a€ A: (8,a,r,e) € ALLow(P) } 6)
ALLow(P,R) = {r e R: (8,a,r,e) € ALLow(P) } (7)

Combining Policies. Recall that a policy P consists of a set of rules
{po, ..., pn}. Two policies P; and P, can be combined into a single
policy P3 by combining the set of rules in P; with the set of rules
in Py as P3 = P; U P,. Based on the policy semantics we defined
above, the allowed requests of Ps is the set of requests allowed by
either P; or P, that are not denied by P; and not denied by Ps.

3.2 Symbolic Encoding of Policies

Access control policies can be translated to SMT formulas in order
to enable symbolic analysis using constraint solvers [10]. The set

567

William Eiers, Ganesh Sankaran, and Tevfik Bultan

Initial Policy, Permissiveness Bound, Must-Allow
Request Set

" Output
Policy

Refined

Policy .
Permissiveness

Localization

Permissiveness
Refinement

Figure 4: Flow of repair algorithm. The inputs are Initial
Policy, Permissiveness Bound, Must-Allow Request Set

of possible requests are encoded by introducing variables {Jsm; €
A rsmt € R asmt € A esmy € E} in the generated SMT formula.
The SMT encoding of a policy P is given by [P] and represents the
set of requests allowed by P:

Fi-(Vowl) AV @) ®
PEP Allow PEFPDeny

lo] = (5e>/(5) Some = 5) A (aey(a) Asmt = a) A)
(reyr) e r) /\ (e€>/(e) oot e)

Policy rules are encoded as values for sets of (6, a,r,), where
each value set potentially grants or revokes permissions. Satisfying
solutions to [P]| correspond to requests allowed by the policy, i.e.,

ALrow(P) = {(8,a,r,e) : (8,a,r,e) E[P]} (10)

4 QUANTITATIVE POLICY REPAIR

Recall that policy repair has three inputs: 1) a permissiveness bound,
2) a set of must-allow requests, and 3) a policy to be repaired. The
goal is to create a revised (repaired) version of the input policy in
which all must-allow requests are allowed and the permissiveness
bound is not exceeded.

Our policy repair algorithm consists of three main stages: (1)
Goal Validation, (2) Permissiveness Localization, and (3) Permis-
siveness Refinement. Figure 4 shows the overall flow of the repair
algorithm. Algorithm 1 is the core repair algorithm corresponding
to the flowchart shown in Figure 4. Given a policy (consisting of
one or more rules), a permissiveness bound, and set of requests, the
repair algorithm first checks if the permissiveness goals are met
using Goal Validation. If they are met, then the algorithm stops and
returns the policy. Otherwise, it finds the most permissive elements
of the policy through Permissiveness Localization, then reduces
permissiveness and refines the policy elements through Permissive-
ness Refinement. The algorithm then goes back to Goal Validation
and repeats the process until the policy is successfully repaired
meeting the permissiveness constraints. In the following sections,
we will discuss the algorithms corresponding to each of the stages.

Since our repair approach uses a greedy strategy to quantitatively
repair overly permissive policies, it is not guaranteed to produce an

Quantitative Policy Repair for Access Control on the Cloud

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Algorithm 1 PoLICYREPAIR

Algorithm 4 GENERATERESOURCECHARACTERIZATION

Input: Policy P, Permissiveness bound 7, must-allow requests Q, length threshold «,
depth threshold w, refinement threshold €, map M
Output: Repaired Policy

1. PP=P

2: 17, = GETPERMISSIVENESS (P)

3: while (77, > 1) A HASUNREFINEDRESOURCES (M) do

4: (p,ap,rp) = Locarize (P, M)

5: * = REDUCERULE(p, ap, 7))

6 P =(P\{p})uip'}

7: Q* = VALIDATEREQUESTS (P*, Q)

8 if Q" # 0 then

9: R* = GENERATERESOURCECHARACTERIZATION (Q*, &, @)
10: Prefined = GENERATEREFINEDRULE(p, @), R*)
11: Prefined = (P* \ {P*}) U {preﬁned}
12: if GETPERMISSIVENESS (Prefined) > 17 — € then
13: MARKRULERESOURCEASREFINED (M, p, 7))
14: else P’ = Prefined
15: end if
16: end if
17: nr = GETPERMISSIVENESS (P”)

18: end while

19: if n, > n then P’ = ENUMERATEREQUESTS (P, Q)
20: end if

21: return P’

Algorithm 2 VALIDATEREQUESTS

Input: Policy P, Request set Q C AXAXRXE
Output: Requests not allowed by policy P
1: Qallowed = 0
2: [P] = Encope(P)
3: for (8,a,r,e) € Qdo
4: if (6,a,r,e) F [PH then Quiiowed = Qallowed U {(5’ ar, e)}
5 end if
6: end for
7: return Q \ Qallowed

Algorithm 3 LocAL1zE

Input: Policy P, map M
Output: Most permissive rule and elements in policy

Pmax = Pempty
¢ (@maxs T'max) = ()
Hmax = 0
for p € Pyjjp do
if ISRULEREFINED(M, p) then continue
end if
n = GETPERMISSIVENESS({p})
if 1 > Nmax then
9: NMmax =1
10: Pmax = P
11: end if
12: end for
13: Hmax =0
14: for (ai, i) € pmax (@) X Ppmax(r) do
15: if ISRESOURCEREFINED (M, r;) then continue
16: end if
17: p = CREATERULE ((pmax (8), @i, Ti, Pmax (€)), Allow)
18: n = GETPERMISSIVENESS ({p })
19: if 1 > Nmax then

20: Hmax =1

21: (@max> 'max) = (@i, 1)
22: end if

23: end for

24: return (Pmax> Amaxs F'max)

optimum repair. However, we believe that a greedy repair strategy
like ours that focuses on most permissive elements of the policy
first is a reasonable and practical approach.

Input: Must-allow requests Q* C Q, length threshold e, depth threshold ©
Output: List of resources characterizing set resources from Q*
: AR =10

¢ Rp+ = GETRESOURCESFROMREQUESTS (Q")

: forr € Rp« do

A, = CoNsTRUCTDFA(r)

AR =ARUA,

: end for

: reg = GETREGEXFROMDFA (AR)

: reg” = GENERALIZEREGEX (reg, @, @, 0)

¢ Ryegr = ENUMERATEREGEX (reg”)

: return Rygp+

O 0N O YT W

—
(=1

Algorithm 5 GENERALIZEREGEX

Input: Regular expression reg, length threshold «, depth threshold w, current depth d
Output: Generalization of regular expression reg
1: if reg = (reg, | reg,) then
2: re,g’1 = GENERALIZEREGEX (reg;, a, ,d + 1)
reg), = GENERALIZEREGEX (reg,, @, w,d + 1)
if (reg) € 3*) A (reg, € X*) then
l,egfl = LENGTH(reg))

3
4
5
6: lreg’z = LENGTH(reg})
7 if (lreg’l = lregfz) A (lregll <= «) then
8

return MAKEREGEX(?, [,y) > “?” is regex for any character
1

9: end if
10: end if

11: if (d 2 w)V (regy =3%) V (reg) = X*) then return X"
12: else return (reg] | reg})

13: end if

14: else if reg = (reg, - reg,) then

15: regy = GENERALIZEREGEX (reg;, @, ©, d)

16: reg, = GENERALIZEREGEX (reg,, @, @, d)

17: return reg| - reg) > ‘. is regex concatenation
18: else return reg

19: end if

4.1 Repair Goal Validation

Recall that the main goal of policy repair is to reduce the permis-
siveness of the given policy to meet the given permissiveness bound
while preserving the set of must-allow requests. Validating that
the repair goal is reached requires two steps: (1) quantitatively as-
sessing that the permissiveness of the repaired policy is within the
given permissiveness bound, and (2) verifying that the given set of
must-allow requests are allowed by the repaired policy. When both
of these goal validation steps are achieved, the repair algorithm
stops and we return the repaired policy. Note that it may not be
possible to achieve the permissiveness bound without changing the
policy to only allow the requests that are in the must-allow set. In
such a scenario we generate a policy that corresponds to explicit
enumeration of the requests in the must-allow set.

In cases where permissiveness bound cannot be reached without
enumeration of the must-allow set, our approach uses a stopping
condition where only rules that have not been previously refined
(from the permissiveness refinement stage) are eligible for refine-
ment; the repair algorithm stops if there are no rules left to refine,
regardless of whether the permissiveness goal has been reached.

To simplify the presentation of our policy repair algorithm, we
assume that the permissiveness level required by the must-allow
set is not more than the input permissiveness bound (which would
correspond to an unsatisfiable set of permissiveness constraints),

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

and furthermore, we assume that the initial policy does allow all
the requests in the must-allow set. We can easily get rid of these
assumptions with extra checks.

The permissiveness goal is checked on lines 2 and 3 in the repair
Algorithm 1 through the GETPERMISSIVENESS function. A policy
P is first encoded into an SMT formula [P] then sent to a model
counter which returns number of satisfying solutions to [P], which
corresponds to the number of requests allowed by policy P. Recall
that the number of requests allowed by P corresponds to the permis-
siveness of P. If the permissiveness is less than the bound, then the
permissiveness goal has been reached and the algorithm returns the
current policy. Otherwise, it gets in the while loop starting in line 3
in order to modify the current policy to reduce its permissiveness.

Algorithm 2 shows how the set of must-allow requests Q are
checked against a policy P. For each request (9, a, r,) in the must-
allow set, we have to determine if (§,a,r,e) [[P], ie., does
P allow (8, a,r, e)? This is done by generating the SMT formula
[(8,a,r,e)] A [P] and checking if it is satisfiable using an SMT
solver. Note that [(8, a, 7, e)] corresponds to SMT encoding of the
request (J, a,r, e) and [P] is the SMT encoding of all the requests
allowed by P. So, if SMT solver reports that [(,a,r,e)] A [P] is
satisfiable, then we know that the request (4, a, r,) is among the
requests allowed by P. If the SMT solver reports that it is not satis-
fiable, then we know that the request (8, a, r, e) is not allowed by
P. By encoding requests and policies as SMT formulas, we can im-
plement the goal validation step using an SMT solver, and without
requiring access to an access control policy evaluation engine.

Algorithm 2 accumulates the requests in Q that are allowed
by P in the set Q,jiowed- At the end it returns the set difference
QO \ Qalloweds 1-€., the set of requests in Q that are not allowed by P.
These requests are used in the permissiveness refinement step.

4.2 Permissiveness Localization

We use a greedy strategy in repairing the permissiveness of a policy.
We quantitatively assess permissiveness by first finding the most
permissive rule in the policy, then finding the most permissive
elements within the rule. This is done using calls to a model counter.

Permissiveness Analysis. Recall from Section 3 that ALLow(P) is
the set of all requests allowed by P. It follows then that |ALLow (P)|
is the number of such requests. Following the work from [10], the
permissiveness of P is the number of requests allowed by P, which
corresponds to the number of solutions to the formula encoding P,
which is [P]. Le., |[AtLow (P)| = |[P]|. Thus, a lower permissiveness
corresponds to a lower number of allowed requests, while a higher
permissiveness corresponds to a higher number of allowed requests.
Note that, although satisfiability of [P] can be computed using a
constraint solver, computing cardinality of [P], i.e, computing |[P]],
requires a model counting constraint solver.

Permissiveness Localization. Similar to fault localization tech-
niques in traditional repair algorithms, we introduce the notion of
permissiveness localization for policy repair to find the most permis-
sive sections of a policy. Our permissiveness localization technique
consists of a two-step process: (1) a course-grained approach which
first finds the most permissive rules in a policy, and (2) a fine-grained
approach is used to find the most permissive elements within each

569

William Eiers, Ganesh Sankaran, and Tevfik Bultan

rule. In the course-grained approach each rule is analyzed indepen-
dently of other rules within the policy: each rule p; € P is treated
as an independent policy P; = {p;}. The permissiveness of each
P; is assessed using a model counter, where the most permissive
rule in P corresponds to the most permissive policy P;. A rule con-
tains principals, actions, resources, and environment conditions. In
order to better analyze the permissive elements of the most permis-
sive rule, we use a fine-grained approach to determine the greatest
source of permissiveness. More specifically, we analyze the actions
and resources within the rule, as in our observations these tend
to be the most permissive elements. Once this is done, the repair
algorithm refines the permissiveness of the rule and its elements.

Algorithm 3 shows the how the repair is localized. First, in lines
4-12 the most permissive rule is found by iterating through the allow
rules (those that allow requests) in the policy. Only rules which
contain unrefined resources are considered; additionally, we do not
consider deny rules (those that deny requests) as by definition deny
rules cannot increase permissiveness. We keep track of which parts
of a policy is already refined by using a map M.

The GETPERMISSIVENESS function encodes the given policy as a
SMT formula using the techniques in Section 3 and calls the model
counter on the formula. The GETPERMISSIVENESS function is called
on a policy consisting only of the given rule. Next, on lines 14-23 the
most permissive action, resource pairs are located within the rule.
This is done by iterating over all action, resource pairs and creating
a new rule where the action, resource pair is allowed with any
combination of the principals and environment attributes specified
in the most permissive rule. Note that, as before, only unrefined
resources are considered. The permissiveness of the newly created
rule is calculated using the GETPERMISSIVENESS function. Once
found, the most permissive rule and its respective action, resource
pair is returned. Note that Algorithm 3 involves numerous calls to a
model counter through the GETPERMISSIVENESS function, and calls
to a model counter can be expensive. This is a concern that we later
discuss while presenting our implementation and experiments.

4.3 Permissiveness Refinement

Once the most permissive rule and elements in the rule are found
using permissiveness localization, the rule is modified to reduce
permissiveness. However reducing permissiveness has the possible
effect that some requests in the set of must-allow requests are now
not allowed. In this situation, the denied requests are analyzed and
the rule is then refined using resource characterization and gen-
eralization techniques so that all must-allow requests are allowed.
Algorithm 1 shows how a rule is reduced and refined, while Algo-
rithm 4 and Algorithm 5 show how the resource characterization
is generated from the denied requests.

Permissiveness Reduction. Within Algorithm 1, once the most
permissive rule and its permissive elements are located using Algo-
rithm 3 on line 4, on line 5 the REDUCERULE function modifies the
rule so that permissiveness is reduced. Our approach for reducing
permissiveness greedily removes the most permissive element of
the most permissive rule. The rule is only modified so that the
permissive action and resource pair is removed. On line 6, a new
policy is created by removing the permissive rule from the original
policy and replacing it with the reduced rule from line 5.

Quantitative Policy Repair for Access Control on the Cloud

While the permissiveness of the rule is clearly reduced using this
approach, a clear consequence is that some requests (possibly from
the set of must-allow requests) that were previously allowed are
now denied. This is an intentional consequence of our approach. It
allows us to remove redundant elements of a policy while refining
the rule (as we discuss below). The goal is to generate a possibly
less permissive characterization of resources while keeping the
must-allow requests still valid.

Permissiveness Refinement. Lines 7-17 in Algorithm 1 details how
permissiveness is refined through the construction of a new pol-
icy. In the case that the permissiveness reduction results in the
set of must-allow requests being invalidated, we must refine the
permissiveness in order to fix the set of must-allow requests. On
line 7, using Algorithm 2 we determine which requests from the
set of must-allow requests are denied in the new policy. If the set of
must-allow requests are still valid, the current repair iteration ends
and the next iteration starts with the modified policy as the policy
to be further repaired. Otherwise, the modified policy must first
be repaired so that the set of must-allow requests are valid. Lines
9-11 show how this is done. We first generate a characterization of
resources from the invalid requests in the must-allow request set.
This is done by extracting a regular expression from the finite-state
automaton by state elimination [12]. Once the characterization is
obtained, the new resources are added into the rule through the
GENERATEREFINEDRULE function which generates a new rule using
the newly refined resource and the other existing elements within
the rule. However, it can be the case that the newly refined rule
does not decrease permissiveness, either at all or by an appreciable
amount. If the permissiveness of the refined policy does not appre-
ciably decrease (lines 12-15), the current repair is rolled back and
the resource within the rule is marked as not eligible for refinement.

Resource Characterization from Invalid Requests. To finish the
permissiveness reduction and refinement step, the modified policy
must be further refined so that the set of must-allow requests is
valid. Trivially, this can be done by enumerating the invalid requests
and adding a new rule to the policy which allows only that specific
requests. However this does not generalize for requests not in the
must-allow set but were intended to be allowed, and can make
the policy more complicated in the case that the must-allow set is
large. Thus, we aim to generate a characterization of the invalid
requests, but more specifically the resources in the requests, which
can be added to the modified rule. Ideally, this characterization will
increase permissiveness to fix the invalid requests, but still remain
less permissive than previously. To do so, we generate a regular
expression characterizing the set of requests.

Algorithm 4 shows our regular expression and automata-based
approach for resource characterization. The algorithm works by
constructing a deterministic finite-state automaton (DFA) for each
resource and then taking the automata union of all such DFAs (lines
3-6). Each DFA constructed for a resource (line 4) is a DFA that
accepts only that resource, which is a constant. Thus, the union of all
such DFAs is a DFA with no loops. We then use the state elimination
algorithm [12] to obtain a regular expression characterizing the set
of resources. It is well known that this regular extraction algorithm
can produce arbitrarily complex regular expressions which are often
not useful in practice. This is mainly due to the presence of loops

570

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

within the DFA, and since our DFAs contain no loops, the resulting
regular expression contains only concatenation and unions.

Consider the resources from an example must-allow request set:
bucket/users/client155, bucket/users/client115,
bucket/users/client@55, bucket/users/client200,
bucket/logs/client544, bucket/logs/client333,
bucket/logs/client12, bucket/logs/client411

Figure 5 shows the DFA constructed from the union of these
requests, and the initial regular expression extracted from the DFA.
The extracted regular expression however is an enumeration of the
input resources using disjunctions, and must be generalized.

The recursive GENERALIZEREGEX algorithm (Algorithm 5) takes
the extracted regular expression and transforms the regular expres-
sion to a more general regular expression which specifies a broader
list of resources. The algorithm works to eliminate some disjunc-
tions in a depth-first manner by replacing them with anychars (*?)
and wildcards (’) when possible. The length threshold controls
when strings of the same length should be collapsed into anychar
symbols: e.g., if the length threshold is 3, then "(123|456)" will be sim-
plified to "???", while "(1234|5678)" will remain the same. The depth
threshold controls when nested disjunctions get simplified into
the wildcard (anystring) character: the greater the threshold, the
deeper the nesting of disjunctions is allowed. Once the generalized
regular expression is obtained, the refined resources are gathered
by enumerating the leftover disjunctions within the general regular
expression. Using a length threshold of 3, depth threshold of 2, we
obtain a more general, more permissive regular expression:
bucket/(logs/clientx|users/client???)

Note that different values for the thresholds yield different regular
expressions. For example, length threshold of 3, depth threshold of
4 yields the less general, less permissive regular expression:
bucket/(logs/client(((12]333)|411)|544)|users/client???)

5 POLICY REPAIR FOR THE CLOUD

Currently, our policy repair approach works on the policy model
we introduced in Section 3. This policy model abstracts away the
implementation and intricacies of modern policy languages used
in the cloud. In this section, we show how our policy model can be
applied to one of the most popular policy languages for the cloud,
that of Amazon Web Services (AWS), and we demonstrate that our
approach repairs such policies.

5.1 AWS Policy Language

In the AWS policy language, a policy consists of a list of statements
which either allow or deny access. A statement consists of Principal,
an Effect, Action, Resource, and Condition, where:

e Principal is a list of users or other entities specifying who or what
is requesting access.

o Effect € {Allow, Deny} specifying allows or denies access.

o Action is a list of actions specifying what operations on the re-
sources are being requested.

® Resource is a list of resources specifying what is being accessed.

o Condition is a list of conditions specifying additional constraints
on how access is governed.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

William Eiers, Ganesh Sankaran, and Tevfik Bultan

Figure 5: DFA example. Resulting regex: bucket/(logs/client(((12]333)|411)|544) |users/client((@5[1(5]1))5|200))

While Principal, Action, Resource, Condition are all lists, Condition
also contains a condition key and condition value corresponding to
elements of the access request. For more information on the AWS
policy language, we refer the reader to [15]. Each field or element
in the policy are ASCII strings (aside from some condition keys
and condition values), with two special characters: the wildcard *’
character, and the wild/anychar ‘?’character. The wildcard character
represents any string; the wild/anychar character represents any
character. This allows policy developers to specify sets of strings
within elements using these two special characters. Given an access
request and a policy, the policy allows the access request if and
only if there is a statement in the policy which allows the request
and there is no statement in the policy which denies the request.

Modeling AWS Policies. For each statement an AWS policy, we
create a rule that captures the semantics of the statement. The
principals, resources, actions, and effects map one-to-one from
statements to rules, while the environment attributes captures the
condition keys and values within a statement. Once the rules for
the statements in the policy are created, we can encode the policy
into an SMT formula using the techniques from Section 3. Thus,
we can model AWS policies within our policy model framework.

5.2 Policy Transformations for Repair

Recall that our approach localizes permissiveness to the most per-
missive action, resource pair and then mutates it when possible. We
cannot directly apply the approach to AWS IAM policies that may
contain NotPrincipals, NotActions, NotResources, and/or negative
condition operators like StringNotEquals because such elements
let policy developers specify the complements of allowed values. If
we directly applied our approach, then removing policy elements
would increase permissiveness, straying away from the repair goal.
To avoid this and to avoid complicating the repair approach, we
transform original policies, removing “negative” policy elements.
Algorithm 6 shows how an AWS statement p is transformed. In
the algorithm, p.keysrefers to the Principal, Action, and Resource (or
their negations) which exist in the statement. This is done in two
passes. In the first pass on lines 4-8, the NotPrincipals, NotActions,
and/or NotResources are removed (there is no NotCondition in the
AWS IAM policy language). This is not enough, because condition
operators like StringNotLike may be used to specify complements
of allowed condition values. In the second pass on lines 10-20,
these negative condition operators are removed similarly. Figure 6
shows the transformation applied to an AWS IAM policy. Figure
6(a) shows the original policy, which has one statement with a

571

{"Statement": [

{"Effect": "Allow",

"Principal": "foo",

"NotAction": "bar",

"Resource": "baz",

"Condition": {"StringNotEquals": {"key": "value"}}}1}
{"Statement": [

{"Effect": "Allow",

"Principal": "foo",

"Action": "x",

"Resource": "baz",

"Condition": {"StringLike": {"key": "%*"}3}7%},

{"Effect": "Deny",

"Principal": "foo",

"Action": "x",

"Resource": "baz",

"Condition": {"StringEquals": {"key": "value"}}},

{"Effect": "Deny",

"Principal": "foo",

"Action": "bar",

"Resource": "baz",

"Condition": {"StringNotEquals": {"key": "value"}}}1}

Figure 6: Original AWS IAM policy with one statement with
NotAction and StringNotEquals condition operator (top, (a));
Transformed policy with three statements (bottom, (b)).

NotAction element and a StringNotEquals condition operator. Figure
6(b) shows the transformed policy after both passes are done.

The transformation has three limitations: (1) We do not transform
deny statements in the original policy. (2) We assume that the
original policy does not have statements allowing requests that the
newly added statements deny. Otherwise, the transformed policy is
less permissive than the original policy because a statement denying
a request overrules one allowing it. (3) We currently support the
case-sensitive string condition operators only.

5.3 Determining Permissiveness Bounds

Our approach can be used to automatically reduce the permis-
siveness of policies while making sure that they allow what is
necessary (based on the must-allow request set). Even without a
desired permissiveness bound, our approach can be used to find a
less permissive policy by using permissiveness of other policies as
a bound or by giving a permissiveness bound that is less than the
current permissiveness of a policy as we discuss below.

Inferring a Permissiveness Bound from Other Policies. When the
permissiveness bound is not known, the permissiveness value of
another policy can be used as the permissiveness bound. Assume
that a policy P is given and the policy developer wants to deter-
mine if it is overly permissive, but the permissiveness bound is not

Quantitative Policy Repair for Access Control on the Cloud

Algorithm 6 TRANSFORMSTMTPRINCIPALACTIONRESOURCE

Input: Statement p
Output: Transformed statement(s) P

1:P=0
2: K- ={k:k € p.keysn “Not” in k}
3: paiiow = { Effect” : “Allow”}
4: for k € p.keys do
5: if k € K~ then pajjo, [NEGATION(K)] = “ %7
6: else pajowlk] = plk]
7: end if
8: end for
9: P=PU {pAllow}
10: for k' € K~ do
11: PDeny = { Effect” : “Deny”}
12: for k € p.keys do
13: if k = k' then ppeny [NEGATION(K)] = p K]
14: elseif k € K~ then ppeny[NEGATION(K)] = “*”
15: else ppeny [k] = p[k]
16: end if
17: end for
18: P=Pu {Pl)eny}
19: end for
20: return P

known or is difficult to determine. In this instance, assume that
the policy developer has another policy P’ which is known to be
not overly permissive. Let npr be the permissiveness of P’. Then, to
determine if P is overly permissive, npr can be used as the desired
permissiveness bound. If the permissiveness of P is greater than
npr then P is overly permissive and should be repaired using our
approach with the permissiveness bound being nps. Note that this
approach assumes that the policy developer has access to another
policy P’ whose permissiveness can be used as the permissiveness
bound when repairing P; for example, for a new role, a policy should
be attached to the new role which has similar permissiveness to
policies attached to other roles. If such a policy P’ does not exist,
then an iterative approach for reducing the permissiveness of a
policy can be used as we discuss next.

Iteratively Decreasing Permissiveness. Consider when the permis-
siveness bound for a given policy P is not known but the policy
developer wants to ensure that P is not overly permissive. That is,
the policy developer wants to ensure that P does not allow more
requests (permissions) than what is required. In this case, our repair
algorithm can be used to iteratively reduce the permissiveness of P

(1) Let np be the permissiveness of P

(2) Set the permissiveness bound as npr = np — &

(3) Repair P using permissiveness bound npr to obtain a repaired
policy P

(4) If P, has the desired permissiveness level, halt; otherwise go
back to step (1) with P = P,

where § is a positive integer defining the step size which determines
how much the permissiveness bound should decrease in each step.
This can be continued until a repaired policy with a desired level of
permissiveness is produced, or the approach cannot further repair
the policy. In each step the permissiveness of P is decreased by §.

6 EXPERIMENTS

In order to evaluate our repair algorithm, we consider the following
research questions:
RQ1: Does the policy repair algorithm successfully find repairs for

572

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

policies collected from user forums?

RQ2: How does the effectiveness of the algorithm change for vary-
ing permissiveness bounds?

RQ3: What factors contribute to the overall performance (execu-
tion time/iterations/calls) of the repair algorithm?

We discuss below the policy dataset we use in our approach, how
we set up our experiments to answer the research questions, and
the results of our experiments. For quantifying the permissiveness,
we use the model counter ABC [2, 3]; for validating requests in the
must-allow request set we use the SMT solver Z3 from Microsoft,
and the QUACKY tool for translating policies into SMT formulas. !

6.1 Experimental Setup

AWS Policy Dataset. AWS offers over 200 services. Each service
has its own actions and resource types that can be allowed or
denied in access control policies. For our repair experiments, we
used the policy dataset published in [10], which includes 43 real-
world policies collected from using forums from the most popular
AWS services, namely 1aMm, s3, and Ec2.

Permissiveness Bounds. Recall that the policy repair problem spec-
ifies a permissiveness bound. In general, this permissiveness bound
relates to the number of requests allowed by the policy. In our repair
algorithm, and in our experiments, we consider a more restrictive
permissiveness bound definition in which the permissiveness is
determined by the number of actions and requests allowed by a
policy. The reason for this is that in the policies we have observed,
the most permissive element is the resource element, and since the
action and resource elements are tied very closely in the policy
semantics (e.g., only S3 actions work on S3 resources) it makes
sense to consider them together.

Because resources are strings, and strings can be infinitely long,
we must bound the maximum length of allowed resources (oth-
erwise the permissiveness of a policy is infinite due to wildcard
characters). In our analysis, we bound the maximum length of any
resource to be 100. Note that actions are also strings, but there
are a finite number of actions (e.g., S3:GetObject is a valid action,
S3:FooBar is not). Thus, the maximum number of actions allowed
by a policy is the number of possible actions, which in practice is
relatively small (a few hundred for the AWS services we consider).
In our experiments, we use the action constraint encoding from [10]
which maps constraints on actions into numeric range constraints
to simplify the constraint formulas generated in our approach.

In our experiments, the permissiveness bound is given in terms
of log,s,. Intuitively, since resources are strings where each char-
acter in the string can be one of 256 ASCII characters, this gives a
measure of uncertainty regarding the number of unknown charac-
ters in the resource. For example, the resource "foo12" has a log,s,
permissiveness of 0 (all characters in the string are known) while
the resource "foo??" has a log,s, permissiveness of 2 (2 characters
in the string are unknown) since ‘?’ is a special character denoting
any possible character. We bound the maximum length of strings
at 100 so giving permissiveness bounds in terms of log,s. gives a
restriction on how many of characters of the resource be unknown.
Note that while this is just an approximate measure (strings can be

10ur policy repair tool and policy and request datasets are publicly available at
https://github.com/vlab-cs-ucsb/policy-repair

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Table 1: Results for 43 total policies with length threshold
of 2 and depth threshold of 3. Policies are repaired using
varying permissiveness bounds (given as log,s,, interpreted
as number of unknown characters allowed in a resource) .

Permissiveness Bound
30 |

40| 50| 60| 70| 80| 9
without enumeration 29 29 31 33 39 43 43
with enumeration 14 14 12 10 4 0 0
% without enumeration | 67% | 67% | 72% | 77% | 91% | 100% | 100%

less than 100 characters) it nevertheless gives a useful measure for
bounding the permissiveness of a policy.

Allowed Requests. We augmented the policy dataset we used with
sets of allowed requests. We created requests containing only the
action and resource field, as our repair approach is currently tailored
for reducing permissiveness based on action and resources. Our
metholodgy for sythensizing requests was to create requests which
are likely to resemble requests created by actual users. For actions,
we focus on the most common actions for the AWS services in our
policies (such as S3:GetObject and EC2:RunlInstances). For resources,
we observed from the policy dataset and AWS online documentation
that resources generally have the following structure:

resource = service . prefix . middle . suffix

The service section consists of AWS service, region, and account
number. The prefix section corresponds to the resource type and is
generally dependent on the action in question: e.g., the prefix for
s3 resources generally corresponds to the bucket name. The middle
consists of the intermediate directory structure (usually delimited
using ’/’). The suffix consists of the object, filename, or instance in
question. Consider the following resource

arn:aws:s3::mybucket/folder1/folder2/clients.txt

where the service is “arn:aws:s3::”, the prefix is “mybucket/”, the
middle is “folder1/folder2”, and the suffix is “clients.txt”. When syn-
thesizing the requests, we observed that the service and prefix parts
of the resource were specific to services for the particular policy,
while the middle and suffix parts of the resource depended on the
actions and service being used. For each policy, we constructed 10-
20 requests using the base policy as reference, varying the relevant
parts for each. An example request for S3 would be:
(S3:GetObject)
(arn:aws:s3:::bucket/production/usere0000/status.log)

We ran all experiments on a machine with an Intel i5 3.5GHz
X4 processor, 32GB DDR3 RAM, a Linux 4.4.0-198 64-bit kernel, Z3
v4.11.1, the latest build of ABC 2, and the latest release of QUACKY®.

6.2 Results

To answer our research questions, we conducted a wide variety of
experiments on 43 policies collected from user forums using our
quantitative repair algorithm. We now discuss the results and how
they answer the aforementioned research questions.

Zhttps://github.com/vlab-cs-ucsb/ABC
3https://github.com/vlab-cs-ucsb/quacky

573

William Eiers, Ganesh Sankaran, and Tevfik Bultan

1000 ®mabccalls m z3 calls
2000
750

1500

500
1000

Calls

250

Total Time (s)

500

0 0

30 40 50 60 70 80 920 30 40 50 60 70 80 90

Permissiveness Bound Permissiveness Bound

Figure 7: For all 43 policies and each permissiveness bound:
total time taken (left (a)); total calls to ABC and Z3 (right (b)).

RQ1: Does the policy repair algorithm successfully find repairs
for policies collected from user forums? Recall that the policy re-
pair algorithm tries to find a repair meeting the permissiveness
bound through goal validation, permissiveness localization, and
permissiveness refinement, and if it cannot will begin enumerating
requests and replacing elements of the policy with these requests.
Our repair algorithm will always successfully find repairs (so long
as the initial assumptions are met, see Section 4). Some of these
repairs may require request enumeration, which is not ideal.

We ran the repair algorithm on the dataset of 43 policies with
varying permissiveness bounds to determine if the repair algorithm
could generate a repair without request enumeration and how
often our repair was generated with request enumeration. Table 1
shows the results. The permissiveness bounds ranged from 30 to
90, meaning that the repair algorithm must generate a repaired
policy with permissiveness less than the given bound. For each
permissiveness bound, we used a length threshold () of 2, depth
threshold (w) of 3, and refinement threshold (¢) of 0.01.

For lower bounds, request enumeration was required to generate
successful repairs, with 14 of the 43 (67%) repairs requiring request
enumeration for bounds 30 and 40. As the permissiveness bound
increases, the number of repairs generated which required request
enumeration decreases. For permissiveness bounds of 80 and 90,
100% of the repairs generated by algorithm were generated without
enumerating requests. Intuitively, this makes sense as a lower per-
missiveness bound requires the policy to more concretely specify
the requests allowed by the policy; a higher permissiveness bound
means that the policy can be more generalized in what is allowed.

RQ2: How does the effectiveness of the algorithm change for vary-
ing permissiveness bounds? As the results in Table 1 show, while
the repair algorithm generates repairs for all policies for all given
permissiveness bounds, lower permissiveness bounds required the
repair algorithm to resort to enumerating requests. This means
that while the permissiveness localization algorithm from Section
4 (Algorithm 3) was able to localize where the most permissive
elements were, the permissiveness refinement algorithms (Algo-
rithms 4,5) could not generate a resource characterization to reduce
the permissiveness enough to meet the permissiveness bound. This
could be due to the length () and depth (w) threshold values used
in Algorithm 5. Thus, we ran the repair algorithm again on the 43
policies, but this time for a single permissiveness bound but with
different threshold values. Table 2 shows the results. We observed
that, in general, the length and depth threshold values did not have

Quantitative Policy Repair for Access Control on the Cloud

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 2: Results for varying length («) and depth (w) thresholds for a single permissivness bound of 60 (i.e., log,s, (perm) < 60)

a, @ thresholds ‘ Repaired without enum Repaired with enum ‘ Avg log,s, Permissiveness ~ Total time (s) # ABC calls # Z3 calls
23 33 (77%) 10 (23%) 17 597.9 780 1415

2,5 43 (100%) 0 (0%) 11.7 452.4 550 1001

03 33 (77%) 10 (23%) 20.2 6023 786 1423

2,3 33 (77%) 10 (23%) 17 597.9 780 1415

53 37 (86%) 6 (14%) 17.7 518 679 1310

10,3 37 (86%) 6 (14%) 16.6 525 682 1310

15,3 37 (86%) 6 (14%) 16.5 515 636 1292

an appreciable impact on the total time taken by the repair algo-
rithm. However, we did observe that a higher depth threshold corre-
sponded to more repairs not requiring explicit request enumeration.
We believe this is because a higher depth threshold results in a less
generalized, more enumerative regular expression characterization.
Recall from Algorithm 5 that the depth threshold corresponds to the
maximum level of nested disjunctions within a regular expression.
When the level of nested disjunctions reaches the depth threshold,
it gets “squashed”, or generalized into a wildcard **’ (anystring)
regular expression. Thus, while the repair algorithm with length
threshold of 2 and depth threshold of 5 repaired all 43 policies
without explicit enumeration, it is likely that regular expression
characterizations generated in this case allowed more disjunctions,
and thus were a more enumerative generalization.

RQ3: What factors contribute to the overall performance (execution
time/iterations/calls) of the repair algorithm? The repair algorithm
utilizes a constraint solver (Z3) and model counter (ABC) for verify-
ing the requests in the must-allow request set and for quantifying
permissiveness. Both tools incur significant overhead in the process.
Figure 7(a) shows the time taken for various permissiveness bounds,
while Figure 7(b) shows the number of calls to Z3 and ABC for each
permissiveness bounds. As the permissiveness bound is increased,
the total time taken for repairing the 43 policies significantly de-
creases. Looking at Figure 7(b), the number of calls to both Z3 and
ABC decrease in a similar fashion. Both the number of calls and
total time were similar for the lowest few bounds. This may be due
to the fact that those policies which required enumeration during
the repair process for the bounds of 30, 40, and 50 are the ones
which took more time to repair and more calls to Z3/ABC. For the
depth and length thresholds, we did not notice a significant increase
or decrease in time taken or calls to Z3/ABC when the thresholds
were varied against a constant permissiveness threshold.

6.3 Threats to Validity

Requests in the must-allow request set may not be representative
of the what should be allowed by the policy. We mitigate this threat
as much as possible by synthesizing requests not randomly but
instead based on the common structure of actions and resources
we observed from both the policy dataset and AWS documention.
In this way, the requests were not randomly generated but were
generated such that they aligned with the user’s intention regarding
the kinds of requests that should be allowed by the policy. As
the 43 policies did not have associated requests which should be
allowed by the policy, this was the most straightforward approach
for generating a must-allow request set.

574

7 RELATED WORK

There has been much research on access control policies [22-24]
and access control policy languages [1, 16-18]. Early work in veri-
fication of access control policies exist [8, 14] and there has been
some work using the Alloy Analyzer [25, 29].

Recently, there has been interest in the verification of access
control policies using SAT/SMT solvers. In [4], the authors present
Zelkova, a closed-source, proprietary tool that can compare AWS
policies and tell if one is more permissive than the other. In [10] the
authors introduce an approach for quantifying permissiveness of
access control policies for AWS and Microsoft Azure and implement
it in a tool called QuAacky. Our work uses the authors’ notion of per-
missiveness for quantitative repair. Zelkova cannot quantitatively
compare policies like [10] can, and Zelkova does not use policy
comparisons to guide policy repair. In [5] the authors use Zelkova
to determine if a policy is Trust Safe (i.e., blocks public access and
does not allow untrusted requests). Both [10] and [4] draw on the
approach in [13], which uses a SAT solver to check XACML policies;
recent work has built on this but does not quantitatively analyze
nor repair access control policies. Another tool is Margrave [11]
which analyzes XACML policies using a multi-terminal decision
diagrams. In later work [21], Margrave incorporates a SAT solver in
the analysis of XACML policies to produce solutions to queries and
enumerate the possible solutions. While quantitative in nature [10]
showed that this type of enumerative approach does not scale for
quantitave analysis of access control policies. In [6], the authors
present Qlose, which uses a program repair approach based on
quantitative objectives. In [27], the authors present an approach for
repairing XACML policies by fault localization and mutation-based
repair. We focus on policies and not programs, and our use of sym-
bolic quantitative permissiveness analysis and our iterative repair
generation approach differ from both of these prior approaches.

8 CONCLUSION

In this work we present a novel quantitative policy repair algo-
rithm for repairing the permissiveness of access control policies for
the cloud. Given a permissiveness bound and must-allow request
set, our approach works by iteratively localizing the most permis-
sive elements of the policy using quantitative analysis techniques
and reducing and refining these elements using regular expression
generalization techniques. Our experiments on 43 AWS IAM poli-
cies show that our repair algorithm successfully generates repairs
for the given policies and does so in a reasonable amount of time.
As future work, we plan to automate techniques we discussed for
determining permissiveness bounds.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

REFERENCES

(1]

[2

[

3

=

(4]

(5

=

8

=

=

[10]

[11]

Jose L. Abad-Peiro, Hervé Debar, Thomas Schweinberger, and Peter Trommler.
1999. PLAS — Policy Language for Authorizations. Technical Report RZ 3126. IBM
Research Division. http://citeseer.nj.nec.com/abad-peiro99plas.html
Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. 2015. Automata-Based Model
Counting for String Constraints. In Computer Aided Verification - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA, Proceedings, Part I. 255-272.
https://doi.org/10.1007/978-3-319-21690-4_15

Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov,
Tevfik Bultan, and Fang Yu. 2018. Parameterized model counting for string and
numeric constraints. In Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018. 400-410.

John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek,
Kasper Luckow, Neha Rungta, Oksana Tkachu, and Carsten Varming. 2018.
Semantic-based Automated Reasoning for AWS Access Policies using SMT. In
Proceedings of the 18th Conference on Formal Methods in Computer-Aided Design
(FMCAD 2018), Austin, Texas, USA, October 30 - November 2, 2018. 1-9.

Malik Bouchet, Byron Cook, Bryant Cutler, Anna Druzkina, Andrew Gacek,
Liana Hadarean, Ranjit Jhala, Brad Marshall, Dan Peebles, Neha Rungta, Cole
Schlesinger, Chriss Stephens, Carsten Varming, and Andy Warfield. 2020. Block
Public Access: Trust Safety Verification of Access Control Policies. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Virtual Event, USA)
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
281-291. https://doi.org/10.1145/3368089.3409728

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
Repair with Quantitative Objectives. In Computer Aided Verification, Swarat
Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham,
383-401.

djleak [n.d.]. Cloud Leak: WSJ Parent Company Dow Jones Exposed Customer
Data. https://www.upguard.com/breaches/cloud-leak-dow-jones.

Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. 2006. Specifying
and Reasoning About Dynamic Access-Control Policies. In Automated Reasoning,
Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings (Lecture Notes in Computer Science, Vol. 4130), Ulrich Furbach and
Natarajan Shankar (Eds.). Springer, 632-646. https://doi.org/10.1007/11814771_
51

William Eiers, Ganesh Sankaran, Albert Li, Emily O’Mahony, Benjamin Prince,
and Tevfik Bultan. 2022. Quacky: Quantitative Access Control Permissiveness
Analyzer. In ASE Tool Paper.

William Eiers, Ganesh Sankaran, Albert Li, Emily O’Mahony, Benjamin Prince,
and Tevfik Bultan. 2022. Quantifying Permissiveness of Access Control Policies.
In Proceedings of the 44th International Conference on Software Engineering (ICSE
2022).

K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. 2005. Verifi-
cation and Change-Impact Analysis of Access-Control Policies. In Proceedings
of the 27th International Conference on Software Engineering. St. Louis, Missouri,
196-205.

[12] J.E. Hopcroft and J.D. Ullman. 1979. Introduction to Automata Theory, Languages,

[13]

and Computation. Addison Wesley.
Graham Hughes and Tevfik Bultan. 2007. Automated Verification of XACML
Policies Using a SAT Solver. In Proc. Workshop on Web Quality, Verification and

575

[14

(15

[16

(17

(18

[19

[20]

[21

[22

~
&

[24

[25

[26

[27

[29]

William Eiers, Ganesh Sankaran, and Tevfik Bultan

Validation (WQVV). 378-392.

Graham Hughes and Tevfik Bultan. 2008. Automated verification of access control
policies using a SAT solver. STTT 10, 6 (2008), 503-520. https://doi.org/10.1007/
510009-008-0087-9

iamreference 2022. IAM JSON policy reference. https://docs.aws.amazon.com/
IAM/latest/UserGuide/reference_policies.html.

Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian.
2001. Flexible support for multiple access control policies. ACM Transactions on
Database Systems 26, 2 (2001), 214-260. http://doi.acm.org/10.1145/383891.383894
S. Jajodia, P. Samarati, and V. S. Subrahmanian. 1997. A logical language for
expressing authorizations. In Proceedings of the 1997 IEEE Symposium on Security
and Privacy. IEEE Press, Oakland, CA, USA, 31-42. http://citeseer.nj.nec.com/
jajodia97logical.html

Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and Eliza Bertino. 1997.
A unified framework for enforcing multiple access control policies. In SIGMOD’97.
Tucson, AZ, 474-485. http://citeseer.nj.nec.com/jajodia97unified.html

Kotaro Kataoka, Saurabh Gangwar, and Prashanth Podili. 2018. Trust list: Internet-
wide and distributed IoT traffic management using blockchain and SDN. In
2018 IEEE 4th World Forum on Internet of Things (WF-IoT). 296-301. https:
//doi.org/10.1109/WF-I0T.2018.8355139

Leo A. Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and
Enforcing Fine-Grained Security Policies for JavaScript in the Browser. In 2010

IEEE Symposium on Security and Privacy. 481-496. https://doi.org/10.1109/SP.
2010.36

Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and
Shriram Krishnamurthi. 2010. The Margrave Tool for Firewall Analysis. In
Proceedings of the 24th International Conference on Large Installation System
Administration (San Jose, CA) (LISA’10). USENIX Association, USA, 1-8.
Pierangela Samarati and Sabrina De Capitani di Vimercati. 2001. Foundations of
Security Analysis and Design. Springer Verlag, Chapter 3, 137-196.

Ravi Sandhu and Pierangela Samarati. 1996. Authentication, access control, and
audit. Comput. Surveys 28, 1 (1996), 241-243. http://doi.acm.org/10.1145/234313.
234412

Ravi S. Sandhu and Pierangela Samarati. 1994. Access Control: Principles and
Practice. IEEE Communications Magazine 32, 9 (1994 1994), 40-48. http://citeseer.
nj.nec.com/article/sandhu94access.html

Andreas Schaad and Jonathan Moffet. 2002. A Lightweight Approach to Spec-
ification and Analysis of Role-based Access Control Extensions. In 7th ACM
Symposium on Access Control Models and Technologies (SACMAT 2002).
verizonleak [n.d.]. 14 MEEELLION Verizon subscribers’ details leak from crappily
configured AWS S3 data store. https://www.theregister.co.uk/2017/07/12/14m_
verizon_customers_details_out/.

Dianxiang Xu and Shuai Peng. 2014. Towards automatic repair of access control
policies. In Proceedings of the 14th Annual Conference on Privacy, Security and
Trust, PST (PST 2014).

Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su, and P.
Mohapatra. 2006. FIREMAN: a toolkit for firewall modeling and analysis. In 2006
IEEE Symposium on Security and Privacy (S&P’06). 15 pp.-213. https://doi.org/10.
1109/SP.2006.16

John Zao, Hoetech Wee, Jonathan Chu, and Daniel Jackson. 2003. RBAC Schema
Verification Using Lightweight Formal Model and Constraint Analysis. In Pro-
ceedings of the eighth ACM symposium on Access Control Models and Technologies.

Received 2023-02-16; accepted 2023-05-03

http://citeseer.nj.nec.com/abad-peiro99plas.html
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1145/3368089.3409728
https://www.upguard.com/breaches/cloud-leak-dow-jones
https://doi.org/10.1007/11814771_51
https://doi.org/10.1007/11814771_51
https://doi.org/10.1007/s10009-008-0087-9
https://doi.org/10.1007/s10009-008-0087-9
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://doi.acm.org/10.1145/383891.383894
http://citeseer.nj.nec.com/jajodia97logical.html
http://citeseer.nj.nec.com/jajodia97logical.html
http://citeseer.nj.nec.com/jajodia97unified.html
https://doi.org/10.1109/WF-IoT.2018.8355139
https://doi.org/10.1109/WF-IoT.2018.8355139
https://doi.org/10.1109/SP.2010.36
https://doi.org/10.1109/SP.2010.36
http://doi.acm.org/10.1145/234313.234412
http://doi.acm.org/10.1145/234313.234412
http://citeseer.nj.nec.com/article/sandhu94access.html
http://citeseer.nj.nec.com/article/sandhu94access.html
https://www.theregister.co.uk/2017/07/12/14m_verizon_customers_details_out/
https://www.theregister.co.uk/2017/07/12/14m_verizon_customers_details_out/
https://doi.org/10.1109/SP.2006.16
https://doi.org/10.1109/SP.2006.16

	Abstract
	1 Introduction
	2 Motivation and Overview
	2.1 Policy Repair Problem
	2.2 Motivating Examples

	3 Modeling Access Control Policies
	3.1 Policy Model
	3.2 Symbolic Encoding of Policies

	4 Quantitative Policy Repair
	4.1 Repair Goal Validation
	4.2 Permissiveness Localization
	4.3 Permissiveness Refinement

	5 Policy Repair for the Cloud
	5.1 AWS Policy Language
	5.2 Policy Transformations for Repair
	5.3 Determining Permissiveness Bounds

	6 Experiments
	6.1 Experimental Setup
	6.2 Results
	6.3 Threats to Validity

	7 Related Work
	8 Conclusion
	References

