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ABSTRACT

QUACKY is a tool for quantifying permissiveness of access control
policies in the cloud. Given a policy, QUACKY translates it into a SMT
formula and uses a model counting constraint solver to quantify
permissiveness. When given multiple policies, QUACKY not only
determines which policy is more permissive, but also quantifies
the relative permissiveness between the policies. With QuAcky,
policy authors can automatically analyze complex policies, helping
them ensure that there is no unintended access to private data.
QUACKY supports access control policies written in the Amazon Web
Services (AWS) Identity and Access Management (IAM), Microsoft
Azure, and Google Cloud Platform (GCP) policy languages. It has
command-line and web interfaces. It is open-source and available
at https://github.com/vlab-cs-ucsb/quacky.
Video URL: https://youtu.be/YsiGOI_SCtg.
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1 INTRODUCTION

Software services are now ubiquitous; as a result, companies are
storing their data in compute clouds. The most popular cloud service
providers, namely Amazon Web Services (AWS), Microsoft Azure,
and Google Cloud Platform (GCP), allow users to protect their data
through access control policies, a set of rules specifying access to
cloud data. However, such policy specifications can be error prone,
leading to unintended and unauthorized access to private data.
In fact, in recent years, there have been numerous instances in
which millions of customers’ confidential data was exposed due
to incorrect policy specifications [5, 10]. Hence, validation and
verification of policy specifications is of utmost importance.
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In this paper, we introduce our open-source tool QUACKY for
quantitatively assessing the permissiveness of access control poli-
cies in the cloud. QUACKY is based on the technical approach pre-
sented in [6]. We extend this prior work into a full-fledged open
source tool, add support for GCP policies, and build a web interface
to improve usability. QUACKY quantifies permissiveness of policies
written in the AWS Identity and Access Management (IAM), Azure,
and GCP policy languages. Using QUACKY, we analyze 41 real-world
AWS policies, 5 Azure policies, and 5 GCP policies, showcasing its
ability to analyze real-world policies.

The envisioned users of QUACKY include researchers, software
engineers, cloud solutions architects, system administrators, and
others who write or use access control policies in the cloud and want
to ensure their policies do not allow unintended access to private
data. The challenge we propose to address involves understanding
the permissiveness of an access control policy. In Sections 3 and 4
we describe the methodology of how QUAcKYy aids users in under-
standing the permissiveness of policies. In Section 5 we describe
the results of our experimental validation of QuAcKy.

2 RELATED WORK

There are existing tools for analyzing access control policies, such
as the tool from Hughes et al [7] and the Margrave tool for XACML
policies [9], and the closed-source Zelkova tool for AWS policies [3].
The tool presented by Hughes et al. analyzes XACML policies by
reducing the problem to a SAT formula and then using a SAT solver
to obtain the result of the analysis. The Margrave tool also uses a
SAT solver to answer queries about behaviors of XACML policies.
The proprietary Zelkova tool analyzes properties of AWS policies
using a reduction to SMT formulas. Unlike Margrave, the tool by
Hughes et al. and Zelkova both use a differential analysis approach
to compare policies and determine if one policy is more permis-
sive than another. While these tools can reason over properties of
policies (such as permissiveness), they cannot quantify such prop-
erties. Often, it is useful to know how permissive a policy is or how
much more permissive one policy is than another, neither of which
can be answered by existing tools. QUACKY not only reasons about
properties of policies but it also quantifies them. Moreover, QUACKY
supports multiple policy languages.

3 ANALYZING ACCESS CONTROL POLICIES

An access control policy is a mechanism for preventing unintended
access to data. Generally, access control policies consist of rules
specifying which principals can perform which actions on which
resources under which conditions. When a principal (such as a user)
makes an access request to perform an action on some resource,
the request is evaluated against the relevant policy. If the policy
allows the request, then it is granted access. Otherwise, the request
is denied access. A properly configured policy should allow only
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Figure 1: Architecture of Quacky (online)

Table 1: The four relative permissiveness outcomes based on
the model counts of formulas [P;] 5 [P2] and [P2] % [P4]

|[P2] = [P.] =0
P1, P2 equivalent
P1 more permissive

[[F2] # [P:]] >0
P1 less permissive
P1, P2 incomparable

[[P:] = [P2]l=0
[[P,] # [P2]| >0

the requests intended by the user who wrote it. If it allows more
requests than intended, it is said to be an overly permissive policy.

3.1 Quantitative Permissiveness Analysis

The goal in permissiveness analysis is to determine what requests
are allowed by a policy, or, in the case of multiple policies, to check
if one policy is more permissive than the other. This can be done
by encoding policies as logic formulas [3, 6, 7, 9] whose satisfying
solutions represent the requests it allows. Put more concretely, the
SMT encoding of P, or [PP], represents the set of requests P allows,
where a satisfying solution to [P] represents a request P allows.
The permissiveness of P, given by |[P]|, is the number of solutions
to [P], which equals the number of distinct requests allowed by P.
In other words, to quantify the permissiveness of P, it suffices to
count the number of solutions to [PP].

The relative permissiveness between a pair of policies P and Py
can be determined by comparing the sets of requests allowed by
each policy. This can be done by checking the satisfiability of two
SMT formulas, namely [P1] 5 [P2] and [P2] ## [P1]. The formula
[P1] & [P2],logically equivalent to [P ] A—=[P2], represents the set
of requests allowed by P1 but not P2 (vice versa for [P2] = [P1]).
Relative permissiveness can be quantified by counting the number
of solutions to both formulas, which yields one of four outcomes,
as shown in Table 1. For example, P; is less permissive than Py if the
set of requests allowed by PP; is a proper subset of the set of requests
allowed by Py; in this case, the number of solutions |[P2] 5 [P1]|
quantifies how much more permissive P is than Pj, or equivalently,
how many more requests Py allows than P;. Note that if P; and P,
are incomparable, then the permissiveness of each policy by itself
can still be compared using |[P1]| and |[Pz]|-.

4 QUACKY

Figure 1 shows the core framework of QUACKY. QUACKY takes in
policies written in the AWS IAM, Microsoft Azure, or GCP policy

{"Statement": [{
"Effect": "Allow",
"Principal": "x",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::myexamplebucket/x",
"Condition": {
"StringlLike": {

"aws:userId": ["AWSUSERID:*", "JOHNDOE1111"1}3}3}1}

; Resource: p0.s0.r
(declare-const p@.s@.r Bool)
(assert (= p0.s0.r (or
(in resource /arn:aws:s3:::myexamplebucket\/.*/))))

; Condition: p0.s0.cStringlLikeaws.userId

(declare-const p0.s0.cStringLikeaws.userId Bool)

(assert (= p0.s0.cStringlLikeaws.userId (and aws.userId.exists (or
(in aws.userId /AWSUSERID:.*/) (= aws.userId "JOHNDOET111")))))

Figure 2: Sample policy (top) and a snippet from its SMT en-
coding (bottom)

languages into its frontend, which encodes policies into an interme-
diate policy model. The backend translates the policy model into
one or more SMT formulas, depending on whether the analysis is
on a single policy or on multiple policies. The solver component
analyzes the SMT formulas through queries to a constraint solver or
model counter and outputs the desired permissiveness result. The
analysis is supplemented by an offline resource type constraint gen-
erator, shown in Figure 3, which prepares resource type constraints
for the SMT formulas (discussed in more detail below).

QUACKY Frontend. The frontend takes access control policies as
input and outputs instances of our formal policy model, imple-
mented as tree data structures. The input depends on the cloud
provider. For AWS, the input is 1 or 2 policies, saved as serialized
JSON. Figure 2(a) shows an example policy written in the AWS IAM
policy language. The AWS Policy Visitor checks and makes sure the
JSON files are well-formed. For Azure, the input is 1 or 2 pairs of
role definitions and role assignments, which are also JSON. The Role
Definition and Assignment Visitor opens the files and checks if they
are well-formed. If a role definition and a role assignment both refer
to the same RoleId, the visitor joins them on that role ID, producing
an AWS-like policy. GCP’s input is similar to that of Azure, except
its versions of role definitions and role assignments are called roles
and role bindings, respectively. The Role and Bindings Visitor joins
the role(s) with the role binding(s) on any common role name(s),
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Figure 3: Architecture of Quacky (offline)

(assert (and
(in resource /arn:aws:ec2:...:instance\/i-[0-9a-f]{17,17}/)
(or (= action "ec2:associateaddress")
(= action "ec2:associateiaminstanceprofile")
(= action "ec2:attachclassiclinkvpc") ... )))

(assert (and
(in resource /arn:aws:ec2:...:instance\/i-[0-9a-f]{17,17}/)
(and (>= action 4066) (<= action 4106))))

Figure 4: Snippet from the resource type constraint for EC2
instances without (top) and with (bottom) action encoding

producing an AWS-like policy. Visitors’ outputs are passed to the
Policy Sanitizer, which rewrites keys and action values in lowercase
and replaces scalar values with lists. Then, the frontend transforms
each policy into a tree by doing a post-order, depth-first traversal
of the JSON policy and constructing nodes at each key, such as
Policy (root), Statement, Principal, etc.

QUACKY Backend. The backend takes in 1 or 2 trees representing
policies. It outputs SMT formulas that encode the semantics of each
policy. The Policy Model Visitor builds the SMT formula incre-
mentally. It visits each node in the tree in a post-order, depth-first
traversal. For each node, it appends a set of constraints to the SMT
formula. These constraints are built by the S-expression Builder,
which takes in operands and an operator and returns a constraint
conforming to the SMT-LIB standard. Figure 2 shows a policy and
its SMT encoding.

For a more precise analysis, the backend can add resource type
constraints, which capture a cloud service provider’s valid resource
types, actions, and pairings thereof, to the formula. The Online Re-
source Type Constraint Builder builds constraints on valid resource
type and action pairs. A map of each resource type to the actions
operating on it is pre-built offline (discussed below). The Constraint
Builder takes a set of actions from an Action node, reads the map,
identifies the relevant types, and builds constraints on those types
and their actions. An example is shown in Figure 4. Note that this
process is online; that is, the constraints are built during translation,
based on actions in the policy. Irrelevant constraints are not built,
reducing the size and complexity of the SMT formula.

Adding resource type constraints may significantly slow down
model counting. To mitigate it, the backend does action encoding.
The Action Encoder replaces action names, which are strings, with
a numeric encoding. The encoding is specified by a JSON map
that is pre-built offline. Action encoding replaces constraints with
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disjunctions of action names with more compact constraints with
ranges of numbers. An example is shown in Figure 4.

Model Counter. QUACKY uses the Automata Based model Counter
(ABC) [1, 2], which can model count string and numeric constraints.
ABC takes a SMT formula F as input, and it returns the number of
models satisfying F, up to a bound k. It implements model count-
ing by constructing automata for F and counting paths to accept-
ing states of the automata. The SMT formulas produced by the
QUACKY backend can be sent to other SMT-LIB-conformant con-
straint solvers. For example, Microsoft’s Z3 [4, 8] can be used to
get a model (i.e. an allowed request).

Offline Resource Type Constraint Generator. Figure 3 shows the
offline resource type constraint generator. In the backend, the Online
Resource Type Constraint Generator and Action Encoder depend on
pre-built maps, as we discussed earlier. These are pre-built offline to
avoid repeating work every time QUACKY is run. The valid resource
type and action pairings are specified in the cloud service provider’s
documentation, which are scraped and processed into a JSON map.
The Action Encoder assigns numbers to actions, where a set of
actions for a given resource type is assigned to a contiguous set
of numbers. This enables the online action encoder to build more
compact range constraints.

4.1 Support for GCP Policies

We handle policies written in GCP’s policy language by extending
QUACKY’s frontend, backend, and offline resource type constraint
generator (see Figures 1 and 3). In the frontend, we implemented
the GCP Role and Bindings Visitor, which specifies how roles and
role bindings are transformed into the formal policy model. In the
backend, we added routines to translate GCP-specific conditions
to SMT-LIB. In the offline resource type constraint generator, we
wrote a new scraper to get the GCP resource type constraints from
GCP’s online documentation, and we generated a new resource
type and actions map and a new action encoding.

QUACKY can support other policy languages by further extending
the aforementioned components. Note that the formal policy model
need not be extended as long as the input(s) for that language can
be transformed into the model.

4.2 Usage

oUAcky! has a command-line interface and a web-based interface?.
QUACKY’s command-line arguments include the input file name(s),
the output file name(s), the model counting bound, and the timeout.
There are flags to use resource type constraints, action encoding,
and the PCRE regular expression syntax (which ABC can parse).
For AWS, the input files are AWS policies; for Azure, the input files
are role definitions and role assignments; for GCP, the input files
are roles and role bindings. For all, the input files are in JSON, and
the output files (the SMT formulas) are in SMT-LIB.

The QuACKY web app takes a subset of these arguments as input.
The input form on the web app has textareas for policies, a number

IThe tool’s source code, policy datasets, experimental results, and documentation are
publicly available at https://github.com/vlab-cs-ucsb/quacky

2The web app’s source code and documentation are publicly available at
https://github.com/vlab-cs-ucsb/quacky-web-app
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Figure 5: Results summary tab on the Quacky web app

Table 2: Real AWS, Azure, and GCP policy analysis results.
The average permissiveness and time, grouped by service,
are reported. Permissiveness is in log scale.

Provider  Service Avg. Perm. | Avg. Time (s)
AWS EC2 3879.71 30.8
AWS IAM 3721.92 0.96
AWS S3 5787.7 2.3
Azure Blob Storage 809.07 1.07
Azure Virtual Machines 1047.15 5.4
GCP Cloud Storage 1202.81 1.75
GCP Compute Engine 1190.67 2.18

for bound, and checkboxes for the resource type constraints and
action encoding flags. To reduce CPU, memory, and disk usage,
the web app has a fixed timeout and does not store SMT formulas;
consequently, there are no timeout or regex syntax arguments.

Both the command-line and web interfaces output satisfiability,
solve time, model count, and count time for each SMT formula.
Figure 5 is a screenshot of a results summary tab on the web app. In
addition to the aforementioned outputs, it shows a status (success)
and relative permissiveness. The variables tab (not shown) outputs
the model counts for individual string and numeric variables, like
action, resource, and aws:userId.

5 EVALUATION

We evaluated QUACKY using a dataset of 41 real AWS policies from
forums, 5 Azure policies from Microsoft Docs, and 5 GCP policies
from GCP documentation. We selected well-formed policies that
varied from simple to complex. For all experiments, we used a
desktop machine with an Intel i5 3.5GHz X4 processor, 128GB
DDR3 RAM, with a Linux 4.4.0-198 64-bit kernel, Z3 v4.8.11, and
the latest build of ABC 3.

3https://github.com/vlab-cs-ucsb/ABC
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Table 3: GCP policy analysis results. Each policy’s per-
missiveness and each pair’s relative permissiveness are re-
ported. All numbers are in log scale (L means the result was
Zero).

Py Py [[BADl | 1[2201 | ITP1] = [P20 | I[P2] = [PA]I
User Login ~ Admin Login | 1190.44 | 1190.86 €L 1188.86
Obj Creator Obj Viewer 1201.07 | 1202.07 1201.07 1202.07
Obj Creator Obj Admin 1201.07 | 1203.88 i 1203.65
@ 5
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Figure 6: The number of actions allowed by each mutant that
are not allowed by the original policy

To evaluate QUACKY’s performance, we quantified the permis-
siveness of our original AWS, Azure, and GCP policies. We used
a model counting bound of 250. The average permissiveness and
analysis time, grouped by cloud service, are shown in Table 2. For
most services, the average time was on the order of a few seconds.
The exception was AWS Elastic Compute Cloud (EC2), which gen-
erally has the most complex real-world policies and resource type
constraints.

Table 3 shows a closer look at Quacky’s results for GCP’s Storage
and Compute services. We can see that the OS admin login policy
is more permissive than the OS user login policy, where the former
allows 21188-86 distinct requests that the latter does not. Moreover,
object admin is more permissive than object creator by 21203-65
distinct requests. Object viewer is incomparable to object creator,
but individually, the former allows more requests than the latter.
These results make sense intuitively; we expect admins to have
absolutely more permissions than regular users, whereas we expect
object creators and object viewers to each have permissions that
the other does not, according to the GCP documentation.

To demonstrate the usefulness of quantitative permissiveness
analysis, we mutated an original AWS policy to make 64 mutants.
Figure 6 shows the number of actions 60 mutants allowed that the
original policy denied (4 mutants are not shown because they were
equivalent to the original). By quantifying relative permissiveness,
we see that the mutants shown allow anywhere between 2 and 22
more actions than the original. Without quantitative analysis, all
mutants shown would simply be classified as “more permissive"
than the original, which is less insightful to policy authors.

6 CONCLUSION

We presented the QuAcky tool for quantifying permissiveness of
access control policies in the cloud. We showed that Quacky can
handle a variety of policies written in the most popular cloud policy
languages. In the future, we aim to investigate how QUACKY can
be used to quantify properties of access control policies other than
permissiveness.
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