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Abstract—As Point Clouds (PCs) gain popularity in processing
millions of data points for 3D rendering in many applications,
efficient data compression becomes a critical issue. This is
because compression is the primary bottleneck in minimizing
the latency and energy consumption of existing PC pipelines.
Data compression becomes even more critical as PC processing is
pushed to edge devices with limited compute and power budgets.
In this paper, we propose and evaluate two complementary
schemes, intra-frame compression and inter-frame compression,
to speed up the PC compression, without losing much quality
or compression efficiency. Unlike existing techniques that use
sequential algorithms, our first design, intra-frame compression,
exploits parallelism for boosting the performance of both
geometry and attribute compression. The proposed parallelism
brings around 43.7x performance improvement and 96.6%
energy savings at a cost of 1.01x larger compressed data size. To
further improve the compression efficiency, our second scheme,
inter-frame compression, considers the temporal similarity
among the video frames and reuses the attribute data from
the previous frame for the current frame. We implement our
designs on an NVIDIA Jetson AGX Xavier edge GPU board.
Experimental results with six videos show that the combined
compression schemes provide 34.0x speedup compared to a
state-of-the-art scheme, with minimal impact on quality and
compression ratio.

Keywords-point cloud compression; edge computing; video
processing; energy-efficiency;

I. INTRODUCTION

As the world is increasingly becoming virtual and moving
closer towards automation, accurate 3D representation of
real-life objects in the virtual domain, be it for life-like
graphics or efficient autonomous driving, is becoming es-
sential. Recently, Point Cloud (PC) consisting of millions
of points, which capture the 3D geometry and attributes
(e.g. RGB colors), has become an important modality for
such realistic representations for applications like AR/VR,
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gaming, autonomous driving, etc. Moreover, with the recent
pandemic, as telepresence is becoming a norm, people are
virtually attending meetings, visiting arts, heritage sites and
tourist places across the globe, and even living in a virtual
universe. All these applications rely on high quality PC
capturing, processing and displaying for a more realistic
experience. Additionally, with the new generation mobile
phones, capable of capturing PC and then streaming them
into an AR/VR enabled head mounted displays (HMDs),
capturing 3D PC now is becoming as common as capturing
a photograph. With this trend, the PC business is expected
to reach a 10 Billion dollar industry by 2024 [71].

Since capturing PC no longer requires sophisticated,
commercial and expensive devices and people are equipped
with mobile PC capturing devices (like iPhone 13 Pro [3]),
the application providers are also pushing many of the PC
processing tasks like compression or rendering to the edge, to
avoid the use of expensive cloud resources, minimize the data
transfer latency, and/or protect user’s privacy. Considering
the dense features, 3D geometry and the visual attributes
captured in PC, especially for the media applications like
telepresence and virtual visits, pre-processing [21], [44],
[61], [84], compressing and storing [14], [16], [19], [47],
[48], [74], post-processing and streaming [25], [40], [66],
[76], [90] PC using a mobile device, while maintaining
a reasonable quality of service (QoS), are fast becoming
challenging tasks. Specifically, PC compression (PCC, or
PC encoding) consists of both geometry (e.g., X, ¥, Z
coordinates in the 3D space) and attribute (e.g., RGB colors)
compression. Our experiments show that PCC is the most
expensive computation in a PC processing pipeline that
takes ~ 4seconds, especially when deployed in mobile/edge
devices, and hence, is a major contributor to the performance,
video quality, and transmission energy, for the entire PC
pipeline.

However, it is challenging to design an optimal point cloud
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compression (PCC) pipeline which is fast (within or close
to real-time), accurate (with good quality), and efficient
(with high compression ratio). The state-of-the-art PCC
pipeline typically utilizes tree structures like Octree [63] or
kd-tree [62] for compression, and often, the tree construction
becomes a bottleneck due to lack of parallelization. Moreover,
the conventional PC typically stores the geometry, while a
wide array of applications, especially the ones meant for
content consumption, infotainment and gaming, need the
attributes to be stored as well, hence making the compres-
sion even more complex. For example, TMC13 [56] and
CWIPC [48] — two state-of-the-art (SOTA) PCC techniques
— take 4.1s and 4.2s, respectively, to compress one PC frame
on an edge platform, which are significantly higher than the
real-time requirement (=~ 100ms [19]), making them even
more challenging to employ in emerging edge devices.

To address this, we study the SOTA compression pipelines
and observe that the main reason behind their performance
inefficiencies is their sequential updates to the global result
with each intermediate local runtime state in a point-by-point
fashion. Moreover, there has been little effort in parallelizing
them on the state-of-the-art commercial systems, let alone on
any edge/mobile devices. Prior works on PCC acceleration
[19], [33] only consider the PC with geometry data and/or
have limited parallelism, and thus, could neither leverage
GPU nor benefit from other types of accelerators. In this
context, this paper explores the following three opportunities:
® The points can be processed in parallel by using Morton
codes [30] (which mathematically represent the geometry
relationship among points) to identify the spatial-locality'
within one frame for geometry compression. @ Further, this
locality also exists in attributes (RGB pixels), i.e., spatial
locality leads to attribute similarities, and hence opening
opportunities for fast attribute compression. @ And, finally,
the locality extends beyond a single frame, i.e., the temporal
locality, which can be leveraged by sorting the points in the
Morton code order, creating further opportunities to improve
the compression efficiency.

Motivated by these opportunities, we propose and evaluate
a two-pronged compression approach, where the intra-frame
approach leverages the opportunities described in @ and @),
and the inter-frame approach takes advantage of 3. The
intra-frame approach speeds up the geometry and attribute
compression by 37x and 49x respectively, while the inter-
frame approach further improves the compression ratio by
~ 1.75x by reusing the matched blocks in reference frame.

To the best of our knowledge, this is the first work that
targets to push the PCC to the edge by taking edge device-
specific constraints into account and targeting four critical
metrics — latency, energy, quality, and compression ratio. The
major contributions of this work are the following:

e We identify the spatio-temporal redundancies for optimiz-

'In this paper, we use “locality” and “frame similarity” alternatively.
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ing the PCC using a public PC dataset [18]. We also
demonstrate that, such spatio-temporal localities can be
precisely captured by Morton codes [30]. Specifically,
we find that @ the points with similar Morton codes
within one frame tend to have little variances in both
geometry and attribute values (spatial locality), and @
the points with adjacent Morton codes (for instance, a
cluster of geometrically close points) are likely to move
in a certain direction, as a whole block, across frames
(temporal locality).

e We propose two complementary designs to capture and
utilize such spatio-temporal localities. First, we propose
a Morton code-assisted intra-frame compression scheme,
where both the geometry and attribute can be compressed
in a highly parallel fashion. We believe this is the first
work that applies the Morton code-based parallel octree
construction algorithm [31] to speed up PC geometry com-
pression. On the other hand, for attribute compression, we
propose to sort the points in the Morton code order with the
goal of capturing the attribute similarities. Also, to utilize
temporal locality, we propose an inter-frame compression
scheme which further increases the compression efficiency.

e We implement and evaluate our proposals on an edge
device — NVIDIA Jetson AGX Xavier board [58]. Our
extensive experimental results show that, compared to a
state-of-the-art intra-frame PCC technique [56], our intra-
frame proposal can accelerate the PCC by 43.7x and save
96.6% energy. While with our inter-frame compression
design, the compression ratio can be further improved
(increasing from 5.95 in intra-frame design to 10.43) with
35x speedup and 97.4% energy savings with respect to a
state-of-the-art inter-frame PCC scheme [13]. Moreover,
our proposal not only accelerates the PC encoding stage,
but also can improve the performance of the decoding
stage which involves inverse encoding operations (e.g.,
reduces decoding latency to ~ 70ms), thus enabling the
end-to-end PC processing in near real-time (i.e., 10FPS).

II. BACKGROUND AND RELATED WORK

A. Background

Point Cloud in Real Life: Point Cloud (PC) is a set of
points which represent objects or shapes in a 3D space
where each point/voxel (3D equivalent of a 2D pixel)
contains its 3D location (x, y, z coordinates), as well as
some attributes (e.g., colors, normal, etc.). Capturing PC
representation of the real world typically requires millions
of voxels, far more than the amount of pixels required for
2D images. While PCs containing only the 3D geometry
data are commonly used in LiDAR-based 3D imaging for
autonomous vehicles or robotics path planning, the lack of
attributes nullify their usage for visual media consumption.
Therefore, any PC application meant for visual media like
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Figure 1: Example PC applications and processing pipelines.

immersive telepresence, telemedicine, video streaming etc.,
needs the attributes to be stored along with the 3D coordinates.

Since PC generation requires sophisticated instruments
like LiDAR or 3D cameras, it was typically done on server-
class computers with high compute and storage capabilities.
However, with the advent of the modern mobile devices,
capturing 3D image and PC on these tiny and battery-backed
devices is becoming increasingly common. For example, the
recent iPhone 12/13 Pro features LiDAR camera for PC
recording, and similarly, Samsung Galaxy S20+/S20 Ultra
contains ToF (Time of Flight) camera for the same. This
makes PC-based media recording a common commodity,
rather than a sophisticated pipedream. Moreover, applications
like Record3D [44] enable seamless PC media streaming from
phone to a wearable, encouraging a perpetually increasing
PC content generation and consumption. However, the sheer
volume of the data captured in these PC applications coupled
with the limited compute and storage capabilities of these
handheld devices pose a challenge in high quality PC media
capture, storage and consumption [26]. To understand these
challenges, we analyze an end-to-end PC pipeline.
End-to-end Pipeline: The PC video processing pipeline, as
shown in Fig. 1, typically consists of 5 stages: 3D content
generation, PC encoding, data transmission, PC decoding,
render and display. In the 3D Content Generation stage, the
capturing device (e.g., the iPhone) uses LiDAR scanning
or photogrammetry for the PC data acquisition. LiDAR
maps spatial relationships and shapes by measuring the time
taken by signals to bounce off objects and return to the
scanner, while photogrammetry takes many photos from
different angles to capture the target’s geometry [9]. This
process typically takes 10s of milliseconds [26]. Further,
each point in the PC is associated with 3 coordinates (X,
y, z) for the geometry and 3 colors (R, G, B) for the
attribute. Thus, to represent one point, 4bytex3 + 1bytex3
=15bytes are needed (4bytes per coordinate and 1byte per
color component). Thus, a typical PC frame containing 10°
points [49] require 120M bits of data, which is impossible
to transmit in real-time to the end-user’s display, from
both the latency and energy standpoints, considering a
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steady 30-60 f ps requirement. Therefore, the PC video frame
is compressed in the PC Encoding stage, before being
transmitted over the network to the end-user. The received
frame is decoded in the PC Decoding stage and the decoded
PC frame is forwarded to the Render and Display stage
where it is finally rendered and displayed on the screen. Note
that although the same method is followed and has been well
established for streaming 2D or 360° videos, given that the
PC data is much denser, compression becomes essential as
well as the primary bottleneck, often taking several seconds
to compress one PC frame [26](see Fig. 1@).

B. Related Work

1) Point Cloud Use-cases: Recently, PC is being widely
used in various fields, such as AR/VR [46], [81], telepres-
ence [43], [57], [86], virtual tourism [12], [50], teleopera-
tion [83], telemedicine [51], video streaming [24], [37] and
gaming [81], [87], etc. where both geometry and attributes
are essential as the contents are consumed by people for
infotainment purpose. Almost all of these applications can
be categorized as interactive volumetric video streaming.
On the other hand, for applications such as autonomous
driving [1], [4], robotics [79], motion planning [34] or path
planning [42], attributes like RGB info, at most times, are
not necessary as the PC is used in the compute pipeline (by
the machine) to extract features and make decisions.

Especially, interactive volumetric video streaming is
starting to become mainstream, as edge devices (e.g., iPhones)
facilitate recording and streaming the PC video which provide
end-users with real-time 6-degrees of freedom (6-DoF)
experiences. Streaming such PC videos in real-time involves
capturing both the attributes and geometry data making
it a challenging task even without user-object interaction.
Towards this, Han et al. proposed the viewpoint-dependent
PCC scheme (termed as “ViVo”) which only sends the
3D tiles within user’s field of view [24], thereby reducing
the data volume. Such optimizations [37], [59], [68] are
extremely important for applications like virtual tourism,
video streaming etc. More complex optimizations are needed
when human-object interactions and human-object-sensors
interactions are involved (for applications like telepresence,
telemedicine, virtual shopping and gaming) and need the help
of PC data analytics to recognize/classify the interactable
objects/scenes.

2) Point Cloud Analysis: To analyze objects/scenes in PCs,
3D convolutional neural networks (CNNs) have been widely
used in techniques like 3D shape classification [66], [67], [89],
[91], object detection [38], [45], [65], tracking [22], [78], or
segmentation [10], [66], [67], [89]. While most prior works
target accuracy, Mesorasi [20] improves the compute and
memory efficiency of 3D CNNs using delayed-aggregation
and software-hardware co-design, and PointAcc [40] proposes
special mapping unit and memory management for optimiza-
tions. However, the huge data volume of the PC still remains
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a bottleneck in data movement and sharing, creating hurdles
in high quality-low latency streaming/analysis. Therefore,
there have been several works focusing on compressing the
PC, as discussed next.

3) Point Cloud Compression (PCC): The prior PCC works
can be classified as follows:
G-PCC utilizes special structures like octree or kd-tree to
represent and compress the geometry [17], [23], [74]. For
example, with octree-based PCC, considering a PC is con-
tained in a DxDx D cube, the cube is recursively divided into
8 D/2xD/2xD/2 sub-cubes until D=1. The occupied/non-
empty voxels in level, can be indicated by the occupy bits
of its “parent voxel” (voxel in level,_;). Each branch node
in the octree stores 8 occupy bits, indicating the occupancy
of its children/sub-cubes. The attribute compression in the G-
PCC depends on the geometry. As a result, the attribute and
geometry are compressed separately. There are 3 methods for
attribute compression in the G-PCC — RAHT [14], Predicting
Transform [52], and Lifting Transform [52]. The main idea
behind RAHT is to use the attribute values in a lower octree
level to predict the values in the upper level. In contrast,
Predicting Transform and Lifting Transform are based on the
hierarchical nearest-neighbor interpolation [80]. Apart from
these methods that compress a static PC, there also exist
several attempts at optimizing the compression for dynamic
PCs by exploring the “temporal redundancy” across the PC
video frames. For example, a macro block (a SxSxS cube)
based motion estimation and compensation is proposed in
[15], [16], [48], [73], to further improve the compression
efficiency.
V-PCC? targets compressing PC videos. Specifically, given a
PC video stream, V-PCC first performs 3D to 2D projection
on each frame [29], [32], [39], [75], and then encodes these
2D projections via traditional 2D image codec. Both G-PCC
and V-PCC are widely adopted in MPEG standard [53], and
since our proposals begin with G-PCC, thus, is also compliant
with the MPEG PCC standard.
NN-PCC? takes the raw PC as input, and feeds it into
a pretrained 3D CNN, which outputs the compressed PC
stream [28], [82]. Several recent efforts have been put into
optimizing the 3D CNN to increase the compression ratio
and/or decrease the number of parameters in the neural
network model [27], [69]. However, based on the results
reported in [40], even with a custom 3D-CNN accelerator,
only 2.5x speedup could be achieved for 3D-CNN compared
to edge GPU. Considering that NN-PCC can take thousands
of seconds to compress one PC frame [88], such a huge
gap between the long execution latency of NN-PCC and the

2 Although V-PCC and NN-PCC have high compression efficiencies, they
are compute-intensive [41], [88], and consequently, are not the best option
for mobile devices and are not considered in this work. Besides, most of
the NN-PCC only focus on compressing geometry data [88], thus, is not
applicable for this paper’s target (i.e., mainly for vision applications where
the attributes are essential).
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Figure 2: Prior PC compression technique categories and
latency breakdown for prior techniques on compressing one
PC frame from [55].

real-time refresh requirement of vision applications is yet
to close and prevents the deployment of NN-PCC on edge
devices. Moreover, NN-PCC mainly focuses on compressing
the geometry data and hence is not very useful for the PC
with attributes [88].

To the best of our knowledge, most of these works focusing
on PCC with attributes target the compression ratio, and
overlook the latency or energy consumption. However, as PC
is moving to mobile, one cannot ignore the latency/energy
constraints, thus demanding the need for mobile friendly
PCC techniques which offer the best compression, latency
and energy savings while preserving the video quality.

III. MOTIVATION

A. Reasons for Inefficiency

To better understand the performance of the PCC pipeline,
we characterize the “latency breakdown” of two state-of-
the-art G-PCC techniques, i.e., PCL [72] and TMC13 [56],
on a typical edge SoC platform (NVIDIA AGX Xavier) in
Figs. 2@ and @. Overall, the entire PCC pipeline takes around
3.5 seconds®, which prevents one from employing such
techniques in an edge device. Further, among the five stages in
the pipeline, octree construction & serialization for geometry
compression and RAHT for attribute compression are the two
major bottlenecks which take 1s and 2s, respectively. Driven
by these observations, we investigate the reasons behind such
inefficiencies, and further explore the potential opportunities
for speeding up the PC compression.

Before delving into the details of our approach which
aims to close the performance gap between “seconds” in
practical and “hundreds of milliseconds” in ideal settings,
we first investigate the reasons behind the inefficiencies of
the prior techniques. Towards this, we studied three state-of-
the-art PCC pipelines — octree-based pipeline for intra-frame
geometry compression (Sec. IV-A1), RAHT for intra-frame
attribute compression (Sec. IV-C1), and macro block-based
motion compensation pipeline for inter-frame compression

3We use PCL [72] and TMC13 [56] library for our profiling, where the
geometry is compressed by the octree structure in PCL, and the attributes
(RGB colors) are compressed through RAHT in TMC13.
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(Sec. V) — and reached the following conclusions: the primary
reason behind their performance inefficiencies is what can
be termed as “under-parallelism”, i.e., not being able to
fully exploit parallelism during compression. Especially,
many levels of dependencies (i.e, various regularities of
locks) exist in their pipelines — e.g., the entire octree needs
to acquire a “macro lock” before inserting a point and
updating the tree (as shown in Fig. 5), during the intra-frame
geometry compression; similarly, in the attribute compression
shown in Fig. 6, the points at one layer in the octree have
dependencies with those at other layers, thus their processing
requires acquiring locks at a “layer granularity”. Even with
the optimizations in [33], where the octree construction
stage can be performed in parallel, there are still several
synchronization points, resulting to limited parallelism. To
summarize, the performance inefficiencies in prior works can
be primarily attributed to the lack of parallelism of these
algorithms. Motivated by this observation, we next plan to
improve the compression performance by exploiting various
parallelism opportunities, which have been ignored, to the
best of our knowledge, by the prior research but are essential
in employing PCC in edge device settings.

B. What are the potential opportunities?

Increasing Geometry Compression Parallelism Using
Morton Code: As mentioned earlier, the reason why the
“sequential update” is necessary is that, during the interme-
diate stages, the global Octree (the final tree constructed at
the last step) is unknown until the last point is inserted in
the tree. To relax this constraint, if the PCs can be sorted
based on a geometrical order, then the topographic structure
of the global tree can be known at the beginning, thus
fixing the tree structure and not requiring to be updated
in a point-by-point fashion. As a result, these points can
processed in parallel. In fact, there is a mathematical concept
called Morton Code [30] (essentially, a space filling curve
that maps a multidimensional data to one dimension while
preserving the locality of the data points), which describes
the geometrical location relationships between points, and
thus can serve this purpose perfectly. There have been prior
works like N-body application [5] which utilize the Morton
code for parallel octree construction?; however, we believe
ours is the first work that tries to apply such technique in
the PCC pipeline.

Morton Code Can Also Assist Attribute Compression:
As discussed above, Morton code naturally describes the
geometrical relations among points; thus, intuitively, it
makes sense to utilize the Morton code to improve the
geometry compression. However, our goal is to go beyond
just optimizing the geometry compression. Specifically, in
the traditional 2D video compression domain, the video
frames are usually rich in spatial locality (similar neighboring

4We do not claim the parallel octree construction as our contribution.
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pixels) within one frame, as well as temporal locality (similar
pixel values in corresponding locations across consecutive
frames) [36]. This observation motivates us to ask the
question: Do such similarities also exist in the PC streams?
If so, can we leverage Morton code (containing location
information) to capture such similarities as well?

Spatial Locality in Attributes: Towards exploring the attribute
similarity within one frame, we partition a frame (whose
points are first sorted in Morton-code order) from the 8iVFB
dataset [18] into 10, 10%, 10* and 10° macro blocks, plot
the CDF of the range for attribute delta (Max,.q — Min,eq)
within one segment/macro block in Fig. 3@, and observe
that:

Overall, with more segments/macro blocks whose size is
smaller (compared to a frame), more similarity exists in a
block (delta is small). Specifically, compared to the black
line (only 10 blocks), the attribute in yellow line (10*
blocks, each of them is 1000x smaller) exhibits a better
similarity (i.e., left-shift towards the y-axis).

When partitioning the macro blocks in an even more fine
grain fashion, as shown in the green line with 10° segments,
now the CDF curve is pushed towards left even further.
This again indicates that, within a smaller macro block,
the voxels have richer similarity with their neighbors.
Temporal Locality in Attributes: To study the temporal
attribute locality across two frames, we plot the CDF of the
attribute deltas among two segments in an I-frame and a
P-frame in Fig. 3@, and a visual view of how these segments
look like in Fig. 3@, and we observe that:

e Compared to the two solid lines (the frame is partitioned
into 20 blocks), the two dotted lines (when partitioned
into 1000 blocks) are closer to the y-axis, indicating that
a finer segment can better capture the temporal-locality.
Considering the dotted lines with 1000 segments parti-
tioned from I- and P- Frames, the green line represents the
smallest delta between two segments, which indicates the
upper-bound/the scope of the attribute similarity, whereas
the red line represents the largest delta/the least similarity
among the segments. Further, the gap between the dotted
red and green (1000 blocks) is smaller compared to that
between the solid yellow and black lines (corresponding to
a 20 block partitioning), thus indicating that a finer partition
granularity can observe less variance in the temporal
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locality opportunities (i.e., the smaller area, the better).

e Moreover, a vertical line can be drawn in this gap range,
i.e., x = &, and the macro blocks on the left side have
“enough” temporal similarities and thus can be compressed
with the I-frame (e.g., simply discard the deltas and
represent/compress these blocks by the pointers to the
matched I-blocks), whereas those on the right have to
employ an extra intra-compression step to further compress
the deltas. Note that o can be adjusted based on the
application preference, e.g., shifting the x = « line to the
right results in more macro blocks in the I-frame being
directly reused for compressing the P-frame, i.e., higher
compression ratio, with a cost of quality drop (more details
in Sec. V).

e Fig. 3@ illustrates an example with 20 segments in I-Frame
and P-Frame. Due to the limited number of segments, one
can observe that some highlighted blocks are not well
matched. This again confirms that a finer segment can
yield a better temporal locality, as also discussed above.

Takeaway: The Morton codes generated as an intermediate

result during geometry compression not only improve the

geometry compression by increasing pipeline parallelism, but

also help to capture/identify the attribute similarities within a

frame as well as across frames. Motivated by this observation,

we next propose schemes that can utilize Morton codes for
both geometry and attribute compression in point clouds.

IV. INTRA-FRAME COMPRESSION DESIGN

As discussed in Sec. III-A, PCC takes several seconds
to execute, which is significantly higher than the ideal/real-
time demand (100ms). The main reason for this inefficiency
is the “sequential updates” in the state-of-the-art octree-
based algorithms [47] (illustrated in Fig. 2). Furthermore,
we also observed in Sec. III-B that Morton codes can reveal
opportunities for both geometry similarity (owing to the fact
that the Morton code itself is the reflection of the geometrical
relationship between points) and attribute similarity (the RGB
attributes of two adjacent points are more likely to be similar).
Unlike the prior octree-based works [56], [72] which mainly
focus on the compression efficiency (i.e., attaining higher
compression ratio and good quality simultaneously) with
sequential updates and longer execution latency, in this work,
we focus primarily on speeding up the PCC at the edge
and achieving the real-time target mentioned above without
losing much quality or compression ratio.

A. Intra-frame Compression

In this subsection, we first present the state-of-the-art intra-
frame geometry and attribute compression techniques and
discuss their inefficiencies. We then introduce our proposed
intra-frame geometry and attribute compression schemes
which are discussed in detail in Sec. IV-B and Sec. IV-C.
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1) Prior Intra-Frame Compression Inefficiencies: State-
of-the-Art Intra-Geometry Compression’: As discussed
in Fig. 2 and Sec. III, most of the existing G-PCC tech-
niques [56], [72] are based on octree data structure. We
illustrate the generic pipelines (for @ geometry compression,
and for @ attribute compression) employed by the state-of-
the-art intra-frame compression techniques in Fig. 4@ and
4@. Specifically, the SOTA geometry compression pipeline
includes five stages which can be summarized as follows:
Raw Frame (Input): The input raw PC frame contains
several (usually millions of) points, carrying both geometry
and attribute information. Only the geometry data are
forwarded to the upper geometry compression pipeline.
Octree Construction: With the input geometry data, the
octree construction algorithm is invoked to add the points
and update the tree (e.g., the maximum depth required for
inclusion of a point, occupancy information for nodes, etc.)
in a point-by-point fashion. This point-by-point “update”
makes this stage difficult to parallelize.

Octree Serialization: After the octree has been constructed,
the tree is traversed in a top-to-bottom manner, in order
to extract the occupy bits for each node, and record them
in a predefined order (e.g., via depth-first traversal), such
that the decoder can recover the octree with these occupy
bits as well as the serialization order. Note that this step is
also time-consuming, as shown in Fig. 2. This is because
that all the nodes in the tree are traversed sequentially.
Entropy Encoding: To further compress the generated
occupy bits vector, a typical encoding technique — Entropy
Encoding [35], [60] — is employed.

Compressed Geometry Stream (Output): The final com-
pressed geometry output stream is ready to be stored in
the memory or streamed over the network.
State-of-the-Art Intra-Frame Attribute Compression: As
shown in Fig. 4Q), to compress the attribute data, similar
steps — Raw Frame Input, Attribute Transform and Quantize,
Entropy Encoding, and Compressed Attribute Output Stream —
are employed. Only the Transform and Quantize step differs
from the geometry compression pipeline, which takes both
the raw frame’s attribute data as well as the constructed
octree as its inputs. With these inputs, the Transform step

SWe consider the octree-based technique [56], [72] and RAHT [14], [56] as
SOTAs for geometry and attribute compression respectively.
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performs linear transformations on the attribute data of each
voxel pair (the voxel in level, and its siblings along x, y, and
z dimensions) to obtain a low-pass component and a high-
pass component. The high-pass component is quantized and
entropy encoded, while the low-pass component proceeds
to the next level (level,_;) and serves as a prediction for
the voxel’s attribute in this upper level [14]. Note that, this
step also needs to be performed sequentially across the tree
layers.

Takeaway: The prior octree-based works for both geometry
and attribute compression suffer from performance inefficien-
cies, mainly because the octree construction, serialization
and attribute transformations involve sequential computations.
To improve the performance, next we want to explore the
hidden spatio-temporal locality opportunities (missed by the
prior works), and speed up both the geometry and attribute
compression from both the intra- and inter-frame perspectives.

2) Optimizing the Intra-Frame Compression:

Driven by the observations above, next we relax the
“sequential update” approach that exists in the prior works,
and employ the (intermediate) generated Morton Codes to
reveal the “hidden parallelism” opportunities for compressing
a PC frame (shown in Figs. 4@ and 4@ for the geometry
and attribute compression, respectively).

Proposed Intra-Frame Geometry Compression: As can be
seen from Fig. 4@, the modified components in our pipeline
compared to the previously-proposed geometry compression
approach (depicted in Fig. 4@) include the following:
Morton Code Generation: Given the raw PC, instead of
constructing the octree point-by-point, now the first step
is to generate the Morton codes in one shot (note that this
can be performed in parallel and only takes 0.5ms). This
additional pre-processing step can draw an overall layout
for all the points, which will further help to parallelize
the octree construction.

Octree Construction®: Using the Morton codes generated
in the previous step, now the octree can be constructed
in parallel by employing techniques similar to [31], [64].
Note that this step is slightly different from the one in the
prior pipeline shown in Fig. 4@. Instead of updating and
storing the occupy bits for each node during the process
of adding points, now the outputs of this step are several
arrays (Morton codes array, parent array, etc.), which reveal
the geometrical relationship across the nodes.

Post Processing: Using these relationship arrays, the final
step is to post-process them to obtain the occupy bits for
each node, and output the compressed geometry stream.
Proposed Intra-Frame Attribute Compression: As shown
in Fig. 3 and discussed in Sec. III-B, apart from identifying
the locality existing in geometry data, the Morton codes can
also help us capture the attribute locality. Motivated by this,
we further optimize the attribute compression pipeline for a
given frame, as shown in Fig. 4@. Specifically, our proposed
new pipeline includes the following three steps:
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Figure 5: Intra-Frame geometry compression example.

Sort and Segment Points: Unlike the prior works which
utilize the octree to capture the spatial locality between the
points when compressing the attributes, we use the Morton
codes to cluster the points which are spatially close to each
other. Specifically, with the Morton codes for all the points
(i.e., the intermediate results from geometry compression
without any additional overhead), we first sort these points
in the Morton code order, and then segment these sorted
points into several blocks which can help to gather the
points with similar positions/coordinates into one segment.
Mid + Residual: Within each segment, since the points are
located in small regions, their attribute values tend to have
similar numbers. Therefore, instead of recording the exact
attribute values for all the points within a segment, we
only need to find the “median value” of these attributes (as
base) and then compute and compress the residual values
(as deltas) for these points. Fortunately, these computations
are light-weight, and can be performed in parallel.

e Quantization: Finally, these small residual values are
quantized to further improve the compression ratio.

B. Intra-Frame Geometry Compression

In above section, we have discussed our overall proposals
for both geometry and attribute compression pipelines. And,
as will be shown later in Sec. VI, such optimizations are
able to bring around 37 x speedup w.r.t. the state-of-the-art
techniques (1.55s latency in prior works vs. 42ms latency in
ours). To better understand where the benefit comes from,
next we go over a simple example, given in Fig. 5, and answer
the following three critical questions: i) how to increase
parallelism for the bottleneck steps?, ii) how to integrate such
optimizations into the entire geometry compression pipeline?,
and iii) what are the resulting benefits and overheads?

1) How to Increase Parallelism?: Fig. 5 shows an
example of geometry compression. Specifically, there are
three points in the this frame: Py’s coordinates are [0,0,0],
Py’s are [—1,0,0], and P,’s are [3,3,3]. Consider the geometry
compression pipeline in PCL [72], where the points are
added one-by-one when constructing the octree. Initially,
the bounding box is infinitely small (side length is O,
corresponding to no data); and the octree only has one
root node, which is just a “virtual placeholder” containing
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no information. When inserting the first Py point into the
bounding box and the octree, two actions are taken: (1)
expanding the bounding box with a step-size of 2", where
n=1,2,3,---, until Py is wrapped inside the bounding box. In
this case, the side length of the bounding box cube becomes
2, and now Py is located inside the bounding box. And (2),
inserting the new point into the current octree. In this case, Py
is located in the 7th child of the roof node, and the root node
now stores the occupy information, which is 00000001 (the
right-most 1 indicates a “child” in 7¢th leaf node). Similarly,
Py is located inside the current bounding box and inserted
into the octree as the 6th child of the root. Interestingly, in
order to include P, the current bounding box has to expand
its side length by 4x, i.e., enlarging from 2 to 8, and now
the octree also contains more levels with all three points
being in its leaf level. Obviously, both the bounding box
and the octree are updated point-by-point, which forces the
pipeline to be sequential.

In our proposal shown in the lower figure, instead of
constructing the octree in a point-by-point fashion, we process
all three points as one “batch” in the Morton Code Generation
step in parallel, and output the final bounding box cuboid
with side lengths 4x3x3 (x-axis: 3-(-1) =4, y-axis: 3-0 =3,
and z-axis 3-0 =3). With the Morton code in place, next we
invoke the parallel octree construction technique (for more
details, please refer to [31], [64]) to construct the octree.
Note that this step is also amenable to parallelism.

2) How to Apply to PCC?: As discussed in Sec. IV-A2,
the octree Construction step returns several arrays containing
the relationship among octree nodes; e.g., the code array
contains the Morton codes for all the nodes, while the parent
array contains the index of the current node’s parent in the
code array (e.g., in Fig. 5, -1 in the parent array means that
the root node has no parent, whereas parent|7] = 4 means
that for the 7th node (whose code is code[7] = 511), the
index for its parent node in the code array is 4 (whose code
is code[4] = 63)). Although such arrays already contain the
necessary information to decode the geometry information for
the PC, they are not suitable for compression tasks. For exam-
ple, to store/transmit these two arrays, 4bytesx 16=64bytes
are needed. However, even without any compression, we
only need 4bytes x3x3=36bytes to represent these 3 points.
Therefore, an extra post-processing step is needed to merge
these two arrays in the “occupy bits” style. As shown in
Algo. 1, to obtain the occupy bits for one branch node,
we first calculate which branches its children should be
on (e.g., C[j]%8 in Line #5), and then merge all of its
occupied branches via the “|” operation. This inexpensive
post-processing step can be applied to all branch nodes in
parallel, thus does not bring much overhead.

3) What are the Benefits and Drawbacks?: To summa-
rize, compared to the prior schemes like PCL [72] and
TMCI13 [56], the most obvious benefit from our proposal is
the potential performance improvement in terms of latency
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Algorithm 1: Octree Occupy Bits Generation Algo.
Input :C: Code Array; P: Parent Array; N: Number of Points

1 Occupy Bits Array: O = {}

2 L=Ien(C)—N

3 for iin L do

4 L p=P[i]

s Olpl | = (CLj1%8), Plj] = p

Output : O: Occupy Bits Array

and energy savings, due to embracing more parallelism. In
fact, the CPU-based PCC pipeline in PCL [72] requires
O(N x D) time complexity to process N points, with a D-
layer tree. In comparison, given a GPU-based system with k
parallel cores, our design requires only O(Y2 | N;/k) time (N;
is #nodes in layer—i). And, as we show later in Sec. VI, our
results indicate 37 x speedup for the geometry compression.
Apart from compression, the de-compression stage can also
be run in parallel after applying our proposal, and can be
even faster than the compression stage due to its reduced
complexity (note that, this also applies for the attribute
compression proposals as discussed later in Sec. IV-Cl
and Sec. V). Specifically, with our current “sub-optimal”
implementation (e.g., the codes are not fully optimized), the
de-compression stage (including both geometry and attribute
de-compression) for Redandblack video [55] only takes
~ 70ms per PC frame, which is less then the PC compression
latency as we will discuss later in Sec. VI-C.

Such significant speedup comes with a reduction in quality.
In the example shown in Fig. 5, the octree constructed
based on the Morton codes is slightly different from the
one generated by the sequential algorithm (which is lossless).
In fact, in our octree, the Py node now contains geometry
information of [—0.43,0,0] (-0.43=-1+1/7x4), which is
slightly different from the original [0,0,0], whereas the other
two points, P; and P, are exactly same as the original ones.
Thus, as we discuss later in Sec. VI, our proposal drops the
quality a little bit (PSNR ~ 80dB in our design). This quality
degradation comes as a result of the parallel algorithm, and
we argue that the PSNR values resulting from our proposal
are still very good for most video and AR/VR applications [6],
[77].

Another comparison parameter is the compression ra-
tio. Our proposal provides similar compressed size as
TMCI13 [56] (= 0.1x larger) when exploiting the entropy en-
coding. However, this entropy encoding consumes ~ 100ms,
which halves our performance gains. Thus, in order to
harvest most of the speedup benefits (42ms vs 1.55s), in
our design, we discard the entropy encoding and still achieve
reasonable compressed size, which is &~ 0.5x larger than
that of TMC13 [56].

C. Intra-Frame Attribute Compression
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Figure 6: Intra-Frame attribute compression example.

The above discussion has explored the opportunity of
utilizing Morton codes to speedup the geometry compression.
Recall from Fig. 3@ that, there also exists spatial locality for
attribute compression, which can be identified with the help
of the Morton code. Let us now consider the example in Fig. 6
with three points — Py with geometry data of [0,0,0] and one
attribute value of 50 (in this example, we set the attribute as
a scalar for simplicity; normally, the attribute should be a
vector, e.g., RGBs), P; with a [—1,0,0] geometry and 52 as
the attribute, and P, with a [3,3,3] geometry and 54 as the
attribute. Here, we assume that the octree for these points
has already been established using the geometry pipeline,
and we next go through our proposed attribute pipeline step
by step and explain where the envisioned benefits will come
from.

1) How to Speedup?: First, RAHT [14] takes the initial
octree (which is deepest now) as input, and invokes RAHT
and Quantization to perform the linear transformation on the
leaves with their siblings along the x, y and z dimensions,
and shrinks the tree layer-by-layer. Each transformation emits
out one low-coefficient (LC) and one high-coefficient (HC)
by the following equation:

el = e [ V2]
HC| w1 +wp —\/"72 \/"171 az,
where w; and w, are the weights for the two leaves
(#occupied voxels in this leaf), and a; and a; are the attributes.
Now, the HC is quantized and entropy encoded, while the LC
is further sent to the next RAHT and Quantization round and
serves as the attribute of the large voxel/leaf in the upper layer.
This procedure is repeated until we reach the root node. In
this example, eventually the coeffs vector contains [2,0,89],
which can be further compressed by entropy encoding. This
entire pipeline also requires sequential processing across the
octree layers, which is obviously time-consuming when the
number of points is large and the octree is deep. In fact,
our profiling shows that RAHT takes around 2 seconds to
process a typical frame with around 1M points, on a typical
edge device.

Towards addressing this significant performance ineffi-
ciency, we investigate the insight from the above discussion
in Sec. III-B, which indicates that the locality revealed by

(1
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the Morton codes does not only exists among the geometry
data, but it can also help with the attribute compression.
Note that, the Morton codes have already been generated as
intermediate results during the geometry compression, thus,
can be (re)used to identify the spatio-locality for the attribute
compression without any extra cost. Specifically, as shown in
Fig. 6, in order to capture the spatial locality in attributes (e.g.,
points with similar Morton codes tend to have similar colors),
our proposed pipeline first sorts the points using the Morton
codes and then partition/group them into multiple segments.
The points within one segment are geometrically close to each
other, and hence their attributes are also likely to be similar.
Thanks to this, for each segment, we just need to store one
medium value as Base and several residual values as Deltas
(which are mostly small, due to similarity). And finally, we
quantize these deltas for achieving higher compression ratio.
In this example, two vectors (as there are two segments) store
the final data, including Mid = 51, Delta = [0,0] for the first
one segment, and Mid = 54, Delta = [0] for the second.

2) What are the Pros and Cons?: As indicated in Fig. 6,
compared to RAHT, our proposal reuses the intermediate
Morton codes, which have been computed during the geome-
try compression, to precisely identify the points with similar
attributes from a set of irregular points. This is expected to
be much faster than RAHT, and in fact, our experimental
results show =~ 49x speedup (53ms vs 2.6s).

However, as also shown in Fig. 6, the storage size after
our compression is larger than RAHT, since each segment
requires one vector storage to store its median/base and
(quantized) delta values. Although the 48 x speedup brought
by our proposal is promising in terms of performance gain,
the observed 2Xx compression inefficiency needs to be
addressed.

3) How to Further Improve the Compression Efficiency
for Attributes?: Towards further improving the compression
efficiency, one could consider different options. Instead of
throwing more compute power, we want to emphasize that,
the discussion in this section only focuses on the attribute
locality within one frame, which has ignored the potential
localities among consecutive frames. In fact, if frame-2 does
not vary much with respect to frame-1, intuitively, there
would be temporal locality between the two frames. Thus,
to further improve the attribute compression efficiency, in
the next section, we investigate the inter-frame similarity
opportunity.

V. INTER-FRAME ATTRIBUTE COMPRESSION DESIGN

Motivated by the above discussion, in an attempt to
further improve the compression efficiency from an inter-
frame perspective, in this section we explore the “attribute
similarity” that exists across consequent frames in a PC
video, and explain the design details of our proposed inter-
frame attribute compression scheme. Similar to the intra-
frame proposals discussed in Sec. IV, we again use a simple
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Figure 7: Inter-Frame attribute compression example.

example using a state-of-the-art inter-frame compression
technique [13] and our proposal, and study the following
important questions: i) what is the opportunity?, ii) how do
we capture and exploit such opportunity?, and iii) what are
the potential benefits?

A. Inter-Frame Attribute Compression

1) What is the Temporal Opportunity?: As we have shown
earlier in Fig. 3@Q), two blocks (a set of points) which are
located close to one another are likely to contain similar color
pixels. In the example shown in Fig. 7, the first frame, I-
Frame, contains three points — Py with geometry data [0,0, 0]
and an attribute value 50, P, with [12,8,13] for geometry and
52 for attribute, and P, with [19,26,58] for geometry and
20 for attribute. Obviously, the two Py points in I-Frame and
P-Frame are exactly the same, which could be completely
reused during the compression of the P-Frame. Moreover, the
two P; points are located closely (i.e., [12,8,13] vs [12,8,12]),
and contain very similar attribute values (52 vs 51). Thus,
the P-Frame can also be further compressed by reusing the
Py data in the previous I-Frame, without losing too much
quality. On the other hand, the two P, points are relatively
far away from each other and their attribute inputs are quite
different, offering little reuse opportunity. To summarize, in
this example, the first two points in I-Frame, Py and Py, could
be reused for compressing the P-Frame, thus reducing the
compressed output size.

2) How to Capture the Temporal Opportunity?: To
identify such similarity/reuse opportunities across frames
(shown in Fig. 7), the macro-block based state-of-the-art
approach [48] first needs to generate two macro block trees
(where the minimum voxel dimension in this tree is of a
predefined size) — one for I-Frame and the other for P-Frame.
Next, for each leaf node/block in the P-MB-Tree, the entire
I-MB-Tree needs to be traversed in a top-to-down fashion,
and the exactly-matched leaf in the I-MB-Tree is found. In
this case, the found leaf L1-I, which contains two points (P
and Py), is a perfect match; however, no match can be found
for the L2-P leaf. This process is repeated for O(N) times,
where N is the number of macro-blocks in the P-Frame. This
processing can be quite time-consuming, and our profiling
shows that it usually takes = 5.9s to compress one predicted
PC frame even when running on 4 CPU threads.
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Instead, our proposal takes advantage of the Morton

code generated in the geometry compression, which is a
good indicator for attribute similarity (as discussed earlier
in Sec. III-B). Specifically, our proposal consists of the
following 4 steps:
PC sorting: As shown in Fig. 7, compared to the irregular
raw PC, after sorting the PC via Morton-code, the adjacent
points are more “regular” and geometrically closer, and thus
share rich attribute similarities.

Segmentation: The next step is to partition the sorted PCs
(i.e., I-frame and P-frame) into several blocks/segments
(similar to the term “macro-blocks” in 2D image encoding).
Block/segment match (BM): for each block in the P-frame,
we iterate through all the candidate blocks in the I-frame and
calculate the difference between these < I, P > block pairs.
Finally, the candidate I-block which differs minimally with
the P-block is picked as its “best-matched/reference” block.
Specifically, given two blocks with K-points, we use 2-norm
attribute distances (see Equ. 2) to measure their difference:

Dif f (Iotocks Poiock) = Loy (rip — rit)* + (gip — gi1)* + (bip — bir)*  (2)

where Pyiock = {(Xip,yip,ZiP, TiP, &iPs bip) }+ Iptock = { (Xir, Yit
zil,ril,gil,b”)}, for i = {],...,K}. Note that, the BM can
be performed in parallel as there is no dependence across
blocks.

Reuse: for blocks for which the reference blocks are similar
enough (e.g., the 2-norm differences are less than the pre-
defined thresholds), only the pointers to their reference blocks
will be recorded (in our proposal, for each P-block, we set
the number of candidate blocks as 100, thus, 6 bits are
sufficient for encoding one P-block). On the other hand, if
the “best matched I-block™ is not as similar as the P-block
(e.g., the 2-norm differences are larger than the threshold),
simply approximating the P-block with its reference block
will significantly degrade the quality; instead, we compute
and store the deltas for such block pairs, and then invoke
the Base+Deltas technique, as mentioned in Sec. IV-A2 for
intra-frame compression, to further compress these deltas.

3) What are the Pros and Cons?: The proposed inter-
frame attribute compression further improves the compres-
sion efficiency by skipping the redundant storage for the
same/similar segments matched across frames, with extra
latency overhead (but still much better than the state-of-the-
art — 139ms vs 5.9s). In this example, for compressing the
P-Frame, one pointer (for S1 which contains Py and P;) and
only one post-intra-encoded compressed delta (for P») are
required for storage, instead of storing all three. However,
the proposed inter-frame compression pipeline has additional
steps (PC sorting and block matching), which collectively
take about 139ms for a typical PC frame.
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B. Combining Inter-frame and Intra-frame Compression

Simply put, our intra-frame compression proposal can sig-
nificantly reduce the execution latency, while the inter-frame
compression proposal can further improve the compression
efficiency. We emphasize here that, these two proposals can
work in an interleaved fashion (with a frame-level granularity)
for a PC video stream. Specifically, in our design, the PC
frames are encoded in an “IPP” fashion, where each I-frame
is followed by two P-frames. Further, for the P-frame, as
discussed above, the pre-defined threshold for determining the
block matching (i.e., is the < I, P > block pair good/similar
match or bad/dissimilar match) can be tuned according
to the application preference, e.g., for applications which
favor good quality, more post-intra-encoded blocks (e.g.,
store and encode the deltas instead of simply reusing) are
preferred. On the other hand, for applications that demand
very small compressed data sizes to transfer through the
network, the threshold condition can be relaxed to favor
the direct reuse more. For example, in this paper, we pick
two different thresholds to strike a balance between latency,
quality and compression efficiency, as will be discussed in
detail later in Sec. VI-C. We also investigate how different
thresholds/preferences shape the behavior of our approach
in a sensitivity study in Sec. VI-E.

VI. EXPERIMENTAL RESULTS

In this section, we compare our proposed intra-frame and
inter-frame designs against two different PCC techniques, by
evaluating four metrics critical for the PC-based applications
— execution latency, energy consumption, video quality, and
compression ratio. Towards this, we first describe the config-
urations (Sec. VI-A) used for our analyses, e.g., experimental
platform, dataset, and different designs (Sec. VI-B). We then
compare those design schemes on our platform (Sec. VI-C).
Finally, we provide detailed insights on how to tailor the
PCC pipeline to cater to various application preferences
(Sec. VI-E).

A. Methodology

1) Evaluation Platform: To evaluate and compare the
proposed intra- and inter-compression designs with the
state-of-the-art works, we use the NVIDIA Jetson AGX
Xavier board [58], which is an edge development board, and
is well-known to simulate the realistic edge development
environment. Specifically, it is equipped with a 512-core
Volta GPU, a 8-core ARMv8 64-bit CPU, and 32GB 256-
Bit LPDDR4x Memory. In our implementation, we start
the application from CPU (reading the PC data), and then
offload the computations to GPU (octree construction, block
matching, etc.), and the compute mode of Jetson AGX Xavier
board is set to be 15W.

2) Point Cloud Dataset: We use two dynamic PC video
datasets — the 8i Voxelized Full Bodies (8iVFB) [18] and
the Microsoft Voxelized Upper Bodies (MVUB) [8] datasets
in our evaluations. Specifically, we pick four videos from
8iVFB, and two videos from MVUB. The 8iVFB dataset
contains the PC data of four persons, captured by 42 RGB
cameras placed at different angles, while the MVUB dataset
consists of five subjects captured by four frontal RGBD
cameras. All these videos used are captured at 30fps, and
voxelized into 1024 x1024x1024 voxels (3D points), with
each point containing three float-pointing coordinates and
three unsigned char RGBs.

Table I: Six videos in 8iVFB [18] and MVUB [8] datasets
used in this paper.

Video Redandblack Longdress Loot Soldier Andrew10 Phill0
#Frames 300 300 300 300 318 245
#Points/Frame 727070 834315 793821 1075299 1298699 1486648

B. PCC Design Configurations

To demonstrate the effectiveness of our proposal, we
evaluate the following five PCC designs:

e TMC13 [56]: We use TMCI13 (G-PCC codec from
MPEG), as the state-of-the-art approach for intra-frame
compression. Especially, by tuning the parameters (e.g.,
octree depth, compression algorithm, etc.), we utilize
the octree-based method to compress the geometry data
losslessly, while the attributes are compressed by the
predictive RAHT lossily. We use this tool to compress
every single PC frame, and measure the encoding latency,
energy consumption, the compressed stream size, and
finally measure the quality (PSNR) of the decoded frame
by pc_error_d tool [85].

o CWIPC [13], [48]: CWIPC is a PCC library that supports
the inter-frame compression (encoding the predicted frame
via macro block (MB)-based motion estimation). We use
CWIPC as the state-of-the-art approach for inter-frame
compression and build it with multi-thread option. In our
setup, one I-frame(intra-compressed frame) is followed by
two P-frames(predicted frames), and the number of threads
for MB matching is set to 4. Similarly, we have opted to
use octree-based algorithm for geometry compression, and
directly applied entropy encoding to the raw attributes.®

e Intra-Only: We apply our intra-frame compression method
discussed in Sec.IV to each of the PC frames. Specifically,
we choose to segment each PC frame into 30000 blocks’,
and use a 2-layer encoder (more specifically, we first
encode the attributes via the proposed intra-frame encoder

%Based on our profiling, the provided attribute compression APIs (e.g., JPEG-
Turbo-based) would degrade the quality of PC significantly; thus, we do
not use such APIs/Libs in our evaluations.

"We decide the parameters for intra- and inter-compression by profiling
several frames in the 8iVFB [18] dataset, to obtain a relatively balanced
design point between compressed size and quality.
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as described in Sec. 1V, and then treat the obtained delta
values as new attributes, and finally feed them again to the
encoder to further increase the compression efficiency).
o Intra-Inter-V1: As mentioned in Sec. V, only part of
the blocks/segments can be directly approximated by the
reference block. Therefore, we add one more parameter i Andrew1o
to control the ratio of such blocks. Especially, for each '
P-block, we first calculate its 2-Norm distance to its best
matched block in I-frame. We then compare this distance
with a preset threshold (e.g., 3007) to determine if this
segment can be approximated by direct reuse; otherwise,
we mark it as an post-intra-encoded block. Also, the total
number of blocks is 50000, and the search step is set to
be the size of the current P-block (i.e., to find the best Redandblac i Andrew10
matched block for current P-block, each time, we traverse
the search region in the reference frame by this step size).
(dB)

e Intra-Inter-V2: For this configuration, we choose a larger i ) ize(Attribute)
£ 8 20 [ Sem, Nmn, mpn Ty ptea B e b

threshold (1200) for the “direct-reuse decision making” £ 1500
such that the ratio of the direct reuse will increase with ® s
slight drops in quality. Other settings are not changed (they

remain the same as in the Intra-Inter-V1 version).

BSOTA Latency (Geometry) BSOTA Latency (Attribute) :zi:
OOur Latency (Geometry) Our Latency (Attribute)

Latency (ms) [SOTA]

TMC13
CcwiPC

Intra-Only [ ]

© Intra-Inter-v1

>
s
Q
4
£

Intra-inter-v1 [ ]
Intra-Inter-v2 [ ]

o
Z

]

o N o
s 388

Energy (J) [SOTA]
°

Intra-Only [T
Intra-Inter-v1 [T
Intra-Inter-v1 [THHTAI
Intra-Inter-v2 [T

(b) Energy consumption

Raw
™C13
cwIPC

Intra-Only

Intra-Only

cw
22
g3
£E
[
EE

C. Results
(c) Compressed size & PSNR
We first compare the execution latency, energy con-  Figure 8: Results: (a) Latency breakdown. (b) Energy
sumption, quality (PSNR [peak signal-to-noise ratio]), and ~ consumption. (c): Compression efficiency.

compression efficiency (compressed size) in Fig. 8, when

using various designs explained in Sec. VI-B to compress

the six PC videos from the 8iVFB and MVUB datasets

(described in Table I). Then, we discuss and present the

validity of our results on the smartphones.

Execution Latency: We first compare two SOTA schemes

(TMC13 [56] for intra-frame compression, and CWIPC [13]

for inter-frame compression) with our three proposals (intra-

only, (better) quality-oriented Intra-Inter-V1, and (better)
compression-oriented Intra-Inter-V2), and present the col-
lected execution latencies in Fig. 8a. For each video, these
five designs are listed on the x-axis. The primary y-axis (left)
shows the latency in ms for SOTAs, whereas the secondary
y-axis (right) gives the latency in ms for our proposals.

From this plot, the following observations can be
made:

e TMCI13: TMC13 takes around 4152ms to compress one
PC frame, including 1552ms for geometry compression
and 2600ms for attribute compression.

o CWIPC: CWIPC takes about 4229ms (mainly for geometry
compression as the attributes are directly entropy-encoded
without any other efforts, as mentioned in Sec. VI-B).

e Our Intra-only: The performance of above two tech-
niques has two orders of gap with the ~ 100ms real-
time requirement [19]. On the other hand, our intra-
only scheme takes only 95ms (42ms for geometry and
53ms for attribute compression), which is 43 x faster w.r.t.
TMC13. This is due to: 1). the octree can be constructed

in parallel with the help of Morton codes, which speeds
up the geometry compression by 37x; 2). by utilizing the
spatial locality with Morton code for attribute compression,
instead of performing transforms through octree layers,
in our proposal, only simple subtractions are needed for
computing deltas. Further, all the points are processed in
parallel; 3). we discard the entropy encoding for further
speedup.

o Our Intra-Inter-V1 (Quality-oriented): This design favors
the quality over compression efficiency, and it only
takes 124ms (41ms for geometry compression, and 83ms
for attribute compression), contributing to around 34 x
speedup w.r.t. CWIPC. This speedup comes from: 1).
instead of searching the matched macro block from the
entire space (the I-MB-Tree traversal as described in
Sec. V), given the points sorted in the Morton code order,
the search space for block matching in our proposal is
minimized (in the I-frame, now, we only need to search
the neighboring regions for the current P-block); 2). for the
matched macro block, instead of executing the complex
iterative closest point (ICP) [7] algorithm for the translation
and rotation matrix, we only need to record a pointer to the
matched block in I-frame, without any extra computation
overhead.

o Our Intra-Inter-V2 (Compression efficiency-oriented): Sim-
ilarly, our Intra-Inter-V2 scheme (oriented towards high
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compression ratio) takes 121ms (43ms for geometry and
78ms for attribute compression), which represents about
35x speedup w.r.t. CWIPC. There is not much perfor-
mance difference between V2 and V1, because we have to
run the block matching algorithm on all the blocks before
making the “direct-reuse” decision, which dominates the
entire pipeline in both the design variants.
Energy Consumption: Fig. 8b plots the energy consumptions
(in J) for the SOTA works on the primary y-axis (left),
and our proposals on the secondary y-axis (right). Clearly,
TMC13 and CWIPC are two of the most energy-consuming
schemes, which consume 11.3J and 19.8J, respectively, for
one PC frame. This is mainly due to their long execution
latencies. Further, as mentioned in Sec. VI-B, 4 CPU
threads are invoked to perform the macro-block matching
in CWIPC, this results in even higher CPU power. For
example, the average CPU power for TMC13 is 1687mW
whereas 3622mW for CWIPC. On the other hand, our Intra-
Only scheme only consumes 0.38/ per PC frame, which
represents 96.6% energy saving w.r.t. TMC13, while our Intra-
Inter-V1 and Intra-Inter-V2 only consume 0.52J and 0.5/
energy, respectively, which translate to =~ 97% energy savings
w.r.t. CWIPC. Note that, although our schemes employ the
GPU with an extra overhead (e.g., the GPU power is about
1065mW), the CPU power is reduced (e.g., around 1310mW,
lower than that in TMC13 and CWIPC) since most of the
computations are offloaded to GPU. Therefore, the overall
energy savings brought by our schemes are similar to the
corresponding execution latency reductions discussed above.
Compression Efficiency: To investigate how the compression
efficiency changes with the above schemes, in Fig. 8c, we plot
the compressed size (in megabytes) shown on the primary
y-axis (left), and the PSNRs (in dB) for attributes® on the
secondary y-axis (right), and observe that:
e TMCI3: compresses the input frame size to be only 8% of
the original while preserving the best video quality (PSNR
is 55dB). This is mainly because TMC13 performs lossless
geometry compression and almost-lossless attribute com-
pression in our settings. Additionally, the transform and
quantization in TMC13 can output (near-)zero coefficients,
which significantly increases the compression ratio. Note
however that, this comes at the cost of longer processing
latency, as shown in Fig. 8a.
CWIPC: Overall, when employing the CWIPC, the output
frame size reduces to around 14% of the original input
frame (including 63% of geometry and 37% of attribute
data). The reason for such low compression ratio is because
— @ for intra-attribute compression, only entropy encoder is
applied; and @ even with the inter-frame compression, only
few macro blocks are matched and inter-encoded, which
limits the benefits from inter-frame compression. As for

8The geometry PSNR are excellent for all designs (e.g., > 70dB), so we
only compare the PSNR for attributes in the evaluations.
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the quality, it drops the PSNR by 7.2dB when compared
to TMC13, due to the macro block-based approximation
for the inter-frame compression.

Our Intra-only: this design emits out a compressed frame
with ~ 17% of the original data size (including 19% of
geometry and 81% of attribute) and provides PSNR values
up to 48.5dB (only 6.5dB drop compared to TMCI13).
Clearly, the geometry data has been compressed very
well, as opposed to the attribute data. Recall from our
intra-frame design discussion in Sec. IV that, the Morton
codes can precisely describe the geometry relations among
points (thus, ensuring a good geometry compression), but
sometimes they may not work well for the attributes,
especially when the spatial locality is not rich for some
blocks/frames.

Our Intra-Inter-V1 (Quality-oriented): To further reduce
the frame size, this design exploits the temporal locality
across PC frames. As a result, the data size becomes
5% less than our intra-only design (e.g., only 12% of
the original size), while dropping the quality by 6.1dB
due to the block-level approximations in the inter-frame
compression.

Our Intra-Inter-V2 (Compression efficiency-oriented): Sim-
ilarly, this design further reduces the compressed data
size by 2%, by adjusting the threshold for “direct-reuse
decision making”, as discussed in Sec. VI-B. At the same
time, the quality further drops by 2.9dB. Still, we argue
that, even with the Intra-Inter-V2 option (see one demo
in Fig. 10a@)) which has the worst quality, the absolute
PSNR is close to 40dB, which is sufficient for many
of the video applications that do not require very high
resolution [6]. For other high-demanding applications like
AR-based surgery [11], our proposals may jeopardize the
video quality, and consequently, we may need further
software and/or hardware optimizations for improved user
experience.

Correlation with the evaluations on smartphones: Based
on our profiling, the power consumption of our proposal is
~ 4W, which is below the peak discharge power of modern
smartphones (10W [2], [70]), meaning that our proposal will
work fine on smartphones as well. To further prove this, we
also change the compute mode of Jetson AGX Xavier board
to 10W, and measure the execution latency for loot video [54].
We observe that the total execution latency when using 10W
mode is 1.29x of that when using 15W mode (the mode
for collecting the main results). Such similar performance
demonstrates that our proposal is expected to work well for
low-power edge devices like smartphones as well.

D. Architectural Insights:

In this section, we further investigate the energy efficiency
characteristics of the proposed optimizations by dissecting
the total energy consumption for the inter-frame attribute
compression proposal (which is the most time- and energy-
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Figure 9: Energy consumption breakdown for inter-frame
attribute compression for Loot video [54].

consuming one among the proposed geometry, intra- and inter-
frame attribute compression techniques). We then analyze
the bottleneck of our proposal and provide insights for
potential architectural support to make PCC even more
energy efficient. As shown in Fig. 9, the address generation
stage for storing P-blocks’ deltas/residuals consumes 32% of
total energy, while the computation for the 2-norm attribute
distance consumes 51% energy, which dominates the total
energy consumption, and is, therefore, our target for next-step
optimization. Specifically, to compute the 2-norm attribute
distance, two kernel functions are invoked (Diff_Squared and
Squared_Sum), which consume 35% and 16%, respectively
of the total energy. Such high energy consumption of these
two kernels can be attributed to two reasons. First, these
are the most frequently invoked kernels during the block
matching stage. Second, processing a typical PC with 1M
points in a fully-parallelized fashion poses very high demands
on the GPU resources (e.g., the number of available threads
or the memory budget), which are quite limited, especially in
edge devices. More interestingly, software-level optimizations
for this step have been fully exploited (e.g., the kernel
functions are invoked in a fully-parallelized manner), yet it
still dominates the latency and energy. This motivates us to
further look into architecture-level optimizations in future
work, including 1) replacing GPU with ASIC to improve
the power efficiency for Diff_Squared computation kernel;
2) customizing the accelerator (e.g., number of layers of the
tree-structured adder) for the Squared_Sum kernel; and 3)
minimizing data movements such as inter-SoC (e.g., between
GPU and CPU) or intra-SoC (e.g., across L2/L3 caches in a
GPU) memory copies.

E. Sensitivity Study

Our proposed intra-frame PCC utilizes the Morton code
to capture the spatial locality, and significantly speeds up the
compression (44 x), with high compressed quality (48.5dB
PSNR). Additionally, by exploiting the temporal locality
across frames, our inter-frame compression further increases
compression efficiency with the cost of longer processing
latency and lower quality. To study how the inter-compressed
frames/blocks would affect the compression efficiency (the
compressed size w.r.t. the raw PC frame) and the quality
(PSNR), we reconfigured the number of “direct-reuse” blocks
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(a) Original vs. decoded PCs with our proposals. (b) Sensitivity study.

Figure 10: (a) comparison between i: raw PC and our
proposals (ii: intra, iii: intra-inter-V1, iv: intra-inter-V2). (b)
PSNR v.s. compression ratio (i.e., input size / compressed
size).

by adjusting the threshold as discussed in Sec. VI-B. As
shown in Fig. 10b, with fewer “direct-reuse” blocks (e.g.,
only 31% of the I-blocks are directly reused in the left-most
bar), the PSNR drops slightly when compared to the intra-
frame compression, while the compression ratio is also the
worst. On the other side, by increasing the percentage of
the “direct-reuse” blocks, the compression efficiency also
increases, at the cost of a PSNR degradation (e.g., the PSNR
reduces to 38dB with 83% “direct-reuse” blocks). Hence, to
enhance the flexibility of our proposed design for trading
off the compression efficiency with the quality, we can use
the percentage of “direct-reuse” blocks as a tunable design
knob, for which, users can choose the appropriate value based
on their preferences (i.e., fewer “direct-reuse” blocks with
higher PSNR vs. more “direct-reuse” blocks with higher
compression efficiency).

VII. CONCLUDING REMARKS

PC processing has become the trend for many video
applications spanning scientific computing, education, health-
care and entertainment, and is recently being offloaded
to the edge. PC compression is an essential component
of PC processing (and a critical performance bottleneck),
which affects video quality, user experience, and energy
efficiency. Unfortunately, prior works mainly focused on
compression ratio, but did not consider the performance and
energy implications, particularly for edge devices. This paper
exploits the data similarity opportunities in both geometry
and attribute data from both intra-frame and inter-frame
perspectives, and proposes two complementary designs for
minimizing the compression latency and energy requirements
for pushing the PC compression to the edge. And, more
importantly, these proposals are compliant with the emerging
MPEG PCC standards [53]. The experimental results with
six PC videos show that our proposals provide 34 x speedup
(latency reduces from 4.2s to 121ms) and 96% improvement
in energy efficiency, with only 13% compression ratio drop
and a minimal degradation in video quality with respect to
the state-of-the-art schemes. Note however that, even with
our proposals, the execution latency per PC frame is still
slightly beyond the real-time requirement (i.e., > 100ms).
Towards this, in the future, we plan to explore GPU-specific
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optimizations such as compile-time instruction fusion for
better parallelism, or provide additional architectural support
for our proposal by investigating the hardware designs with
respect to FPGA modules or customized ASICs, to optimize
the bottleneck stage and make PCC on edge devices even
faster/more efficient (e.g., ~ 33ms for 30fps display refresh
rate).
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