
�antitative Policy Repair for Access Control on the Cloud∗

William Eiers
University of California Santa Barbara

Santa Barbara, CA, USA
weiers@cs.ucsb.edu

Ganesh Sankaran
University of California Santa Barbara

Santa Barbara, CA, USA
ganesh@cs.ucsb.edu

Tev�k Bultan
University of California Santa Barbara

Santa Barbara, CA, USA
bultan@cs.ucsb.edu

ABSTRACT

With the growing prevalence of cloud computing, providing secure

access to information stored in the cloud has become a critical prob-

lem. Due to the complexity of access control policies, administrators

may inadvertently allow unintended access to private information,

and this is a common source of data breaches in cloud based ser-

vices. In this paper, we present a quantitative symbolic analysis

approach for automated policy repair in order to �x overly per-

missive policies. We encode the semantics of the access control

policies using SMT formulas and assess their permissiveness using

model counting. Given a policy, a permissiveness bound, and a set

of requests that should be allowed, we iteratively repair the policy

through permissiveness reduction and re�nement, so that the per-

missiveness bound is reached while the given set of requests are still

allowed. We demonstrate the e�ectiveness of our automated policy

repair technique by applying it to policies written in Amazon’s

AWS Identity and Access Management (IAM) policy language.

CCS CONCEPTS

• Security and privacy→ Logic and veri�cation; Access con-

trol.

KEYWORDS

access control, policy analysis, policy repair, quantitative analysis

ACM Reference Format:

William Eiers, Ganesh Sankaran, and Tev�k Bultan. 2023. Quantitative

Policy Repair for Access Control on the Cloud. In Proceedings of the 32nd

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3597926.3598078

1 INTRODUCTION

It is critical to protect privacy of the data stored in software services

that run on compute clouds like Amazon Web Services (AWS) since

data breaches in the cloud can have signi�cant negative impact

∗This material is based on research sponsored by NSF under grants CCF-2008660,
CCF-1901098 and CCF-1817242, and by DARPA under the agreement number N66001-
22-2-4037. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the o�cial policies or endorsements, either
expressed or implied, of the U.S. Government.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598078

on millions of users. AWS Identity and Access Management (IAM)

service [15] allows administrators to write policies that specify

authorization and access control rules for the resources available

in a software service. Although IAM provides a convenient lan-

guage for writing policies, speci�cation errors in manually written

complex policies are bound to happen, leading to unintended and

unauthorized access to data. Indeed, errors in access control policies

in cloud storage services have already resulted in the exposure of

millions of customers’ data to the public, such as the exposure of

the data records (including names, addresses, account information,

email addresses, and last four digits of credit card numbers) of more

than 2 million Dow Jones & Co. customers [7], and exposure of

account records of 14 million Verizon customers [26].

Given the ubiquity of software services running on compute

clouds, automated access control policy analysis techniques that

can help administrators are critically important. There has been

prior work on automatically analyzing access control policies for

�nding permissiveness errors [4, 5, 9, 10]. In this paper, we go one

step further, and investigate the problem of automatically repairing

overly permissive policies.

The access control policy analysis and repair problems are inher-

ently quantitative since the issue is not whether an access control

policy allows access to data resources, but how much access it al-

lows. We call this the permissiveness of an access control policy. In

particular, we investigate the problem of quantitative policy repair

where the goal is not to completely eliminate all access to data

(which would not be a feasible �x) but to reduce permissiveness to

an acceptable level speci�ed by the service administrator.

In this paper, we present a quantitative symbolic analysis ap-

proach for automated policy repair in order to reduce the permis-

siveness of access control policies. Our repair approach is sound,

i.e., it guarantees that the repaired policy meets the given permis-

siveness constraints. Our contributions are the following:

• A formalization of the access control policy repair problem.

• A quantitative and symbolic policy repair algorithm for au-

tomatically reducing the permissiveness of a given access

control policy.

• Access control policy permissiveness localization and reduc-

tion techniques, including a regular expression generaliza-

tion technique for characterizing the set of resources based

on a given set of access control requests.

• An experimental evaluation of our quantitative policy repair

approach.

The rest of the paper is organized as follows. In Section 2 we for-

malize the policy repair problem and demonstrate its applicability

through motivating examples, in Section 3 we discuss the policy

model for analyzing the semantics of access control policies, in Sec-

tion 4 we introduce our novel approach for policy repair through a

quantitative policy repair algorithm, in Section 5 we discuss how

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

564

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598078
https://doi.org/10.1145/3597926.3598078
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598078&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA William Eiers, Ganesh Sankaran, and Tevfik Bultan

our approach can be applied to the AWS IAM policy language, in

Section 6 we experimentally evaluate our approach, in Section 7

we discuss related work, and in Section 8 we conclude the paper.

2 MOTIVATION AND OVERVIEW

In this section we give an overview of the access control policy

repair problem and provide motivating examples. From a security

perspective, access control policies should grant only the permis-

sions required to perform a task. Overly permissive policies, which

grant more permissions than necessary, can allow attackers un-

fettered access to secure data if the associated role or users are

compromised. Thus, overly permissive policies should be modi�ed,

or repaired, to allow only those requests which are necessary.

2.1 Policy Repair Problem

Access control policies grant permissions to users or services by

allowing requests. The more permissions granted by a policy, the

more requests it allows. The fewer permissions granted by a policy,

the lower the number of requests it allows. In this sense, we can

think of the number of permissions granted, or requests allowed,

by the policy as de�ning the permissiveness of the policy. A natural

question then is, given an overly permissive policy, is it possible to

modify, or repair the policy so that it is no longer overly permissive?

This gives rise to the Policy Repair Problem: Given an access control

policy, ensure that it only allows the requests necessary to achieve

its intended purpose. However, this is di�cult to ensure as complex

policy speci�cations are di�cult to craft and the set of requests to

be allowed or denied may not be explicitly de�ned or known.

In this paper, we introduce and formalize the following varia-

tion of the access control policy repair problem: Given a policy, a

permissiveness bound, and a set of must-allow requests, check that

the policy meets the permissiveness bound while allowing all the

requests in the must-allow set, or repair it such that it meets the

permissiveness bound and allows all the requests in the must-allow

set. Note that permissiveness bound puts an upper bound on the

desired level of permissiveness while the must-allow request set

puts a lower bound on the desired level of permissiveness.

Permissiveness Bound. The permissiveness bound is a restriction

on the permissiveness of the policy. That is, it is a restriction on

the maximum number of requests allowed by the policy. If the

permissiveness of the policy (number of requests allowed by the

policy) is greater than the permissiveness bound, then we call this

policy an overly permissive policy. Our approach aims to repair

overly permissive policies by reducing the permissiveness of the

policy so that the permissiveness of the policy is less than or equal to

the permissiveness bound. While in this paper we assume that such

a permissiveness bound is given a priori, we also discuss methods

for automatically �nding permissiveness bounds later in the paper.

Must-Allow Request Sets. The set of must-allow requests are re-

quests which must be allowed by the policy. Without a must-allow

request set, a policy that does not allow any requests would meet

any permissiveness bound and would be a viable (but meaningless)

solution to the policy repair problem. The must-allow request set

is used to guide the algorithm towards a less permissive but still

"Statement": [{

"Effect": "Allow",

"Action": [

"s3:ListBucket",

"s3:GetObject",

"s3:PutObject",

"s3:DeleteObject"],

"Resource": [

"backend",

"backend/logs"]},

{

"Effect": "Allow",

"Action": "s3:GetObject",

"Resource": "backend /*"}]

"Statement": [{

"Effect": "Allow",

"Action": [

"s3:ListBucket",

"s3:GetObject",

"s3:PutObject",

"s3:DeleteObject"],

"Resource": [

"backend",

"backend/logs"]},

{

"Effect": "Allow",

"Action": "s3:GetObject",

"Resource": [

"backend/user44012/status.log",

"backend/user00000/status.log",

"backend/user12345/status.log",

"backend/user91232/status.log",

"backend/admin12/status.log",

"backend/admin02/status.log",

"backend/admin443/status.log",

"backend/admin3/status.log"]}]

Figure 1: Original (left, (a)), �rst repaired policy (right, (b))

"Statement": [{

"Effect": "Allow",

"Action": [

"s3:ListBucket",

"s3:GetObject",

"s3:PutObject",

"s3:DeleteObject"],

"Resource": [

"backend",

"backend/logs"]},

{

"Effect": "Allow",

"Action": "s3:GetObject",

"Resource": [

"backend/user ?????/ status.log",

"backend/admin */ status.log"]}]

"Statement": [{

"Effect": "Allow",

"Action": [

"s3:ListBucket",

"s3:GetObject",

"s3:PutObject",

"s3:DeleteObject"],

"Resource": [

"backend",

"backend/logs"]},

{

"Effect": "Allow",

"Action": "s3:GetObject",

"Resource": [

"backend/user*/ status.log",

"backend/admin */ status.log"]}]

Figure 2: Second repaired policy (left, (a)), third repaired

policy (right, (b))

useful policy. In our approach, we assume that the set of must-allow

requests is given as input to the policy repair algorithm.

In our approach we assume that the policy developer has access

to a set of must-allow requests. We assume that the policy developer

has knowledge of, and access to, what kinds of requests should be

de�nitely allowed by the policy. The concept of a must-allow re-

quest set is analogous to the concept of whitelists from the security

domain which explicitly enumerate what should be allowed (e.g., a

�rewall only allowing requests from a certain domain). Typically,

policy developers have access to such a whitelist, and we make the

same assumption for the set of must-allow requests [19, 20, 28].

2.2 Motivating Examples

The goal of the repair algorithm is to �nd a policy repair that

satis�es both of the above constraints (permissiveness bound and

must-allow requests). To illustrate the policy repair problem con-

cretely, we discuss a couple of motivating examples below.

Consider the role of an automated log consolidator in the Ama-

zonWeb Services (AWS) cloud, hereafter referred to as simply logger,

which routinely gathers logs and consolidates them into a single

log �le for further analysis. The permissions granted to the logger

role are given by the policy attached to the role. The initial policy

565

�antitative Policy Repair for Access Control on the Cloud ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

attached to the logger role is given in Figure 1(a). This policy gives

varied access to the "backend" AWS S3 bucket: The �rst statement

allows the logger role to list objects within the bucket and gives

read and write access to the “logs” object, while the second state-

ment allows the logger role to read all objects within the “backend”

bucket. Note that broad access is achieved through the use of the

wildcard symbol ‘*’ (representing any string) within the resource

description “backend/*”. Though not present in this �rst policy, the

‘?’ symbol is used similarly to represent any character.

Essentially, this second statement allows the logger role to gather

all logs in the bucket, while the �rst statement allows the logger role

to consolidate those logs into a single logs �le. This policy allows

the logger role to accomplish its tasks. However, the policy gives

the logger role read access to all objects in the “backend” bucket

using the S3:GetObject action, regardless of whether or not the

object is a log �le. Ideally, the policy should be repaired so that it

only allows access to log �les within the “backend” bucket.

Repairing the permissiveness of the policy in 1(a) requires some

information to be known regarding the requests �elded (allowed

or denied) by the policy. Without such domain speci�c knowledge,

the best repair would be to modify the policy to allow no requests.

Suppose that the following requests, which specify action and

resource pairs, should be allowed by the policy:

("s3:ListBucket", "backend"), ("s3:PutObject", "backend/logs")

("s3:DeleteObject", "backend/logs")

("s3:GetObject", "backend/logs")

("s3:GetObject", "backend/user44012/status.log")

("s3:GetObject", "backend/user00000/status.log")

("s3:GetObject", "backend/user12345/status.log")

("s3:GetObject", "backend/user91232/status.log")

("s3:GetObject", "backend/admin12/status.log")

("s3:GetObject", "backend/admin02/status.log")

("s3:GetObject", "backend/admin443/status.log")

("s3:GetObject", "backend/admin3/status.log")

These requests represent what kind of actions and resources should

be allowed by the original policy, which we refer to as the must-

allow request set. Any repaired policy must allow these requests.

The simplest way to repair the policy is to explicitly enumerate

the allowed requests within a statement in the policy, as shown in

Figure 1(b). Instead of specifying “bucket/*” in the second statement

(which speci�ed all objects within the bucket), the list of known

resources is explicitly speci�ed by explicitly enumerating them.

While this is a valid repair and does in fact reduce permissiveness,

it does not handle other log �les which may exist but were not

captured in the must-allow request set. It simply makes the must-

allow set the policy. In our approach, we remedy this by generalizing

the allowed requests using resource characterization techniques.

The policies in Figure 2 show two repairs which our quantitative

repair approach generates. Both policies reduce the permissive-

ness of the original policy. However, the second and third repaired

policies generalize the resources from the must-allow request set.

The second repaired policy (Figure 2(a)) generalizes requests con-

taining the “user” and “admin” strings, but is more restrictive for

resources containing the “user” string: It allows resources such as

bucket/user44012/status.log which is in the must-allow request

set, but does not allow bucket/user1234567/status.logwhich is not

in the must-allow request set. The third repaired policy (Figure 2(b))

"Statement": [{

"Effect": "Allow",

"Action": "s3:GetObject"

"Resource": "backend /*"]}

"Statement": [{

"Effect": "Allow",

"Action": "s3:GetObject"

"Resource":"backend/logs/user*"]}

"Statement": [{

"Effect": "Allow",

"Action": "s3:GetObject"

"Resource": "backend/logs/user ?????"]}

Figure 3: Original policy (top left, (a)), partially repaired pol-

icy (top right, (b)), fully repaired policy (bottom, (c))

also generalizes requests containing the “user” and “admin” strings,

but is equally as restrictive in both cases. Based on the input per-

missiveness constraints and parameters, our approach can generate

repairs with di�erent levels of permissiveness while meeting the

permissiveness constraints. We discuss this further in Section 4.

Permissiveness Bound Example. In this example we discuss the

importance of the permissiveness bound in the repair process. Re-

call that the permissiveness of a policy is the number of requests

allowed by the policy. Given a permissiveness bound, a policy is

determined to be overly permissive if the permissiveness of the

policy is greater than the permissiveness bound. For example, if the

desired permissiveness bound is 1,000 (maximum of 1,000 distinct

requests allowed), and the permissiveness of a given policy is 10,000,

then the permissiveness of the policy exceeds the permissiveness

bound and is in need of repair. While the permissiveness bound

is a bound on the maximum number of requests allowed by the

policy, it can also be used to interpret the maximum number of

wild characters allowed within the policy; that is, the number of

characters which are allowed to be unspeci�ed in the policy.

Consider the policies in Figure 3 together with the following set

of must-allow requests:

("s3:GetObject", "backend/logs/user00102")

("s3:GetObject", "backend/logs/user94319")

("s3:GetObject", "backend/logs/user22212")

("s3:GetObject", "backend/logs/user30100")

("s3:GetObject", "backend/logs/user49763")

Let us assume that the desired permissiveness bound is 5 wild

characters, which corresponds to a maximum of 2565 = 1.1 × 1012

distinct requests which can be allowed by the policy. Note that the

number of wild characters can be obtained by taking the log256 of

the desired permissiveness (since each wild character corresponds

to 256 possible characters). Additionally, assume only ASCII char-

acters are allowed in the resource �eld, and the length of resources

can be at most 30 characters long. The �rst policy (Figure 3(a)) has

a permissiveness of 9.6 × 1052, or 22 wild characters, which far

exceeds the permissiveness bound. The second policy (Figure 3(b))

is a partially repaired version of the �rst policy, which further re-

stricts the requests allowed by the policy. The permissiveness of this

second policy is 2.0× 1031, or 13 wild characters which still exceeds

the permissiveness bound. The third policy (Figure 3(c)) shows a

fully repaired policy with a permissiveness of 1.1 × 1012, or 5 wild

characters, which does not exceed the permissiveness bound, and is

thus repaired. In this case, note that the resource �eld in the policy

"Resource": "backend/logs/user?????" limits the number of

wildcard characters to 5, which meets the permissiveness bound.

566

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA William Eiers, Ganesh Sankaran, and Tevfik Bultan

3 MODELING ACCESS CONTROL POLICIES

In this section we present a semantic model for access control poli-

cies and the encoding of this semantic model as SMT formulas. The

model and its encoding are expressive enough to capture complex

policy speci�cations from cloud services; E.g, policies written in

the AWS Identity and Access Management (IAM) policy language.

3.1 Policy Model

An access control policy speci�es who can do what under which

conditions. We de�ne an access control model in which declarative

policies �eld access requests from a dynamic environment, and all

requests are initially denied.

We use the policy model from [10] where an access request is a

tuple (X, 0, A, 4) ∈ Δ×�×'×�, Δ is the set of all possible principals

making a request, ' is the set of all possible resources which access

is allowed or denied, � is the set of all possible actions, and � is the

environment attributes involved in an access request.

An access control policy P = {d0, d1, ...d=} consists of a set

of rules d8 where each rule is de�ned as a partial function d :

Δ ×� × ' × � ↩→ {�;;>F, �4=~}. The set of principals speci�ed by
a rule d is

d (X) = {X ∈ Δ : ∃0, A, 4 : (X, 0, A, 4) ∈ d } (1)

d (0) for 0 ∈ �, d (A) for A ∈ ', d (4) for 4 ∈ � are similarly de�ned.

Given a policy P = {d0, d1, ...d=}, a request (X, 0, A, 4) is granted
access if and only if

∃d8 ∈ P : d8 (X, 0, A, 4) = �;;>F ∧ �d 9 ∈ P : d 9 (X, 0, A, 4) = �4=~

The policy grants access if and only if the request is allowed by a

rule in the policy and is not revoked by any other rule in the policy.

If a request is allowed by one rule and denied by another rule, the

request is denied, i.e., the explicit denies overrules explicit allows.

The set of allow rules and deny rules for P are de�ned as:

PAllow = {d8 ∈ P : (X8 , 08 , A8 , 48) ∈ d8 ∧ d8 (X8 , 08 , A8 , 48) = Allow } (2)

PDeny = {d 9 ∈ P : (X 9 , 0 9 , A 9 , 4 9) ∈ d 9 ∧ d 9 (X 9 , 0 9 , A 9 , 4 9) = Deny } (3)

Given a policy P, the requests allowed by the policy are those in

which a policy rule grants the access through an Allow e�ect and

is not revoked by any policy rule with a Deny e�ect:

Allow(P) = {(X, 0, A, 4) ∈ Δ ×� × ' × �

: ∃d8 ∈ P : (X, 0, A, 4) ∈ d8 ∧ d8 (X, 0, A, 4) = Allow

∧ �d 9 ∈ P : (X, 0, A, 4) ∈ d 9 ∧ d 9 (X, 0, A, 4) = Deny }

(4)

The set of principals, resources, or actions allowed by a policy is

Allow(P,Δ) = {X ∈ Δ : (X, 0, A, 4) ∈ Allow(P) } (5)

Allow(P, �) = {0 ∈ � : (X, 0, A, 4) ∈ Allow(P) } (6)

Allow(P, ') = {A ∈ ' : (X, 0, A, 4) ∈ Allow(P) } (7)

Combining Policies. Recall that a policy P consists of a set of rules

{d0, ..., d=}. Two policies P1 and P2 can be combined into a single

policy P3 by combining the set of rules in P1 with the set of rules

in P2 as P3 = P1 ∪ P2. Based on the policy semantics we de�ned

above, the allowed requests of P3 is the set of requests allowed by

either P1 or P2 that are not denied by P1 and not denied by P2.

3.2 Symbolic Encoding of Policies

Access control policies can be translated to SMT formulas in order

to enable symbolic analysis using constraint solvers [10]. The set

Figure 4: Flow of repair algorithm. The inputs are Initial

Policy, Permissiveness Bound, Must-Allow Request Set

of possible requests are encoded by introducing variables {XB<C ∈
Δ, AB<C ∈ ', 0B<C ∈ �, 4B<C ∈ �} in the generated SMT formula.

The SMT encoding of a policy P is given by JPK and represents the

set of requests allowed by P:

JPK =

(

∨

d∈PAllow

JdK

)

∧

¬

(

∨

d∈PDeny

JdK

)

(8)

JdK =

(

∨

X∈d (X)

XB<C = X

)

∧

(

∨

0∈d (0)

0B<C = 0

)

∧

(

∨

A∈d (A)

AB<C = A

)

∧

(

∨

4∈d (4)

4B<C = 4

)

(9)

Policy rules are encoded as values for sets of (X, 0, A, 4), where
each value set potentially grants or revokes permissions. Satisfying

solutions to JPK correspond to requests allowed by the policy, i.e.,

Allow(P) = {(X, 0, A, 4) : (X, 0, A, 4) |= JPK} (10)

4 QUANTITATIVE POLICY REPAIR

Recall that policy repair has three inputs: 1) a permissiveness bound,

2) a set of must-allow requests, and 3) a policy to be repaired. The

goal is to create a revised (repaired) version of the input policy in

which all must-allow requests are allowed and the permissiveness

bound is not exceeded.

Our policy repair algorithm consists of three main stages: (1)

Goal Validation, (2) Permissiveness Localization, and (3) Permis-

siveness Re�nement. Figure 4 shows the overall �ow of the repair

algorithm. Algorithm 1 is the core repair algorithm corresponding

to the �owchart shown in Figure 4. Given a policy (consisting of

one or more rules), a permissiveness bound, and set of requests, the

repair algorithm �rst checks if the permissiveness goals are met

using Goal Validation. If they are met, then the algorithm stops and

returns the policy. Otherwise, it �nds the most permissive elements

of the policy through Permissiveness Localization, then reduces

permissiveness and re�nes the policy elements through Permissive-

ness Re�nement. The algorithm then goes back to Goal Validation

and repeats the process until the policy is successfully repaired

meeting the permissiveness constraints. In the following sections,

we will discuss the algorithms corresponding to each of the stages.

Since our repair approach uses a greedy strategy to quantitatively

repair overly permissive policies, it is not guaranteed to produce an

567

�antitative Policy Repair for Access Control on the Cloud ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Algorithm 1 PolicyRepair

Input: Policy P, Permissiveness bound [, must-allow requests& , length threshold U ,
depth threshold l , re�nement threshold n , map"
Output: Repaired Policy

1: P′ = P
2: [A = GetPermissiveness(P′)
3: while ([A > [)∧ HasUnrefinedResources(") do
4: (d, 0d , Ad) = Localize(P′, ")
5: d∗

= ReduceRule(d, 0d , Ad)
6: P

∗
= (P′ \ {d }) ∪ {d∗ }

7: &∗
= ValidateReqests(P∗,&)

8: if &∗
≠ ∅ then

9: '∗
= GenerateResourceCharacterization(&∗, U,l)

10: dre�ned = GenerateRefinedRule(d, 0d , '
∗)

11: Pre�ned = (P∗ \ {d∗ }) ∪ {dre�ned }
12: if GetPermissiveness(Pre�ned) ≥ [− n then
13: MarkRuleResourceAsRefined(", d, Ad)
14: else P′ = Pre�ned
15: end if
16: end if
17: [A = GetPermissiveness(P′)
18: end while
19: if [A > [then P′ = EnumerateReqests(P′,&)
20: end if
21: return P′

Algorithm 2 ValidateReqests

Input: Policy P, Request set& ⊆ Δ ×� × ' × �
Output: Requests not allowed by policy P

1: &allowed = ∅
2: JPK = Encode(P)
3: for (X, 0, A, 4) ∈ & do
4: if (X, 0, A, 4) |= JPK then &allowed = &allowed ∪ {(X, 0, A, 4) }
5: end if
6: end for
7: return& \&allowed

Algorithm 3 Localize

Input: Policy P, map"
Output:Most permissive rule and elements in policy

1: dmax = dempty

2: (0max, Amax) = ()
3: [max = 0
4: for d ∈ PAllow do
5: if IsRuleRefined(", d) then continue
6: end if
7: [= GetPermissiveness({d })
8: if [> [m0G then
9: [m0G = [
10: dm0G = d
11: end if
12: end for
13: [m0G = 0
14: for (08 , A8) ∈ dm0G (0) × dm0G (A) do
15: if IsResourceRefined(",A8) then continue
16: end if
17: d = CreateRule((dm0G (X), 08 , A8 , dm0G (4)),Allow)
18: [= GetPermissiveness({d })
19: if [> [m0G then
20: [m0G = [
21: (0m0G , Am0G) = (08 , A8)
22: end if
23: end for
24: return (dm0G , 0m0G , Am0G)

optimum repair. However, we believe that a greedy repair strategy

like ours that focuses on most permissive elements of the policy

�rst is a reasonable and practical approach.

Algorithm 4 GenerateResourceCharacterization

Input:Must-allow requests&∗ ⊆ & , length threshold U , depth threshold l
Output: List of resources characterizing set resources from&∗

1: �' = ∅
2: '&∗ = GetResourcesFromReqests(&∗)
3: for A ∈ '&∗ do

4: �A = ConstructDFA(A)
5: �' = �' ∪�A

6: end for
7: reg = GetRegexFromDFA(�')
8: reg∗ = GeneralizeRegex(A46, U,l, 0)
9: 'reg∗ = EnumerateRegex(reg∗)
10: return 'reg∗

Algorithm 5 GeneralizeRegex

Input: Regular expression reg, length threshold U , depth thresholdl , current depth 3
Output: Generalization of regular expression reg

1: if reg ≡ (reg1 | reg2) then
2: reg′1 = GeneralizeRegex(reg1, U,l,3 + 1)
3: reg′2 = GeneralizeRegex(reg2, U,l,3 + 1)
4: if (reg′1 ∈ Σ

∗) ∧ (reg′2 ∈ Σ
∗) then

5: ;reg′1
= Length(reg′1)

6: ;reg′2
= Length(reg′2)

7: if (;reg′1
= ;reg′2

) ∧ (;reg′1
<= U) then

8: returnMakeRegex(?, ;reg′1
) ⊲ ‘?’ is regex for any character

9: end if
10: end if
11: if (3 ≥ l) ∨ (reg′1 ≡ Σ

∗) ∨ (reg′2 ≡ Σ
∗) then return Σ

∗

12: else return (reg′1 | reg′2)
13: end if
14: else if reg ≡ (reg1 · reg2) then
15: reg′1 = GeneralizeRegex(reg1, U,l,3)
16: reg′2 = GeneralizeRegex(reg2, U,l,3)
17: return reg′1 · reg

′
2 ⊲ ‘·’ is regex concatenation

18: else return reg
19: end if

4.1 Repair Goal Validation

Recall that the main goal of policy repair is to reduce the permis-

siveness of the given policy to meet the given permissiveness bound

while preserving the set of must-allow requests. Validating that

the repair goal is reached requires two steps: (1) quantitatively as-

sessing that the permissiveness of the repaired policy is within the

given permissiveness bound, and (2) verifying that the given set of

must-allow requests are allowed by the repaired policy. When both

of these goal validation steps are achieved, the repair algorithm

stops and we return the repaired policy. Note that it may not be

possible to achieve the permissiveness bound without changing the

policy to only allow the requests that are in the must-allow set. In

such a scenario we generate a policy that corresponds to explicit

enumeration of the requests in the must-allow set.

In cases where permissiveness bound cannot be reached without

enumeration of the must-allow set, our approach uses a stopping

condition where only rules that have not been previously re�ned

(from the permissiveness re�nement stage) are eligible for re�ne-

ment; the repair algorithm stops if there are no rules left to re�ne,

regardless of whether the permissiveness goal has been reached.

To simplify the presentation of our policy repair algorithm, we

assume that the permissiveness level required by the must-allow

set is not more than the input permissiveness bound (which would

correspond to an unsatis�able set of permissiveness constraints),

568

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA William Eiers, Ganesh Sankaran, and Tevfik Bultan

and furthermore, we assume that the initial policy does allow all

the requests in the must-allow set. We can easily get rid of these

assumptions with extra checks.

The permissiveness goal is checked on lines 2 and 3 in the repair

Algorithm 1 through the GetPermissiveness function. A policy

P is �rst encoded into an SMT formula JPK then sent to a model

counter which returns number of satisfying solutions to JPK, which
corresponds to the number of requests allowed by policy P. Recall

that the number of requests allowed by P corresponds to the permis-

siveness of P. If the permissiveness is less than the bound, then the

permissiveness goal has been reached and the algorithm returns the

current policy. Otherwise, it gets in the while loop starting in line 3

in order to modify the current policy to reduce its permissiveness.

Algorithm 2 shows how the set of must-allow requests & are

checked against a policy P. For each request (X, 0, A, 4) in the must-

allow set, we have to determine if (X, 0, A, 4) |= JPK, i.e., does
P allow (X, 0, A, 4)? This is done by generating the SMT formula

J(X, 0, A, 4)K ∧ JPK and checking if it is satis�able using an SMT

solver. Note that J(X, 0, A, 4)K corresponds to SMT encoding of the

request (X, 0, A, 4) and JPK is the SMT encoding of all the requests

allowed by P. So, if SMT solver reports that J(X, 0, A, 4)K ∧ JPK is
satis�able, then we know that the request (X, 0, A, 4) is among the

requests allowed by P. If the SMT solver reports that it is not satis-

�able, then we know that the request (X, 0, A, 4) is not allowed by

P. By encoding requests and policies as SMT formulas, we can im-

plement the goal validation step using an SMT solver, and without

requiring access to an access control policy evaluation engine.

Algorithm 2 accumulates the requests in & that are allowed

by P in the set &allowed. At the end it returns the set di�erence

& \&allowed, i.e., the set of requests in & that are not allowed by P.

These requests are used in the permissiveness re�nement step.

4.2 Permissiveness Localization

We use a greedy strategy in repairing the permissiveness of a policy.

We quantitatively assess permissiveness by �rst �nding the most

permissive rule in the policy, then �nding the most permissive

elements within the rule. This is done using calls to a model counter.

Permissiveness Analysis. Recall from Section 3 that Allow(P) is
the set of all requests allowed by P. It follows then that |Allow(P) |
is the number of such requests. Following the work from [10], the

permissiveness of P is the number of requests allowed by P, which

corresponds to the number of solutions to the formula encoding P,

which is JPK. I.e., |Allow(P) | = |JPK|. Thus, a lower permissiveness

corresponds to a lower number of allowed requests, while a higher

permissiveness corresponds to a higher number of allowed requests.

Note that, although satis�ability of JPK can be computed using a

constraint solver, computing cardinality of JPK, i.e, computing |JPK|,
requires a model counting constraint solver.

Permissiveness Localization. Similar to fault localization tech-

niques in traditional repair algorithms, we introduce the notion of

permissiveness localization for policy repair to �nd the most permis-

sive sections of a policy. Our permissiveness localization technique

consists of a two-step process: (1) a course-grained approach which

�rst �nds themost permissive rules in a policy, and (2) a �ne-grained

approach is used to �nd the most permissive elements within each

rule. In the course-grained approach each rule is analyzed indepen-

dently of other rules within the policy: each rule d8 ∈ P is treated
as an independent policy P8 = {d8 }. The permissiveness of each

P8 is assessed using a model counter, where the most permissive

rule in P corresponds to the most permissive policy P8 . A rule con-

tains principals, actions, resources, and environment conditions. In

order to better analyze the permissive elements of the most permis-

sive rule, we use a �ne-grained approach to determine the greatest

source of permissiveness. More speci�cally, we analyze the actions

and resources within the rule, as in our observations these tend

to be the most permissive elements. Once this is done, the repair

algorithm re�nes the permissiveness of the rule and its elements.

Algorithm 3 shows the how the repair is localized. First, in lines

4-12 themost permissive rule is found by iterating through the allow

rules (those that allow requests) in the policy. Only rules which

contain unre�ned resources are considered; additionally, we do not

consider deny rules (those that deny requests) as by de�nition deny

rules cannot increase permissiveness. We keep track of which parts

of a policy is already re�ned by using a map" .

The GetPermissiveness function encodes the given policy as a

SMT formula using the techniques in Section 3 and calls the model

counter on the formula. The GetPermissiveness function is called

on a policy consisting only of the given rule. Next, on lines 14-23 the

most permissive action, resource pairs are located within the rule.

This is done by iterating over all action, resource pairs and creating

a new rule where the action, resource pair is allowed with any

combination of the principals and environment attributes speci�ed

in the most permissive rule. Note that, as before, only unre�ned

resources are considered. The permissiveness of the newly created

rule is calculated using the GetPermissiveness function. Once

found, the most permissive rule and its respective action, resource

pair is returned. Note that Algorithm 3 involves numerous calls to a

model counter through the GetPermissiveness function, and calls

to a model counter can be expensive. This is a concern that we later

discuss while presenting our implementation and experiments.

4.3 Permissiveness Re�nement

Once the most permissive rule and elements in the rule are found

using permissiveness localization, the rule is modi�ed to reduce

permissiveness. However reducing permissiveness has the possible

e�ect that some requests in the set of must-allow requests are now

not allowed. In this situation, the denied requests are analyzed and

the rule is then re�ned using resource characterization and gen-

eralization techniques so that all must-allow requests are allowed.

Algorithm 1 shows how a rule is reduced and re�ned, while Algo-

rithm 4 and Algorithm 5 show how the resource characterization

is generated from the denied requests.

Permissiveness Reduction. Within Algorithm 1, once the most

permissive rule and its permissive elements are located using Algo-

rithm 3 on line 4, on line 5 the ReduceRule function modi�es the

rule so that permissiveness is reduced. Our approach for reducing

permissiveness greedily removes the most permissive element of

the most permissive rule. The rule is only modi�ed so that the

permissive action and resource pair is removed. On line 6, a new

policy is created by removing the permissive rule from the original

policy and replacing it with the reduced rule from line 5.

569

�antitative Policy Repair for Access Control on the Cloud ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

While the permissiveness of the rule is clearly reduced using this

approach, a clear consequence is that some requests (possibly from

the set of must-allow requests) that were previously allowed are

now denied. This is an intentional consequence of our approach. It

allows us to remove redundant elements of a policy while re�ning

the rule (as we discuss below). The goal is to generate a possibly

less permissive characterization of resources while keeping the

must-allow requests still valid.

Permissiveness Re�nement. Lines 7-17 in Algorithm 1 details how

permissiveness is re�ned through the construction of a new pol-

icy. In the case that the permissiveness reduction results in the

set of must-allow requests being invalidated, we must re�ne the

permissiveness in order to �x the set of must-allow requests. On

line 7, using Algorithm 2 we determine which requests from the

set of must-allow requests are denied in the new policy. If the set of

must-allow requests are still valid, the current repair iteration ends

and the next iteration starts with the modi�ed policy as the policy

to be further repaired. Otherwise, the modi�ed policy must �rst

be repaired so that the set of must-allow requests are valid. Lines

9-11 show how this is done. We �rst generate a characterization of

resources from the invalid requests in the must-allow request set.

This is done by extracting a regular expression from the �nite-state

automaton by state elimination [12]. Once the characterization is

obtained, the new resources are added into the rule through the

GenerateRefinedRule function which generates a new rule using

the newly re�ned resource and the other existing elements within

the rule. However, it can be the case that the newly re�ned rule

does not decrease permissiveness, either at all or by an appreciable

amount. If the permissiveness of the re�ned policy does not appre-

ciably decrease (lines 12-15), the current repair is rolled back and

the resource within the rule is marked as not eligible for re�nement.

Resource Characterization from Invalid Requests. To �nish the

permissiveness reduction and re�nement step, the modi�ed policy

must be further re�ned so that the set of must-allow requests is

valid. Trivially, this can be done by enumerating the invalid requests

and adding a new rule to the policy which allows only that speci�c

requests. However this does not generalize for requests not in the

must-allow set but were intended to be allowed, and can make

the policy more complicated in the case that the must-allow set is

large. Thus, we aim to generate a characterization of the invalid

requests, but more speci�cally the resources in the requests, which

can be added to the modi�ed rule. Ideally, this characterization will

increase permissiveness to �x the invalid requests, but still remain

less permissive than previously. To do so, we generate a regular

expression characterizing the set of requests.

Algorithm 4 shows our regular expression and automata-based

approach for resource characterization. The algorithm works by

constructing a deterministic �nite-state automaton (DFA) for each

resource and then taking the automata union of all such DFAs (lines

3-6). Each DFA constructed for a resource (line 4) is a DFA that

accepts only that resource, which is a constant. Thus, the union of all

such DFAs is a DFAwith no loops. We then use the state elimination

algorithm [12] to obtain a regular expression characterizing the set

of resources. It is well known that this regular extraction algorithm

can produce arbitrarily complex regular expressionswhich are often

not useful in practice. This is mainly due to the presence of loops

within the DFA, and since our DFAs contain no loops, the resulting

regular expression contains only concatenation and unions.

Consider the resources from an example must-allow request set:

bucket/users/client155, bucket/users/client115,

bucket/users/client055, bucket/users/client200,

bucket/logs/client544, bucket/logs/client333,

bucket/logs/client12, bucket/logs/client411

Figure 5 shows the DFA constructed from the union of these

requests, and the initial regular expression extracted from the DFA.

The extracted regular expression however is an enumeration of the

input resources using disjunctions, and must be generalized.

The recursive GeneralizeRegex algorithm (Algorithm 5) takes

the extracted regular expression and transforms the regular expres-

sion to a more general regular expression which speci�es a broader

list of resources. The algorithm works to eliminate some disjunc-

tions in a depth-�rst manner by replacing them with anychars (‘?’)

and wildcards (‘*’) when possible. The length threshold controls

when strings of the same length should be collapsed into anychar

symbols: e.g., if the length threshold is 3, then "(123|456)" will be sim-

pli�ed to "???", while "(1234|5678)" will remain the same. The depth

threshold controls when nested disjunctions get simpli�ed into

the wildcard (anystring) character: the greater the threshold, the

deeper the nesting of disjunctions is allowed. Once the generalized

regular expression is obtained, the re�ned resources are gathered

by enumerating the leftover disjunctions within the general regular

expression. Using a length threshold of 3, depth threshold of 2, we

obtain a more general, more permissive regular expression:

bucket/(logs/client* |users/client???)

Note that di�erent values for the thresholds yield di�erent regular

expressions. For example, length threshold of 3, depth threshold of

4 yields the less general, less permissive regular expression:

bucket/(logs/client(((12 |333) |411)|544) |users/client???)

5 POLICY REPAIR FOR THE CLOUD

Currently, our policy repair approach works on the policy model

we introduced in Section 3. This policy model abstracts away the

implementation and intricacies of modern policy languages used

in the cloud. In this section, we show how our policy model can be

applied to one of the most popular policy languages for the cloud,

that of Amazon Web Services (AWS), and we demonstrate that our

approach repairs such policies.

5.1 AWS Policy Language

In the AWS policy language, a policy consists of a list of statements

which either allow or deny access. A statement consists of Principal,

an E�ect, Action, Resource, and Condition, where:

• Principal is a list of users or other entities specifying who or what
is requesting access.

• E�ect ∈ {Allow, Deny} specifying allows or denies access.

• Action is a list of actions specifying what operations on the re-

sources are being requested.

• Resource is a list of resources specifying what is being accessed.

• Condition is a list of conditions specifying additional constraints

on how access is governed.

570

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA William Eiers, Ganesh Sankaran, and Tevfik Bultan

360 2
 b

3
 u

4
 c

5
 k

6
 e

7
 t

8
 /

9 l

10

 u

11
 o

12
 s

13
 g

14

 e

15
 s

16

 r

17
 /

18
 s

19
 c

20
 /

21
 l

22
 c

23
 i

24
 l

25
 e

26
 i

27
 n

28
 e

29 t

30
 n

31

 1

32

 3

33
 4

34

 5

35
 t

 2

37
 3

38
 1

39
 4

40
 0

41
 1

42

 2

 3

 1

 4

43
 5

 1, 5

44 0

 5

 0

Figure 5: DFA example. Resulting regex: bucket/(logs/client(((12|333)|411)|544)|users/client((05|1(5|1))5|200))

While Principal, Action, Resource, Condition are all lists, Condition

also contains a condition key and condition value corresponding to

elements of the access request. For more information on the AWS

policy language, we refer the reader to [15]. Each �eld or element

in the policy are ASCII strings (aside from some condition keys

and condition values), with two special characters: the wildcard ‘*’

character, and the wild/anychar ‘?’character. The wildcard character

represents any string; the wild/anychar character represents any

character. This allows policy developers to specify sets of strings

within elements using these two special characters. Given an access

request and a policy, the policy allows the access request if and

only if there is a statement in the policy which allows the request

and there is no statement in the policy which denies the request.

Modeling AWS Policies. For each statement an AWS policy, we

create a rule that captures the semantics of the statement. The

principals, resources, actions, and e�ects map one-to-one from

statements to rules, while the environment attributes captures the

condition keys and values within a statement. Once the rules for

the statements in the policy are created, we can encode the policy

into an SMT formula using the techniques from Section 3. Thus,

we can model AWS policies within our policy model framework.

5.2 Policy Transformations for Repair

Recall that our approach localizes permissiveness to the most per-

missive action, resource pair and then mutates it when possible. We

cannot directly apply the approach to AWS IAM policies that may

contain NotPrincipals, NotActions, NotResources, and/or negative

condition operators like StringNotEquals because such elements

let policy developers specify the complements of allowed values. If

we directly applied our approach, then removing policy elements

would increase permissiveness, straying away from the repair goal.

To avoid this and to avoid complicating the repair approach, we

transform original policies, removing “negative” policy elements.

Algorithm 6 shows how an AWS statement d is transformed. In

the algorithm, d.keys refers to the Principal, Action, and Resource (or

their negations) which exist in the statement. This is done in two

passes. In the �rst pass on lines 4-8, the NotPrincipals, NotActions,

and/or NotResources are removed (there is no NotCondition in the

AWS IAM policy language). This is not enough, because condition

operators like StringNotLike may be used to specify complements

of allowed condition values. In the second pass on lines 10-20,

these negative condition operators are removed similarly. Figure 6

shows the transformation applied to an AWS IAM policy. Figure

6(a) shows the original policy, which has one statement with a

{"Statement": [

{"Effect": "Allow",

"Principal": "foo",

"NotAction": "bar",

"Resource": "baz",

"Condition": {"StringNotEquals": {"key": "value"}}}]}

{"Statement": [

{"Effect": "Allow",

"Principal": "foo",

"Action": "*",

"Resource": "baz",

"Condition": {"StringLike": {"key": "*"}}},

{"Effect": "Deny",

"Principal": "foo",

"Action": "*",

"Resource": "baz",

"Condition": {"StringEquals": {"key": "value"}}},

{"Effect": "Deny",

"Principal": "foo",

"Action": "bar",

"Resource": "baz",

"Condition": {"StringNotEquals": {"key": "value"}}}]}

Figure 6: Original AWS IAM policy with one statement with

NotAction and StringNotEquals condition operator (top, (a));

Transformed policy with three statements (bottom, (b)).

NotAction element and a StringNotEquals condition operator. Figure

6(b) shows the transformed policy after both passes are done.

The transformation has three limitations: (1)We do not transform

deny statements in the original policy. (2) We assume that the

original policy does not have statements allowing requests that the

newly added statements deny. Otherwise, the transformed policy is

less permissive than the original policy because a statement denying

a request overrules one allowing it. (3) We currently support the

case-sensitive string condition operators only.

5.3 Determining Permissiveness Bounds

Our approach can be used to automatically reduce the permis-

siveness of policies while making sure that they allow what is

necessary (based on the must-allow request set). Even without a

desired permissiveness bound, our approach can be used to �nd a

less permissive policy by using permissiveness of other policies as

a bound or by giving a permissiveness bound that is less than the

current permissiveness of a policy as we discuss below.

Inferring a Permissiveness Bound from Other Policies. When the

permissiveness bound is not known, the permissiveness value of

another policy can be used as the permissiveness bound. Assume

that a policy P is given and the policy developer wants to deter-

mine if it is overly permissive, but the permissiveness bound is not

571

�antitative Policy Repair for Access Control on the Cloud ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Algorithm 6 TransformStmtPrincipalActionResource

Input: Statement d
Output: Transformed statement(s) P

1: P = ∅
2: −

= {: : : ∈ d.:4~B ∩ “Not” 8= : }
3: dAllow = {“E�ect” : “Allow”}
4: for : ∈ d.:4~B do
5: if : ∈ − then dAllow [Negation(:)] = “ ∗ ”
6: else dAllow [:] = d [:]
7: end if
8: end for
9: P = P ∪ {dAllow }
10: for :′ ∈ − do
11: dDeny = {“E�ect” : “Deny”}
12: for : ∈ d.:4~B do
13: if : = :′ then dDeny [Negation(:)] = d [:]
14: else if : ∈ − then dDeny [Negation(:)] = “ ∗ ”
15: else dDeny [:] = d [:]
16: end if
17: end for
18: P = P ∪ {dDeny }
19: end for
20: return P

known or is di�cult to determine. In this instance, assume that

the policy developer has another policy P′ which is known to be

not overly permissive. Let [P′ be the permissiveness of P′. Then, to

determine if P is overly permissive, [P′ can be used as the desired

permissiveness bound. If the permissiveness of P is greater than

[P′ then P is overly permissive and should be repaired using our

approach with the permissiveness bound being [P′ . Note that this

approach assumes that the policy developer has access to another

policy P′ whose permissiveness can be used as the permissiveness

bound when repairing P; for example, for a new role, a policy should

be attached to the new role which has similar permissiveness to

policies attached to other roles. If such a policy P′ does not exist,

then an iterative approach for reducing the permissiveness of a

policy can be used as we discuss next.

Iteratively Decreasing Permissiveness. Consider when the permis-

siveness bound for a given policy P is not known but the policy

developer wants to ensure that P is not overly permissive. That is,

the policy developer wants to ensure that P does not allow more

requests (permissions) than what is required. In this case, our repair

algorithm can be used to iteratively reduce the permissiveness of P

(1) Let [P be the permissiveness of P

(2) Set the permissiveness bound as [P′ = [P − X

(3) Repair P using permissiveness bound [P′ to obtain a repaired

policy PA
(4) If PA has the desired permissiveness level, halt; otherwise go

back to step (1) with P = PA

where X is a positive integer de�ning the step size which determines

how much the permissiveness bound should decrease in each step.

This can be continued until a repaired policy with a desired level of

permissiveness is produced, or the approach cannot further repair

the policy. In each step the permissiveness of P is decreased by X .

6 EXPERIMENTS

In order to evaluate our repair algorithm, we consider the following

research questions:

RQ1: Does the policy repair algorithm successfully �nd repairs for

policies collected from user forums?

RQ2: How does the e�ectiveness of the algorithm change for vary-

ing permissiveness bounds?

RQ3:What factors contribute to the overall performance (execu-

tion time/iterations/calls) of the repair algorithm?

We discuss below the policy dataset we use in our approach, how

we set up our experiments to answer the research questions, and

the results of our experiments. For quantifying the permissiveness,

we use the model counter ABC [2, 3]; for validating requests in the

must-allow request set we use the SMT solver Z3 from Microsoft,

and the qacky tool for translating policies into SMT formulas. 1

6.1 Experimental Setup

AWS Policy Dataset. AWS o�ers over 200 services. Each service

has its own actions and resource types that can be allowed or

denied in access control policies. For our repair experiments, we

used the policy dataset published in [10], which includes 43 real-

world policies collected from using forums from the most popular

AWS services, namely iam, s3, and ec2.

Permissiveness Bounds. Recall that the policy repair problem spec-

i�es a permissiveness bound. In general, this permissiveness bound

relates to the number of requests allowed by the policy. In our repair

algorithm, and in our experiments, we consider a more restrictive

permissiveness bound de�nition in which the permissiveness is

determined by the number of actions and requests allowed by a

policy. The reason for this is that in the policies we have observed,

the most permissive element is the resource element, and since the

action and resource elements are tied very closely in the policy

semantics (e.g., only S3 actions work on S3 resources) it makes

sense to consider them together.

Because resources are strings, and strings can be in�nitely long,

we must bound the maximum length of allowed resources (oth-

erwise the permissiveness of a policy is in�nite due to wildcard

characters). In our analysis, we bound the maximum length of any

resource to be 100. Note that actions are also strings, but there

are a �nite number of actions (e.g., S3:GetObject is a valid action,

S3:FooBar is not). Thus, the maximum number of actions allowed

by a policy is the number of possible actions, which in practice is

relatively small (a few hundred for the AWS services we consider).

In our experiments, we use the action constraint encoding from [10]

which maps constraints on actions into numeric range constraints

to simplify the constraint formulas generated in our approach.

In our experiments, the permissiveness bound is given in terms

of log256. Intuitively, since resources are strings where each char-

acter in the string can be one of 256 ASCII characters, this gives a

measure of uncertainty regarding the number of unknown charac-

ters in the resource. For example, the resource "foo12" has a log256
permissiveness of 0 (all characters in the string are known) while

the resource "foo??" has a log256 permissiveness of 2 (2 characters

in the string are unknown) since ‘?’ is a special character denoting

any possible character. We bound the maximum length of strings

at 100 so giving permissiveness bounds in terms of log256 gives a

restriction on how many of characters of the resource be unknown.

Note that while this is just an approximate measure (strings can be

1Our policy repair tool and policy and request datasets are publicly available at
https://github.com/vlab-cs-ucsb/policy-repair

572

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA William Eiers, Ganesh Sankaran, and Tevfik Bultan

Table 1: Results for 43 total policies with length threshold

of 2 and depth threshold of 3. Policies are repaired using

varying permissiveness bounds (given as log256, interpreted

as number of unknown characters allowed in a resource) .

Permissiveness Bound
30 40 50 60 70 80 90

without enumeration 29 29 31 33 39 43 43
with enumeration 14 14 12 10 4 0 0
% without enumeration 67% 67% 72% 77% 91% 100% 100%

less than 100 characters) it nevertheless gives a useful measure for

bounding the permissiveness of a policy.

Allowed Requests. We augmented the policy dataset we used with

sets of allowed requests. We created requests containing only the

action and resource �eld, as our repair approach is currently tailored

for reducing permissiveness based on action and resources. Our

metholodgy for sythensizing requests was to create requests which

are likely to resemble requests created by actual users. For actions,

we focus on the most common actions for the AWS services in our

policies (such as S3:GetObject and EC2:RunInstances). For resources,

we observed from the policy dataset andAWS online documentation

that resources generally have the following structure:

resource = service . pre�x . middle . su�x

The service section consists of AWS service, region, and account

number. The pre�x section corresponds to the resource type and is

generally dependent on the action in question: e.g., the pre�x for

s3 resources generally corresponds to the bucket name. The middle

consists of the intermediate directory structure (usually delimited

using ’/’). The su�x consists of the object, �lename, or instance in

question. Consider the following resource

arn:aws:s3:::mybucket/folder1/folder2/clients.txt

where the service is “arn:aws:s3:::”, the pre�x is “mybucket/”, the

middle is “folder1/folder2”, and the su�x is “clients.txt”. When syn-

thesizing the requests, we observed that the service and pre�x parts

of the resource were speci�c to services for the particular policy,

while the middle and su�x parts of the resource depended on the

actions and service being used. For each policy, we constructed 10-

20 requests using the base policy as reference, varying the relevant

parts for each. An example request for S3 would be:

(S3:GetObject)

(arn:aws:s3:::bucket/production/user00000/status.log)

We ran all experiments on a machine with an Intel i5 3.5GHz

X4 processor, 32GB DDR3 RAM, a Linux 4.4.0-198 64-bit kernel, Z3

v4.11.1, the latest build of ABC 2, and the latest release of qacky3.

6.2 Results

To answer our research questions, we conducted a wide variety of

experiments on 43 policies collected from user forums using our

quantitative repair algorithm. We now discuss the results and how

they answer the aforementioned research questions.

2https://github.com/vlab-cs-ucsb/ABC
3https://github.com/vlab-cs-ucsb/quacky

Figure 7: For all 43 policies and each permissiveness bound:

total time taken (left (a)); total calls to ABC and Z3 (right (b)).

RQ1: Does the policy repair algorithm successfully �nd repairs

for policies collected from user forums? Recall that the policy re-

pair algorithm tries to �nd a repair meeting the permissiveness

bound through goal validation, permissiveness localization, and

permissiveness re�nement, and if it cannot will begin enumerating

requests and replacing elements of the policy with these requests.

Our repair algorithm will always successfully �nd repairs (so long

as the initial assumptions are met, see Section 4). Some of these

repairs may require request enumeration, which is not ideal.

We ran the repair algorithm on the dataset of 43 policies with

varying permissiveness bounds to determine if the repair algorithm

could generate a repair without request enumeration and how

often our repair was generated with request enumeration. Table 1

shows the results. The permissiveness bounds ranged from 30 to

90, meaning that the repair algorithm must generate a repaired

policy with permissiveness less than the given bound. For each

permissiveness bound, we used a length threshold (U) of 2, depth

threshold (l) of 3, and re�nement threshold (n) of 0.01.

For lower bounds, request enumeration was required to generate

successful repairs, with 14 of the 43 (67%) repairs requiring request

enumeration for bounds 30 and 40. As the permissiveness bound

increases, the number of repairs generated which required request

enumeration decreases. For permissiveness bounds of 80 and 90,

100% of the repairs generated by algorithm were generated without

enumerating requests. Intuitively, this makes sense as a lower per-

missiveness bound requires the policy to more concretely specify

the requests allowed by the policy; a higher permissiveness bound

means that the policy can be more generalized in what is allowed.

RQ2: How does the e�ectiveness of the algorithm change for vary-

ing permissiveness bounds? As the results in Table 1 show, while

the repair algorithm generates repairs for all policies for all given

permissiveness bounds, lower permissiveness bounds required the

repair algorithm to resort to enumerating requests. This means

that while the permissiveness localization algorithm from Section

4 (Algorithm 3) was able to localize where the most permissive

elements were, the permissiveness re�nement algorithms (Algo-

rithms 4,5) could not generate a resource characterization to reduce

the permissiveness enough to meet the permissiveness bound. This

could be due to the length (U) and depth (l) threshold values used

in Algorithm 5. Thus, we ran the repair algorithm again on the 43

policies, but this time for a single permissiveness bound but with

di�erent threshold values. Table 2 shows the results. We observed

that, in general, the length and depth threshold values did not have

573

�antitative Policy Repair for Access Control on the Cloud ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 2: Results for varying length (U) and depth (l) thresholds for a single permissivness bound of 60 (i.e., log256 (perm) ≤ 60)

U , l thresholds Repaired without enum Repaired with enum Avg log256 Permissiveness Total time (s) # ABC calls # Z3 calls

2,3 33 (77%) 10 (23%) 17 597.9 780 1415
2,5 43 (100%) 0 (0%) 11.7 452.4 550 1001

0,3 33 (77%) 10 (23%) 20.2 602.3 786 1423
2,3 33 (77%) 10 (23%) 17 597.9 780 1415
5,3 37 (86%) 6 (14%) 17.7 518 679 1310
10,3 37 (86%) 6 (14%) 16.6 525 682 1310
15,3 37 (86%) 6 (14%) 16.5 515 686 1292

an appreciable impact on the total time taken by the repair algo-

rithm. However, we did observe that a higher depth threshold corre-

sponded to more repairs not requiring explicit request enumeration.

We believe this is because a higher depth threshold results in a less

generalized, more enumerative regular expression characterization.

Recall from Algorithm 5 that the depth threshold corresponds to the

maximum level of nested disjunctions within a regular expression.

When the level of nested disjunctions reaches the depth threshold,

it gets “squashed”, or generalized into a wildcard ‘*’ (anystring)

regular expression. Thus, while the repair algorithm with length

threshold of 2 and depth threshold of 5 repaired all 43 policies

without explicit enumeration, it is likely that regular expression

characterizations generated in this case allowed more disjunctions,

and thus were a more enumerative generalization.

RQ3: What factors contribute to the overall performance (execution

time/iterations/calls) of the repair algorithm? The repair algorithm

utilizes a constraint solver (Z3) and model counter (ABC) for verify-

ing the requests in the must-allow request set and for quantifying

permissiveness. Both tools incur signi�cant overhead in the process.

Figure 7(a) shows the time taken for various permissiveness bounds,

while Figure 7(b) shows the number of calls to Z3 and ABC for each

permissiveness bounds. As the permissiveness bound is increased,

the total time taken for repairing the 43 policies signi�cantly de-

creases. Looking at Figure 7(b), the number of calls to both Z3 and

ABC decrease in a similar fashion. Both the number of calls and

total time were similar for the lowest few bounds. This may be due

to the fact that those policies which required enumeration during

the repair process for the bounds of 30, 40, and 50 are the ones

which took more time to repair and more calls to Z3/ABC. For the

depth and length thresholds, we did not notice a signi�cant increase

or decrease in time taken or calls to Z3/ABC when the thresholds

were varied against a constant permissiveness threshold.

6.3 Threats to Validity

Requests in the must-allow request set may not be representative

of the what should be allowed by the policy. We mitigate this threat

as much as possible by synthesizing requests not randomly but

instead based on the common structure of actions and resources

we observed from both the policy dataset and AWS documention.

In this way, the requests were not randomly generated but were

generated such that they aligned with the user’s intention regarding

the kinds of requests that should be allowed by the policy. As

the 43 policies did not have associated requests which should be

allowed by the policy, this was the most straightforward approach

for generating a must-allow request set.

7 RELATED WORK

There has been much research on access control policies [22–24]

and access control policy languages [1, 16–18]. Early work in veri-

�cation of access control policies exist [8, 14] and there has been

some work using the Alloy Analyzer [25, 29].

Recently, there has been interest in the veri�cation of access

control policies using SAT/SMT solvers. In [4], the authors present

Zelkova, a closed-source, proprietary tool that can compare AWS

policies and tell if one is more permissive than the other. In [10] the

authors introduce an approach for quantifying permissiveness of

access control policies for AWS andMicrosoft Azure and implement

it in a tool calledqacky. Our work uses the authors’ notion of per-

missiveness for quantitative repair. Zelkova cannot quantitatively

compare policies like [10] can, and Zelkova does not use policy

comparisons to guide policy repair. In [5] the authors use Zelkova

to determine if a policy is Trust Safe (i.e., blocks public access and

does not allow untrusted requests). Both [10] and [4] draw on the

approach in [13], which uses a SAT solver to check XACML policies;

recent work has built on this but does not quantitatively analyze

nor repair access control policies. Another tool is Margrave [11]

which analyzes XACML policies using a multi-terminal decision

diagrams. In later work [21], Margrave incorporates a SAT solver in

the analysis of XACML policies to produce solutions to queries and

enumerate the possible solutions. While quantitative in nature [10]

showed that this type of enumerative approach does not scale for

quantitave analysis of access control policies. In [6], the authors

present Qlose, which uses a program repair approach based on

quantitative objectives. In [27], the authors present an approach for

repairing XACML policies by fault localization and mutation-based

repair. We focus on policies and not programs, and our use of sym-

bolic quantitative permissiveness analysis and our iterative repair

generation approach di�er from both of these prior approaches.

8 CONCLUSION

In this work we present a novel quantitative policy repair algo-

rithm for repairing the permissiveness of access control policies for

the cloud. Given a permissiveness bound and must-allow request

set, our approach works by iteratively localizing the most permis-

sive elements of the policy using quantitative analysis techniques

and reducing and re�ning these elements using regular expression

generalization techniques. Our experiments on 43 AWS IAM poli-

cies show that our repair algorithm successfully generates repairs

for the given policies and does so in a reasonable amount of time.

As future work, we plan to automate techniques we discussed for

determining permissiveness bounds.

574

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA William Eiers, Ganesh Sankaran, and Tevfik Bultan

REFERENCES
[1] Jose L. Abad-Peiro, Hervé Debar, Thomas Schweinberger, and Peter Trommler.

1999. PLAS — Policy Language for Authorizations. Technical Report RZ 3126. IBM
Research Division. http://citeseer.nj.nec.com/abad-peiro99plas.html

[2] Abdulbaki Aydin, Lucas Bang, and Tev�k Bultan. 2015. Automata-Based Model
Counting for String Constraints. In Computer Aided Veri�cation - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA, Proceedings, Part I. 255–272.
https://doi.org/10.1007/978-3-319-21690-4_15

[3] Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov,
Tev�k Bultan, and Fang Yu. 2018. Parameterized model counting for string and
numeric constraints. In Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018. 400–410.

[4] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek,
Kasper Luckow, Neha Rungta, Oksana Tkachu, and Carsten Varming. 2018.
Semantic-based Automated Reasoning for AWS Access Policies using SMT. In
Proceedings of the 18th Conference on Formal Methods in Computer-Aided Design
(FMCAD 2018), Austin, Texas, USA, October 30 - November 2, 2018. 1–9.

[5] Malik Bouchet, Byron Cook, Bryant Cutler, Anna Druzkina, Andrew Gacek,
Liana Hadarean, Ranjit Jhala, Brad Marshall, Dan Peebles, Neha Rungta, Cole
Schlesinger, Chriss Stephens, Carsten Varming, and Andy War�eld. 2020. Block
Public Access: Trust Safety Veri�cation of Access Control Policies. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Virtual Event, USA)
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
281–291. https://doi.org/10.1145/3368089.3409728

[6] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
Repair with Quantitative Objectives. In Computer Aided Veri�cation, Swarat
Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham,
383–401.

[7] djleak [n.d.]. Cloud Leak: WSJ Parent Company Dow Jones Exposed Customer
Data. https://www.upguard.com/breaches/cloud-leak-dow-jones.

[8] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. 2006. Specifying
and Reasoning About Dynamic Access-Control Policies. In Automated Reasoning,
Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings (Lecture Notes in Computer Science, Vol. 4130), Ulrich Furbach and
Natarajan Shankar (Eds.). Springer, 632–646. https://doi.org/10.1007/11814771_
51

[9] William Eiers, Ganesh Sankaran, Albert Li, Emily O’Mahony, Benjamin Prince,
and Tev�k Bultan. 2022. Quacky: Quantitative Access Control Permissiveness
Analyzer. In ASE Tool Paper.

[10] William Eiers, Ganesh Sankaran, Albert Li, Emily O’Mahony, Benjamin Prince,
and Tev�k Bultan. 2022. Quantifying Permissiveness of Access Control Policies.
In Proceedings of the 44th International Conference on Software Engineering (ICSE
2022).

[11] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. 2005. Veri�-
cation and Change-Impact Analysis of Access-Control Policies. In Proceedings
of the 27th International Conference on Software Engineering. St. Louis, Missouri,
196–205.

[12] J.E. Hopcroft and J.D. Ullman. 1979. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley.

[13] Graham Hughes and Tev�k Bultan. 2007. Automated Veri�cation of XACML
Policies Using a SAT Solver. In Proc. Workshop on Web Quality, Veri�cation and

Validation (WQVV). 378–392.
[14] GrahamHughes and Tev�k Bultan. 2008. Automated veri�cation of access control

policies using a SAT solver. STTT 10, 6 (2008), 503–520. https://doi.org/10.1007/
s10009-008-0087-9

[15] iamreference 2022. IAM JSON policy reference. https://docs.aws.amazon.com/
IAM/latest/UserGuide/reference_policies.html.

[16] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian.
2001. Flexible support for multiple access control policies. ACM Transactions on
Database Systems 26, 2 (2001), 214–260. http://doi.acm.org/10.1145/383891.383894

[17] S. Jajodia, P. Samarati, and V. S. Subrahmanian. 1997. A logical language for
expressing authorizations. In Proceedings of the 1997 IEEE Symposium on Security
and Privacy. IEEE Press, Oakland, CA, USA, 31–42. http://citeseer.nj.nec.com/
jajodia97logical.html

[18] Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and Eliza Bertino. 1997.
A uni�ed framework for enforcing multiple access control policies. In SIGMOD’97.
Tucson, AZ, 474–485. http://citeseer.nj.nec.com/jajodia97uni�ed.html

[19] Kotaro Kataoka, Saurabh Gangwar, and Prashanth Podili. 2018. Trust list: Internet-
wide and distributed IoT tra�c management using blockchain and SDN. In
2018 IEEE 4th World Forum on Internet of Things (WF-IoT). 296–301. https:
//doi.org/10.1109/WF-IoT.2018.8355139

[20] Leo A. Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and
Enforcing Fine-Grained Security Policies for JavaScript in the Browser. In 2010
IEEE Symposium on Security and Privacy. 481–496. https://doi.org/10.1109/SP.
2010.36

[21] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and
Shriram Krishnamurthi. 2010. The Margrave Tool for Firewall Analysis. In
Proceedings of the 24th International Conference on Large Installation System
Administration (San Jose, CA) (LISA’10). USENIX Association, USA, 1–8.

[22] Pierangela Samarati and Sabrina De Capitani di Vimercati. 2001. Foundations of
Security Analysis and Design. Springer Verlag, Chapter 3, 137–196.

[23] Ravi Sandhu and Pierangela Samarati. 1996. Authentication, access control, and
audit. Comput. Surveys 28, 1 (1996), 241–243. http://doi.acm.org/10.1145/234313.
234412

[24] Ravi S. Sandhu and Pierangela Samarati. 1994. Access Control: Principles and
Practice. IEEE Communications Magazine 32, 9 (1994 1994), 40–48. http://citeseer.
nj.nec.com/article/sandhu94access.html

[25] Andreas Schaad and Jonathan Mo�et. 2002. A Lightweight Approach to Spec-
i�cation and Analysis of Role-based Access Control Extensions. In 7th ACM
Symposium on Access Control Models and Technologies (SACMAT 2002).

[26] verizonleak [n.d.]. 14 MEEELLION Verizon subscribers’ details leak from crappily
con�gured AWS S3 data store. https://www.theregister.co.uk/2017/07/12/14m_
verizon_customers_details_out/.

[27] Dianxiang Xu and Shuai Peng. 2014. Towards automatic repair of access control
policies. In Proceedings of the 14th Annual Conference on Privacy, Security and
Trust, PST (PST 2014).

[28] Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su, and P.
Mohapatra. 2006. FIREMAN: a toolkit for �rewall modeling and analysis. In 2006
IEEE Symposium on Security and Privacy (S&P’06). 15 pp.–213. https://doi.org/10.
1109/SP.2006.16

[29] John Zao, Hoetech Wee, Jonathan Chu, and Daniel Jackson. 2003. RBAC Schema
Veri�cation Using Lightweight Formal Model and Constraint Analysis. In Pro-
ceedings of the eighth ACM symposium on Access Control Models and Technologies.

Received 2023-02-16; accepted 2023-05-03

575

http://citeseer.nj.nec.com/abad-peiro99plas.html
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1145/3368089.3409728
https://www.upguard.com/breaches/cloud-leak-dow-jones
https://doi.org/10.1007/11814771_51
https://doi.org/10.1007/11814771_51
https://doi.org/10.1007/s10009-008-0087-9
https://doi.org/10.1007/s10009-008-0087-9
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://doi.acm.org/10.1145/383891.383894
http://citeseer.nj.nec.com/jajodia97logical.html
http://citeseer.nj.nec.com/jajodia97logical.html
http://citeseer.nj.nec.com/jajodia97unified.html
https://doi.org/10.1109/WF-IoT.2018.8355139
https://doi.org/10.1109/WF-IoT.2018.8355139
https://doi.org/10.1109/SP.2010.36
https://doi.org/10.1109/SP.2010.36
http://doi.acm.org/10.1145/234313.234412
http://doi.acm.org/10.1145/234313.234412
http://citeseer.nj.nec.com/article/sandhu94access.html
http://citeseer.nj.nec.com/article/sandhu94access.html
https://www.theregister.co.uk/2017/07/12/14m_verizon_customers_details_out/
https://www.theregister.co.uk/2017/07/12/14m_verizon_customers_details_out/
https://doi.org/10.1109/SP.2006.16
https://doi.org/10.1109/SP.2006.16

	Abstract
	1 Introduction
	2 Motivation and Overview
	2.1 Policy Repair Problem
	2.2 Motivating Examples

	3 Modeling Access Control Policies
	3.1 Policy Model
	3.2 Symbolic Encoding of Policies

	4 Quantitative Policy Repair
	4.1 Repair Goal Validation
	4.2 Permissiveness Localization
	4.3 Permissiveness Refinement

	5 Policy Repair for the Cloud
	5.1 AWS Policy Language
	5.2 Policy Transformations for Repair
	5.3 Determining Permissiveness Bounds

	6 Experiments
	6.1 Experimental Setup
	6.2 Results
	6.3 Threats to Validity

	7 Related Work
	8 Conclusion
	References

