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ABSTRACT

Deep Neural Networks (DNN) are vulnerable to adversarial per-

turbations — small changes crafted deliberately on the input to

mislead the model for wrong predictions. Adversarial attacks have

disastrous consequences for deep learning empowered critical ap-

plications. Existing defense and detection techniques both require

extensive knowledge of the model, testing inputs and even exe-

cution details. They are not viable for general deep learning im-

plementations where the model internal is unknown, a common

‘black-box’ scenario for model users. Inspired by the fact that elec-

tromagnetic (EM) emanations of a model inference are dependent

on both operations and data and may contain footprints of different

input classes, we propose a framework, EMShepherd, to capture

EM traces of model execution, perform processing on traces and

exploit them for adversarial detection. Only benign samples and

their EM traces are used to train the adversarial detector: a set of

EM classifiers and class-specific unsupervised anomaly detectors.

When the victim model system is under attack by an adversarial ex-

ample, the model execution will be different from executions for the

known classes, and the EM trace will be different. We demonstrate

that our air-gapped EMShepherd can effectively detect different

adversarial attacks on a commonly used FPGA deep learning accel-

erator for both Fashion MNIST and CIFAR-10 datasets. It achieves

a 100% detection rate on most types of adversarial samples, which

is comparable to the state-of-the-art ‘white-box’ software-based

detectors.

CCS CONCEPTS

• Security and privacy → Side-channel analysis and counter-

measures; Embedded systems security.
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Side-channel attacks; Adversarial machine learning; Neural net-

work hardware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0098-9/23/07. . . $15.00
https://doi.org/10.1145/3579856.3582827

ACM Reference Format:

Ruyi Ding, Cheng Gongye, Siyue Wang, Aidong Adam Ding, and Yunsi Fei.

2023. EMShepherd: Detecting Adversarial Samples via Side-channel Leakage.

In ACM ASIA Conference on Computer and Communications Security (ASIA

CCS ’23), July 10–14, 2023, Melbourne, VIC, Australia. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3579856.3582827

1 INTRODUCTION

Recent advances in deep learning have revolutionized many applica-

tion domains, including computer vision [22] and natural language

processing [41]. Society has benefited significantly from techno-

logical developments in AI-empowered authentication and access

control [44], medical diagnosis [23, 47], autonomous driving [14],

etc. However, deep-learning models in critical applications face

serious security threats, including the most common adversarial

attacks [25]. An adversary can manipulate the input to DNN mod-

els for inference with carefully selected perturbation to result in

misclassification or misdetection. The disastrous consequences of

adversarial examples include access right escalation (e.g., to critical

industrial control systems or nuclear plants), fraudulent medical

claims, and driving accidents.

A large body of work has been developed for both defense and de-

tection against adversarial attacks [12, 21, 35, 52, 54]. Defense tech-

niques harden the DNNmodels through adversarial training [24] or

stochastic methods [37, 58, 59]. However, the adversarial examples

are provided by certain adversarial generation methods, and the

model retrained may not be resilient to other unknown adversarial

attacks, potentially stronger with different feature characteristics.

Model retraining also has privacy implications as it requires to

be iterative to keep up with new attacks [60]. Furthermore, these

protection methods have been circumvented recently by the most

sophisticated attack [16]. Another line of work is to detect the ad-

versarial examples during model execution, which can be external

to the model, therefore, more agile, general, and robust. Existing

detection methods rely on observing intermediate execution fea-

tures or model behavior [38, 61] or input statistics [26, 39], and

leveraging them for adversarial detection, a ‘white-box’ scenario

with the model internal and run-time execution details known.

However, there are plenty of cases where the model users have

limited access to the model intermediate parameters or testing im-

ages, which we also called it a ‘black-box’ system. For example,

machine learning models in the healthcare system may be kept

confidential due to their values and privacy concerns, where the

model suppliers tend to offer model users only limited interfaces
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Fig. 1: EMShepherd detection framework: the medical ma-

chine learning model misdiagnoses an attacked CT lung im-

age with Covid, captured by EMShepherd

so as to prevent reverse engineering or membership inference at-

tacks [49]. Current detection strategies do not suit such “black-box"

systems, and they require direct access to the model structure and

parameters, execution details such as activations, testing images, or

model intermediate outputs, including model logits. With privacy

concerns, we target building an adversarial detector without ac-

cess to both testing inputs and model execution details (i.e., feature

maps).

Inspired by the simple Electromagnetic analysis (SEMA), which

associates the EM emanation patterns of a computer platform with

the operations it is running and data processing [10], we leverage

side-channel EM leakage for detecting adversarial examples. The

intuition is that different classes of images will activate the network

model differently and yield different patterns in the EM traces. For

adversarial examples that impose perturbations on a source class

and fool the victim model into misclassifying it as a target class,

the semantic information leaked from the EM trace may present

a discrepancy from that of the target class (learned with prior

training), i.e., revealing an anomaly.

In this paper, we propose EMShepherd, a framework of adver-

sarial sample detection via EM side-channel leakage, which treats

the victim model as a ‘black-box’ without probing it for execu-

tion details. The victim model is deployed on a physical device

that the user can access, e.g., an IoT edge device or a local inspec-

tion station. Note remote access to DNN models in the cloud, a

so-called Machine-learning-as-a-Service (MLaaS) scenario, is out

of scope for our work. The DNN implementation on the device can

be software running on a CPU or GPU or a hardware accelerator

running on FPGA, NPU, or TPU. Fig. 1 shows an example setup

of EMShepherd, where the deep learning inference system is at-

tacked by samples with malicious perturbations, and the additional

air-gapped EMShepherd fends off the adversarial sample at run-

time with correct detection. For running the adversarial detector,

neither the victim model (both static model internals and dynamic

execution details) nor the inputs are needed. Note our work uses

EM side-channel as an example, while the framework is generally

applicable to power side-channel as well, collected either by equip-

ment like an oscilloscope or through on-chip power sensors [2, 36]

where the measuring resolution has to be commensurate with the

detection goal.

This work makes several contributions as follows:

• We leverage side-channel EM leakage, for the first time, for de-

tecting adversarial attacks under a “black-box" scenario. We pro-

pose EMShepherd adversarial detector, which requires no prior

knowledge of the victimmodels, adversarial attacks, intermediate

execution details, and the model inputs.

• Our novel EMShepherd framework consists of scripts for EM

measurements, a novel data processing method to tame the EM

traces for follow-on class-specific feature extraction and learning,

and an unsupervised anomaly detector.

• We evaluate the framework on 5 different adversarial attacks on

the Fashion MNIST dataset running on a common FPGA deep

learning accelerator. Our results show that the EM-based detector

can effectively detect all attacks with over 90% detection accuracy

and an acceptable false positive rate (less than 10%). EMShepherd

is also applied on a large VGG neural network accelerator with

the CIFAR-10 dataset.

• We further evaluate its performance on a robust retrained model

with adversarial examples, and EMShepherd demonstrates high

accuracy and low false positive rate as well.

• We compare our method with the state-of-the-art white-box

software-based detection methods. The results show that the

performance of our adversarial detector is comparable to the

prior methods.

2 BACKGROUND

This section presents relevant background on adversarial attacks,

protection, and EM side-channel.

2.1 Adversarial Attacks on DNNs

DNN is an artificial neural networkwithmultiple layers to represent

a function, 𝐹 : 𝑋 → 𝑌 , with parameters𝜔𝐹 such as weights, kernels,

and biases, where 𝑋 denotes the input space and 𝑌 the output

space. In the training phase, a DNN is trained with a dataset of

input-output pairs to arrive at optimal values of 𝜔𝐹 , to minimize

the loss function 𝐽𝐹 , which is a distance measurement between the

model predicted result 𝐹 (𝑥) and the ground truth 𝑦∗. The widely-

used optimizers include stochastic gradient descent (SGD) [20] and

Adam [31]. Taking image classification as an example, the DNN

model runs inference on the unknown input, 𝑥𝑡 , and predicts a

class, out of𝑚 classes, with the largest probability.

𝑦 = 𝐹 (𝑥𝑡 ) = softmax(𝑍 (𝑥𝑡 )) (1)

where the vector 𝑍 (𝑥𝑡 ) is known as logits. Our detection method

assumes that the defender can only query the model and know the

output 𝑦 while the logits 𝑍 (𝑥) are unavailable.

DNN model is vulnerable to adversarial attacks. An adversar-

ial sample (𝑥 ′) is a carefully crafted sample, which has a human-

imperceivable difference from the original benign sample (𝑥), but

causes the DNN to misclassify it to a different class 𝐹 (𝑥 ′) ≠ 𝑦. If

𝐹 (𝑥 ′) is an arbitrary class except for 𝑦, 𝑥 ′ is an untargeted adver-

sarial sample. A more restrictive and harmful case is the targeted

adversarial sample, where 𝐹 (𝑥 ′) = 𝑙 ≠ 𝑦, a specific target class. In

this paper, we consider both untargeted and targeted attacks. The

difference between the adversarial example and benign example can

be measured by 𝐿𝑝 , defined as Δ𝑝 =
∑𝑛
𝑖=0 ( |𝑥𝑖 − 𝑥 ′𝑖 |

𝑝 )
1

𝑝 . Common

choices of 𝐿𝑝 include: 𝐿0, the number of pixels changed; 𝐿1, the
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Manhattan norm; 𝐿2, the Euclidean distance norm; 𝐿inf the largest

absolute change of any pixels. The adversarial attack can be viewed

as an optimization problem:

minimize Δ𝑝 (𝑥, 𝑥
′) s.t. 𝐹 (𝑥 ′) ≠ 𝑦 (2)

GoodFellow et al. [25] first proposed the concept of the adver-

sarial sample and introduced Fast Gradient Sign Method (FGSM)

to generate adversarial samples. Madry et al. introduced the Pro-

jected Gradient Descent (PGD) [40] attack to improve the attack

efficiency of the Basic Iterative Method (BIM) [33]. Other learning-

based attacks include DeepFool [43] and Carlini andWagner Attack

(CW) [16], where CW attack is proven to be one of the strongest

attacks [15, 16] at the cost of generation speed.

2.2 Existing Software Detection Methods

The existing adversarial detection methods, all software-based, can

be classified into three categories.

Distributional Detection: These detectors perform some statistical

analysis on the inputs or intermediate values of model execution

(e.g., activation values) to find adversarial samples. Grosse [26] used

MaximumMean Discrepancy test (MMD) to determine whether the

benign and adversarial inputs have the same underlying distribution

or not. Feinman [21] use Kernel Density Estimation to measure

the distance of distributions. However, these detection methods

are ineffective on more complex datasets [15]. Ma [39] introduced

Local Intrinsic Dimensionality (LID) to characterize adversarial

regions of the model. However, LID is proven to perform poorly on

a number of attacks [38].

Latent Space Detection: The second type of detector employs

a pre-processing step to reduce variation. Grosse [26] found that

adversarial examples tend to place a higher weight on larger prin-

cipal components, narrowing down the targets for detection. Some

approaches train denoisers to reconstruct the inputs by removing

the adversarial noise added by the attacker, such as auto-encoders

used in MagNet [42] and the mean blur method used in [35]. Most

of them work for simple attack methods such as FGSM, but cannot

resist the state-of-the-art CW attack.

Inconsistency Detection: This approach focuses on the model

misbehavior during inference of adversarial examples. Feinman

et al. [21] proposed Bayesian neural network uncertainty to mea-

sure the uncertainty of a DNN under a given input. By introducing

some randomness (e.g., Dropout [52]) during the inference, the

DNN model tends to give the same outputs for benign inputs but

different outputs for adversarial ones. The Feature Squeezing ap-

proach [61] reduces the color depth and observe that adversarial

samples are likely to induce different classification results while

benign inputs are not. Tao et al. [54] introduced the Attacks meet

Interpretability structure (AmI), which measures the inconsistency

of the victim DNN with another neural network enhanced with

human perceptible attributes under adversarial examples. In the

Network Invariant Checking (NIC) work proposed by Ma [38],

the key idea is during model execution, there are class-dependent

provenance channels (the distribution of activated neurons in the

network) and activation value channels (value distributions of acti-

vated neurons). It employs a one-class SVM to determine outliers.

NIC shows promising results against a broader range of attacks,

including the CW attack. Our approach generally falls into the type

of inconsistency detection, in a black-box victim system scenario.

In Appendix B, we present a motivation example for our design

EMShepherd .

2.3 Electromagnetic and Power Side-Channel

Both EM emanations and power consumption of a computer system

depend on the circuit operations and data [9]. Such side-channels

have been extensively analyzed to retrieve the secret key of crypto-

graphic algorithms [17, 19, 32], and recently have been utilized to

infer deep neural network model information. Yu [63] proposed a

SEMA to retrieve the topology of the victim model. Batina [11] ap-

plied differential EM analysis to recover simple MLP model param-

eters of microcontroller implementations. Zhang [64] successfully

extracted the structure of a network running on an FPGA via power

side-channel. Chmielewski [18] targeted GPU DNN implementa-

tions and recovered the model structure with EM side-channel

information. All the prior work focuses on reverse engineering

partial model information, while our work associates the EM ema-

nation patterns with input sample classes.

There are multiple strategies to analyze EM/power side chan-

nel information, such as traditional statistical way and modern

learning-based methods. Statistical analysis requires alignment of

the EM/power measurements with the computation processes and

relies on certain power models, such as HammingWeight and Ham-

ming Distance model, or mutual information between distributions

to discern the secret. When leveraging EM side-channel leakage

of DNN model execution for classification and adversarial detec-

tion, the model structure is complex, the execution is computation-

intensive, and the hardware platform supports highly parallel oper-

ations, and therefore learning-based methods are more suitable for

coping with the misalignment, noise, and feature extraction, etc.

2.4 Target Platform

We choose Xilinx® Deep Learning Processing Unit (DPU) as our

platform. DPU is a popular configurable hardware neural network

accelerator on FPGA and achieves the best throughput for DNN

inference [66]. DPU supports common CNNs such as VGG[51],

ResNet[27], GoogLeNet[53], YOLO[46], and MobileNet[28]. Xilinx

provides Vitis AI [8], a development stack to compile neural net-

works software trained with generic DNN platforms such as [4],

onto a DPU accelerator.

3 THREAT MODEL AND ADVANTAGES OF
OUR HARDWARE-BASED ADVERSARIAL
DETECTOR

3.1 Threat Model

The victim is a DNN classifier, which is pre-trained with a public

dataset. The testing dataset may be kept private. We assume the

strongest ‘white-box’ attack model, where the attacker has full

knowledge of the victim model and training dataset in order to

generate adversarial samples with minimum perturbations. On the

contrary, the detection system assumes the most limited scenario,

under a ‘black-box’ view of the victim, without access to the vic-

tim’s inputs, parameters, and intermediate outputs or execution
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details. The only information available to the detector to distin-

guish adversarial samples is the EM side-channel measurement and

the victim model’s prediction class. For training the adversarial

detector with EM traces, a public benign dataset is used.

3.2 Advantages

Compared to software-based adversarial detection methods, our

hardware-based detector, EMShepherd, has three distinct advan-

tages: privacy-preserving, portability, and robustness.

• EMShepherd protects the DNN model user’s data privacy as

it is agnostic to the model’s inputs, which instead are always

required by prior reconstruction-based detection methods [42,

62]. The sensitive inputs should not be shared with third-party

detectors. Our design only requires the output class labels and the

EM signals, which are passively leaked to common acquisition

equipment.

• EMShepherd also protects the model confidentiality. No model in-

formation, including hyper-parameters, parameters, and logits, is

needed, in stark contrast to the previous software-based detection

methods [21, 38]. The EM data processing and the adversarial de-

tector training process are both victimmodel-agnostic. Therefore,

our method has more general usage, applicable to closed-source

DNN applications, which are pervasive in edge devices where

the user only queries the models for the final prediction output.

• Owing to the model-agnostic feature, EMShepherd can be easily

ported for wide-range hardware devices with different DNN

implementations for diverse applications. It can be used as a

‘plug and play’ (PnP) device, aside from the target system, to

work automatically without user intervention or contact with

the victim system.

• Adaptive attack [55] is a threat to most software defense meth-

ods where the attacker adjusts the adversarial perturbations to

mislead both the victim models and defense systems. However,

due to the high complexity and non-explicit dependency of the

EM signals on computations and data, it is extremely hard to

have an adaptive attack on our detection method, i.e., adversarial

examples whose EM signals are deliberately controlled to evade

the EM-based detector.

4 EMSHEPHERD DESIGN

We next present the design rationales for the EMShepherd frame-

work, the composition of the adversarial detector and salient func-

tions.

4.1 EM Emanations of DNN

As mentioned in Section B, semantic information can be used in

adversarial detection, but how can we get it under a ‘black-box’

setting? We leverage EM side-channel leakage to characterize the

semantic computational information for benign inputs. Model in-

ference is a highly computation-intensive task, involving multiple

stages of parallel computation, making the EM signals complex and

their dependency on computations hard to model. Learning-based

methods can tackle these noisy EM signals well to extract class-

specific features. We build convolutional neural network (CNN)

classifiers based on an EM dataset collected from a target system

running on Fashion MNIST (with 10 classes). Figure 2(a) presents

(a) CNN Feature Space (b) Confusion Matrix

Fig. 2: Feature Space Representation and Confusion Matrix

of EM signals

the feature space embedding of a CNN classification model on the

testing EM dataset using a commonly-used visualization tool, T-

distributed stochastic neighbor embedding (TSNE) [56]. Figure 2(b)

shows the confusion matrix of the CNN model prediction results.

We notice that,

• The CNN classifier can extract class-related features from the

EM signals. Some classes’ features are distinct from others, while

some overlap with others.

• The embeddings of the classes with similar semantic information

are located near each other, such as the cluster of (Sandal, Sneaker,

Ankle Boot) (all shoes) and the cluster of (Shirt, Coat, Pullover)

(all tops).

Based on these findings, we will discuss our design of EMShepherd

, which leverages this semantic information in the EM signals with

the model outputs to detect adversarial samples. The design will

also overcome the low prediction accuracy for some classes by

further exploiting the feature space with anomaly detectors.

4.2 Overview of the Detection System

Figure 3 shows an overview of the EMShepherd detection frame-

work. The victim model is an image classifier running on a Xilinx

DPU, and an EM trace is collected for each model execution. Dur-

ing the training phase, the model is queried with a benign training

dataset and corresponding a training EM trace dataset is collected.

These traces will be used to train EM classifiers whose outputs are

utilized to fit a set of class-specific anomaly detectors. After this

phase, all the trainable components are fitted and the parameters are

fixed, an EMShepherd detector is generated. In the detection phase,

the pre-trained EMShepherd takes in the EM trace collected during

an image inference, processes it, and feeds it to the follow-on EM

classifiers and anomaly detector, to accurately detect adversarial

examples guided by the output label from the victim classifier.

4.3 Notation and Definition

We next define notations used along with our system design. The

victim model M𝑣 is a pre-trained 𝑁 -class classification model run-

ning on a device, facing adversarial attacks. One input image to the

victim model is denoted 𝐼𝑚𝑖 ∈ I𝑣 , and the corresponding output la-

bel is 𝑦𝑖 . The corresponding EM trace for the execution collected is

T𝑖 ∈ T𝑣 , each with 𝑃 number of points. Every T𝑖 can be partitioned

into multiple computation segments T𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 ({B1,B2, ...,B𝑀 }𝑖 ),

where the number of segments,𝑀 , depends on both the structure of
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Fig. 4: Short-Time Fourier Transform

M𝑣 and its implementation on the victim device. Note that𝑀 may

be larger than the number of layers, as off-chip communications

can happen within a layer due to the on-chip resource constraints.

EM segments are 1-D time series, and are preprocessed by Short-

Time-Fourier-Transform (STFT) to generate 2-D EM spectrograms

(details will be given in Section 4.4), B𝑚 → S𝑚 (𝑡, 𝑓 ) in both time

and frequency dimensions, where𝑚 = 1, 2, . . . , 𝑀 denotes the seg-

ment index. Correspondingly one EM classifier is built on one EM

segment, denoted C𝑚 . Given an input image 𝐼𝑚𝑖 , the logits of EM

classifier𝑚 is denoted as {L𝑚}𝑖 . Then logits of all𝑀 EM classifiers

are concatenated into one vector 𝒍𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 ({L𝑚}𝑖 ), providing a

holistic view of the victim model’s internal processing for input

image 𝐼𝑚𝑖 .

The class-specific anomaly detectors are built for all 𝑁 classes,

denoted {D𝑛}, where 𝑛 = 1, 2, ..., 𝑁 , one for each class. D𝑛 is

trained with 𝒍𝑖 of the benign training samples with 𝑦𝑖 = 𝑛, and a

threshold is selected for each class. For a testing input 𝐼𝑚 𝑗 with

the prediction label 𝑛, the loss of the anomaly detector, denoted

as ℓ (𝐼𝑚𝑖 ), is compared with the corresponding class threshold, 𝐿𝑇 ,

to detect whether the input is adversarial. More details will be

illustrated in Section 4.6.

4.4 Data Collection and Preprocessing

Fig. 3 shows that the raw EM traces, T𝑖 ∈ T𝑣 , will first go through

a trace processor for denoising and transformation. The trace pro-

cessor performs two tasks: extracting high-energy segments from

raw traces and converting each EM segment into a spectrogram.

We analyze the trace profile and find that different input images

will result in different amplitudes on the EM traces, but they all

have the same number of segments due to the hardware accelerator

structure. We pick local maximum leakage points and split each

trace into multiple segments. Note that we do not need to align the

segments in the time domain as we will use Short-Time Fourier

Transformation to do time-frequency domain conversion. Fig. 4

depicts the processing method - Short-Time Fourier Transform. A

sliding Hanning window (e.g., 256 points) with a stride of half of the

window is used to transform the raw signals progressively. Between

two windows, the overlapping time points make sure that no infor-

mation is lost by preserving the signals on the windows’ boundaries.

In each window, we apply FFT to convert the signal from the time

domain to the frequency domain to generate a spectrum.

S𝑚 (𝑡, 𝑓 ) =

∫ (𝑡+1)𝑤

(𝑡−1)𝑤
B𝑚 (𝜏)𝑒− 𝑗2𝜋 𝑓 𝜏𝑑𝜏 (3)

where𝑚 = 1, 2, . . . , 𝑀 denotes the segment index,𝑤 denotes half

of the STFT window size, 𝑡 = 1, 2, · · · , 𝑃𝑚/𝑤 denotes the index of

time windows in a segment, and 𝑓 is the frequency selected.

There are three benefits of using STFT.

• Noise-Filtering. As shown in Fig. 4 where the Y-axis of the spec-

trogram is the frequency and the brighter the color the higher

the amplitude, the main energy (the brighter part) is focused on

the operating frequency of the victim model, which is 150𝑀𝐻𝑧

in our case. The rest frequencies have relatively lower energy.

Thus, we can select 15 bands around the operating frequency

out of 256 bands and filter out other lower-energy components,

which increases the signal-noise ratio (SNR) of the remaining

EM frequencies.

• Dimension-Reduction. The number of points in the spectrogram

is reduced by𝑤 times in the time domain compared to the raw

EM segment, which makes the follow-on model learning capture

the temporal patterns easier.

• 2-D image. Compared to 1-D raw EM traces, the spectrogram

naturally fits CNN classifiers and kernels, which not only pro-

vides time and frequency information but also the change of

the spectrums along the time. More details will be presented in

Section 5.2.2 that the EM classifiers indeed exploit both time and

frequency information in the spectrograms for classification.

4.5 EM Classifiers

As aforementioned, the EM trace can leak class-specific computa-

tion and activation information during the inference process for an

input sample 𝐼𝑚𝑖 . We train a DNN classifier on each segment of EM

spectrogram, with all benign samples in the EM training dataset,

as depicted in Fig. 5.

After that, we will concatenate all the EM classifiers’ outputs

into one logit vector for all the benign samples that belong to one

class. This is based on the observation that for one input image,

although all the constituent EM classifiers give out the same class

prediction, their logit vectors may differ significantly, which may

carry finer-grained feature/semantic information. We use the ex-

perimental results on the Fashion MNIST dataset as an example. As

shown in Fig. 5, for an input image Sneaker, the classifier on the first

spectrogram gives out the correct prediction of Sneaker, with a 0.88

confidence score. However, Classifier M on the 𝑀𝑡ℎ spectrogram,
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. . .

Sneaker: 0.88 Sandal:0.09 Boot: 0.02 else: 0.01

Segment MSegment 1

Logits Vector concatenate

Classifier 1 Classifier M

Sneaker: 0.49 Sandal:0.48 Boot: 0.01 else: 0.02

Input

Fig. 5: EM-based classifiers and logits output

although also gives out the correct prediction, has much lower con-

fidence as 0.49. One explanation is that the victim model processes

the semantic information layer by layer to get a final discriminative

output, where various EM segments correspond to the computation

on different layers and different features. Further, according to our

experimental results, it is not necessary for every EM classifier to

correctly identify the image class to be useful for the later anomaly

detector. One segment of the model’s internal operations can focus

on some features that are not informative enough to identify the

image class, and the corresponding EM classifier may not result in

a high score/logit for the class. However, such information (this

particular segment is not informative enough to distinguish image

classes) can still be helpful when adversarial samples cause a differ-

ent pattern, such as resulting in a high confidence score for a class

instead of among the outputs of this segment EM classifier. It is the

deviation of the logits from benign ones that contribute to anomaly

detection. The concatenated logits vector, 𝒍 = 𝑐𝑜𝑛𝑐𝑎𝑡 (L1, ..., L𝑀 ),

provides a pattern of how segments of internal model operations

correlate to the class identification, regardless of high or low, which

resembles an entire inference process across layers of the victim

DNN model.

4.6 Anomaly Detection Models

The concatenated logits vector 𝒍 of benign inputs from the same

class are likely to be similar. Therefore, we can build OOD detector

to distinguish adversarial samples which very likely do not fall

into the target class (claimed by the victim model). We select a

reconstruct-based detector using Variational AutoEncoder (VAE).

The structure of VAE is shown in Fig. 6, with an encoder followed

by a decoder, where the middle layer is the latent-space represen-

tation. The encoder and decoder of our VAE each contain four

fully-connected layers. The loss of the VAE includes a latent-space

regularizer loss ℓ𝐾𝐿 in addition to the encoder-decoder’s reconstruc-

tion loss ℓ𝑟𝑒𝑐𝑜𝑛 . The ℓ𝐾𝐿 measures the Kullback-Leibler divergence

of the latent space when fitted to some distribution assumption,

which is a Gaussian distribution in our case. The ℓ𝑟𝑒𝑐𝑜𝑛 measures

the difference between the output and the input of the autoencoder.

When fitting the VAE, we utilize ADAM optimizer to minimize the

total loss ℓ𝑡𝑜𝑡𝑎𝑙 = ℓ𝑟𝑒𝑐𝑜𝑛 + 𝜆ℓ𝐾𝐿 , where 𝜆 is a constant.

The VAE total loss 𝑒𝑙𝑙𝑡𝑜𝑡𝑎𝑙 during inference can be used to detect

OOD samples. When inferring benign samples, the EM classifiers’

logits will match the prediction output, which fits the pre-trained

VAE model with a lower loss. However, when the victim model is

attacked by an adversarial sample that misleads the prediction to be

a different target class, the EM signals will be Out-of-Distribution.

Therefore, the EM classifiers’ logits will also be Out-of-Distribution

Logits 

Encoder
Latent
Space Decoder

LKL
LR

Reconstruction 

Fig. 6: The structure of anomaly detector and VAE

leading to a higher VAE loss. By selecting a VAE loss threshold based

on the validation of benign samples, one can detect adversarial

samples with a controllable false positive rate.

5 EXPERIMENTS AND EVALUATIONS

In this section, we present the experimental setup and evaluation

results.

5.1 Experiment Setup

EM Trace Collection: The device under test (DUT) is a Xilinx

DPU [3] running on an Ultra96-V2 board [7], a multi-processor

System-on-Chip with ARM cores and Xilinx Zynq UltraScale+

FPGA. The board runs the official PYNQ image v2.5 from the vendor

AVNET 1 [5]. The EM probe is PBS set 2 with a pre-amplifier [6].

We use a Lecroy WR640Zi oscilloscope [34] to collect EM traces.

Fig. 7(a) shows a picture of our trace collection setup. The con-

trol and monitoring workstation first sends a command via SSH

to the DUT with the pre-trained DNN model (bitstream) deployed,

and the DUT loads an input image and starts executing inference.

Meanwhile, the oscilloscope is triggered to capture the EM trace

until the DUT finishes execution. Then the trace is streamed to the

workstation for storage and processing. The collected dataset of EM

traces is used to train the EM classifiers and the anomaly detectors.

The training is performed on a server, with an AMD Ryzen 9 3900X

12-Core processor, 32 GB of RAM, and one Nvidia GTX TITAN

GPU card.

Datasets and Victim Models:We start from a LeNet-5 convolu-

tional neural network on Fashion MNIST to evaluate our EMShep-

herd framework. We also experiment with a robust LeNet-5 re-

trained with adversarial examples. Furthermore, we evaluate our

framework on a larger VGG model over the colored CIFAR-10

dataset (See Appendix C).The Fashion MNIST dataset is represen-

tative of computer vision tasks suitable for edge devices such as

FPGA accelerators and mobile systems. It consists of a training

set of 60, 000 examples and a test set of 10, 000 samples, which

are 28 × 28 grayscale images, labeled into 10 classes. The LeNet-5

CNN achieves a 91.2% prediction accuracy on the dataset [13].The

confusion matrix of the LeNet-5 on Fashion MNIST is given in

Fig. 7(b). Note that among the ten classes, the model is more likely

to misclassify Class Shirt (the 6
𝑡ℎ row in the confusion matrix)

to other three classes, T-shirt, Pullover, and Coat, due to similar

features. This lower classification rate for these classes will affect

the performance of our adversarial detector accordingly, analyzed

1B1600, which supports up to 1600 multiplications and additions per clock cycle.
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(a) Trace Collection Setup (b) Confusion Matrix

Fig. 7: Collection Setup and Victim’s Confusion Matrix

Origin PGD 𝐿1 PGD 𝐿2 PGD 𝐿𝑖𝑛𝑓 CW 𝐿2 DF 𝐿2

Fig. 8: Adversarial images (T-shirt to trouser)

1st Dense1st Conv 2nd Conv 3rd Dense2nd Dense

Fig. 9: EM trace (blue) and BPF-filtered trace (yellow)

in detail in Section 5.4. CIFAR-10 is more complex, consisting of

60, 000 32 × 32 color images in 10 classes. For the CIFAR-10 experi-

ment in Appendix C, we adopt a larger VGG-like model and obtain

a 90.5% testing accuracy. We randomly divide these datasets into a

training subset (60%), a validation subset (20%), and a testing subset

(20%).

Adversarial Attacks: Our adversarial detector can detect a wide

range of adversarial examples with EM emanations. We employ

three state-of-the-art adversarial attack methods discussed before

in Section 2.1: CW (targeted), PGD (targeted), and DeepFool (untar-

geted). For PGD attacks, we test different distance measurements:

𝐿1, 𝐿2, and 𝐿𝑖𝑛𝑓 to evaluate the model robustness against various

distance losses. For CW and DeepFool attacks, we test the com-

monly used 𝐿2 measurements. All the attack implementations are

from the Foolbox library with commonly-used parameters [45]. For

targeted attacks, we consider a general attack model where the

targeted label (misclassification) can be any of the incorrect classes.

When evaluating the adversarial detector performance, we sam-

ple the examples to different adversarial classes for both targeted

and untargeted attacks. For each class, we select 9, 000 adversarial

samples equally distributed among the rest 9 source classes. Fig. 8

shows one image from the source class of shirt and corresponding

adversarial images generated by various attack methods to a target

class of trouser. When evaluating CIFAR-10, we present the results

of PGD L1 attacks due to the page limit.

Detection Evaluation Metrics: We evaluate two main compo-

nents of the detector, EM classifiers and anomaly detectors, with

two metrics: testing accuracy and F1-score. Note that our training

is only on benign examples while the detection (inference) is on

unknown benign or adversarial samples. In practice, the number

of adversarial samples is far less than the benign ones. Due to this

imbalance, we use F1-score [1], 𝐹𝑒𝑚 , to measure the classification

performance.

𝐹𝑒𝑚 =
𝑇𝑃

𝑇𝑃 + 1

2
(𝐹𝑃 + 𝐹𝑁 )

(4)

where 𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 are the true positive (adversarial detection rate),

false positive and false negative ratio of the prediction results, re-

spectively. We plot Precision-Recall Curve (PR curve) to show the

trade-off between detection precision and recall. Just like ROC

AUC [29], the Precision-Recall Area Under Curve (PR AUC) Score

can be used for comparison between different detection settings.

Baseline Comparison: To the best of our knowledge, EMShep-

herd is the first hardware-based adversarial detector. It captures the

contradiction between semantic EM signals and the victim output

under a ‘black-box’ setting. We compare our method with four

prior software-based detection methods, Kernel Density Estimation

(KDE) [21], Network Invariant Checking (NIC) [38], Feature Squeez-

ing (FS) [61] and MagNet [42], against PGD and CW 𝐿2 adversarial

samples. However, these baseline methods aren’t all ‘black-box’:

KDE and NIC requires the model’s intermediate outputs; FS and

MagNet requires testing inputs. The metric we use for comparison

is Detection Rate (DR) when the FP rate is controlled at 10%.

5.2 EM Trace Processor

5.2.1 EM traces and segmentation. Fig. 9 shows an example EM

trace for one benign image inference, where the blue curve is the

original trace with sample point as the 𝑥-axis and EM leakage

intensity as the 𝑦-axis. We apply a bandpass filter (BPF) with a

center frequency 150MHz to reduce the noise and obtain a clearer

signal (yellow trace). After BPF, the high-intensity segments will be

clean enough and can be easily partitioned. Among the segments

in Fig. 9, the first 6 are long segments (more than 30, 000 sample

points) and the following ones are shorter (less than 10, 000 sample

points). We infer that the longer segments come from the first two

convolutional layers, which utilize more Processing Element (PE)

for parallel computation. The rest shorter segments come from the

dense layers, which run faster and turn out to be less informative.

In real applications, the detector has a black-box view of the model

and has no information about which layer the segment comes from,

but can automatically process the trace with BPF and partitioning.

5.2.2 EM Spectrograms. Class-related features/signals in the EM

traces have to be preserved to build a highly accurate EM classi-

fier. We show that the spectrograms generated by our STFT data

processing method outperform both the time-domain traces and

the simple frequency-domain spectrum (after applying the fast-

fourier-transformation (FFT) on the entire time-domain EM trace).

To localize and detect class-related signals, we run the victim model

on two classes of input images and collect EM traces. We applied

the student T-test across the two class-datasets, on three kinds of

data representations of EM traces: spectrograms, the original time-

domain traces, and the frequency-domain spectrums. The T-test

statistically tests the average difference between two groups of data.

A large absolute value of T-statistics on a point indicates that the
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(a) Time-domain (b) Frequency-domain

(c) Spectrogram T-scores

Fig. 10: (a) T-statistics of time-domain traces; (b) T-statistics

of frequency-domain spectrums, the red line marks the oper-

ating frequency 150MHz; (c)T-statistics of spectrograms, the

intensity of each point represents the T value.

traces of two different classes differ significantly here, thus this

location contains a strong class-specific signal.

Fig. 10 presents the T-statistics results for Class 0 and Class 1.

The T value is shown on the y-axis, while the X axis shows the

time for the time-domain trace in Fig. 10 (a) and frequency for the

frequency-domain spectrum in Fig. 10 (b). For 2-D spectrogram

T scores shown in Fig. 10 (c), the X axis is the time, Y axis is the

frequency while the T value is represented by the intensity on the

heatmap. Intuitively the spectrogram depicts the time-varying spec-

trum, while the frequency-domain spectrum just presents average

frequency components. When comparing Fig. 10 (a) and (c), we can

view each row of Fig. 10 (c) as a constituent component of Fig. 10

(a). By filtering the bottom rows and only keeping the rows with

high intensity (near the top), we are filtering irrelevant noise with

low T-values. When comparing Fig. 10 (b) and (c), we can view each

column of Fig. 10 (c) as a spectrum for a short time window, and

the spectrum is varying along the time. The energy (high intensity)

focuses on the frequency band near the top of Fig. 10 (c) (i.e., the

beginning frequencies of Fig. 10 (b)), which is around the operating

frequency of the DUT.

Fig. 10 also shows the peak absolute value of T-statistics of the

spectrogram is 173.14 compared to 162.79 and 151.64 for the time-

domain traces and frequency-domain spectrums, respectively. We

can conclude that the spectrogram contains more signals for classi-

fication than the other two forms of data. In our experiment, we

only select 15 frequency bands of the spectrogram around the de-

vice operating frequency and discard other bands. This bandpass

filtering is effective de-noising. As spectrogram preserves both the

frequency and time information, its 2-D form resembles an image

and suits CNN classification naturally.

5.3 Evaluation of EM Classifiers

Table 1 gives the performance of EM classifiers (we use VGG-11

models) for LeNet-5 on MNIST. For the original raw trace in Fig. 9,

(a) Target 1 VAE loss (b) PR curves for classes

Fig. 11: VAE Loss of Target 1 and PRcurves for ten targets

we analyze the first 18 segments corresponding to computations for

the two convolutional layers and the first dense layer of the victim

model, while the last two layers leak less information (with lower

intensity and shorter time). We process each of the segments sepa-

rately with STFT and build a classifier, locating the most prominent

class-specific information.

For most of the segments, the EM classifier does extract some

model execution information of that segment, where the class pre-

diction accuracies based only on EM traces range from 23% to 70%.

Some segments (the 12th-16th) from dense layers reveal little in-

formation, resulting in only 10% accuracy (the same as a random

guess among 10 classes). We choose to only use the strong signals

from convolutional layers for adversarial detection in the next part

without much degradation.

For different classes, the amount of information carried in each

segment also varies. As an example, we separate the first three-

segment EM classification performances by the output class labels

and report them in Table 2. For instance, for the 8th class, Segment

0 contains most information; for Class 5, Segment 1 contains most

information; for Class 1, Segment 2. Different segments of DNN

execution focus on different semantic features. Since the most in-

formative feature varies from one output class to another, the most

informative EM segment also varies.

To visualize the utilization of varying parts of EM segments, we

use the GradCAM [48] on our EM classifiers. The results are shown

in Appendix A. For different classes, the benign inputs generally

activate different neurons within a segment, and our EM classifiers

capture the patterns. When an adversarial example does not acti-

vate these neurons, it results in different output logits for the EM

classifier.

5.4 Evaluation of Anomaly Detector

We concatenate the logits from EM classifiers for all segments to get

a logits vector reflecting the execution flow of the victimmodel. The

follow-on VAE extracts compressed latent features from the benign

logits vectors so that the benign vectors can be reconstructed from

the compressed latent features with small loss. The adversarial

examples cause different execution flows and their logits vectors

can not be well reconstructed from compressed latent features.

Fig. 11(a) presents the testing reconstruction loss of the pre-trained

VAE for both benign and adversarial samples, where the blue bars

are for benign samples and the yellow bars are for adversarial

examples from PGD L2 attack. The red dash vertical line is an
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Table 1: The EM classifiers’ performance for each segment

Layer Type Convolutional Layers Fully-connected Layers

Index 1
st Layer 2

nd Layer 3
rd Layer

Segment 0 1 2 3 4 5 6 7 8 9 10 11 12-16 17

Accuracy 0.68 0.70 0.64 0.56 0.68 0.68 0.23 0.38 0.37 0.10 0.33 0.33 0.10 0.59

F1-score 0.65 0.67 0.61 0.52 0.66 0.66 0.18 0.35 0.32 0.02 0.26 0.26 0.02 0.57

Table 2: The EM classifiers’ classification report for Segment 0, 1, 2

Class 0 1 2 3 4 5 6 7 8 9

Segment 0
Accuracy 0.58 0.92 0.55 0.55 0.49 0.67 0.35 0.64 0.89 0.83

F1-score 0.56 0.81 0.38 0.65 0.50 0.63 0.37 0.72 0.91 0.77

Segment 1
Accuracy 0.70 0.81 0.71 0.69 0.40 0.85 0.37 0.91 0.81 0.85

F1-score 0.72 0.86 0.53 0.71 0.42 0.90 0.04 0.82 0.84 0.88

Segment 2
Accuracy 0.59 0.95 0.47 0.65 0.35 0.82 0.47 0.65 0.62 0.80

F1-score 0.68 0.92 0.53 0.68 0.40 0.70 0.08 0.74 0.61 0.82

empirically selected threshold to determine whether the input is

benign or adversarial. It shows that two distributions are disjoint

and adversarial examples can be easily distinguished from benign

examples. Fig. 11(b) shows the precision-recall curves of the VAE

for all 10 classes. Similar to the receiver operating characteristic

curve, the PR curve shows themodel performance trade-off between

precisions and recalls. The classification algorithm is desired to have

both high precision and high recall. Therefore, a larger Area Under

Curve (AUC) indicates a better classifier. Three classes, Class 0, 4, 6,

have relatively worse performance, due to the original classification

inaccuracy of the victim model among these classes.

In Fig. 12, we visualize the features of a selected adversarial

sample (generated by PGD 𝐿2 attack) and two benign samples (one

of the source class and the other of the target class) with a 3-D

embedding of their logits vectors. The embedding demonstrates

that the logits of the adversarial sample are different from both those

of the source class and the target class, while relatively closer to the

former (more different from the target). Combined with the victim

model output (misclassified to a target class), the anomaly detector

finds that essentially the adversarial example bears more similarity

to another class (the source class) than the predicted one, presenting

a conflicted result and therefore capturing the discrepancy.

(a) Embeddings in 3D (b) PR curves for latent space

Fig. 12: Embedding and PR-curve for different latent space

5.5 Overhead and Delay

We measure the overhead and delay of the EMShepherd detection

framework. As the detector is outside of the victim model and the

system, it will not affect the victim model execution at all. It detects

an adversarial example within 169 milliseconds after the victim

model finishes execution on the experimental platform. The delay

is composed of the average processing time of EM traces (10 ms),

EM classifiers inference (128 ms) and anomaly detector execution

(31 ms). The processing time can be reduced by running the EM

classifiers for different trace segments in parallel. It can be further

reduced by running the detection along with the measurements

in a pipelined fashion - starting processing a segment as soon as

it is measured while the victim model is still executing the next

segment.

5.6 Impact of the Detector Parameters

In this section, we evaluate the impact of different experimental

settings on the performance of our adversarial detector. For instance,

the trace sampling frequency and sliding window size of STFT

will impact the classification accuracy of EM classifiers, and the

structure of the anomaly detector (such as the latent space size)

may affect the generalizability of VAE. Different attack methods

or the distance measures used in attacks will also lead to different

detection results.

EM Trace Sampling Frequency: The sampling frequency of EM

traces has an effect on the information density for the classifiers. We

adjust the oscillator’s sampling frequency from 500MHz to 20GHz

and report the EM classification accuracy of the first segment in

Table 3. Note that according to the Nyquist-Shannon sampling

theorem, the minimum sampling frequency should be larger than

300MHz (two times of operating frequency). The results show that

a sampling frequency above 2GHz is sufficient to achieve good

classification accuracy.

Table 3: Classification accuracy versus sampling frequency

Frequency (GHz) 0.5 1 2 4 10 20

Accuracy 0.32 0.32 0.65 0.67 0.67 0.68
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SlidingWindow Size:We further compare the classifiers’ accuracy

with different STFT window sizes. When the Hanning window

size changes, the number of bands with most signals also changes.

Table 4 presents the results for different STFT configurations. As

the window size changes from 64 to 1024, the classifiers’ average

accuracy goes up first and then goes down, with the maximum

accuracy of 67% at the window size of 128 with the top 15 frequency

bands (above the red dash line in Fig. 14 (d)) in the Appendix are

kept for the follow-on classifier and anomaly detector).

Table 4: Classification accuracy vs. the sliding window size

Window size 64 128 256 512 1024

Band number 60 30 15 8 4

Accuracy 0.53 0.56 0.67 0.59 0.34

Latent Space Size: The latent space of VAE is a variable that may

affect the performance of anomaly detection. We vary the size of the

latent space between 2 and 9, which reflects the model’s capability

to express the input data features. The results are presented in

Fig. 12. Overall the latent space size has no significant effect on

anomaly detection. The space size of 6 is slightly better than others.

AttackMethods:Our anomaly detector can detect adversarial sam-

ples for a wide range of existing attacks, PGD, CW, and DeepFool,

with different attack distancemetrics.We tested five attackmethods,

𝑃𝐺𝐷 (𝐿1), 𝑃𝐺𝐷 (𝐿2), 𝑃𝐺𝐷 (𝐿𝑖𝑛𝑓 ), 𝐶𝑊 (𝐿2), and 𝐷𝑒𝑒𝑝𝐹𝑜𝑜𝑙 (𝐿2), and

the adversarial detector all has a reasonable detection performance,

shown in Table 5.

Comparing the different distances used in attacks, we observe

that using an EM-based detector has better performance for the 𝐿1
attack, then 𝐿𝑖𝑛𝑓 , and the worst is 𝐿2 for PGD attacks. For 𝐿1 attack,

only a few pixels are modified to make an adversarial example from

the original source-class sample, as shown in Fig. 8 (b). Although

the victim model is misled to predict it to be the target class, the

EM trace of the inference bears more similarity to the original class

sample, distinctly different from the EM traces of the target class

samples. Therefore, it is easier to detect the adversarial. While for

𝐿𝑖𝑛𝑓 attack, many pixels are changed, randomly distributed, easily

visualized in Fig. 8 (d). The EM trace will differ both from that of the

source class and that of the target class, still caught easily by the

adversarial detector. For 𝐿2 attack, there are more pixels changed

than the 𝐿1 attack, but around the object in the image rather than

randomly distributed like in 𝐿𝑖𝑛𝑓 , making the EM trace somewhat

between those of the source class and target class and causing the

anomaly detector low confidence in making the prediction.

Target Classes: Fig. 11(b) shows that the prediction F1-scores of the

victim model on the three classes, 0, 4, and 6, are 0.84, 0.83, and 0.70,

respectively, lower than other classes with scores above 0.9. Such

inaccuracy affects the performance of our adversarial detectors. The

samples from these classes, therefore, include similar computation

along a large part of the victim model execution flow, making the

detection hard from the EM emanations of the execution. Table 5

also presents the detector performance on various adversarial target

classes (columns) by different attackmethods (rows) using F1-scores.

Particularly Class 0(T-shirt) and 6(Shirt) do not perform as well

as other classes. For other classes, our detection framework can

detect close to 94% of adversarial samples with less than a 10% false

positive rate.

5.7 Comparison with Other Methods

Table 6 shows our comparison between the hardware-based EMShep-

herd with state-of-the-art software detection methods. Note that

our detector is under a stricter ‘black-box’ scenario where only

the EM traces of model execution along with the model prediction

output are available. We control the False Positive (FP) rate under

10% and evaluate the detection rates under targeted PGD 𝐿2 at-

tacks and CW 𝐿2 attacks on all the 10 classes. We draw three major

conclusions.

• EMShepherd outperforms all baseline methods in the detection

of PGD and CW attacks, with a 94% detection rate on average.

This demonstrates that our EMShepherd successfully captures

the different computations of the model inference for benign and

adversarial samples.

• The detection performance varies in different target classes. PGD

attacks on Class 0, 4, and 6 cannot be easily detected, due to

the relatively lower EM classification accuracies for these three

classes (See Table 2).

• Our detector performs consistently across the two different at-

tacks, while the performance of other methods varies signifi-

cantly for the two attacks. PGD attacks can be effectively de-

tected by MagNet, which utilizes only testing inputs (semantic

information) from the victim inputs. On the other hand, NIC,

which focuses on the execution flow, has a better performance

on CW adversarial samples. Our method is more general as it

obtains both of such information from EM traces.

6 ADVERSARIAL DETECTION FOR ROBUST
MODELS

The EMShepherd framework is model-agnostic and should also

work for robust models enhanced with adversarial defense mech-

anisms, such as adversarial training. The robust model is only re-

silient to adversarial examples similar to the ones used in retraining,

and may be circumvented by other unknown adversarial examples

or maliciously-designed adaptive attacks (stronger adversarial ex-

amples). We evaluate the effectiveness of our detector on a robust

model under a different adversarial attack. We train a robust LeNet-

5 CNN model with benign samples and adversarial examples (with

the correct labels) generated by the FGSM method. Such a robust

model is weak against the CW attack, while EMShepherd succeeds

in detecting the CW adversarial examples. We evaluate the detec-

tion performance on a testing dataset with benign, FGSM (regarded

as noisy benign), and targeted CW examples, and the VAE loss

distributions are presented in Fig. 13. Our findings are as follows:

• EMShepherd can detect the stronger adversarial samples (yellow

bars in Fig. 13) and most of the benign examples correctly (blue

and magenta bars). Using the threshold of 0.7, the DR of the

targeted CW attack is 100%when the FPR on unattacked samples

(benign and FGSM) is 2.6%.

• It is noticeable that the FPR of FGSM samples is 5.1%. Note that

although EMShepherd for the robust model is trained with only

benign samples, it still correctly classifies FGSM samples, consis-

tent with the robust model.
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Table 5: F1-scores of the VAE Detector

Attack 0 1 2 3 4 5 6 7 8 9

PGD(𝐿2) 0.820 0.999 0.957 0.957 0.899 0.999 0.758 0.999 0.968 0.999

PGD(𝐿𝑖𝑛𝑓 ) 0.946 0.999 0.956 0.981 0.918 0.999 0.884 0.999 0.963 0.999

PGD(𝐿1) 0.948 0.999 0.957 0.982 0.924 0.999 0.910 0.999 0.968 0.999

CW(𝐿2) 0.797 0.999 0.957 0.982 0.924 0.999 0.756 0.999 0.958 0.999

DF(𝐿2) 0.918 0.999 0.811 0.963 0.804 0.999 0.756 0.999 0.968 0.999

Table 6: Detection Rate(%) when 𝐹𝑃𝑅 = 10%

Method
PGD 𝐿2 Targeted Class CW 𝐿2 Targeted Class

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

EM 74.9 100 100 99.5 67.4 100 68.0 100 99.9 100 72.4 100 100 100 100 100 65.6 100 100 100

KDE 57.5 53.8 51.9 42.4 50.6 57.3 50.7 56.3 52.8 65.2 49.1 59.8 48.0 45.9 54.5 69.6 44.7 68.8 60.7 74.6

NIC 55.0 55.8 52.8 43.0 41.4 57.2 50.0 83.0 47.0 56.9 82.0 81.7 77.3 86.5 79.6 81.0 74.0 82.5 87.8 85.6

FS 64.4 51.2 72.1 60.8 69.9 40.1 66.8 39.6 65.2 50.1 69.5 62.0 68.0 62.8 79.0 66.3 66.8 73.9 67.4 69.5

MagNet 88.0 87.2 81.2 88.2 82.0 84.5 87.4 87.2 88.1 85.9 67.2 62.3 63.2 62.7 65.3 80.1 65.2 74.3 68.4 68.8

Fig. 13: Robust VAE Loss

7 CONCLUSION AND FUTURE WORK

In this work, we propose a novel adversarial detection framework,

EMShepherd, leveraging the EM side-channel of model execution.

EM traces embody rich input (class)-dependent inference infor-

mation, well suited for classification and anomaly detection. Our

framework extracts EM feature invariants for different classes and

use them for unsupervised anomaly detection. The adversarial de-

tector can be deployed as an air-gapped, third-party, PnP system in

the proximity of the victim system in operation. It is totally passive

and noninvasive without probing the model execution or retraining

the model. The performance of our black-box adversarial detector is

comparable to the state-of-the-art software-based white-box detec-

tion method, but has a much broader and more general application

to diverse DNN implementations and applications.

Our future work will adapt the framework for the detection of

more attacks, such as Trojan attacks, backdoor attacks, and data

poisoning attacks. The EM side-channel leakage of deep learning

engines during execution can be further leveraged for more applica-

tions, e.g., membership inference attacks where the input categories

are reverse engineered.
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(a) Spectrogram0 (b) Spectrogram1 (c) Spectrogram5

(d) GradCAM0 (e) GradCAM1 (f) GradCAM5

Fig. 14: The average spectrogram and GradCAM results of

the first EM segment from Class 0, 1, 5

A EMSHEPHERD GRADCAM

The GradCAM uses the gradient information flowing into the last

convolutional layer of the classifier to assign importance values

to each neuron for a particular decision of interest. Fig. 14 (a)-(c)

present the average spectrogram of the first EM segment for Class

0, 1, and 5, respectively, and Figure 14 (d)-(f) show the correspond-

ing coarse GradCAM localization (red heatmaps). The GradCAM

heatmaps illustrate the sensitivity (magnitude of gradient) of the

EM classification on the input neurons, which are the pixels on the

spectrogram here. The most sensitive (bright) parts are where the

EM classifier focuses on when making a decision. For example, the

primary signal of Class 1 is from the middle part of the spectrogram

as shown in Fig. 14 (b), and correspondingly GradCAM in Fig. 14

(e) shows that our classifier also emphasizes the central part. The

GradCAM heatmaps also guide the defender to improve the EM

segments’ pre-processing by selecting the significant frequency

bands.

B CLASS ACTIVATION MAP IN ADVERSARIAL
DETECTION

Class Activation Map (CAM) [30, 48] is commonly used to explain

the behavior of deep neural networks, showing how the network

progressively (with more layers) identifies the important region of

the input (features) that leads to the class prediction. For benign

samples, CAMs can represent the images’ semantic information [57,

65]. However, the adversarial perturbations can impact the focus of

neural networks, which leads to wrong predictions. For example, in

Fig. 15, we present an example originally comes from Class “Sandal”

and is classified as “Trouser” via CW attack, together with samples

from source and target class, followed by their class activation maps

of the first two convolutional layers, respectively. We conclude that:

• For benign samples, the class activation maps (semantic informa-

tion) visually show features that lead to the classification result.

• The CAMs of adversarial samples do not resemble those of be-

nign examples that represent the target class. And because of

adversarial noise, their CAMs diverge from the source class to

some anomalies gradually by the model depth.
• CAMs of different layers vary, and the impact of adversarial

perturbations will be amplified by the network depth.

Benign Example:

“Trouser”

Benign Example:

“Sandal”

Adversarial Example:

“Sandal”->“Trouser”

Fig. 15: GradCAM illustration of adversarial attacks. The ma-

licious noise in adversarial sample (the third row) increases

with the model depth, which finally causes it’s misclassifica-

tion to the target.

Therefore, one way for adversarial detection is to train an out-

of-distribution detector to figure out the mismatch between CAMs

from benign samples and ones from adversarial samples.

C ADVERSARIAL DETECTION FOR VGG
MODEL

To show the scalability of the EMShepherd framework, we further

apply it to a VGG-like model on CIFAR-10 dataset and evaluate

the adversarial detection performance. The results show that our

framework can cope with large victim model execution on more

complex datasets.

EM Traces of VGG Model Execution on CIFAR-10: Compared

with the grayscale Fashion MNIST, the CIFAR-10 dataset includes

colored images used for objection detection. The victim model and

our EM trace collector both have to change accordingly.

• Larger victimmodel: The size of CIFAR-10 images is 32×32×3,

requiringmore sophisticatedmodels. Due to the limited resources

on DPU, we choose a VGG-like model for implementation. The

model includes 7 layers: 5 consecutive convolutional layers fol-

lowed by 2 dense layers, which achieves testing accuracy 90.5%

on CIFAR-10 (93.6% by the benchmark VGG-16 [50]). It uses

Tensorflow2 building of Ultra96 with a working frequency of

150MHz.

• Lower EM sampling frequency: Due to the increase of exe-

cution time, the length of CIFAR-10 EM traces are longer than

the Fashion MNIST one. Fig. 16(a) shows an example CIFAR-10

EM trace under a sampling frequency 1 GHz. The blue part is the

raw EM signal and the orange part stands for the signals after a

bandpass filter at the DPU operating frequency.

• Layer-wise separation:As annotated on Fig. 16(a), the EM trace

can be partitioned into 5 convolutional layer segments (C1-C5)

and 2 dense layer segments (D1 and D2). We use C1-C5 for build-

ing the EM classifiers as they are for computations and easily
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(a) An Example of CIFAR-10 EM traces (b) Multiplications

Fig. 16: CIFAR-10 EM trace and layer operations

Fig. 17: CIFAR-10 VAE Loss

Fig. 18: CIFAR PRcurves

Table 7: CIFAR-10 EM Classifiers Performance

Convolutional layer C1 C2 C3 C4 C5

Accuracy 0.42 0.46 0.43 0.49 0.27

distinguished by the data transmission segments between two

computation ones. We find that the length of each EM segment

(layer execution) is directly proportional to the number of multi-

plications in that layer, and the results are presented in Fig. 16(b),

where C1-C5 are marked accordingly.

CIFAR-10 Layer-wise EM Classifiers: Table 7 shows the classi-

fication performance of layer-wise EM classifiers on CIFAR-10. It

shows that around half of EM traces can be correctly classified. The

reason for CIFAR-10 EM classifiers with lower prediction accuracies

than Fashion MNIST ones is because of inherent characteristics

of the datasets. CIFAR-10 image is 3-channel RGB while Fashion

MNIST image is 1-channel Grayscale. The VGG model used for

CIFAR-10 is deeper and larger than LeNet-5. The resolution of the

EM traces is much lower due to the lower sampling frequency and

limited storage/processing capabilities. Comparing the different

layer segments, we find that𝐶5, the last convolutional layer has the

lowest prediction accuracy. Because 𝐶5 has a larger receptive field

and a large number of kernels running in parallel, many neurons

and activation are concurrent and time points on the EM traces

bear low signal-to-noise ratios. Note although the classifiers achieve

lower accuracy than the previous Fashion MNIST cases, these clas-

sifiers are sufficient for the follow-on anomaly detectors to catch

adversarial examples, as we have analyzed it is the deviation of

classifiers’ logits that is the characteristics of adversarial examples,

i.e., a relative value instead of absolute accuracy.

CIFAR-10 Anomaly Detector:We evaluate the performance of

our anomaly detector on CIFAR-10 EM classifiers. The experimental

results show that our detection framework still achieves fairly good

performance on the colored CIFAR-10 dataset. The logits from all 5

segments (convolutional layers) are utilized as inputs for the VAE

anomaly detector, against targeted PGD attacks on CIFAR-10. Fig. 17

shows the VAE loss of the vectors of logits for both benign samples

and adversarial examples. With an optimal threshold selected, the

detection accuracy for the adversarial examples is close to 100%

with some false positives on the benign examples. Fig. 18 shows

the precision-recall curves for different classes: the best detection
result is from target class 4 (deer) with the F1-score of 0.906 and

the worst one is class 7 (horse) with the F1-score of 0.821.
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