
A
cc

ep
te

d
M

an
u
sc

ri
p
t:

2
0
2
2

IE
E

E
In

te
rn

at
io

n
al

S
y
m

p
o
si

u
m

o
n

S
ec

u
re

an
d

P
ri

v
at

e
E

x
ec

u
ti

o
n

E
nv

ir
o
n
m

en
t

D
es

ig
n

Accelerating Polynomial Multiplication for
Homomorphic Encryption on GPUs

Kaustubh Shivdikar∗, Gilbert Jonatan†, Evelio Mora‡, Neal Livesay∗, Rashmi Agrawal§,
Ajay Joshi§, José L. Abellán‡, John Kim†, David Kaeli∗

∗Northeastern University, §Boston University, †KAIST University, ‡Universidad Católica de Murcia

{shivdikar.k, n.livesay}@northeastern.edu, {eamora, jlabellan}@ucam.edu, {rashmi23, joshi}@bu.edu,

kaeli@ece.neu.edu, gilbertjonatan@kaist.ac.kr, jjk12@kaist.edu

Abstract—Homomorphic Encryption (HE) enables users to
securely outsource both the storage and computation of sensitive
data to untrusted servers. Not only does HE offer an attractive
solution for security in cloud systems, but lattice-based HE
systems are also believed to be resistant to attacks by quantum
computers. However, current HE implementations suffer from
prohibitively high latency. For lattice-based HE to become viable
for real-world systems, it is necessary for the key bottlenecks—
particularly polynomial multiplication—to be highly efficient.

In this paper, we present a characterization of GPU-based
implementations of polynomial multiplication. We begin with
a survey of modular reduction techniques and analyze several
variants of the widely-used Barrett modular reduction algorithm.
We then propose a modular reduction variant optimized for 64-
bit integer words on the GPU, obtaining a 1.8× speedup over the
existing comparable implementations. Next, we explore the fol-
lowing GPU-specific improvements for polynomial multiplication
targeted at optimizing latency and throughput: 1) We present a
2D mixed-radix, multi-block implementation of NTT that results
in a 1.85× average speedup over the previous state-of-the-art.
2) We explore shared memory optimizations aimed at reducing
redundant memory accesses, further improving speedups by
1.2×. 3) Finally, we fuse the Hadamard product with neighboring
stages of the NTT, reducing the twiddle factor memory footprint
by 50%. By combining our NTT optimizations, we achieve
an overall speedup of 123.13× and 2.37× over the previous
state-of-the-art CPU and GPU implementations of NTT kernels,
respectively.

Index Terms—Lattice-based cryptography, Homomorphic En-
cryption, Number Theoretic Transform, Modular arithmetic,
Negacyclic convolution, GPU acceleration

I. INTRODUCTION

Computation is increasingly outsourced to remote cloud-

computing services [1], [2]. Encryption provides security

as data is transmitted over the internet. However, classical

encryption schemes require that data be decrypted prior to

performing computation, exposing sensitive data to untrusted

cloud providers [3], [4]. Using Homomorphic Encryption (HE)

allows computations to be run directly on encrypted operands,

offering ideal security in the cloud-computing era (Figure 1).

Moreover, many of the breakthrough HE schemes are lattice-

based, and are believed to be resistant to attacks by quantum

computers [5].

One major challenge in deploying HE in real-world systems

is overcoming the high computational costs associated with

HE. For computation on data encrypted via state-of-the-art HE

Safe
Environment

Hostile
Environment

Untrusted
Environment

Internet

Trust Barrier

Message Encrypt Ciphertext

Message Decrypt Ciphertext

Se
rv

er
s

HE GPU
Acceleration

Compute

Fig. 1. HE provides security from eavesdroppers on the web as well as
untrusted cloud services, as encrypted data can be computed on directly.

schemes—such as HE for Arithmetic of Approximate Num-

bers [6] (also known as HEAAN or CKKS) and TFHE [7]—

a slowdown of 4–6 orders of magnitude is reported, as

compared to running the same computation on unencrypted

data [8], [9]. We aim to accelerate HE by targeting the main

operation in these schemes (and, more generally, in lattice-

based cryptography): polynomial multiplication [10], [11],

[12]. The Number Theoretic Transform (NTT) and modular

reduction are two key bottlenecks in polynomial multiplication

(and, by extension, in HE), as evidenced by the performance

profiling of several lattice-based cryptographic algorithms by

Koteshwara et al. [13]. As lattice-based HE schemes have

continued to establish themselves as leading candidates for

privacy-preserving computing and other applications, there has

been an increased focus on optimization and acceleration of

these core operations [14], [15], [16].

For most real-world applications of lattice-based HE, the

number N of polynomial coefficients and the modulus Q
need to be large to guarantee a strong level of security and

a higher degree of parallelism [9]. For example, N = 216

and ⌈log2(Q)⌉ = 1240 are the default values in the HEAAN

library. The large values for N and Q translate to heavy work-

load demands, requiring a significant amount of computational

power to evaluate modular arithmetic expressions, as well as

placing high demands on the memory bandwidth utilization.

HE workloads possess high levels of data parallelism [17].

Existing compute systems such as general-purpose CPUs do

not scale well since they are unable to fully exploit this

parallelism for such data-intensive workloads. However, the

SIMD-style GPU platforms, with their thousands of cores

and high bandwidth memory (HBM), are natural candidates

ar
X

iv
:2

2
0
9
.0

1
2
9
0
v
1

[c

s.
C

R
]

 2
 S

ep
 2

0
2
2

Improvement Input
Size

NTT Kernel
Implementation

Proposed
Optimizations

Single-block
NTT

(Section V-A)

Multi-block
NTT

(Section V-B)

Throughput
Optimized NTT
(Section V-C)

Mixed Radix
2D NTT

(Section V-A.3)

Optimized
Barrett's Reduction

(Section II-B)

Persistent
Shared Memory
(Section V-A.1)

Fused
Hadamard Product

(Section III-B)

Increased
Spatial
Locality

Increased
Temporal
Locality

Reduced
Redundant
Operations

Fewer
Correctional
Subtractions

Scaled Out

FH
E

Ac
ce

le
ra

tio
n

Fig. 2. Our contributions: 4 major optimizations incorporated into 3 kernels

for accelerating these highly parallelizable workloads. The

potential of the GPU platform to accelerate HE has motivated

a rapidly growing body of work over the past year [9], [18],

[19], [20], [21], [22], [23], [24], [25], [26].

To address performance bottlenecks in existing polynomial

multiplication algorithms, we begin by analyzing the Barrett

modular reduction algorithm [27], as well as the algorithm’s

variants [21], [26], [28] which have been utilized in prior

HE schemes. We then analyze various NTT implementations,

including mixed-radix and 2D implementations, which we

tune to improve memory efficiency. Finally, we apply a

number of GPU-specific optimizations to further accelerate

HE. By combining all our optimizations, we achieve an overall

speedup of 123.13× and 2.37× over the previous state-of-the-

art CPU [29] and GPU [21] implementations of NTT kernels,

respectively. Our key contributions are as follows (Figure 2):

1) We propose an instantiation of the Dhem–

Quisquater [28] class of Barrett reduction variants

which is optimized for HE, providing a 1.85× speedup

over prior studies [21], [23], [26], [30].

2) We present a mixed-radix, 2D NTT implementation to

effectively exploit temporal and spatial locality, resulting

in a 1.91× speedup over the radix-2 baseline.

3) We propose a fused polynomial multiplication algorithm,

which fuses the Hadamard product with its neighboring

butterfly operations using an application of Karatsuba’s

Algorithm [31]. This reduces the twiddle factor’s mem-

ory footprint size by 50%.

4) We incorporate the use of low latency, persistent, shared

memory in our single-block NTT GPU kernel implemen-

tation, reducing the number of redundant data fetches

from global memory, providing a further 1.25× speedup.

II. BARRETT REDUCTION AND ITS VARIANTS

Modular reduction is a key operation and computational

bottleneck in lattice-based cryptography [32]. This section

is a self-contained survey of modular reduction algorithms,

particularly Barrett reduction [27], a widely-used algorithm

that we utilize in our work.

Following Shoup [33], we define the bit length len(a) of

a positive integer a to be the number of bits in the binary

representation of a; more precisely, len(a) = ⌊log2 a⌋+ 1.

A. Background: modular reduction and arithmetic

Let x mod q denote the remainder of a nonnegative in-

teger x divided by a positive integer q. The naive method

for performing modular reduction—i.e., the computation of

x mod q—is via an integer division operation:

x mod q = x− ⌊x/q⌋q.
However, there are a number of alternative methods for

performing modular reduction—especially in conjunction with

arithmetic operations such as addition and multiplication—that

avoid expensive integer division operations.

For example, Algorithm 1 specifies a simple and efficient

computation of the modular reduction of a sum. Let β denote

the word-size (e.g., β = 32 or 64). Observe that either a+ b
lies in [0, q) and is reduced, or a+b lies in [q, 2q) and requires

a single correctional subtraction to become reduced (see lines

2–3). The restriction len(q) ≤ β− 1 prevents overflow of the

transient operations (i.e., a+ b).

Algorithm 1 A baseline modular addition algorithm

Require: 0 ≤ a, b < q, len(q) ≤ β− 1
Ensure: sum = (a+ b) mod q

1: sum← a+ b
2: if sum ≥ q then

3: sum← sum− q
4: return sum

There are multiple methods for reducing products. In lattice-

based cryptography, commonly used algorithms for imple-

mentations on hardware platforms such as CPUs and GPUs

include the algorithms of Barrett [27], Montgomery [34], and

Shoup [35], [36]. In this paper, we select Barrett’s algorithm

as our baseline, as Barrett’s algorithm enjoys the following

features:

1) Low overhead: It requires a low-cost pre-computation

(and storage) of a single word-size integer µ.

2) Versatility: It may be used effectively in contexts where

multiple products are reduced modulo q.

3) Generality: It does not restrict to special classes of

moduli, such as Mersenne primes (see, e.g., [37], [38]).

4) Performant: It is significantly faster than integer di-

vision, and has comparable runtime performance with

Montgomery’s algorithm (see, e.g., [39]).

Barrett’s algorithm is used in many open-source libraries,

including cuHE [40], PALISADE [41], and HEANN [20], [6].

The Barrett reduction algorithm, and our proposed variant for

use in HE, are analyzed in Section II-B.

B. Barrett modular reduction: analysis and optimization

Next, we provide details of Barrett modular reduction and

then explore potential improvements. Algorithm 2 specifies

the classical reduction algorithm of Barrett [27]. Note that if

2

Sp
ee

du
p

Com
pu

te
Th

rou
gh

pu
t

Av
g.

IPC

Mem
ory

 Th
rou

gh
pu

t

DRA
M Th

rou
gh

pu
t

L1
Th

rou
gh

pu
t

L2
Th

rou
gh

pu
t

ALU

Iss
ue

d W
arp

s

Re
gis

ter
s p

er
thr

ea
d

(a) NTT workload modular reduction comparison

20

0

20

40

60

80
Pe

rc
en

t C
ha

ng
e

Modular reduction
Classic Barrett
Dhem
Proposed Barrett

Sp
ee

du
p

Com
pu

te
Th

rou
gh

pu
t

Av
g.

IPC

Mem
ory

 Th
rou

gh
pu

t

DRA
M Th

rou
gh

pu
t

L1
Th

rou
gh

pu
t

L2
Th

rou
gh

pu
t

ALU

Iss
ue

d W
arp

s

Re
gis

ter
s p

er
thr

ea
d

(b) inverse-NTT workload modular reduction comparison

20

0

20

40

60

Pe
rc

en
t C

ha
ng

e

Modular reduction
Classic Barrett
Dhem
Proposed Barrett

Lon
g S

cor
eb

oa
rd

Math
 Pip

e T
hro

ttle Wait

Not
Se

lec
ted

Barr
ier

LG
 Th

rot
tle

Se
lec

ted

Sh
ort

 Sc
ore

bo
ard

MIO Th
rot

tle

Bran
ch

Re
sol

vin
g

Disp
atc

h S
tal

l

IMC Miss

No I
nst

ruc
tio

n

(c) NTT stall histogram across various modular reduction algorithms

0

1

2

3

4

Av
g.

 st
al

le
d

cy
cle

s /
 in

st
ru

ct
io

n

Modular reduction
Classic Barrett
Dhem
Proposed Barrett

Lon
g S

cor
eb

oa
rd

Math
 Pip

e T
hro

ttle Wait

Not
Se

lec
ted

Barr
ier

LG
 Th

rot
tle

Se
lec

ted

Sh
ort

 Sc
ore

bo
ard

MIO Th
rot

tle

Bran
ch

Re
sol

vin
g

Disp
atc

h S
tal

l

IMC Miss

No I
nst

ruc
tio

n

(d) inverse-NTT stall histogram across various modular reduction algorithms

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g.

 st
al

le
d

cy
cle

s /
 in

st
ru

ct
io

n

Modular reduction
Classic Barrett
Dhem
Proposed Barrett

Fig. 3. Modular reduction profile comparison of architectural parameters (a,b) and causes of warp stalls (c,d).

Algorithm 2 Classical Barrett reduction

Require: m = len(q) ≤ β− 2, 0 ≤ x < 22m, µ = ⌊ 22m
q
⌋

Ensure: rem = x mod q
1: c← x≫ (m− 1)
2: quot← (c× µ)≫ (m+ 1)
3: rem← x− quot× q
4: if rem ≥ q then

5: rem← rem− q
6: if rem ≥ q then

7: rem← rem− q
8: return rem

0 ≤ a, b < q and m = len(q), then x = a × b satisfies

the condition 0 ≤ x < 22m specified in Algorithm 2.

This algorithm is commonly used in HE acceleration studies

targeting a GPU [24], [30], [23], [42]. As noted by Sahu

et al. [23], the pre-computed constant µ and the transient

operations (excluding the product c×µ) are preferably word-

sized. This condition imposes the restriction len(q) ≤ β− 2.

Note that the classical Barrett reduction may require zero,

one, or two correctional subtractions; see lines 4–7 in Al-

gorithm 2. As noted by Barrett [27], a second conditional

subtraction is required in approximately 1% of the cases. There

have been several attempts to modify Barrett’s algorithm to

eliminate the need for a second conditional subtraction. The

algorithms proposed by Özerk et al. [21] and Lee et al. [26]

each require two correctional subtractions to fully reduce the

product of a = 994674970 and b = 994705408 modulo

q = 994705409, although we found experimentally that Özerk

et al.’s proposed reduction algorithm only requires a second

conditional subtraction in 0.22% of cases.

Dhem–Quisquater [28] defines a class of Barrett modular

Algorithm 3 Dhem–Quisquater’s modified Barrett reduction

Require: m = len(q) ≤ β− 4, 0 ≤ x < 22m, µ = ⌊ 22m+3

q
⌋

Ensure: rem = x mod q
1: c← x≫ (m− 2)
2: quot← (c× µ)≫ (m+ 5)
3: rem← x− quot× q
4: if rem ≥ q then

5: rem← rem− q
6: return rem

reduction variants (with parameters α and β) that require at

most one correctional subtraction. A commonly used (see,

e.g., Kong and Philips [43] and Wu et al. [44]) instantiation

of Dhem–Quisquater’s class of algorithms is specified in

Algorithm 3 (setting parameters α = N + 3 and β = −2,

as defined in Dhem–Quisquater [28]). Notably, this instan-

tiation is used in the PALISADE HE Software Library [41].

Although Algorithm 3 provides an improvement in algorithmic

complexity over Algorithm 2, it further restricts the modulus

to at most length (β− 4) to ensure µ is word-sized.

As discussed by Kim et al. [20], restrictions on the modulus

size are significant in the context of optimizing HE, as the

modulus size is inversely related to the workload size. To elab-

orate, polynomial multiplication is typically performed with

respect to a large composite modulus Q. If each prime factor

of Q is m-bits, then the Chinese Remainder Theorem can be

used to partition the computation of polynomial multiplication

with respect to Q into ⌈len(Q)/m⌉ simpler computations of

polynomial multiplication with respect to the m-bit factors.

For example, if len(Q) = 1240, then the restriction from

30-bit to 28-bit moduli increases the workload size (i.e.,

⌈len(Q)/m⌉) by 7.14%.

3

Algorithm 4 Proposed Barrett reduction optimized for a GPU

Require: m = len(q) ≤ β− 2, 0 ≤ x < 22m, µ = ⌊ 22m+1

q
⌋

Ensure: rem = x mod q
1: c← x≫ (m− 2)
2: quot← (c× µ)≫ (m+ 3)
3: rem← x− quot× q
4: if rem ≥ q then

5: rem← rem− q
6: return rem

Therefore, we propose Algorithm 4 for use in HE imple-

mentations on a GPU. Similar to Algorithm 3, Algorithm 4 is

an instantiation of Dhem–Quisquater [28] (for α = N +1 and

β = −2) that requires at most one correctional subtraction.

However, Algorithm 4 allows for moduli q of length up to

β− 2, and thus results in no increase in the workload size.

Figure 3 provides a snapshot of the performance of various

modular reduction kernels on a V100 GPU. The detailed de-

scription of each parameter is further described in Table I and

II in Section IV. The values in the Figure 3(a,b) are normalized

to the built-in implementation of modular reduction on GPUs

(which utilizes the modulo “%” operator). In Figure 3(a,b) we

see significant improvements in the proposed Barrett reduc-

tion, as marked by the speedups due to improved compute and

memory throughput. The performance improvements achieved

can be attributed to our implementation requiring at most

1 correctional subtraction (as compared to 2 for others).

Figure 3(c,d) enable us to see the primary causes of kernel

stalls for NTT and inverse-NTT workloads, respectively. Fig-

ure 3(c,d) highlights the reasons for the maximum number

of stalls while executing NTT and inverse-NTT kernels. In

Figure 3(c), the longest stall (measured in the average number

of cycles per instruction) for the NTT workload is due to a

“Math Pipe Throttle”, which results when the kernel begins to

saturate the ALU instruction pipeline (See Table I). Figure 3(d)

reports the cause of stalls in inverse-NTT, with the longest

stall caused by a “Wait”, which signifies the scheduler has an

abundance of “Ready” warps and is starting to saturate the

streaming multiprocessors (SMs) (See Table II).

In Figure 4, we present a comparison of the implementations

of the modular reduction algorithms described in this section.

We report the execution time of a single modular reduction

operation for 28, 29, and 30-bit prime numbers as run on a

V100 GPU. The operands and moduli are randomly sampled

from a uniform distribution. The classical Barrett reduction

algorithm is significantly faster than reduction by integer

division (i.e., the built-in reduction), as shown in Figure 4.

Algorithm 4 has nearly identical performance to Algorithm 3

for 28-bit moduli (while permitting 29 and 30-bit moduli, as

well). Algorithm 4 has a 1.22× speedup over the classical

Barrett reduction for 30-bit primes. To our knowledge, the

specific instantiation of Dhem–Quisquater modular reduction

specified in Algorithm 4 does not appear in an open-source

library nor in the literature.

builtin
reduction
(x % q)

classical
Barrett

(Algo. 2)

modified
Barrett

(Algo. 3)

proposed
Barrett

(Algo. 4)

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
tim

e
(u

s)

N/
A

fo
r 2

9
bi

ts
N/

A
fo

r 3
0

bi
ts

Modulus size
28 bits
29 bits
30 bits

Fig. 4. Execution times of modular reduction implementations for 28, 29, and
30-bit prime numbers (on the V100 GPU), averaged over 10,000 iterations.
The error bars represent ranges. The “builtin reduction” uses the CUDA %
construct for modular reduction.

III. POLYNOMIAL MULTIPLICATION

For m > 0, define Zm to be the set {0, 1, 2, . . . ,m − 1}
together with the operations of modular addition (a, b) 7→
(a + b) mod m and modular multiplication (a, b) 7→ (a ×
b) modm. The naive algorithm for multiplying two polynomi-

als
∑N−1
i=0 aix

i and
∑N−1
i=0 bix

i requires order N2 arithmetic

operations. It is well known [45] that the number of operations

can be reduced to the order of N log(N) using the Fast Fourier

Transform (FFT) algorithm.

It is convenient to represent a polynomial
∑N−1
i=0 aix

i as an

N -dimensional coefficient vector a = (a0, a1, . . . , aN−1).

A. Background: Number Theoretic Transform

In this section, we give a brief review of the Discrete Fourier

Transform (DFT) and the Fast Fourier Transform (FFT) for the

special case that the field of coefficients is Zq , for q a prime.

The DFT and FFT over Zq are both commonly—and often

confusingly—referred to as the Number Theoretic Transform

(NTT). In the classical setup for the NTT, the parameters N ,

q, and ω satisfy the following properties:

1) N > 1 is a power of 2;

2) q is a prime number such that N divides q − 1; and

3) ω is a primitive N th root of unity in Zq; i.e., ωi = 1 if

and only if i is a multiple of N .

The N -point NTT (DFT) with respect to ω is the func-

tion NTTω : (Zq)
N → (Zq)

N defined by NTTω(a) =

(
∑N−1
i=0 a[i]ωij)N−1

j=0 . The inverse transformation of NTTω
is 1

N
NTTω−1 . Famously, the cyclic convolution [46] of

vectors a and b in (Zq)
N can be computed in the or-

der of N log(N) arithmetic operations via the expression
1
N
NTTω−1(NTTω(a) ⊙ NTTω(b)), where ⊙ denotes the

Hadamard product (i.e., entry-wise multiplication) on (Zq)
N .

A closely related operation to cyclic convolution is nega-

cyclic convolution, which is widely known as polynomial mul-

tiplication in the context of lattice-based cryptography [47].

The setup for polynomial multiplication has parameters N , q,

and ψ satisfying the following properties:

1) N > 1 is a power of 2;

2) q is a prime such that 2N is a divisor of q − 1; and

3) ψ is a primitive 2N th root of unity in Zq (which implies

that ω = ψ2 is a primitive N th root of unity).

Let Ψ and Ψ
−1 denote the vector of “twiddle factors” in

(Zq)
N , defined by Ψ[i] = ψi and Ψ

−1[i] = ψ−i for all i.

4

(b) (c)

Hadamard
Product

(a)

Fig. 5. (a) Negacyclic convolution block diagram. (b) Hadamard product and its neighboring butterflies. (c) Fusion of butterflies into Hadamard product.

Then the negacyclic convolution a⊛ b of vectors a and b in

(Zq)
N satisfies the following relation [48]:

a⊛b = Ψ
−1⊙ 1

N
NTTω−1(NTTω(Ψ⊙a)⊙NTTω(Ψ⊙b))

The NTT algorithm (i.e., the FFT) used to compute the NTT

mathematical function (i.e., the DFT) consists of an iteration of

stages, in which computations are performed in the form of

butterfly operations. The computational graphs for the well-

studied (radix-2) Cooley–Tukey (CT) butterfly [49] and the

Gentleman–Sande (GS) butterfly [50] are shown in Figure 6.

Fig. 6. The Cooley–Tukey (left) and Gentleman–Sande butterflies (right).

Pöppelmann et al. [47] define an elegant algorithmic specifi-

cation for polynomial multiplication using NTTs based on the

CT and GS butterflies. Their design utilizes two specialized

variants of the FFT/NTT:

1) the merged CT NTT, NTTCT,ψ
no→bo, defined by Roy et

al. [51] (see Algorithm 5); and

2) the merged GS NTT, NTTGS,ψ
bo→no, defined by

Pöppelmann et al. [47] (see Algorithm 6).

Algorithm 5 Merged CT NTT, NTTCT,ψ
no→bo

Require: permuted twiddle factors Ψbr

1: m← 1
2: k ← N/2
3: while m < N do

4: for i = 0 to m− 1 do

5: jF irst← 2× i× k
6: jLast← jF irst+ k − 1
7: ξ ← Ψbr[m+ i]
8: for j = jF irst to jLast do

9:

[
a[j]

a[j + k]

]
←

[
a[j] + ξ × a[j + k] mod q
a[j]− ξ × a[j + k] mod q

]

10: m← 2×m
11: k ← k/2
12: return a

Algorithm 6 Merged GS NTT, NTTGS,ψ
bo→no

Require: permuted twiddle factors Ψbr

1: m← N/2
2: k ← 1
3: while m ≥ 1 do

4: for i = 0 to m− 1 do

5: jF irst← 2× i× k
6: jLast← jF irst+ k − 1
7: ξ ← Ψbr[m+ i]
8: for j = jF irst to jLast do

9:

[
a[j]

a[j + k]

]
←

[
a[j] + a[j + k] mod q

ξ × (a[j]− a[j + k]) mod q

]

10: m← m/2
11: k ← 2× k
12: return a

In Algorithms 5 and 6, br denotes the bit-reversal of a

log2(N)-bit binary sequence, and Ψbr denotes the twiddle

factors permuted with respect to br; i.e., Ψbr[i] = ψbr(i) for

all i in [0, N). Polynomial multiplication can be computed via

the merged CT and GS NTTs as follows [47]:

a⊛ b =
1

N
NTTGS,ψ−1

bo→no (NTTCT,ψ
no→bo(a)⊙NTTCT,ψ

no→bo(b)).

(1)

The advantages of this algorithmic specification for polyno-

mial multiplication include the following:

1) Hadamard products omitted: The multiplication by pow-

ers of ψ, i.e., the Hadamard products with Ψ and Ψ
−1,

are “merged” into the NTT computations, saving a total

of 3N modular multiplications.

2) Bit-reversal permutations omitted: The merged CT NTT

takes the input in normal order and returns the output

in a permuted bit-reversed order (hence no→ bo), and

vice versa for the merged GS NTT. This removes the

need for intermediate permutations to correct the order.

3) Good spatial locality: In the merged CT NTT, the

twiddle factors Ψbr are read in sequential order. In the

merged GS NTT, the twiddle factors are read sequen-

tially during each stage.

Zhang et al. [52] propose a technique to merge the
1
N

-scaling operation in Equation (1) into the GS NTT. Rather

than performing entry-wise modular multiplication by 1
N

,

Zhang et al. multiply the output of each butterfly operation

5

by 1
2 modulo q. Observe that:

x

2
mod q =

{
x
2 if x is even

⌊x2 ⌋+
q+1
2 if x is odd

The computation of x
2 mod q can be implemented without

divisions, products, or branching via the expression

x≫ 1 + (x&1)× ((q + 1)≫ 1).

Özerk et al. [21] use this technique to merge 1
N

-scaling into

NTTGS,ψ−1

bo→no (also see their open-source code [53]). We write

NTTGS,ψ−1

bo→no, 1
2

to denote the merging of NTTGS,ψ−1

bo→no with
1
N

-scaling. Incorporating this NTT into (1) gives the following

algorithm specification for polynomial multiplication:

a⊛b = NTTGS,ψ−1

bo→no, 1
2

(NTTCT,ψ
no→bo(a)⊙NTTCT,ψ

no→bo(b)) (2)

This algorithm specification is the basis for all of our imple-

mentations of polynomial multiplication.

B. Proposed optimization: fused polynomial multiplication

Alkim et al. [54] propose several techniques for integrating

the Hadamard product with its neighboring butterflies. They

specify polynomial multiplication algorithms involving one,

two, and three-stage integrations. These algorithms have sig-

nificantly reduced complexity for the multiplication of two

polynomials. However, the complexity of multiplying larger

numbers of polynomials may be significantly increased, espe-

cially when more stages are integrated.

We propose a single-stage fused polynomial multiplication,

which offers significant speedup for multiplying two polyno-

mials at minimized cost for multiplying larger numbers of

polynomials. Our proposal uses Karatsuba’s algorithm [31] to

reduce the number of modular products by N/2 compared to

the single-stage algorithm of Alkim et al. [54].

Consider the computational subgraph of Equation (2) in-

duced by the final stages of NTTCT,ψ
no→bo, the Hadamard product

⊙, and the first stage of NTTGS,ψ−1

bo→no, 1
2

. Each of the N/2

connected components in this graph are of the form

1

2
buttGS

α−1

(
buttCT

α

([
a0
a1

])
⊙ buttGS

α

([
b0
b1

]))
(3)

for some twiddle factor α and inputs a0, a1, b0, and b1 (see

Figure 5). Thus, the computation for each component consists

of 5 (modular) product operations, 2 scaling by 1
2 operations, 6

sum/difference operations, and 2 memory accesses. The output

of the computation in expression (3) is
[
a0 × b0 + α2 × a1 × b1 mod q
a0 × b1 + a1 × b0 mod q

]
(4)

Algorithm 7 also computes expression (3), but requires 4

products, 0 scalings by 1
2 , 5 sums/differences, and 1 memory

access. This variation on Karatsuba’s Algorithm [31] relies on

the fact that a0 × b1 + a1 × b0 mod q is equivalent to

(a0 + a1)× (b0 + b1)− a0 × b0 − a1 × b1 mod q.

Algorithm 7 Butterflies fused into the Hadamard product

Require: [a0a1] ,
[
b0
b1

]
∈ (Zq)

2, twiddle factor α2 ∈ Zq

Ensure: [c0c1]←
[
a0×b0+α

2×a1×b1 mod q
a0×b1+a1×b0 mod q

]

1: prod1← a0 × b0 mod q
2: prod2← a1 × b1 mod q
3: sum1← a0 + a1 mod q
4: sum2← b0 + b1 mod q
5: prod3← sum1× sum2 mod q
6: prod4← α2 × prod2 mod q
7: sum3← prod1 + prod4 mod q
8: sum4← prod3− prod1 mod q
9: sum5← sum4− prod2 mod q

10: [c0c1]← [sum3
sum5]

11: return [c0c1]

We say that Algorithm 7 fuses the CT and GS butterflies into

the Hadamard product.

To define the fused polynomial multiplication algorithm,

we first define truncated versions of the CT and GS NTTs.

Define the truncated CT NTT, N̂TT
CT,ψ

no→bo, to be the merged

CT NTT with the final stage omitted (i.e., line 3 in Algorithm 5

is replaced with “while m < (N/2) do”). Likewise, define

the truncated GS NTT, N̂TT
GS,ψ

bo→no, 1
2

, to be the merged GS

NTT with the first stage omitted (i.e., line 3 in Algorithm 6

is replaced with “while m > 1 do”). Our proposed fused

polynomial multiplication is specified in Algorithm 8.

Algorithm 8 Proposed fused polynomial multiplication

Require: a,b ∈ (Zq)
N , permuted twiddle factors Ψbr

Ensure: c = a⊛ b

1: â = N̂TT
CT,ψ

no→bo(a)

2: b̂ = N̂TT
CT,ψ

no→bo(b)
3: for i = 0 to N/2− 1 do

4: u← â[2i]× b̂[2i] mod q
5: v ← â[2i+ 1]× b̂[2i+ 1] mod q
6: w ← (â[2i] + â[2i+1])× (b̂[2i] + b̂[2i+1]) mod q
7: y ← w − u mod q
8: ĉ[2i+ 1]← y − v mod q
9: z ← v ×Ψbr[

N
4 + ⌊ i2⌋] mod q

10: if i is even then

11: ĉ[2i]← u+ z mod q
12: else

13: ĉ[2i]← u− z mod q

14: c← N̂TT
GS,ψ−1

bo→no, 1
2
(ĉ)

15: return c

The benefits of our proposed fused polynomial multiplica-

tion algorithm include the following:

1) Fewer operations: N/2 fewer modular product oper-

ations, N fewer scaling by 1
2 operations, N/2 fewer

sum/difference operations, and N/2 fewer memory ac-

cesses (but N/4 additional negations).

6

2) Number of twiddle factors halved: The second half of the

entries in the twiddle factor arrays for each of the merged

NTTs are not used in fused polynomial multiplication

and can be omitted.

3) Re-use of recently-accessed twiddle factors: The twiddle

factors read in the last stage of the truncated CT NTT

are immediately re-used in the fused Hadamard product.

IV. GPU ARCHITECTURE

We implement our polynomial multiplication kernels tar-

geting NVIDIA’s 7th generation Volta GPU architecture, the

V100 PCIe GPU with 16 GB onboard memory. The V100 has

a multi-level memory, as shown in Figure 7. The V100 features

a highly tuned high-bandwidth memory (HBM2), which is

called global memory in the CUDA framework. The global

memory, being the largest in capacity, has the highest latency

to access data (∼1029 cycles) [55]. The V100 provides a 128
KB L1 data cache and a 128 KB L1 instruction cache per

SM, as well as a unified L2 cache for data and instructions

(6.1 MB in size). Each SM on a V100 has a shared memory

(each configurable in size up to 96 KB). Data accesses to

shared memory are much more efficient (i.e., ∼19 cycles) as

compared to accesses to global memory (1029 cycles) [56].

Effective use of the memory hierarchy, and especially shared

memory, on a GPU is critical to obtaining the best perfor-

mance [57]. Our single-block implementation of NTT utilizes

shared memory for local data caching, thus reducing the

number of redundant fetches from global memory [58] by

a factor of log(N) times (where N is the size of the input

coefficient array). Furthermore, we improve cache efficiency

by increasing the spatial locality of our data access patterns,

exploiting memory coalescing on the GPU [58], as described

in Section V-C.

We obtain performance metrics for our kernels using

hardware performance counters and binary instrumentation

tools. We explore performance bottlenecks using a variety

of tools including the NVIDIA Binary Instrumentation Tool

(NVBit) [59] for tracing memory transactions, the Nsight

Compute for fetching performance counters, and the Nsight

Systems [60] to obtain kernel scheduler performance, as

well as measuring synchronization overheads. We compare

64 KB
Registers

High Bandwidth Memory [16 GB]

Unified L2 Cache [6144 KB]
64 B Cache Line

16-way set-associative

Shared Memory
[upto 96 KB]

RF

T

RF

T

RF

T

RF

T

RF

T

RF

T

RF

T

RF

T

L1
Data Cache 12

8
KB

Latency (in cycles)

L2
 1

93

L0
12 KB

Instruction
Cache

TLBs

L1
Instruction Cache 12

8
KB

L1
 D

at
a

28
Sh

ar
ed

 1
9

H
BM

 1
02

9

Fig. 7. V100 GPU memory hierarchy and latency comparison.

kernel performance based on “Architectural Profile” and “Stall

Profile” plots. The “Arch Profile” compares the relative change

as compared to a baseline (see Table I), whereas the “Stall

Profile” provides information on the primary causes of a kernel

stall during execution (see Table II).

Parameter Description

SM Throughput % of cycles the SM was busy

Avg. IPC Average # of instructions per cycle

ALU ALU Pipeline utilization

DRAM B/W
% of peak memory transactions
the DRAM processed per second

L1$ and L2$ B/W
% of peak memory transactions the L1$
and L2$ processed per second respectively

L1$ and L2$ Hit-Rate
% of memory transactions the L1$
and L2$ fulfilled successfully

Regs/Thread # of registers used by each thread of the warp

Issued Warps Avg. # of warps issued per second by scheduler

TABLE I
DESCRIPTION OF THE ARCH PROFILE PARAMETERS.

Type of stall Reason

Long Scoreboard
Waiting for a scoreboard dependency
on a L1$ operation

Math Pipe Throttle
Waiting for the ALU execution pipe
to be available

Wait
Waiting on fixed latency execution dependency
Indicates highly optimized kernel

Not Selected
Waiting for the scheduler to select the warp
Indicates warps oversubscribed to scheduler

Selected Warp was selected by the micro scheduler

Barrier
Waiting for sibling warps at sync barrier
Indicates diverging code paths before a barrier

LG Throttle Waiting for the L1 instruction queue

Short Scoreboard
Scoreboard dependency on shared memory
Indicates higher shared memory utilization

MIO Throttle Stalled on MIO (memory I/O) instruction queue

Branch Resolving Waiting for a branch target to be computed

Dispatch Stall
Warp stalled because dispatcher holds back
issuing due to conflicts or events

IMC Miss Waiting for an immediate cache (IMC) miss

No Instruction Waiting after an instruction cache miss

TABLE II
DESCRIPTION OF THE STALL PROFILE PARAMETERS.

V. OPTIMIZED NTT KERNELS

We observe that the NTT kernel is a memory-bound work-

load, heavily bottlenecked by the GPU’s DRAM latency. The

butterfly operation is one of the key computations within

the NTT kernel. This operation is characterized by strided

accesses, with the stride varying with each stage. The changes

in the stride lead to non-sequential memory accesses, reducing

the spatial locality of the NTT kernel. To effectively leverage

memory coalescing, we can partition data carefully across

CUDA threads [61]. We propose three different implemen-

tations of NTT kernels, each optimized for different input

sizes and employing different data partitioning techniques.

We follow a similar approach here as described by Özerk

7

Sp
ee

du
p

SM
 Th

rou
gh

pu
t

Av
g.

IPC ALU

DRA
M B/W

L1$
 B/W

L1$
 Hit-R

ate

L2$
 B/W

L2$
 Hit-R

ate

Re
gs/

Th
rea

d

Iss
ue

d W
arp

s

Architectural Parameters of Shared mem

60

40

20

0

20
%

 c
ha

ng
e

ov
er

 G
lo

ba
l m

em

Workload
NTT
iNTT

Lon
g S

cor
eb

oa
rd

Math
 Pip

e T
hro

ttle Wait

Not
Se

lec
ted

Barr
ier

LG
 Th

rot
tle

Sh
ort

 Sc
ore

bo
ard

MIO Th
rot

tle

Bran
ch

Re
sol

vin
g

Disp
atc

h S
tal

l

IMC Miss

No I
nst

ruc
tio

n

NTT Workload Stall Histogram

0

1

2

3

Av
g.

 st
al

le
d

CP
I

Memory Type
Global Mem
Shared Mem

Lon
g S

cor
eb

oa
rd

Math
 Pip

e T
hro

ttle Wait

Not
Se

lec
ted

Barr
ier

LG
 Th

rot
tle

Sh
ort

 Sc
ore

bo
ard

MIO Th
rot

tle

Bran
ch

Re
sol

vin
g

Disp
atc

h S
tal

l

IMC Miss

No I
nst

ruc
tio

n

inverse-NTT Workload Stall Histogram

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Av
g.

 st
al

le
d

CP
I

Memory Type
Global Mem
Shared Mem

Fig. 8. (a) Architectural performance profile of shared memory NTT and iNTT workloads compared against respective global memory workloads. (b) Stall
profile of NTT workload comparing global and shared memory kernels. (c) Stall profile of inverse-NTT workload comparing global vs. shared memory kernels.

et al. [21], though we leverage a number of algorithmic

optimizations, combined with code optimizations, that are

unique to this work.

The three implementations of polynomial multiplications

proposed in this work are as listed below:

• LOS-NTT (Latency-optimized Single-block NTT): For

single polynomial multiplication with N ≤ 211.

• LOM-NTT (Latency-optimized Multi-block NTT): For

single polynomial multiplication with N > 211.

• TOM-NTT (Throughput-optimized Multi-block NTT):

For multiple polynomial multiplications with no con-

straints on N .

A. Latency optimized Single-block NTT

The LOS-NTT kernel performs all the NTT operations

within a single block of the CUDA kernel. Using a single block

for computing the entire NTT workload has the following

advantages:

• The overhead of a single block-level barrier

(syncthreads) is significantly lower than a kernel-

level (multi-block) barrier.

• We can leverage shared memory, which can only be

addressed within the scope of a single block.

• Since all threads of a block share the same L1 and L2

caches, and L1 is write-through, write updates by any

thread are reflected in L2 across all threads.

Our LOS-NTT implementation consists of two phases,

separated by a block-level barrier. The first transfers the

input coefficient vectors (of size N) from high latency global

memory to the faster, low latency shared memory. The second

phase performs the merged NTTs, as defined in Algorithms 5

and 6. This phase consists of two nested loops. The first

iterates over the log(N) stages of the CT algorithm. This

is followed by the second loop of N
2 , iterating over the

elements of the input coefficient vector. These iterations are

free from any loop-carried dependencies, allowing them to

be run in parallel. We capitalize on this inherent parallelism

by computing each iteration of the second loop in parallel,

assigning each loop iteration to a separate CUDA thread. We

further improve the performance of our kernel with four GPU-

specific optimizations.

1) Shared Memory Optimization: Each stage of the CT im-

plementation is characterized by multiple butterfly operations

of varying strides. These butterfly operations result in strided

memory accesses, with the step size varying from 1 to N
2

(where N can be as large as 216). We optimize for memory

access efficiency by storing the input coefficient vector, as

well as the outputs of butterfly operations, in persistent shared

memory, which is significantly faster than accessing global

memory. We utilize 8 KB of shared memory per SM for storing

the input polynomial coefficients, as well as the output of

intermediate stages. Using shared memory incurs the overhead

of transferring input coefficients to shared memory and the

final results back to global memory. Despite these additional

overheads, incorporating the use of shared memory allows

us to obtain a 1.25× speedup over the use of only global

memory (Figure 8). Figure 8(a) denotes a large drop in L1$
and L2$ performance. The primary reason for this degraded

performance is memory transactions that access the shared

memory do not count towards L1 and L2 cache performance.

Since all the coalesced memory transactions to the global

memory (which counted towards the cache performance) are

now redirected towards the shared memory (which is excluded

from cache performance counters), the L1 and L2 cache

bandwidth and hit-rate take a performance hit. Figure 8(b,c)

identifies the primary causes of stalls for the NTT and inverse-

NTT kernels, respectively. The“Long Scoreboard” stall is

caused by dependencies in L1 cache operations. The large drop

in the stall values for the “Long Scoreboard” in Figure 8(b)

is an indicator of memory pressure being reduced in the L1

cache and indirectly in the L2 cache and DRAM. Similarly, in

Figure 8(c), the increase in the average “Math Pipe Throttle”

stall values is tied to the compute throughput of the inverse-

NTT kernel.

2) Barrett’s Modular Reduction Optimization: We further

accelerate our NTT kernel with the use of our modified Barrett

implementation, specifically designed for GPU execution, as

shown in Section II-B. The smaller number of correctional

subtractions present in our implementation allows us to obtain

a 1.85× average speedup over previous work [21] and a

1.72× speedup over the builtin modulus operation. We also

obtain similar execution times to the 28-bit modified Barrett’s

reduction, as reported for PALISADE [41]. To our knowledge,

8

our proposed Barrett variant is the fastest Barrett modular

reduction for general 30-bit and 62-bit moduli.

3) Mixed Radix Optimization: The naive implementation

of NTT and inverse NTT used in this study is based on a

radix-2 algorithm. In this implementation, each thread within a

block operates on 2 elements of the input coefficient array. We

improve the performance of our kernel by experimenting with

radix-4, 8, and 16 implementations that distribute 4, 8, and 16
elements per thread, respectively. Higher radix implementa-

tions improve temporal locality, as the input coefficient vector

data is reused. Unfortunately, this improvement in the temporal

locality is associated with a significant loss in parallelism. We

also experiment with kernels that use radix 4 or radix 8 for

single-block kernels and radix 16 for multi-block.

Ra
dix

 2

Ra
dix

 4

Ra
dix

 4/
16

Ra
dix

 8/
16

2D
 Se

ria
l

2D
 Pip

elin
ed

NTT workload radix comparison

0

10

20

30

40

50

Du
ra

tio
n

[u
s]

Ra
dix

 2

Ra
dix

 4

Ra
dix

 4/
16

Ra
dix

 8/
16

2D
 Se

ria
l

2D
 Pip

elin
ed

inverse-NTT workload radix comparison

0

10

20

30

40

50

Du
ra

tio
n

[u
s]

0

20

40

60

80

100

%
 o

f T
he

or
et

ica
l P

ea
k

0

20

40

60

80

100

%
 o

f T
he

or
et

ica
l P

ea
k

Duration
Compute Throughput

Memory Throughput
L1$ Throughput

L2$ Throughput
DRAM Throughput

Fig. 9. Higher radix comparison for (a) NTT and (b) inverse-NTT kernels.

We also experiment with 2-dimensional NTT implemen-

tations. A 2D NTT maps the data into a matrix form, thus

treating our coefficient as a row-major square matrix. This

allows us to perform a column-wise NTT followed by a row-

wise NTT. An N − 1 degree polynomial can be mapped into

a
√
N ×

√
N matrix. This also divides the NTT kernel into

two stages (column-wise NTT and row-wise NTT). The first

stage computes
√
N number of

√
N -point column-wise NTT

operations, followed by the second stage that computes
√
N

number of
√
N -point row-wise NTT. Each

√
N -point NTT is

mapped into a block with
√
N
2 threads, where each thread is

responsible for computing a radix-2 butterfly. The 2D NTT

approach allows us to map the data while preserving spatial

locality. We further accelerate our computation by pipelining

the two stages of row-wise and column-wise NTT operations,

thus presenting two variants of our 2D implementation (2D
Serial and 2D Pipelined). This approach provides an average

of 2.91× speedup for NTT and inverse-NTT kernel over the

naive radix-2 implementations (Figure 9). This improvement

in execution time can be largely attributed to the increased

memory throughput for NTT (Figure 9(a)), as well as inverse-

NTT (Figure 9(b)). The improved memory throughput also

contributes to the increased compute throughput, as continuous

streaming of data from DRAM no longer starves the SMs of

input operands.

4) Fused Polynomial Multiplication Optimization: Finally,

we propose an optimization that fuses together the last stage

of merged CT NTT, the Hadamard product, and the first stage

of merged GS NTT. Figure 5(c) shows the implementation of

our fused polynomial multiplication. Our implementation of

the fused kernel significantly reduces the number of multipli-

cation operations and re-uses recently-cached twiddle factors.

Experimental results show that we reduce the execution time,

resulting in a 6.1% and 2.4% improvement as compared to the

naive implementation for polynomial multiplication, for input

sizes of N = 211 and N = 216, respectively.

B. Latency optimized Multi-block NTT

Global Memory

Block-level
Barrier

Kernel-level
Barrier

Multi-Block
Kernel

Single-Block
Kernel

Shared
Memory

Global
Memory

Fig. 10. The Multi-block NTT task distribution.

The LOM-NTT kernel is designed to handle large input

arrays (N > 211). The LOM-NTT kernel distributes tasks

using a similar strategy as used in the LOS-NTT kernel, except

that it spreads them over multiple blocks. This allows us to

employ multiple SMs to execute the workload in parallel.

The LOM-NTT kernel splits a single N -point NTT between

multiple blocks. Because of the use of multiple blocks, this im-

plementation requires kernel-wide barriers for synchronization

between stages. We use the LOM-NTT kernel to decompose

a single N -point NTT into multiple 211-point NTTs. Then we

incorporate our LOS-NTT (Single-block) kernel to evaluate

all the 211-point NTTs to harness the optimizations of shared

memory and block-level barriers. We show the distribution for

our LOM-NTT for N = 216 in Figure 10.

C. Throughput-optimized Multi-block NTT

The throughput-optimized kernel is designed to compute

multiple NTTs simultaneously. Unlike the latency-optimized

kernel that computes just a single NTT operation, TOM-

NTT is optimized to compute up to 215 NTT operations

simultaneously, with each NTT computation being a 216-point

NTT (the size of each input coefficient vector is 216). The

TOM-NTT kernel is fed 2 input matrices. The first matrix

holds the input coefficient vectors. These vectors, of size 216,

are stacked in the matrix in the row-major format. This matrix

is then transferred to GPU and stored in global memory in a

column-major format, coalescing reads across threads into a

single memory transaction. The second input matrix contains

the twiddle factors. We store twiddle factors in a similar way

as the coefficient matrix. Each input matrix is of dimension

216 × 215. Both matrices, when combined, completely fill the

DRAM storage of 16 GB on the V100 GPU. The TOM-

NTT kernel executes the 28-point NTT over 32, 768 vectors in

628 ms. With an average execution time is 19.17 µs per NTT

operation, this kernel exhibits close to linear weak scaling.

9

VI. RESULTS

A. Experimental Methodology

We present three different NTT kernels in this work, along

with four optimizations tailored for the GPU platform. We

evaluate the performance of our Single-block NTT kernel

for input coefficient vector sizes of N = 211 and of our

Multi-block kernel for vector sizes of N = 212 to 216.

We incrementally add each of the four optimizations to our

NTT kernels and report performance improvements. Twiddle

factors are pre-computed on the CPU and hence do not add

to the compute overhead on the GPU. We report on multiple

performance metrics for each approach, leveraging profiling

tools on the GPU platform. For each optimization, the speedup

achieved is reported using the respective non-optimized kernel

as the baseline for comparison. Finally, we evaluate weak

scaling for our throughput-optimized TOM-NTT kernel.

B. Performance Metrics

We incrementally add optimizations to our NTT kernels

and report performance improvements in Table III (for input

coefficient size N = 216). For each optimization, the speedup

achieved is reported, using the respective non-optimized kernel

as the baseline for comparison.

Optimization
Relative
Speedup

L1$
Throughput

DRAM
Throughput

SM-only 1.2× −27.3% +20.0%

SM + Alg4 1.72× +10.86% +3.2%

SM + Alg4 + 2D 2.91× +5.85% +16.14%

SM + Alg4 + 2D + FHP 1.02× +0.3% −0.33%

TABLE III
NTT KERNEL OPTIMIZATIONS: SM = SHARED MEMORY, ALG4 = OUR

PROPOSED REDUCTION, 2D = MIXED RADIX 2D NTT, FHP = FUSED

HADAMARD PRODUCT (NTT KERNEL WITH N = 216 AND

⌈log2(q)⌉ = 62 USED AS BASELINE)

Our shared memory optimized kernel, when compared

against the global memory kernel, achieves a 20% improve-

ment in DRAM bandwidth utilization and a 1.2× speedup.

Data is transferred between DRAM and shared memory using

coalesced memory transactions, improving DRAM bandwidth

utilization.

Next, we compare the execution time for our NTT kernel

implementation by incorporating various modular reduction

techniques, as shown in Figure 3. We compare our best

performing NTT kernel (highlighted in Table IV) to Özerk

et al. [21] and find a 1.85× speedup for N = 216 and a

1.13× speedup for N = 214. The use of radix 4, 8, and 16
and 2D implementations provide additional speedup due to the

increased temporal, as well as spatial, locality in 4, 8, and 16-

point butterfly operations, as compared to the baseline radix

2 implementation. The effects of increased data locality are

reflected in the 5.85% improvement in the L1 cache hit-rate.

Our best performing kernel, that of 2D NTT, achieves a 2.91×
speedup over a radix 2 implementation (Figure 9). Our fused

polynomial multiplication kernel reduced the execution time

for the last stage of the merged CT NTT kernel, the Hadamard

11 12 13 14 15 16 17
log(N)

0

5

10

15

20

sin
gl

e
bl

oc
k

tim
in

g
(u

s)

Fig. 11. Timing for the Single-block NTT.

product, and the first stage of the merged GS NTT kernel,

from 8.5 µs down to 6.5 µs, resulting in a 1.3× speedup

as compared to its non-fused counterpart. When incorporated

within a polynomial multiplication kernel, this translates to a

6.1% improvement for Single-block kernel (for size N = 211)

and a 2.4% improvement for Multi-block kernel (for size

N = 216).

We also measured the scalability of our fastest single-block

NTT implementation. As our multi-block kernel implemen-

tation leverages our Single-block code, we also analyzed the

performance of the Single-block kernel by varying the input

polynomial size and the hardware resources used. On each

iteration, we double the size of the input array, as well as the

number of potential SMs utilized (by doubling the number

of blocks in the kernel). We observe that our Single-block

kernel exhibits close to linear weak scaling, as execution times

remain near constant as we increase both the input size and

the hardware resources utilized (Figure 11).

We also evaluate our TOM-NTT kernel that is optimized for

operating on a large number of NTT operations simultaneously

(working with up to 215 input coefficient vectors, each of size

216 elements). With an average execution time of 19.17 µs
per NTT operation, this kernel exhibits close to linear weak

scaling. Including all optimizations, our NTT kernels achieve a

speedup of 123.13× and 2.37× over the previous state-of-the-

art CPU [29] and GPU [21] implementations of NTT kernels,

respectively.

VII. RELATED WORK

Table IV presents runtimes of various implementations of

NTT and iNTT, adding to Table 8 in the work by Özerk et

al. [21] with our own runtimes. Prior studies have explored

accelerated NTT on FPGAs [62] and custom accelerators [8].

But these custom solutions are not typically found on general-

purpose systems. On the other hand, GPUs are ubiquitous and

easily programmed. In recent years, there has been growing

interest in using a GPU to exploit the parallelism present in

NTT [19], [20], [21]. In particular, Özerk et al. [21] propose

an efficient hybrid kernel approach to accelerate NTT. Our

LOS-NTT and LOM-NTT kernels are inspired by their work,

however, we provide some further optimizations such as our

fused Hadamard product, an improved version of Barrett

reduction, and explored higher radix NTTs. Kim et al. [20]

also propose some optimizations on NTTs, such as batching

using shared memory. We explored how those optimizations

10

Work Platform N ⌈log2(q)⌉
NTT
(µs)

iNTT
(µs)

cuHE [40]∗ GTX 690 214 64c 56 65.3

215 64c 71.2 83.6

cuHE [40]∗,a Tesla K80 214 64c 12.9 12.5

215 64c 19 21.6

cuHE [40]∗,b GTX 1070 214 64c 66.8 −

Faster NTT [63]∗ Tesla K80 214 64c 9.6 9.7

215 64c 15.3 16.2

Accl NTT [24]∗ GTX 1070 214 64c 57.8 −

Bootstrap HE [20] Titan V 214 60 44.1 −

215 60 84.2 −

Re-encrypt [23] GTX 1050 214 NA 255 −

215 NA 470 −

RTX 1080 214 NA 375 −

215 NA 425 −

Efficient NTT [21] GTX 980 214 55 51 41

215 55 73 52

GTX 1080 214 55 33 20

215 55 36 24

Tesla V 100 214 55 29 21

215 55 39 23

Our Work Tesla A100 214 62 13.3 10.9

216 62 16.5 18.7

Tesla V 100 214 30 8.7 10.0

216 30 13.1 13.4

214 62 11.5 11.9

216 62 16.4 17.3

∗uses constant prime q = 0xFFFFFFFF00000001

aresults are from [63] bresults are from [24]
cactual qi is restricted by q2i n < 264 − 232 + 1

TABLE IV
COMPARISON TO RELATED WORK

could address the limitations we faced when implementing a

kernel with a radix higher than 4.

Alkim et al. [54] define and analyze several algorithms very

similar to Algorithm 8. They not only consider truncating their

NTTs by one stage but by two and three stages. Although some

of Alkim et al.’s algorithms utilize Karatsuba’s Algorithm,

they do not consider using Karatsuba’s Algorithm to merge

a single innermost pair of NTT stages. In our tests, our

fused polynomial multiplication implementation provides an

additional speedup of 6.1% and 2.4% as compared to the naive

implementation for polynomial multiplication for input sizes

of N = 211 and N = 216, respectively using Alkim et al.’s

(k − 1)-level NTT multiplication algorithm.

There is a Barrett reduction variant proposed by Yu et

al. [64] that requires no correctional subtractions. We found

that this algorithm has severe trade-offs in terms of operational

complexity as a function of workload size, which makes it less

attractive for use with HE.

VIII. CONCLUSION

In this work, we presented an analysis and proposed im-

plementations of polynomial multiplication, the key compu-

tational bottleneck in lattice-based HE systems, while tar-

geting the V100 GPU platform. Specifically, we analyzed

Barrett’s modular reduction algorithm and several variants.

We studied the interplay between algorithmic improvements

(such as multi-radix NTTs) and low-level kernel optimizations

tailored towards the GPU (including memory coalescing). Our

NTT optimizations achieve an overall speedup of 123.13×
and 2.37× over the previous state-of-the-art CPU [29] and

GPU [21] implementations of NTT kernels, respectively.

ACKNOWLEDGEMENTS

This work was supported in part by the Institute

for Experiential AI, the Harold Alfond Foundation,

the NSF IUCRC Center for Hardware and Embedded

Systems Security and Trust (CHEST), the RedHat

Collaboratory, and project grant PID2020-112827GB-

I00 funded by MCIN/AEI/10.13039/501100011033.

REFERENCES

[1] A. Ghosh and I. Arce, “Guest Editors’ Introduction: In Cloud
Computing We Trust - But Should We?” IEEE Secur. Priv., vol. 8,
no. 6, pp. 14–16, 2010. [Online]. Available: https://ieeexplore.ieee.org/
stamp/stamp.jsp?arnumber=5655238 1

[2] L. Branch, W. Eller, T. Bias, M. McCawley, D. Myers, B. Gerber, and
J. Bassler, “Trends in malware attacks against United States healthcare
organizations, 2016–2017,” Global Biosecurity, vol. 1, no. 1, 2019. 1

[3] M. Jayaweera, K. Shivdikar, Y. Wang, and D. Kaeli, “JAXED: Reverse
Engineering DNN Architectures Leveraging JIT GEMM Libraries,” in
2021 Int. Symp. on Secure and Private Execution Environ. Design

(SEED). IEEE, 2021, pp. 189–202. [Online]. Available: https:
//wiki.kaustubh.us/w/img auth.php/JAXED Reverse Engineering
DNN Architectures Leveraging JIT GEMM Libraries.pdf 1

[4] S. Thakkar, K. Shivdikar, and C. Warty, “Video steganography
using encrypted payload for satellite communication,” in 2017

IEEE Aerospace Conf. IEEE, 2017, pp. 1–11. [Online]. Available:
https://wiki.kaustubh.us/w/img auth.php/Video Steganography.pdf 1

[5] E. L. Cominetti and M. A. Simplicio, “Fast additive partially homomor-
phic encryption from the approximate common divisor problem,” IEEE

Trans. Inf. Forensics Secur., vol. 15, pp. 2988–2998, 2020. 1
[6] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption

for arithmetic of approximate numbers,” in Advances in Cryptology—

ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. Springer, 2017. 1,
2

[7] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: fast
fully homomorphic encryption over the torus,” J. Cryptol., vol. 33, no. 1,
pp. 34–91, 2020. 1

[8] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A Fast and Programmable Acceler-
ator for Fully Homomorphic Encryption,” in MICRO-54: 54th Annu.

IEEE/ACM Int. Symp. on Microarchitecture, ser. MICRO ’21. New
York, NY, USA: ACM, 2021, pp. 238–252. 1, 10

[9] W. Jung, E. Lee, S. Kim, J. Kim, N. Kim, K. Lee, C. Min, J. H. Cheon,
and J. H. Anh, “Accelerating fully homomorphic encryption through
architecture-centric analysis and optimization,” IEEE Access, vol. 9, pp.
98 772–98 789, 2021. 1, 2

[10] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.

of the 41st Annu. ACM Symp. on Theory of Comput.—STOC 2009.
ACM, 2009, pp. 169–178. 1

[11] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices
and Learning with Errors over Rings,” in Advances in Cryptology—

EUROCRYPT 2010, H. Gilbert, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 1–23. 1

[12] P. Longa and M. Naehrig, “Speeding up the number theoretic transform
for faster ideal lattice-based cryptography,” in Int. Conf. on Cryptology

and Netw. Security. Springer, 2016. 1

11

[13] S. Koteshwara, M. Kumar, and P. Pattnaik, “Performance Optimization
of Lattice Post-Quantum Cryptographic Algorithms on Many-Core Pro-
cessors,” in 2020 IEEE Int. Symp. on Performance Anal. of Syst. and

Softw. (ISPASS), 2020, pp. 223–225. 1
[14] DARPA. (2021) DARPA Selects Researchers to Accelerate Use of Fully

Homomorphic Encryption. [Online]. Available: https://www.darpa.mil/
news-events/2021-03-08 1

[15] A. Kim, M. Deryabin, J. Eom, R. Choi, Y. Lee, W. Ghang, and D. Yoo,
“General bootstrapping approach for RLWE-based homomorphic en-
cryption,” Cryptology ePrint Archive, 2021. 1

[16] V. Kadykov and A. Levina, “Homomorphic properties within lattice-
based encryption systems,” in 2021 10th Mediterranean Conf. on Em-

bedded Comput. (MECO). IEEE, 2021, pp. 1–4. 1
[17] P. Martins and L. Sousa, “Enhancing data parallelism of fully homomor-

phic encryption,” in Int. Conf. on Inf. Security and Cryptology. Springer,
2016, pp. 194–207. 1

[18] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x
faster bootstrapping in fully homomorphic encryption through memory-
centric optimization with gpus,” IACR Transactions on Cryptographic

Hardware and Embedded Syst., Aug. 2021. 2
[19] Y. Zhai, M. Ibrahim, Y. Qiu, F. Boemer, Z. Chen, A. Titov, and

A. Lyashevsky, “Accelerating Encrypted Computing on Intel GPUs,”
2022 IEEE Int. Parallel and Distrib. Process. Symp. (IPDPS), 2022. 2,
10

[20] S. Kim, W. Jung, J. Park, and J. H. Ahn, “Accelerating number theoretic
transformations for bootstrappable homomorphic encryption on GPUs,”
in 2020 IEEE Int. Symp. on Workload Characterization (IISWC), 2020.
2, 3, 10, 11

[21] Ö. Özerk, C. Elgezen, A. C. Mert, E. Öztürk, and E. Savaş, “Efficient
number theoretic transform implementation on GPU for homomorphic
encryption,” J. Supercomput., pp. 1–33, 2021. [Online]. Available: https:
//link.springer.com/content/pdf/10.1007/s11227-021-03980-5.pdf 2, 3,
6, 8, 10, 11

[22] S. Durrani, M. S. Chughtai, M. Hidayetoglu, R. Tahir, A. Dakkak,
L. Rauchwerger, F. Zaffar, and W.-m. Hwu, “Accelerating fourier and
number theoretic transforms using tensor cores and warp shuffles,” in
Int. Conf. on Parallel Arch. and Compilation Tech. (PACT), 2021. 2

[23] G. Sahu and K. Rohloff, “Accelerating Lattice Based Proxy Re-
encryption Schemes on GPUs,” in Cryptology and Netw. Security,
S. Krenn, H. Shulman, and S. Vaudenay, Eds. Springer, 2020. 2,
3, 11

[24] J. Goey, W. Lee, B. Goi, and W. Yap, “Accelerating number theoretic
transform in GPU platform for fully homomorphic encryption,” J.

Supercomput., vol. 77, no. 2, pp. 1455–1474, 2021. 2, 3, 11
[25] A. A. Badawi, B. Veeravalli, J. Lin, N. Xiao, M. Kazuaki, and A. K. M.

Mi, “Multi-GPU Design and Performance Evaluation of Homomorphic
Encryption on GPU Clusters,” IEEE Trans. Parallel Distrib. Syst.,
vol. 32, pp. 379–391, 2021. 2

[26] W.-K. Lee, S. Akleylek, D. C.-K. Wong, W.-S. Yap, B.-M. Goi, and
S.-O. Hwang, “Parallel implementation of Nussbaumer algorithm and
number theoretic transform on a GPU platform: application to qTESLA,”
J. Supercomput., vol. 77, no. 4, pp. 3289–3314, 2021. 2, 3

[27] P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor,” in
Advances in Cryptology — CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1987, pp. 311–323. 2, 3

[28] J. F. Dhem and J. J. Quisquater, “Recent results on modular multi-
plications for smart cards,” in Smart Card Research and Applications.
Springer Berlin Heidelberg, 2000. 2, 3, 4

[29] Microsoft SEAL (release 4.0). Microsoft Research, Redmond, WA.
[Online]. Available: https://github.com/Microsoft/SEAL 2, 10, 11

[30] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating fully
homomorphic encryption using GPU,” in 2012 IEEE Conf. on High

Performance Extreme Comput., 2012, pp. 1–5. 2, 3
[31] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital

numbers by automatic computers,” in Doklady Akademii Nauk, vol. 145,
no. 2. Russian Academy of Sciences, 1962, pp. 293–294. 2, 6

[32] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping
for approximate homomorphic encryption,” in Annu. Int. Conf. on the

Theory and Appl. of Cryptographic Tech. Springer, 2018, pp. 360–384.
2

[33] V. Shoup, A Computational Introduction to Number Theory and Algebra,
2nd ed. USA: Cambridge University Press, 2009. 2

[34] P. L. Montgomery, “Modular multiplication without trial division,” Math.

Comput., vol. 44, pp. 519–521, 1985. 2

[35] V. Shoup. NTL: A library for doing number theory. [Online]. Available:
https://libntl.org/ 2

[36] D. Harvey, “Faster arithmetic for number-theoretic transforms,” J. Symb.

Comput., vol. 60, pp. 113–119, 2014. 2
[37] T. Acar and D. Shumow, “Modular reduction without pre-computation

for special moduli,” Microsoft Research, Redmond, WA, USA, 2010. 2
[38] M. Knezevic, F. Vercauteren, and I. M. R. Verbauwhede, “Speeding Up

Barrett and Montgomery Modular Multiplications,” in IEEE Transac-

tions on Comput., 2009. 2
[39] L. Hars, “Long modular multiplication for cryptographic applications,”

in Int. Workshop on Cryptographic Hardware and Embedded Syst.

Springer, 2004, pp. 45–61. 2
[40] W. Dai and B. Sunar, “cuHE: A homomorphic encryption accelerator

library,” in Int. Conf. on Cryptography and Inf. Security in the Balkans.
Springer, 2015, pp. 169–186. 2, 11

[41] PALISADE Homomorphic Encryption Software Library (release
1.11.5). [Online]. Available: https://palisade-crypto.org/ 2, 3, 8

[42] W. Dai, Y. Doröz, and B. Sunar, “Accelerating NTRU based homomor-
phic encryption using GPUs,” in 2014 IEEE High Performance Extreme

Comput. Conf. (HPEC). IEEE, 2014, pp. 1–6. 3
[43] Y. Kong and B. Phillips, “Comparison of Montgomery and Barrett

modular multipliers on FPGAs,” in 2006 Fortieth Asilomar Conf. on

Signals, Syst. and Computers, 2006, pp. 1687–1691. 3
[44] T. Wu, S.-G. Li, and L.-T. Liu, “Modular multiplier by folding Barrett

modular reduction,” in 2012 IEEE 11th Int. Conf. on Solid-State and

Integrated Circuit Technol., 2012, pp. 1–3. 3
[45] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms. MIT press, 2009. 4
[46] J. Von Zur Gathen and J. Gerhard, Modern Computer Algebra. Cam-

bridge University Press, 2013. 4
[47] T. Pöppelmann, T. Oder, and T. Güneysu, “High-Performance Ideal

Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers,” in
Progress in Cryptology—LATINCRYPT. Springer, 2015, pp. 346–365.
4, 5

[48] R. Crandall and B. Fagin, “Discrete Weighted Transforms and Large-
Integer Arithmetic,” Math. Comput., vol. 62, pp. 305–324, 1994. 5

[49] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Math. Comput., vol. 19, pp. 297–301, 1965.
5

[50] W. M. Gentleman and G. Sande, “Fast fourier transforms: For fun and
profit,” in Proc. of the November 7–10, 1966, Fall Joint Comput. Conf.,
ser. AFIPS ’66 (Fall). New York, NY, USA: Association for Computing
Machinery, 1966, pp. 563–578. 5

[51] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact Ring-LWE Cryptoprocessor,” in Cryptographic Hardware and

Embedded Syst.—CHES 2014, L. Batina and M. Robshaw, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 371–391. 5

[52] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly Effi-
cient Architecture of NewHope-NIST on FPGA using Low-Complexity
NTT/INTT,” IACR Transactions on Cryptographic Hardware and Em-

bedded Syst., vol. 2020, no. 2, pp. 49–72, Mar. 2020. 5
[53] Ö. Özerk, C. Elgezen, and A. C. Mert. (retrieved Oct 2021) gpu-ntt.

[Online]. Available: https://github.com/SU-CISEC/gpu-ntt 6
[54] E. Alkım, Y. A. Bilgin, and M. Cenk, “Compact and Simple RLWE

Based Key Encapsulation Mechanism,” in Progress in Cryptology—

LATINCRYPT 2019. Springer, 2019, pp. 237–256. 6, 11
[55] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting

the NVIDIA volta GPU architecture via microbenchmarking,” arXiv

preprint arXiv:1804.06826, 2018. 7
[56] T. Baruah, K. Shivdikar, S. Dong, Y. Sun, S. A. Mojumder, K. Jung,

J. L. Abellán, Y. Ukidave, A. Joshi, J. Kim, and D. Kaeli, “GNNMark:
A Benchmark Suite to Characterize Graph Neural Network Training
on GPUs,” in 2021 IEEE Int. Symp. on Performance Anal. of Syst.

and Softw. (ISPASS). IEEE, 2021, pp. 13–23. [Online]. Available:
https://wiki.kaustubh.us/w/img auth.php/GNNMark.pdf 7

[57] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K.
Ziabari, Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and
D. Kaeli, “MGPUSim: Enabling Multi-GPU Performance Modeling
and Optimization,” in Proc. of the 46th Int. Symp. on Comput.

Architecture, ser. ISCA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 197–209. [Online]. Available:
https://doi.org/10.1145/3307650.3322230 7

12

[58] K. Shivdikar, “SMASH: Sparse Matrix Atomic Scratchpad Hashing,”
Master’s thesis, Northeastern University, 2021. [Online]. Available:
https://wiki.kaustubh.us/w/img auth.php/SMASH Thesis.pdf 7

[59] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “Nvbit: A
dynamic binary instrumentation framework for nvidia gpus,” in Proc. of

the 52nd Annu. IEEE/ACM Int. Symp. on Microarchitecture, 2019, pp.
372–383. 7

[60] (2022, Apr) Nvidia Nsight Systems. [Online]. Available: https:
//developer.nvidia.com/nsight-systems 7

[61] K. Shivdikar, K. Paneri, and D. Kaeli, “Speeding up DNNs using HPL
based Fine-grained Tiling for Distrib. Multi-GPU Training,” Boston Area

Architecture Workshop, 2018 (BAAW/BARC), 2018. [Online]. Available:

https://wiki.kaustubh.us/w/img auth.php/BARC speeding.pdf 7
[62] M. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An architecture for

computing on encrypted data,” Int. Conf. on Architectural Support for

Programming Languages and Operating Syst. - ASPLOS, 2020. 10
[63] A. Al Badawi, B. Veeravalli, and K. M. M. Aung, “Faster number

theoretic transform on graphics processors for ring learning with errors
based cryptography,” in 2018 IEEE Int. Conf. on Service Operations and

Logistics, and Informatics (SOLI). IEEE, 2018, pp. 26–31. 11
[64] H. Yu, G. Bai, and H. Hao, “Efficient Modular Reduction Algorithm

Without Correction Phase,” in Frontiers in Algorithmics, J. Wang and
C. Yap, Eds. Springer, 2015. 11

13

	I Introduction
	II Barrett reduction and its variants
	II-A Background: modular reduction and arithmetic
	II-B Barrett modular reduction: analysis and optimization

	III Polynomial Multiplication
	III-A Background: Number Theoretic Transform
	III-B Proposed optimization: fused polynomial multiplication

	IV GPU Architecture
	V Optimized NTT Kernels
	V-A Latency optimized Single-block NTT
	V-A1 Shared Memory Optimization
	V-A2 Barrett's Modular Reduction Optimization
	V-A3 Mixed Radix Optimization
	V-A4 Fused Polynomial Multiplication Optimization

	V-B Latency optimized Multi-block NTT
	V-C Throughput-optimized Multi-block NTT

	VI Results
	VI-A Experimental Methodology
	VI-B Performance Metrics

	VII Related Work
	VIII Conclusion
	References

