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Abstract—As Point Clouds (PCs) gain popularity in processing
millions of data points for 3D rendering in many applications,
efficient data compression becomes a critical issue. This is
because compression is the primary bottleneck in minimizing
the latency and energy consumption of existing PC pipelines.
Data compression becomes even more critical as PC processing is
pushed to edge devices with limited compute and power budgets.
In this paper, we propose and evaluate two complementary
schemes, intra-frame compression and inter-frame compression,
to speed up the PC compression, without losing much quality
or compression efficiency. Unlike existing techniques that use
sequential algorithms, our first design, intra-frame compression,
exploits parallelism for boosting the performance of both
geometry and attribute compression. The proposed parallelism
brings around 43.7× performance improvement and 96.6%
energy savings at a cost of 1.01× larger compressed data size. To
further improve the compression efficiency, our second scheme,
inter-frame compression, considers the temporal similarity
among the video frames and reuses the attribute data from
the previous frame for the current frame. We implement our
designs on an NVIDIA Jetson AGX Xavier edge GPU board.
Experimental results with six videos show that the combined
compression schemes provide 34.0× speedup compared to a
state-of-the-art scheme, with minimal impact on quality and
compression ratio.

Keywords-point cloud compression; edge computing; video
processing; energy-efficiency;

I. INTRODUCTION

As the world is increasingly becoming virtual and moving

closer towards automation, accurate 3D representation of

real-life objects in the virtual domain, be it for life-like

graphics or efficient autonomous driving, is becoming es-

sential. Recently, Point Cloud (PC) consisting of millions

of points, which capture the 3D geometry and attributes

(e.g. RGB colors), has become an important modality for

such realistic representations for applications like AR/VR,

*Work was done while at Penn State.

gaming, autonomous driving, etc. Moreover, with the recent

pandemic, as telepresence is becoming a norm, people are

virtually attending meetings, visiting arts, heritage sites and

tourist places across the globe, and even living in a virtual

universe. All these applications rely on high quality PC

capturing, processing and displaying for a more realistic

experience. Additionally, with the new generation mobile

phones, capable of capturing PC and then streaming them

into an AR/VR enabled head mounted displays (HMDs),

capturing 3D PC now is becoming as common as capturing

a photograph. With this trend, the PC business is expected

to reach a 10 Billion dollar industry by 2024 [71].

Since capturing PC no longer requires sophisticated,

commercial and expensive devices and people are equipped

with mobile PC capturing devices (like iPhone 13 Pro [3]),

the application providers are also pushing many of the PC

processing tasks like compression or rendering to the edge, to

avoid the use of expensive cloud resources, minimize the data

transfer latency, and/or protect user’s privacy. Considering

the dense features, 3D geometry and the visual attributes

captured in PC, especially for the media applications like

telepresence and virtual visits, pre-processing [21], [44],

[61], [84], compressing and storing [14], [16], [19], [47],

[48], [74], post-processing and streaming [25], [40], [66],

[76], [90] PC using a mobile device, while maintaining

a reasonable quality of service (QoS), are fast becoming

challenging tasks. Specifically, PC compression (PCC, or

PC encoding) consists of both geometry (e.g., x, y, z

coordinates in the 3D space) and attribute (e.g., RGB colors)

compression. Our experiments show that PCC is the most

expensive computation in a PC processing pipeline that

takes ≈ 4seconds, especially when deployed in mobile/edge

devices, and hence, is a major contributor to the performance,

video quality, and transmission energy, for the entire PC

pipeline.

However, it is challenging to design an optimal point cloud
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compression (PCC) pipeline which is fast (within or close

to real-time), accurate (with good quality), and efficient
(with high compression ratio). The state-of-the-art PCC

pipeline typically utilizes tree structures like Octree [63] or

kd-tree [62] for compression, and often, the tree construction

becomes a bottleneck due to lack of parallelization. Moreover,

the conventional PC typically stores the geometry, while a

wide array of applications, especially the ones meant for

content consumption, infotainment and gaming, need the

attributes to be stored as well, hence making the compres-

sion even more complex. For example, TMC13 [56] and

CWIPC [48] – two state-of-the-art (SOTA) PCC techniques

– take 4.1s and 4.2s, respectively, to compress one PC frame

on an edge platform, which are significantly higher than the

real-time requirement (≈ 100ms [19]), making them even

more challenging to employ in emerging edge devices.

To address this, we study the SOTA compression pipelines

and observe that the main reason behind their performance

inefficiencies is their sequential updates to the global result

with each intermediate local runtime state in a point-by-point
fashion. Moreover, there has been little effort in parallelizing

them on the state-of-the-art commercial systems, let alone on

any edge/mobile devices. Prior works on PCC acceleration

[19], [33] only consider the PC with geometry data and/or

have limited parallelism, and thus, could neither leverage

GPU nor benefit from other types of accelerators. In this

context, this paper explores the following three opportunities:

1 The points can be processed in parallel by using Morton

codes [30] (which mathematically represent the geometry

relationship among points) to identify the spatial-locality1

within one frame for geometry compression. 2 Further, this

locality also exists in attributes (RGB pixels), i.e., spatial

locality leads to attribute similarities, and hence opening

opportunities for fast attribute compression. 3 And, finally,

the locality extends beyond a single frame, i.e., the temporal

locality, which can be leveraged by sorting the points in the

Morton code order, creating further opportunities to improve

the compression efficiency.

Motivated by these opportunities, we propose and evaluate

a two-pronged compression approach, where the intra-frame
approach leverages the opportunities described in 1 and 2 ,

and the inter-frame approach takes advantage of 3 . The

intra-frame approach speeds up the geometry and attribute

compression by 37× and 49× respectively, while the inter-

frame approach further improves the compression ratio by

≈ 1.75× by reusing the matched blocks in reference frame.

To the best of our knowledge, this is the first work that

targets to push the PCC to the edge by taking edge device-

specific constraints into account and targeting four critical

metrics – latency, energy, quality, and compression ratio. The

major contributions of this work are the following:

• We identify the spatio-temporal redundancies for optimiz-

1In this paper, we use “locality” and “frame similarity” alternatively.

ing the PCC using a public PC dataset [18]. We also

demonstrate that, such spatio-temporal localities can be

precisely captured by Morton codes [30]. Specifically,

we find that 1 the points with similar Morton codes

within one frame tend to have little variances in both

geometry and attribute values (spatial locality), and 2

the points with adjacent Morton codes (for instance, a

cluster of geometrically close points) are likely to move

in a certain direction, as a whole block, across frames

(temporal locality).

• We propose two complementary designs to capture and

utilize such spatio-temporal localities. First, we propose

a Morton code-assisted intra-frame compression scheme,

where both the geometry and attribute can be compressed

in a highly parallel fashion. We believe this is the first

work that applies the Morton code-based parallel octree

construction algorithm [31] to speed up PC geometry com-

pression. On the other hand, for attribute compression, we

propose to sort the points in the Morton code order with the

goal of capturing the attribute similarities. Also, to utilize

temporal locality, we propose an inter-frame compression

scheme which further increases the compression efficiency.

• We implement and evaluate our proposals on an edge

device – NVIDIA Jetson AGX Xavier board [58]. Our

extensive experimental results show that, compared to a

state-of-the-art intra-frame PCC technique [56], our intra-

frame proposal can accelerate the PCC by 43.7× and save

96.6% energy. While with our inter-frame compression

design, the compression ratio can be further improved

(increasing from 5.95 in intra-frame design to 10.43) with

35× speedup and 97.4% energy savings with respect to a

state-of-the-art inter-frame PCC scheme [13]. Moreover,

our proposal not only accelerates the PC encoding stage,

but also can improve the performance of the decoding

stage which involves inverse encoding operations (e.g.,

reduces decoding latency to ≈ 70ms), thus enabling the

end-to-end PC processing in near real-time (i.e., 10FPS).

II. BACKGROUND AND RELATED WORK

A. Background

Point Cloud in Real Life: Point Cloud (PC) is a set of

points which represent objects or shapes in a 3D space

where each point/voxel (3D equivalent of a 2D pixel)

contains its 3D location (x, y, z coordinates), as well as

some attributes (e.g., colors, normal, etc.). Capturing PC

representation of the real world typically requires millions

of voxels, far more than the amount of pixels required for

2D images. While PCs containing only the 3D geometry

data are commonly used in LiDAR-based 3D imaging for

autonomous vehicles or robotics path planning, the lack of

attributes nullify their usage for visual media consumption.

Therefore, any PC application meant for visual media like
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Figure 1: Example PC applications and processing pipelines.

immersive telepresence, telemedicine, video streaming etc.,

needs the attributes to be stored along with the 3D coordinates.

Since PC generation requires sophisticated instruments

like LiDAR or 3D cameras, it was typically done on server-

class computers with high compute and storage capabilities.

However, with the advent of the modern mobile devices,

capturing 3D image and PC on these tiny and battery-backed

devices is becoming increasingly common. For example, the

recent iPhone 12/13 Pro features LiDAR camera for PC

recording, and similarly, Samsung Galaxy S20+/S20 Ultra

contains ToF (Time of Flight) camera for the same. This

makes PC-based media recording a common commodity,

rather than a sophisticated pipedream. Moreover, applications

like Record3D [44] enable seamless PC media streaming from

phone to a wearable, encouraging a perpetually increasing

PC content generation and consumption. However, the sheer

volume of the data captured in these PC applications coupled

with the limited compute and storage capabilities of these

handheld devices pose a challenge in high quality PC media

capture, storage and consumption [26]. To understand these

challenges, we analyze an end-to-end PC pipeline.

End-to-end Pipeline: The PC video processing pipeline, as

shown in Fig. 1, typically consists of 5 stages: 3D content

generation, PC encoding, data transmission, PC decoding,

render and display. In the 3D Content Generation stage, the

capturing device (e.g., the iPhone) uses LiDAR scanning

or photogrammetry for the PC data acquisition. LiDAR

maps spatial relationships and shapes by measuring the time

taken by signals to bounce off objects and return to the

scanner, while photogrammetry takes many photos from

different angles to capture the target’s geometry [9]. This

process typically takes 10s of milliseconds [26]. Further,

each point in the PC is associated with 3 coordinates (x,

y, z) for the geometry and 3 colors (R, G, B) for the

attribute. Thus, to represent one point, 4byte×3 + 1byte×3

=15bytes are needed (4bytes per coordinate and 1byte per

color component). Thus, a typical PC frame containing 106

points [49] require 120M bits of data, which is impossible

to transmit in real-time to the end-user’s display, from

both the latency and energy standpoints, considering a

steady 30-60 f ps requirement. Therefore, the PC video frame

is compressed in the PC Encoding stage, before being

transmitted over the network to the end-user. The received

frame is decoded in the PC Decoding stage and the decoded

PC frame is forwarded to the Render and Display stage

where it is finally rendered and displayed on the screen. Note

that although the same method is followed and has been well

established for streaming 2D or 360° videos, given that the

PC data is much denser, compression becomes essential as

well as the primary bottleneck, often taking several seconds

to compress one PC frame [26](see Fig. 1 a ).

B. Related Work

1) Point Cloud Use-cases: Recently, PC is being widely

used in various fields, such as AR/VR [46], [81], telepres-

ence [43], [57], [86], virtual tourism [12], [50], teleopera-

tion [83], telemedicine [51], video streaming [24], [37] and

gaming [81], [87], etc. where both geometry and attributes

are essential as the contents are consumed by people for

infotainment purpose. Almost all of these applications can

be categorized as interactive volumetric video streaming.

On the other hand, for applications such as autonomous

driving [1], [4], robotics [79], motion planning [34] or path

planning [42], attributes like RGB info, at most times, are

not necessary as the PC is used in the compute pipeline (by

the machine) to extract features and make decisions.

Especially, interactive volumetric video streaming is

starting to become mainstream, as edge devices (e.g., iPhones)

facilitate recording and streaming the PC video which provide

end-users with real-time 6-degrees of freedom (6-DoF)

experiences. Streaming such PC videos in real-time involves

capturing both the attributes and geometry data making

it a challenging task even without user-object interaction.

Towards this, Han et al. proposed the viewpoint-dependent

PCC scheme (termed as “ViVo”) which only sends the

3D tiles within user’s field of view [24], thereby reducing

the data volume. Such optimizations [37], [59], [68] are

extremely important for applications like virtual tourism,

video streaming etc. More complex optimizations are needed

when human-object interactions and human-object-sensors
interactions are involved (for applications like telepresence,

telemedicine, virtual shopping and gaming) and need the help

of PC data analytics to recognize/classify the interactable

objects/scenes.

2) Point Cloud Analysis: To analyze objects/scenes in PCs,

3D convolutional neural networks (CNNs) have been widely

used in techniques like 3D shape classification [66], [67], [89],

[91], object detection [38], [45], [65], tracking [22], [78], or

segmentation [10], [66], [67], [89]. While most prior works

target accuracy, Mesorasi [20] improves the compute and

memory efficiency of 3D CNNs using delayed-aggregation

and software-hardware co-design, and PointAcc [40] proposes

special mapping unit and memory management for optimiza-

tions. However, the huge data volume of the PC still remains
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a bottleneck in data movement and sharing, creating hurdles

in high quality-low latency streaming/analysis. Therefore,

there have been several works focusing on compressing the

PC, as discussed next.

3) Point Cloud Compression (PCC): The prior PCC works

can be classified as follows:

G-PCC utilizes special structures like octree or kd-tree to

represent and compress the geometry [17], [23], [74]. For

example, with octree-based PCC, considering a PC is con-

tained in a D×D×D cube, the cube is recursively divided into

8 D/2×D/2×D/2 sub-cubes until D=1. The occupied/non-

empty voxels in leveln can be indicated by the occupy bits

of its “parent voxel” (voxel in leveln−1). Each branch node

in the octree stores 8 occupy bits, indicating the occupancy

of its children/sub-cubes. The attribute compression in the G-

PCC depends on the geometry. As a result, the attribute and

geometry are compressed separately. There are 3 methods for

attribute compression in the G-PCC – RAHT [14], Predicting
Transform [52], and Lifting Transform [52]. The main idea

behind RAHT is to use the attribute values in a lower octree

level to predict the values in the upper level. In contrast,

Predicting Transform and Lifting Transform are based on the

hierarchical nearest-neighbor interpolation [80]. Apart from

these methods that compress a static PC, there also exist

several attempts at optimizing the compression for dynamic

PCs by exploring the “temporal redundancy” across the PC

video frames. For example, a macro block (a S×S×S cube)

based motion estimation and compensation is proposed in

[15], [16], [48], [73], to further improve the compression

efficiency.

V-PCC2 targets compressing PC videos. Specifically, given a

PC video stream, V-PCC first performs 3D to 2D projection

on each frame [29], [32], [39], [75], and then encodes these

2D projections via traditional 2D image codec. Both G-PCC

and V-PCC are widely adopted in MPEG standard [53], and

since our proposals begin with G-PCC, thus, is also compliant

with the MPEG PCC standard.

NN-PCC2 takes the raw PC as input, and feeds it into

a pretrained 3D CNN, which outputs the compressed PC

stream [28], [82]. Several recent efforts have been put into

optimizing the 3D CNN to increase the compression ratio

and/or decrease the number of parameters in the neural

network model [27], [69]. However, based on the results

reported in [40], even with a custom 3D-CNN accelerator,

only 2.5× speedup could be achieved for 3D-CNN compared

to edge GPU. Considering that NN-PCC can take thousands

of seconds to compress one PC frame [88], such a huge

gap between the long execution latency of NN-PCC and the

2Although V-PCC and NN-PCC have high compression efficiencies, they
are compute-intensive [41], [88], and consequently, are not the best option
for mobile devices and are not considered in this work. Besides, most of
the NN-PCC only focus on compressing geometry data [88], thus, is not
applicable for this paper’s target (i.e., mainly for vision applications where
the attributes are essential).
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Figure 2: Prior PC compression technique categories and

latency breakdown for prior techniques on compressing one

PC frame from [55].

real-time refresh requirement of vision applications is yet

to close and prevents the deployment of NN-PCC on edge

devices. Moreover, NN-PCC mainly focuses on compressing

the geometry data and hence is not very useful for the PC

with attributes [88].

To the best of our knowledge, most of these works focusing

on PCC with attributes target the compression ratio, and

overlook the latency or energy consumption. However, as PC

is moving to mobile, one cannot ignore the latency/energy

constraints, thus demanding the need for mobile friendly

PCC techniques which offer the best compression, latency

and energy savings while preserving the video quality.

III. MOTIVATION

A. Reasons for Inefficiency

To better understand the performance of the PCC pipeline,

we characterize the “latency breakdown” of two state-of-

the-art G-PCC techniques, i.e., PCL [72] and TMC13 [56],

on a typical edge SoC platform (NVIDIA AGX Xavier) in

Figs. 2 b and c . Overall, the entire PCC pipeline takes around

3.5 seconds3, which prevents one from employing such

techniques in an edge device. Further, among the five stages in

the pipeline, octree construction & serialization for geometry

compression and RAHT for attribute compression are the two

major bottlenecks which take 1s and 2s, respectively. Driven

by these observations, we investigate the reasons behind such

inefficiencies, and further explore the potential opportunities

for speeding up the PC compression.

Before delving into the details of our approach which

aims to close the performance gap between “seconds” in

practical and “hundreds of milliseconds” in ideal settings,

we first investigate the reasons behind the inefficiencies of

the prior techniques. Towards this, we studied three state-of-

the-art PCC pipelines – octree-based pipeline for intra-frame

geometry compression (Sec. IV-A1), RAHT for intra-frame

attribute compression (Sec. IV-C1), and macro block-based

motion compensation pipeline for inter-frame compression

3We use PCL [72] and TMC13 [56] library for our profiling, where the
geometry is compressed by the octree structure in PCL, and the attributes
(RGB colors) are compressed through RAHT in TMC13.
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(Sec. V) – and reached the following conclusions: the primary

reason behind their performance inefficiencies is what can

be termed as “under-parallelism”, i.e., not being able to

fully exploit parallelism during compression. Especially,

many levels of dependencies (i.e, various regularities of

locks) exist in their pipelines – e.g., the entire octree needs

to acquire a “macro lock” before inserting a point and

updating the tree (as shown in Fig. 5), during the intra-frame

geometry compression; similarly, in the attribute compression

shown in Fig. 6, the points at one layer in the octree have

dependencies with those at other layers, thus their processing

requires acquiring locks at a “layer granularity”. Even with

the optimizations in [33], where the octree construction

stage can be performed in parallel, there are still several

synchronization points, resulting to limited parallelism. To

summarize, the performance inefficiencies in prior works can

be primarily attributed to the lack of parallelism of these

algorithms. Motivated by this observation, we next plan to

improve the compression performance by exploiting various

parallelism opportunities, which have been ignored, to the

best of our knowledge, by the prior research but are essential

in employing PCC in edge device settings.

B. What are the potential opportunities?

Increasing Geometry Compression Parallelism Using
Morton Code: As mentioned earlier, the reason why the

“sequential update” is necessary is that, during the interme-

diate stages, the global Octree (the final tree constructed at

the last step) is unknown until the last point is inserted in

the tree. To relax this constraint, if the PCs can be sorted
based on a geometrical order, then the topographic structure

of the global tree can be known at the beginning, thus

fixing the tree structure and not requiring to be updated

in a point-by-point fashion. As a result, these points can

processed in parallel. In fact, there is a mathematical concept

called Morton Code [30] (essentially, a space filling curve

that maps a multidimensional data to one dimension while

preserving the locality of the data points), which describes

the geometrical location relationships between points, and

thus can serve this purpose perfectly. There have been prior

works like N-body application [5] which utilize the Morton

code for parallel octree construction4; however, we believe

ours is the first work that tries to apply such technique in

the PCC pipeline.

Morton Code Can Also Assist Attribute Compression:
As discussed above, Morton code naturally describes the

geometrical relations among points; thus, intuitively, it

makes sense to utilize the Morton code to improve the

geometry compression. However, our goal is to go beyond

just optimizing the geometry compression. Specifically, in

the traditional 2D video compression domain, the video

frames are usually rich in spatial locality (similar neighboring

4We do not claim the parallel octree construction as our contribution.

b

0%
25%
50%
75%

100%

0 50 100 150 200
Delta(red)

#blocks=20,best #blocks=20,worst
#blocks=1000,best #blocks=1000,worst

0%
25%
50%
75%

100%

0 100 200
Range(Delta)

#blocks=10 #blocks=100
#blocks=10000 #blocks=100000

a c

Figure 3: a) Spatial locality within one frame. b) Temporal

locality among two frames. c) An example of macro blocks

segmented using Morton codes in two frames.

pixels) within one frame, as well as temporal locality (similar

pixel values in corresponding locations across consecutive

frames) [36]. This observation motivates us to ask the

question: Do such similarities also exist in the PC streams?
If so, can we leverage Morton code (containing location
information) to capture such similarities as well?
Spatial Locality in Attributes: Towards exploring the attribute

similarity within one frame, we partition a frame (whose

points are first sorted in Morton-code order) from the 8iVFB

dataset [18] into 10, 102, 104 and 105 macro blocks, plot

the CDF of the range for attribute delta (Maxred −Minred)

within one segment/macro block in Fig. 3 a , and observe

that:

• Overall, with more segments/macro blocks whose size is

smaller (compared to a frame), more similarity exists in a

block (delta is small). Specifically, compared to the black

line (only 10 blocks), the attribute in yellow line (104

blocks, each of them is 1000× smaller) exhibits a better

similarity (i.e., left-shift towards the y-axis).

• When partitioning the macro blocks in an even more fine

grain fashion, as shown in the green line with 105 segments,

now the CDF curve is pushed towards left even further.

This again indicates that, within a smaller macro block,

the voxels have richer similarity with their neighbors.

Temporal Locality in Attributes: To study the temporal

attribute locality across two frames, we plot the CDF of the

attribute deltas among two segments in an I-frame and a

P-frame in Fig. 3 b , and a visual view of how these segments

look like in Fig. 3 c , and we observe that:

• Compared to the two solid lines (the frame is partitioned

into 20 blocks), the two dotted lines (when partitioned

into 1000 blocks) are closer to the y-axis, indicating that

a finer segment can better capture the temporal-locality.

• Considering the dotted lines with 1000 segments parti-

tioned from I- and P- Frames, the green line represents the

smallest delta between two segments, which indicates the

upper-bound/the scope of the attribute similarity, whereas

the red line represents the largest delta/the least similarity

among the segments. Further, the gap between the dotted

red and green (1000 blocks) is smaller compared to that

between the solid yellow and black lines (corresponding to

a 20 block partitioning), thus indicating that a finer partition

granularity can observe less variance in the temporal
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locality opportunities (i.e., the smaller area, the better).

• Moreover, a vertical line can be drawn in this gap range,

i.e., x = α , and the macro blocks on the left side have

“enough” temporal similarities and thus can be compressed

with the I-frame (e.g., simply discard the deltas and

represent/compress these blocks by the pointers to the

matched I-blocks), whereas those on the right have to

employ an extra intra-compression step to further compress

the deltas. Note that α can be adjusted based on the

application preference, e.g., shifting the x = α line to the

right results in more macro blocks in the I-frame being

directly reused for compressing the P-frame, i.e., higher

compression ratio, with a cost of quality drop (more details

in Sec. V).

• Fig. 3 c illustrates an example with 20 segments in I-Frame

and P-Frame. Due to the limited number of segments, one

can observe that some highlighted blocks are not well

matched. This again confirms that a finer segment can

yield a better temporal locality, as also discussed above.

Takeaway: The Morton codes generated as an intermediate

result during geometry compression not only improve the

geometry compression by increasing pipeline parallelism, but

also help to capture/identify the attribute similarities within a

frame as well as across frames. Motivated by this observation,

we next propose schemes that can utilize Morton codes for

both geometry and attribute compression in point clouds.

IV. INTRA-FRAME COMPRESSION DESIGN

As discussed in Sec. III-A, PCC takes several seconds

to execute, which is significantly higher than the ideal/real-

time demand (100ms). The main reason for this inefficiency

is the “sequential updates” in the state-of-the-art octree-

based algorithms [47] (illustrated in Fig. 2). Furthermore,

we also observed in Sec. III-B that Morton codes can reveal

opportunities for both geometry similarity (owing to the fact

that the Morton code itself is the reflection of the geometrical

relationship between points) and attribute similarity (the RGB

attributes of two adjacent points are more likely to be similar).

Unlike the prior octree-based works [56], [72] which mainly

focus on the compression efficiency (i.e., attaining higher

compression ratio and good quality simultaneously) with

sequential updates and longer execution latency, in this work,

we focus primarily on speeding up the PCC at the edge
and achieving the real-time target mentioned above without

losing much quality or compression ratio.

A. Intra-frame Compression

In this subsection, we first present the state-of-the-art intra-

frame geometry and attribute compression techniques and

discuss their inefficiencies. We then introduce our proposed

intra-frame geometry and attribute compression schemes

which are discussed in detail in Sec. IV-B and Sec. IV-C.

Figure 4: Intra-frame PCC pipelines.

1) Prior Intra-Frame Compression Inefficiencies: State-
of-the-Art Intra-Geometry Compression5: As discussed

in Fig. 2 and Sec. III, most of the existing G-PCC tech-

niques [56], [72] are based on octree data structure. We

illustrate the generic pipelines (for 1 geometry compression,

and for 2 attribute compression) employed by the state-of-

the-art intra-frame compression techniques in Fig. 4 a and

4 b . Specifically, the SOTA geometry compression pipeline

includes five stages which can be summarized as follows:

• Raw Frame (Input): The input raw PC frame contains

several (usually millions of) points, carrying both geometry

and attribute information. Only the geometry data are

forwarded to the upper geometry compression pipeline.

• Octree Construction: With the input geometry data, the

octree construction algorithm is invoked to add the points

and update the tree (e.g., the maximum depth required for

inclusion of a point, occupancy information for nodes, etc.)

in a point-by-point fashion. This point-by-point “update”

makes this stage difficult to parallelize.

• Octree Serialization: After the octree has been constructed,

the tree is traversed in a top-to-bottom manner, in order

to extract the occupy bits for each node, and record them

in a predefined order (e.g., via depth-first traversal), such

that the decoder can recover the octree with these occupy

bits as well as the serialization order. Note that this step is

also time-consuming, as shown in Fig. 2. This is because

that all the nodes in the tree are traversed sequentially.

• Entropy Encoding: To further compress the generated

occupy bits vector, a typical encoding technique – Entropy

Encoding [35], [60] – is employed.

• Compressed Geometry Stream (Output): The final com-

pressed geometry output stream is ready to be stored in

the memory or streamed over the network.

State-of-the-Art Intra-Frame Attribute Compression: As

shown in Fig. 4 b , to compress the attribute data, similar

steps – Raw Frame Input, Attribute Transform and Quantize,

Entropy Encoding, and Compressed Attribute Output Stream –

are employed. Only the Transform and Quantize step differs

from the geometry compression pipeline, which takes both

the raw frame’s attribute data as well as the constructed

octree as its inputs. With these inputs, the Transform step

5We consider the octree-based technique [56], [72] and RAHT [14], [56] as
SOTAs for geometry and attribute compression respectively.
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performs linear transformations on the attribute data of each

voxel pair (the voxel in leveln and its siblings along x, y, and

z dimensions) to obtain a low-pass component and a high-

pass component. The high-pass component is quantized and

entropy encoded, while the low-pass component proceeds

to the next level (leveln−1) and serves as a prediction for

the voxel’s attribute in this upper level [14]. Note that, this

step also needs to be performed sequentially across the tree

layers.

Takeaway: The prior octree-based works for both geometry

and attribute compression suffer from performance inefficien-

cies, mainly because the octree construction, serialization

and attribute transformations involve sequential computations.

To improve the performance, next we want to explore the

hidden spatio-temporal locality opportunities (missed by the

prior works), and speed up both the geometry and attribute

compression from both the intra- and inter-frame perspectives.
2) Optimizing the Intra-Frame Compression:
Driven by the observations above, next we relax the

“sequential update” approach that exists in the prior works,

and employ the (intermediate) generated Morton Codes to

reveal the “hidden parallelism” opportunities for compressing

a PC frame (shown in Figs. 4 c and 4 d for the geometry

and attribute compression, respectively).

Proposed Intra-Frame Geometry Compression: As can be

seen from Fig. 4 c , the modified components in our pipeline

compared to the previously-proposed geometry compression

approach (depicted in Fig. 4 a ) include the following:

• Morton Code Generation: Given the raw PC, instead of

constructing the octree point-by-point, now the first step

is to generate the Morton codes in one shot (note that this

can be performed in parallel and only takes 0.5ms). This

additional pre-processing step can draw an overall layout

for all the points, which will further help to parallelize

the octree construction.

• Octree Construction4: Using the Morton codes generated

in the previous step, now the octree can be constructed

in parallel by employing techniques similar to [31], [64].

Note that this step is slightly different from the one in the

prior pipeline shown in Fig. 4 a . Instead of updating and

storing the occupy bits for each node during the process

of adding points, now the outputs of this step are several

arrays (Morton codes array, parent array, etc.), which reveal

the geometrical relationship across the nodes.

• Post Processing: Using these relationship arrays, the final

step is to post-process them to obtain the occupy bits for

each node, and output the compressed geometry stream.

Proposed Intra-Frame Attribute Compression: As shown

in Fig. 3 and discussed in Sec. III-B, apart from identifying

the locality existing in geometry data, the Morton codes can

also help us capture the attribute locality. Motivated by this,

we further optimize the attribute compression pipeline for a

given frame, as shown in Fig. 4 d . Specifically, our proposed

new pipeline includes the following three steps:

Figure 5: Intra-Frame geometry compression example.

• Sort and Segment Points: Unlike the prior works which

utilize the octree to capture the spatial locality between the

points when compressing the attributes, we use the Morton

codes to cluster the points which are spatially close to each

other. Specifically, with the Morton codes for all the points

(i.e., the intermediate results from geometry compression

without any additional overhead), we first sort these points

in the Morton code order, and then segment these sorted

points into several blocks which can help to gather the

points with similar positions/coordinates into one segment.

• Mid + Residual: Within each segment, since the points are

located in small regions, their attribute values tend to have

similar numbers. Therefore, instead of recording the exact

attribute values for all the points within a segment, we

only need to find the “median value” of these attributes (as

base) and then compute and compress the residual values
(as deltas) for these points. Fortunately, these computations

are light-weight, and can be performed in parallel.

• Quantization: Finally, these small residual values are

quantized to further improve the compression ratio.

B. Intra-Frame Geometry Compression

In above section, we have discussed our overall proposals

for both geometry and attribute compression pipelines. And,

as will be shown later in Sec. VI, such optimizations are

able to bring around 37× speedup w.r.t. the state-of-the-art

techniques (1.55s latency in prior works vs. 42ms latency in

ours). To better understand where the benefit comes from,

next we go over a simple example, given in Fig. 5, and answer

the following three critical questions: i) how to increase
parallelism for the bottleneck steps?, ii) how to integrate such
optimizations into the entire geometry compression pipeline?,

and iii) what are the resulting benefits and overheads?
1) How to Increase Parallelism?: Fig. 5 shows an

example of geometry compression. Specifically, there are

three points in the this frame: P0’s coordinates are [0,0,0],
P1’s are [−1,0,0], and P2’s are [3,3,3]. Consider the geometry

compression pipeline in PCL [72], where the points are

added one-by-one when constructing the octree. Initially,

the bounding box is infinitely small (side length is 0,

corresponding to no data); and the octree only has one

root node, which is just a “virtual placeholder” containing
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no information. When inserting the first P0 point into the

bounding box and the octree, two actions are taken: (1)

expanding the bounding box with a step-size of 2n, where

n= 1,2,3, · · · , until P0 is wrapped inside the bounding box. In

this case, the side length of the bounding box cube becomes

2, and now P0 is located inside the bounding box. And (2),

inserting the new point into the current octree. In this case, P0

is located in the 7th child of the root node, and the root node

now stores the occupy information, which is 00000001 (the

right-most 1 indicates a “child” in 7th leaf node). Similarly,

P1 is located inside the current bounding box and inserted

into the octree as the 6th child of the root. Interestingly, in

order to include P2, the current bounding box has to expand

its side length by 4×, i.e., enlarging from 2 to 8, and now

the octree also contains more levels with all three points

being in its leaf level. Obviously, both the bounding box

and the octree are updated point-by-point, which forces the

pipeline to be sequential.

In our proposal shown in the lower figure, instead of

constructing the octree in a point-by-point fashion, we process

all three points as one “batch” in the Morton Code Generation
step in parallel, and output the final bounding box cuboid

with side lengths 4×3×3 (x-axis: 3-(-1) =4, y-axis: 3-0 =3,

and z-axis 3-0 =3). With the Morton code in place, next we

invoke the parallel octree construction technique (for more

details, please refer to [31], [64]) to construct the octree.

Note that this step is also amenable to parallelism.

2) How to Apply to PCC?: As discussed in Sec. IV-A2,

the octree Construction step returns several arrays containing

the relationship among octree nodes; e.g., the code array
contains the Morton codes for all the nodes, while the parent
array contains the index of the current node’s parent in the

code array (e.g., in Fig. 5, -1 in the parent array means that

the root node has no parent, whereas parent[7] = 4 means

that for the 7th node (whose code is code[7] = 511), the

index for its parent node in the code array is 4 (whose code

is code[4] = 63)). Although such arrays already contain the

necessary information to decode the geometry information for

the PC, they are not suitable for compression tasks. For exam-

ple, to store/transmit these two arrays, 4bytes×16=64bytes
are needed. However, even without any compression, we

only need 4bytes×3×3=36bytes to represent these 3 points.

Therefore, an extra post-processing step is needed to merge

these two arrays in the “occupy bits” style. As shown in

Algo. 1, to obtain the occupy bits for one branch node,

we first calculate which branches its children should be

on (e.g., C[ j]%8 in Line #5), and then merge all of its

occupied branches via the “|” operation. This inexpensive

post-processing step can be applied to all branch nodes in

parallel, thus does not bring much overhead.

3) What are the Benefits and Drawbacks?: To summa-

rize, compared to the prior schemes like PCL [72] and

TMC13 [56], the most obvious benefit from our proposal is

the potential performance improvement in terms of latency

Algorithm 1: Octree Occupy Bits Generation Algo.

Input : C: Code Array; P: Parent Array; N: Number of Points
1 Occupy Bits Array: O = {}
2 L = len(C)−N
3 for i in L do
4 p = P[i]
5 O[p] |= (C[ j]%8), P[ j] = p

Output : O: Occupy Bits Array

and energy savings, due to embracing more parallelism. In

fact, the CPU-based PCC pipeline in PCL [72] requires

O(N ×D) time complexity to process N points, with a D-

layer tree. In comparison, given a GPU-based system with k
parallel cores, our design requires only O(∑D

i=1 Ni/k) time (Ni
is #nodes in layer−i). And, as we show later in Sec. VI, our

results indicate 37× speedup for the geometry compression.

Apart from compression, the de-compression stage can also

be run in parallel after applying our proposal, and can be

even faster than the compression stage due to its reduced

complexity (note that, this also applies for the attribute

compression proposals as discussed later in Sec. IV-C1

and Sec. V). Specifically, with our current “sub-optimal”

implementation (e.g., the codes are not fully optimized), the

de-compression stage (including both geometry and attribute

de-compression) for Redandblack video [55] only takes

≈ 70ms per PC frame, which is less then the PC compression

latency as we will discuss later in Sec. VI-C.

Such significant speedup comes with a reduction in quality.

In the example shown in Fig. 5, the octree constructed

based on the Morton codes is slightly different from the

one generated by the sequential algorithm (which is lossless).

In fact, in our octree, the P0 node now contains geometry

information of [−0.43,0,0] (-0.43=-1+1/7×4), which is

slightly different from the original [0,0,0], whereas the other

two points, P1 and P2, are exactly same as the original ones.

Thus, as we discuss later in Sec. VI, our proposal drops the

quality a little bit (PSNR ≈ 80dB in our design). This quality

degradation comes as a result of the parallel algorithm, and

we argue that the PSNR values resulting from our proposal

are still very good for most video and AR/VR applications [6],

[77].

Another comparison parameter is the compression ra-
tio. Our proposal provides similar compressed size as

TMC13 [56] (≈ 0.1× larger) when exploiting the entropy en-

coding. However, this entropy encoding consumes ≈ 100ms,

which halves our performance gains. Thus, in order to

harvest most of the speedup benefits (42ms vs 1.55s), in

our design, we discard the entropy encoding and still achieve

reasonable compressed size, which is ≈ 0.5× larger than

that of TMC13 [56].

C. Intra-Frame Attribute Compression
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Figure 6: Intra-Frame attribute compression example.

The above discussion has explored the opportunity of

utilizing Morton codes to speedup the geometry compression.

Recall from Fig. 3 a that, there also exists spatial locality for

attribute compression, which can be identified with the help

of the Morton code. Let us now consider the example in Fig. 6

with three points – P0 with geometry data of [0,0,0] and one

attribute value of 50 (in this example, we set the attribute as

a scalar for simplicity; normally, the attribute should be a

vector, e.g., RGBs), P1 with a [−1,0,0] geometry and 52 as

the attribute, and P2 with a [3,3,3] geometry and 54 as the

attribute. Here, we assume that the octree for these points

has already been established using the geometry pipeline,

and we next go through our proposed attribute pipeline step

by step and explain where the envisioned benefits will come

from.

1) How to Speedup?: First, RAHT [14] takes the initial

octree (which is deepest now) as input, and invokes RAHT
and Quantization to perform the linear transformation on the

leaves with their siblings along the x, y and z dimensions,

and shrinks the tree layer-by-layer. Each transformation emits

out one low-coefficient (LC) and one high-coefficient (HC)

by the following equation:

[
LC
HC

]
=

1√
w1 +w2

[ √
w1

√
w2

−√
w2

√
w1

][
a1

a2,

]
(1)

where w1 and w2 are the weights for the two leaves

(#occupied voxels in this leaf), and a1 and a2 are the attributes.

Now, the HC is quantized and entropy encoded, while the LC

is further sent to the next RAHT and Quantization round and

serves as the attribute of the large voxel/leaf in the upper layer.

This procedure is repeated until we reach the root node. In

this example, eventually the coeffs vector contains [2,0,89],
which can be further compressed by entropy encoding. This

entire pipeline also requires sequential processing across the

octree layers, which is obviously time-consuming when the

number of points is large and the octree is deep. In fact,

our profiling shows that RAHT takes around 2 seconds to

process a typical frame with around 1M points, on a typical

edge device.

Towards addressing this significant performance ineffi-

ciency, we investigate the insight from the above discussion

in Sec. III-B, which indicates that the locality revealed by

the Morton codes does not only exists among the geometry

data, but it can also help with the attribute compression.

Note that, the Morton codes have already been generated as

intermediate results during the geometry compression, thus,

can be (re)used to identify the spatio-locality for the attribute

compression without any extra cost. Specifically, as shown in

Fig. 6, in order to capture the spatial locality in attributes (e.g.,

points with similar Morton codes tend to have similar colors),

our proposed pipeline first sorts the points using the Morton

codes and then partition/group them into multiple segments.

The points within one segment are geometrically close to each

other, and hence their attributes are also likely to be similar.

Thanks to this, for each segment, we just need to store one

medium value as Base and several residual values as Deltas
(which are mostly small, due to similarity). And finally, we

quantize these deltas for achieving higher compression ratio.

In this example, two vectors (as there are two segments) store

the final data, including Mid = 51,Delta = [0,0] for the first

one segment, and Mid = 54,Delta = [0] for the second.

2) What are the Pros and Cons?: As indicated in Fig. 6,

compared to RAHT, our proposal reuses the intermediate

Morton codes, which have been computed during the geome-

try compression, to precisely identify the points with similar

attributes from a set of irregular points. This is expected to

be much faster than RAHT, and in fact, our experimental

results show ≈ 49× speedup (53ms vs 2.6s).

However, as also shown in Fig. 6, the storage size after

our compression is larger than RAHT, since each segment

requires one vector storage to store its median/base and

(quantized) delta values. Although the 48× speedup brought

by our proposal is promising in terms of performance gain,

the observed 2× compression inefficiency needs to be

addressed.

3) How to Further Improve the Compression Efficiency
for Attributes?: Towards further improving the compression

efficiency, one could consider different options. Instead of

throwing more compute power, we want to emphasize that,

the discussion in this section only focuses on the attribute

locality within one frame, which has ignored the potential

localities among consecutive frames. In fact, if frame-2 does

not vary much with respect to frame-1, intuitively, there

would be temporal locality between the two frames. Thus,

to further improve the attribute compression efficiency, in

the next section, we investigate the inter-frame similarity

opportunity.

V. INTER-FRAME ATTRIBUTE COMPRESSION DESIGN

Motivated by the above discussion, in an attempt to

further improve the compression efficiency from an inter-

frame perspective, in this section we explore the ”attribute

similarity” that exists across consequent frames in a PC

video, and explain the design details of our proposed inter-

frame attribute compression scheme. Similar to the intra-

frame proposals discussed in Sec. IV, we again use a simple
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Figure 7: Inter-Frame attribute compression example.

example using a state-of-the-art inter-frame compression

technique [13] and our proposal, and study the following

important questions: i) what is the opportunity?, ii) how do

we capture and exploit such opportunity?, and iii) what are

the potential benefits?

A. Inter-Frame Attribute Compression

1) What is the Temporal Opportunity?: As we have shown

earlier in Fig. 3 b , two blocks (a set of points) which are

located close to one another are likely to contain similar color

pixels. In the example shown in Fig. 7, the first frame, I-

Frame, contains three points – P0 with geometry data [0,0,0]
and an attribute value 50, P1 with [12,8,13] for geometry and

52 for attribute, and P2 with [19,26,58] for geometry and

20 for attribute. Obviously, the two P0 points in I-Frame and

P-Frame are exactly the same, which could be completely

reused during the compression of the P-Frame. Moreover, the

two P1 points are located closely (i.e., [12,8,13] vs [12,8,12]),
and contain very similar attribute values (52 vs 51). Thus,

the P-Frame can also be further compressed by reusing the

P1 data in the previous I-Frame, without losing too much

quality. On the other hand, the two P2 points are relatively

far away from each other and their attribute inputs are quite

different, offering little reuse opportunity. To summarize, in

this example, the first two points in I-Frame, P0 and P1, could

be reused for compressing the P-Frame, thus reducing the

compressed output size.

2) How to Capture the Temporal Opportunity?: To

identify such similarity/reuse opportunities across frames

(shown in Fig. 7), the macro-block based state-of-the-art

approach [48] first needs to generate two macro block trees

(where the minimum voxel dimension in this tree is of a

predefined size) – one for I-Frame and the other for P-Frame.

Next, for each leaf node/block in the P-MB-Tree, the entire

I-MB-Tree needs to be traversed in a top-to-down fashion,

and the exactly-matched leaf in the I-MB-Tree is found. In

this case, the found leaf L1-I, which contains two points (P0

and P1), is a perfect match; however, no match can be found

for the L2-P leaf. This process is repeated for O(N) times,

where N is the number of macro-blocks in the P-Frame. This

processing can be quite time-consuming, and our profiling

shows that it usually takes ≈ 5.9s to compress one predicted

PC frame even when running on 4 CPU threads.

Instead, our proposal takes advantage of the Morton

code generated in the geometry compression, which is a

good indicator for attribute similarity (as discussed earlier

in Sec. III-B). Specifically, our proposal consists of the

following 4 steps:

PC sorting: As shown in Fig. 7, compared to the irregular

raw PC, after sorting the PC via Morton-code, the adjacent

points are more “regular” and geometrically closer, and thus

share rich attribute similarities.

Segmentation: The next step is to partition the sorted PCs

(i.e., I-frame and P-frame) into several blocks/segments

(similar to the term “macro-blocks” in 2D image encoding).

Block/segment match (BM): for each block in the P-frame,

we iterate through all the candidate blocks in the I-frame and

calculate the difference between these < I,P > block pairs.

Finally, the candidate I-block which differs minimally with

the P-block is picked as its “best-matched/reference” block.

Specifically, given two blocks with K-points, we use 2-norm

attribute distances (see Equ. 2) to measure their difference:

Di f f (Iblock,Pblock) = ∑K
i=1(riP − riI)

2 +(giP −giI)
2 +(biP −biI)

2 (2)

where Pblock = {(xiP,yiP,ziP,riP,giP,biP)}, Iblock = {(xiI ,yiI ,
ziI ,riI ,giI ,biI)}, for i = {1, ...,K}. Note that, the BM can

be performed in parallel as there is no dependence across

blocks.

Reuse: for blocks for which the reference blocks are similar

enough (e.g., the 2-norm differences are less than the pre-

defined thresholds), only the pointers to their reference blocks

will be recorded (in our proposal, for each P-block, we set

the number of candidate blocks as 100, thus, 6 bits are

sufficient for encoding one P-block). On the other hand, if

the “best matched I-block” is not as similar as the P-block

(e.g., the 2-norm differences are larger than the threshold),

simply approximating the P-block with its reference block

will significantly degrade the quality; instead, we compute

and store the deltas for such block pairs, and then invoke

the Base+Deltas technique, as mentioned in Sec. IV-A2 for

intra-frame compression, to further compress these deltas.

3) What are the Pros and Cons?: The proposed inter-

frame attribute compression further improves the compres-

sion efficiency by skipping the redundant storage for the

same/similar segments matched across frames, with extra

latency overhead (but still much better than the state-of-the-

art – 139ms vs 5.9s). In this example, for compressing the

P-Frame, one pointer (for S1 which contains P0 and P1) and

only one post-intra-encoded compressed delta (for P2) are

required for storage, instead of storing all three. However,

the proposed inter-frame compression pipeline has additional

steps (PC sorting and block matching), which collectively

take about 139ms for a typical PC frame.
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B. Combining Inter-frame and Intra-frame Compression

Simply put, our intra-frame compression proposal can sig-

nificantly reduce the execution latency, while the inter-frame

compression proposal can further improve the compression

efficiency. We emphasize here that, these two proposals can

work in an interleaved fashion (with a frame-level granularity)

for a PC video stream. Specifically, in our design, the PC

frames are encoded in an “IPP” fashion, where each I-frame

is followed by two P-frames. Further, for the P-frame, as

discussed above, the pre-defined threshold for determining the

block matching (i.e., is the < I,P > block pair good/similar

match or bad/dissimilar match) can be tuned according

to the application preference, e.g., for applications which

favor good quality, more post-intra-encoded blocks (e.g.,

store and encode the deltas instead of simply reusing) are

preferred. On the other hand, for applications that demand

very small compressed data sizes to transfer through the

network, the threshold condition can be relaxed to favor

the direct reuse more. For example, in this paper, we pick

two different thresholds to strike a balance between latency,

quality and compression efficiency, as will be discussed in

detail later in Sec. VI-C. We also investigate how different

thresholds/preferences shape the behavior of our approach

in a sensitivity study in Sec. VI-E.

VI. EXPERIMENTAL RESULTS

In this section, we compare our proposed intra-frame and

inter-frame designs against two different PCC techniques, by

evaluating four metrics critical for the PC-based applications

– execution latency, energy consumption, video quality, and

compression ratio. Towards this, we first describe the config-

urations (Sec. VI-A) used for our analyses, e.g., experimental

platform, dataset, and different designs (Sec. VI-B). We then

compare those design schemes on our platform (Sec. VI-C).

Finally, we provide detailed insights on how to tailor the

PCC pipeline to cater to various application preferences

(Sec. VI-E).

A. Methodology

1) Evaluation Platform: To evaluate and compare the

proposed intra- and inter-compression designs with the

state-of-the-art works, we use the NVIDIA Jetson AGX

Xavier board [58], which is an edge development board, and

is well-known to simulate the realistic edge development

environment. Specifically, it is equipped with a 512-core

Volta GPU, a 8-core ARMv8 64-bit CPU, and 32GB 256-

Bit LPDDR4x Memory. In our implementation, we start

the application from CPU (reading the PC data), and then

offload the computations to GPU (octree construction, block

matching, etc.), and the compute mode of Jetson AGX Xavier

board is set to be 15W.

2) Point Cloud Dataset: We use two dynamic PC video

datasets – the 8i Voxelized Full Bodies (8iVFB) [18] and

the Microsoft Voxelized Upper Bodies (MVUB) [8] datasets

in our evaluations. Specifically, we pick four videos from

8iVFB, and two videos from MVUB. The 8iVFB dataset

contains the PC data of four persons, captured by 42 RGB

cameras placed at different angles, while the MVUB dataset

consists of five subjects captured by four frontal RGBD

cameras. All these videos used are captured at 30fps, and

voxelized into 1024×1024×1024 voxels (3D points), with

each point containing three float-pointing coordinates and

three unsigned char RGBs.

Table I: Six videos in 8iVFB [18] and MVUB [8] datasets

used in this paper.

Video Redandblack Longdress Loot Soldier Andrew10 Phil10
#Frames 300 300 300 300 318 245

#Points/Frame 727070 834315 793821 1075299 1298699 1486648

B. PCC Design Configurations

To demonstrate the effectiveness of our proposal, we

evaluate the following five PCC designs:

• TMC13 [56]: We use TMC13 (G-PCC codec from

MPEG), as the state-of-the-art approach for intra-frame
compression. Especially, by tuning the parameters (e.g.,

octree depth, compression algorithm, etc.), we utilize

the octree-based method to compress the geometry data

losslessly, while the attributes are compressed by the

predictive RAHT lossily. We use this tool to compress

every single PC frame, and measure the encoding latency,

energy consumption, the compressed stream size, and

finally measure the quality (PSNR) of the decoded frame

by pc error d tool [85].

• CWIPC [13], [48]: CWIPC is a PCC library that supports

the inter-frame compression (encoding the predicted frame

via macro block (MB)-based motion estimation). We use

CWIPC as the state-of-the-art approach for inter-frame
compression and build it with multi-thread option. In our

setup, one I-frame(intra-compressed frame) is followed by

two P-frames(predicted frames), and the number of threads

for MB matching is set to 4. Similarly, we have opted to

use octree-based algorithm for geometry compression, and

directly applied entropy encoding to the raw attributes.6

• Intra-Only: We apply our intra-frame compression method

discussed in Sec.IV to each of the PC frames. Specifically,

we choose to segment each PC frame into 30000 blocks7,

and use a 2-layer encoder (more specifically, we first

encode the attributes via the proposed intra-frame encoder

6Based on our profiling, the provided attribute compression APIs (e.g., JPEG-
Turbo-based) would degrade the quality of PC significantly; thus, we do
not use such APIs/Libs in our evaluations.

7We decide the parameters for intra- and inter-compression by profiling
several frames in the 8iVFB [18] dataset, to obtain a relatively balanced
design point between compressed size and quality.
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as described in Sec. IV, and then treat the obtained delta

values as new attributes, and finally feed them again to the

encoder to further increase the compression efficiency).

• Intra-Inter-V1: As mentioned in Sec. V, only part of

the blocks/segments can be directly approximated by the

reference block. Therefore, we add one more parameter

to control the ratio of such blocks. Especially, for each

P-block, we first calculate its 2-Norm distance to its best
matched block in I-frame. We then compare this distance

with a preset threshold (e.g., 3007) to determine if this

segment can be approximated by direct reuse; otherwise,

we mark it as an post-intra-encoded block. Also, the total

number of blocks is 50000, and the search step is set to

be the size of the current P-block (i.e., to find the best

matched block for current P-block, each time, we traverse

the search region in the reference frame by this step size).

• Intra-Inter-V2: For this configuration, we choose a larger

threshold (1200) for the “direct-reuse decision making”

such that the ratio of the direct reuse will increase with

slight drops in quality. Other settings are not changed (they

remain the same as in the Intra-Inter-V1 version).

C. Results

We first compare the execution latency, energy con-

sumption, quality (PSNR [peak signal-to-noise ratio]), and

compression efficiency (compressed size) in Fig. 8, when

using various designs explained in Sec. VI-B to compress

the six PC videos from the 8iVFB and MVUB datasets

(described in Table I). Then, we discuss and present the

validity of our results on the smartphones.

Execution Latency: We first compare two SOTA schemes

(TMC13 [56] for intra-frame compression, and CWIPC [13]

for inter-frame compression) with our three proposals (intra-

only, (better) quality-oriented Intra-Inter-V1, and (better)

compression-oriented Intra-Inter-V2), and present the col-

lected execution latencies in Fig. 8a. For each video, these

five designs are listed on the x-axis. The primary y-axis (left)

shows the latency in ms for SOTAs, whereas the secondary

y-axis (right) gives the latency in ms for our proposals.

From this plot, the following observations can be

made:

• TMC13: TMC13 takes around 4152ms to compress one

PC frame, including 1552ms for geometry compression

and 2600ms for attribute compression.

• CWIPC: CWIPC takes about 4229ms (mainly for geometry

compression as the attributes are directly entropy-encoded

without any other efforts, as mentioned in Sec. VI-B).

• Our Intra-only: The performance of above two tech-

niques has two orders of gap with the ≈ 100ms real-

time requirement [19]. On the other hand, our intra-

only scheme takes only 95ms (42ms for geometry and

53ms for attribute compression), which is 43× faster w.r.t.

TMC13. This is due to: 1). the octree can be constructed
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Figure 8: Results: (a) Latency breakdown. (b) Energy

consumption. (c): Compression efficiency.

in parallel with the help of Morton codes, which speeds

up the geometry compression by 37×; 2). by utilizing the

spatial locality with Morton code for attribute compression,

instead of performing transforms through octree layers,

in our proposal, only simple subtractions are needed for

computing deltas. Further, all the points are processed in

parallel; 3). we discard the entropy encoding for further

speedup.

• Our Intra-Inter-V1 (Quality-oriented): This design favors

the quality over compression efficiency, and it only

takes 124ms (41ms for geometry compression, and 83ms
for attribute compression), contributing to around 34×
speedup w.r.t. CWIPC. This speedup comes from: 1).

instead of searching the matched macro block from the

entire space (the I-MB-Tree traversal as described in

Sec. V), given the points sorted in the Morton code order,

the search space for block matching in our proposal is

minimized (in the I-frame, now, we only need to search

the neighboring regions for the current P-block); 2). for the

matched macro block, instead of executing the complex

iterative closest point (ICP) [7] algorithm for the translation

and rotation matrix, we only need to record a pointer to the

matched block in I-frame, without any extra computation

overhead.

• Our Intra-Inter-V2 (Compression efficiency-oriented): Sim-

ilarly, our Intra-Inter-V2 scheme (oriented towards high
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compression ratio) takes 121ms (43ms for geometry and

78ms for attribute compression), which represents about

35× speedup w.r.t. CWIPC. There is not much perfor-

mance difference between V2 and V1, because we have to

run the block matching algorithm on all the blocks before

making the “direct-reuse” decision, which dominates the

entire pipeline in both the design variants.

Energy Consumption: Fig. 8b plots the energy consumptions

(in J) for the SOTA works on the primary y-axis (left),

and our proposals on the secondary y-axis (right). Clearly,

TMC13 and CWIPC are two of the most energy-consuming

schemes, which consume 11.3J and 19.8J, respectively, for

one PC frame. This is mainly due to their long execution

latencies. Further, as mentioned in Sec. VI-B, 4 CPU

threads are invoked to perform the macro-block matching

in CWIPC, this results in even higher CPU power. For

example, the average CPU power for TMC13 is 1687mW
whereas 3622mW for CWIPC. On the other hand, our Intra-

Only scheme only consumes 0.38J per PC frame, which

represents 96.6% energy saving w.r.t. TMC13, while our Intra-

Inter-V1 and Intra-Inter-V2 only consume 0.52J and 0.5J
energy, respectively, which translate to ≈ 97% energy savings

w.r.t. CWIPC. Note that, although our schemes employ the

GPU with an extra overhead (e.g., the GPU power is about

1065mW ), the CPU power is reduced (e.g., around 1310mW ,

lower than that in TMC13 and CWIPC) since most of the

computations are offloaded to GPU. Therefore, the overall

energy savings brought by our schemes are similar to the

corresponding execution latency reductions discussed above.

Compression Efficiency: To investigate how the compression

efficiency changes with the above schemes, in Fig. 8c, we plot

the compressed size (in megabytes) shown on the primary

y-axis (left), and the PSNRs (in dB) for attributes8 on the

secondary y-axis (right), and observe that:

• TMC13: compresses the input frame size to be only 8% of

the original while preserving the best video quality (PSNR

is 55dB). This is mainly because TMC13 performs lossless

geometry compression and almost-lossless attribute com-

pression in our settings. Additionally, the transform and

quantization in TMC13 can output (near-)zero coefficients,

which significantly increases the compression ratio. Note

however that, this comes at the cost of longer processing

latency, as shown in Fig. 8a.

• CWIPC: Overall, when employing the CWIPC, the output

frame size reduces to around 14% of the original input

frame (including 63% of geometry and 37% of attribute

data). The reason for such low compression ratio is because

– 1 for intra-attribute compression, only entropy encoder is

applied; and 2 even with the inter-frame compression, only

few macro blocks are matched and inter-encoded, which

limits the benefits from inter-frame compression. As for

8The geometry PSNR are excellent for all designs (e.g., > 70dB), so we
only compare the PSNR for attributes in the evaluations.

the quality, it drops the PSNR by 7.2dB when compared

to TMC13, due to the macro block-based approximation

for the inter-frame compression.

• Our Intra-only: this design emits out a compressed frame

with ≈ 17% of the original data size (including 19% of

geometry and 81% of attribute) and provides PSNR values

up to 48.5dB (only 6.5dB drop compared to TMC13).

Clearly, the geometry data has been compressed very

well, as opposed to the attribute data. Recall from our

intra-frame design discussion in Sec. IV that, the Morton

codes can precisely describe the geometry relations among

points (thus, ensuring a good geometry compression), but

sometimes they may not work well for the attributes,

especially when the spatial locality is not rich for some

blocks/frames.

• Our Intra-Inter-V1 (Quality-oriented): To further reduce

the frame size, this design exploits the temporal locality

across PC frames. As a result, the data size becomes

5% less than our intra-only design (e.g., only 12% of

the original size), while dropping the quality by 6.1dB

due to the block-level approximations in the inter-frame

compression.

• Our Intra-Inter-V2 (Compression efficiency-oriented): Sim-

ilarly, this design further reduces the compressed data

size by 2%, by adjusting the threshold for “direct-reuse

decision making”, as discussed in Sec. VI-B. At the same

time, the quality further drops by 2.9dB. Still, we argue

that, even with the Intra-Inter-V2 option (see one demo

in Fig. 10a iv ) which has the worst quality, the absolute

PSNR is close to 40dB, which is sufficient for many

of the video applications that do not require very high

resolution [6]. For other high-demanding applications like

AR-based surgery [11], our proposals may jeopardize the

video quality, and consequently, we may need further

software and/or hardware optimizations for improved user

experience.

Correlation with the evaluations on smartphones: Based

on our profiling, the power consumption of our proposal is

≈ 4W , which is below the peak discharge power of modern

smartphones (10W [2], [70]), meaning that our proposal will

work fine on smartphones as well. To further prove this, we

also change the compute mode of Jetson AGX Xavier board

to 10W, and measure the execution latency for loot video [54].

We observe that the total execution latency when using 10W

mode is 1.29x of that when using 15W mode (the mode

for collecting the main results). Such similar performance

demonstrates that our proposal is expected to work well for

low-power edge devices like smartphones as well.

D. Architectural Insights:

In this section, we further investigate the energy efficiency

characteristics of the proposed optimizations by dissecting

the total energy consumption for the inter-frame attribute

compression proposal (which is the most time- and energy-
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Figure 9: Energy consumption breakdown for inter-frame

attribute compression for Loot video [54].

consuming one among the proposed geometry, intra- and inter-

frame attribute compression techniques). We then analyze

the bottleneck of our proposal and provide insights for

potential architectural support to make PCC even more

energy efficient. As shown in Fig. 9, the address generation

stage for storing P-blocks’ deltas/residuals consumes 32% of

total energy, while the computation for the 2-norm attribute

distance consumes 51% energy, which dominates the total

energy consumption, and is, therefore, our target for next-step

optimization. Specifically, to compute the 2-norm attribute

distance, two kernel functions are invoked (Diff Squared and

Squared Sum), which consume 35% and 16%, respectively

of the total energy. Such high energy consumption of these

two kernels can be attributed to two reasons. First, these

are the most frequently invoked kernels during the block

matching stage. Second, processing a typical PC with 1M
points in a fully-parallelized fashion poses very high demands

on the GPU resources (e.g., the number of available threads

or the memory budget), which are quite limited, especially in

edge devices. More interestingly, software-level optimizations

for this step have been fully exploited (e.g., the kernel

functions are invoked in a fully-parallelized manner), yet it

still dominates the latency and energy. This motivates us to

further look into architecture-level optimizations in future

work, including 1) replacing GPU with ASIC to improve

the power efficiency for Diff Squared computation kernel;

2) customizing the accelerator (e.g., number of layers of the

tree-structured adder) for the Squared Sum kernel; and 3)

minimizing data movements such as inter-SoC (e.g., between

GPU and CPU) or intra-SoC (e.g., across L2/L3 caches in a

GPU) memory copies.

E. Sensitivity Study

Our proposed intra-frame PCC utilizes the Morton code

to capture the spatial locality, and significantly speeds up the

compression (44×), with high compressed quality (48.5dB
PSNR). Additionally, by exploiting the temporal locality

across frames, our inter-frame compression further increases

compression efficiency with the cost of longer processing

latency and lower quality. To study how the inter-compressed

frames/blocks would affect the compression efficiency (the

compressed size w.r.t. the raw PC frame) and the quality

(PSNR), we reconfigured the number of “direct-reuse” blocks

i iii ivii

(a) Original vs. decoded PCs with our proposals.
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Figure 10: (a) comparison between i: raw PC and our

proposals (ii: intra, iii: intra-inter-V1, iv: intra-inter-V2). (b)

PSNR v.s. compression ratio (i.e., input size / compressed

size).

by adjusting the threshold as discussed in Sec. VI-B. As

shown in Fig. 10b, with fewer “direct-reuse” blocks (e.g.,

only 31% of the I-blocks are directly reused in the left-most

bar), the PSNR drops slightly when compared to the intra-

frame compression, while the compression ratio is also the

worst. On the other side, by increasing the percentage of

the “direct-reuse” blocks, the compression efficiency also

increases, at the cost of a PSNR degradation (e.g., the PSNR

reduces to 38dB with 83% “direct-reuse” blocks). Hence, to

enhance the flexibility of our proposed design for trading

off the compression efficiency with the quality, we can use

the percentage of “direct-reuse” blocks as a tunable design
knob, for which, users can choose the appropriate value based

on their preferences (i.e., fewer “direct-reuse” blocks with

higher PSNR vs. more “direct-reuse” blocks with higher

compression efficiency).

VII. CONCLUDING REMARKS

PC processing has become the trend for many video

applications spanning scientific computing, education, health-

care and entertainment, and is recently being offloaded

to the edge. PC compression is an essential component

of PC processing (and a critical performance bottleneck),

which affects video quality, user experience, and energy

efficiency. Unfortunately, prior works mainly focused on

compression ratio, but did not consider the performance and

energy implications, particularly for edge devices. This paper

exploits the data similarity opportunities in both geometry

and attribute data from both intra-frame and inter-frame

perspectives, and proposes two complementary designs for

minimizing the compression latency and energy requirements

for pushing the PC compression to the edge. And, more

importantly, these proposals are compliant with the emerging

MPEG PCC standards [53]. The experimental results with

six PC videos show that our proposals provide 34× speedup

(latency reduces from 4.2s to 121ms) and 96% improvement

in energy efficiency, with only 13% compression ratio drop

and a minimal degradation in video quality with respect to

the state-of-the-art schemes. Note however that, even with

our proposals, the execution latency per PC frame is still

slightly beyond the real-time requirement (i.e., ≥ 100ms).

Towards this, in the future, we plan to explore GPU-specific

295

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 18:50:20 UTC from IEEE Xplore.  Restrictions apply. 



optimizations such as compile-time instruction fusion for

better parallelism, or provide additional architectural support

for our proposal by investigating the hardware designs with

respect to FPGA modules or customized ASICs, to optimize

the bottleneck stage and make PCC on edge devices even

faster/more efficient (e.g., ≈ 33ms for 30 f ps display refresh

rate).
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