
Turbo: SmartNIC-enabled Dynamic Load Balancing
of µs-scale RPCs

Hamed Seyedroudbari
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia, USA

Email: hamed@gatech.edu

Srikar Vanavasam
School of Computer Science

Georgia Institute of Technology
Atlanta, Georgia, USA

Email: srikar@gatech.edu

Alexandros Daglis
School of Computer Science

Georgia Institute of Technology
Atlanta, Georgia, USA

Email: alexandros.daglis@gatech.edu

Abstract—Online services are decomposed into fine-grained

software components that communicate over the network using

fine-grained Remote Procedure Calls (RPCs). Inter-server com-

munication often exhibits patterns of wide RPC fan-outs between

software tiers, raising the well-known tail at scale effect and

necessitating mechanisms that curb long response tail latencies.

When handling µs-scale RPCs, request distribution across the

cores of multicore servers is a major determinant of the resulting

tail latency. Software approaches for inter-core RPC balancing

introduce considerable overheads, throttling a server’s peak

throughput. On the other hand, existing NIC-based hardware

mechanisms ameliorate software and inter-core synchronization

overheads, but result in inter-core load imbalance that leaves

significant performance improvement headroom.

We introduce Turbo, a hardware on-NIC load-balancing mech-

anism that achieves near-optimal inter-core load distribution for

the most fine-grained, light-tailed RPCs with service times of only

a couple of µs. We implement Turbo on a programmable NIC and

evaluate it on a range of different service time distributions and

with a high-performance Key-Value store. Compared to hardware

NIC-based mechanisms that statically spread load across cores,

Turbo boosts throughput under a 99% latency Service Level

Objective (SLO) of 30⇥ the service time by up to 5⇥, and by

up to 95⇥ for a more aggressive 10⇥ SLO target.

I. INTRODUCTION

Online services are the backbone of modern digital
economies. Such services are typically deployed on large
datacenters and are decomposed into multiple software tiers
that communicate over the datacenter network via Remote
Procedure Calls (RPCs). Because of the significance of con-
trolling each service component’s tail latency [13], service
providers do not solely focus on maximizing raw throughput,
but must optimize for attainable throughput under a Service
Level Objective (SLO). The key metric of throughput under
SLO often entails a response tail latency target, such as the
99th percentile or higher.

Due to the ongoing trend of extreme software decom-
position, a plethora of online services feature performance-
critical components that interact with fine-grained, µs-scale
RPCs. Controlling the tail latency of such fine-grained RPCs
is particularly challenging due to the well-known inefficiency
of modern systems in handling µs-scale events [7]. A key
tail latency determinant when handling µs-scale RPCs on
manycore server CPUs at millions of requests per second
is RPC distribution across cores: any load imbalance results

in excessive queuing, which in turn defines each request’s
response latency. This work focuses on leveraging the pro-
grammability capabilities of modern smartNICs to improve tail
latency by mitigating the impact of inter-core load imbalance
when handling fine-grained RPCs.

Prior work in the space of µs-scale RPC load balancing
broadly falls into two categories: software- and hardware-
based. The flexibility of advanced software mechanisms [14],
[22], [36], [38] is necessary to approach load-balancing opti-
mality in the face of wide service time variability. However,
software mechanisms entail overheads that become consid-
erable in the context of the most fine-grained RPCs. To
demonstrate, ZygOS [38] achieves near-ideal throughput under
SLO for RPCs with a 10+µs average service time, but its
efficiency drops precipitously for shorter service times. Maxi-
mizing throughput under SLO for fine-grained RPCs requires
hardware-level solutions without any software intervention on
the data path.

On the hardware front, prior solutions either build rebal-
ancing mechanisms on top of existing Receive-Side Scaling
(RSS) support in NICs [6], [40], or adopt exotic integrated
NIC architectures [12], [20]. Systems in the former category
eschew the overheads of software-based solutions, but still rely
on coarse-grained rebalancing decisions at the network flow
rather than RPC granularity, leaving significant performance
improvement headroom. Load-balancing approaches in the
latter category are not directly applicable to discrete NICs that
are predominant in modern systems, due to the considerable
NIC-CPU latency introduced by the I/O (typically PCIe)
interface. In this work, we focus on developing a hardware
load-balancing mechanism specifically for fine-grained RPCs
that is readily applicable to modern platforms with discrete
programmable NICs.

We propose Turbo, a NIC-based load-balancing mechanism
for modern programmable NICs (aka, smartNICs), designed
to maximize a server’s throughput under stringent tail-latency
SLOs when handling fine-grained RPCs. Turbo’s simple but
effective policies allow making load-assignment decisions at
a per-RPC granularity, without throttling the NIC’s peak line
rate. Turbo’s first policy, Join Shortest Queue (JSQ), assigns
each newly arriving RPC to the core with the shallowest queue
of pending requests. Turbo’s second policy, Join Lightest

Queue (JLQ), improves over JSQ by inferring each RPC’s
service time to maintain the total work assignments across
cores balanced. JLQ’s applicability is narrower, as it requires
applications with a causal relationship between request type
and resulting average service time. We demonstrate such a
concrete use case using a high-performance Key-Value Store.
We make the following contributions:
• We demonstrate that the ideal—for fine-grained RPCs—

centralized First Come First Serve (FCFS) policy, imple-
mented by the state-of-the-art NIC-driven load-balancing
mechanism [12], is not realizable on modern discrete NICs,
due to the high NIC-CPU latency introduced by the PCIe
interface.

• We show that simple alternative load-balancing policies that
can be implemented using minimal hardware resources on
current discrete, programmable NICs approach the perfor-
mance of the ideal centralized FCFS load-balancing policy.

• We present Turbo, an implementation of these simple
policies on an FPGA-based programmable smartNIC and
evaluate it on a range of microbenchmarks with synthetic
service time distributions and on the high-performance
Masstree Key-Value Store [30]. Turbo boosts throughput
under a stringent 99% tail latency SLO of 30⇥/10⇥ the
request’s service time by up to 5⇥/95⇥, respectively, com-
pared to static load distribution achieved by existing RSS
NIC capabilities.

• We illustrate that Turbo’s load-balancing at the individual
RPC granularity is superior to advanced RSS-based mech-
anisms proposed in the literature [6], [40] that periodically
reconfigure the NIC’s load assignment functions, delivering
2.7�3.4⇥ lower tail latency, and less jitter at the same load.

Paper outline: §II provides background on the impact of load
balancing on the tail latency of µs-scale RPCs and prior art
in this space. §III highlights the challenges and opportunities
of NIC-driven RPC load-balancing approaches via queuing
simulations. We present Turbo’s design and implementation
in §IV and §V, detail our methodology in §VI, and evaluate
Turbo in §VII. Finally, §VIII discusses related work and §IX
concludes.

II. BACKGROUND

A. µs-Scale RPCs and Tail Latency

The multiple tiers of online services typically communicate
via RPCs. A server of one tier often communicates with
several servers of the next tier, resulting in communication
patterns of wide RPC fan-outs. Because of such fan-outs, tail
latency becomes a critical figure of merit, as a tier’s response
latency is dictated by the next tier’s last response [13]. Fur-
thermore, fine-grained software decomposition often results
in performance-critical tiers that handle short-lived requests,
with service time in the order of a few µs. Given that
modern systems are notoriously inefficient at handling µs-scale
events [7], building effective mechanisms that optimize for the
tail latency of µs-scale RPCs is an open challenge and an area
of intensive research activity.

Prior work has identified queuing as a prime contributor
to high RPC response tail latency [12], [22], [26], [38].
Poor load balancing across a manycore server CPU’s cores
exacerbates tail latency, because of few RPCs experiencing
disproportionately long queuing time. Effective load balanc-
ing is particularly challenging for short-lived RPCs, because
even sub-µs overheads introduced to improve load-balancing
decisions account for a considerable fraction of service time,
thus throttling peak sustainable service rate.

This work does not target general RPCs, but specifically
focuses on the finest-grained RPCs exhibiting single-digit
µs service times with low variability, which is the typi-
cal profile of ubiquitous software tiers such as data stores,
state machine replication, network functions, and emerging
“nanoservices” [20], [21]. We henceforth refer this class of
RPCs as FLT RPCs (Fine-grained Light-Tailed RPCs). Next,
we summarize the most relevant areas of prior work and argue
that handling FLT RPCs effectively requires making decisions
in hardware at the granularity of individual RPCs. We defer a
longer discussion of related work to §VIII.

B. Optimizing Queuing at µs Scale
The growing importance of handling µs-scale network

events efficiently has led to several recent runtime and operat-
ing system proposals optimizing for throughput under stringent
µs-scale tail latency targets [14], [22], [36], [38]. Most of these
runtimes focus on efficiently handling heavy-tailed service
time distributions and optimizing CPU utilization under multi-
tenant scenarios. The flexibility of these software solutions
is unparalleled by hardware-only mechanisms, but they leave
significant room for improvement in the context of FLT RPCs.
For example, ZygOS effectively employs high-performance,
fine-grained work-stealing to react to spurious inter-core load
imbalance, thus delivering performance within 15% of an ideal
single-queue system for RPCs with sub-20µs service times.
However, its efficiency drops sharply for shorter requests (50–
60% of ideal with 5µs service times [38, §6.1]). Maximizing
load-balancing efficiency for RPCs with sub-10µs service time
requires proactive hardware-based solutions.

Modern NICs feature Receive Side Scaling (RSS) [32] to
support increasing network line rates on multicore CPUs. RSS
improves networking scalability, as it mitigates inter-core syn-
chronization overheads by proactively distributing incoming
network flows across multiple network queues, each assigned
to one of the available cores. However, such distribution is not
equivalent to load balancing, as it is performed by applying a
static hash function on incoming packet headers and can result
in considerable temporal inter-core load imbalance. RSS++ [6]
and eRSS [40] extend RSS with auxiliary mechanisms built
in software or in on-NIC programmable logic to ameliorate
inter-core load imbalance over time by periodically reconfig-
uring RSS’s flow redirection tables. Although better equipped
than baseline RSS in minimizing overheads of µs-scale RPC
handling, these solutions still have two main drawbacks.

First, periodic reconfiguration of RSS’ control structures at
100µs–100ms timescales are too coarse, as they correspond

Request
arrivals

NIC S0

S15In
te

rfa
ce

la

te
nc

y ...

availability feedback

(a) Centralized FCFS (c-FCFS).

Request
arrivals

NIC
uni[0,15]

or
round-robin

S0

S15

...

In
te

rfa
ce

la

te
nc

y

(b) Distributed FCFS (d-FCFS).

Request
arrivals

NIC

Per-queue
depth state

S0

S15

...
queue depth feedback

In
te

rfa
ce

la

te
nc

y

(c) Join Shortest Queue (JSQ).

Fig. 1: System configurations modeled in discrete event simulation.

to thousands of FLT RPCs with single-digit µs service times.
We quantitatively demonstrate the drawback of such coarse-
grained reconfiguration in §VII-E. Second, similar to baseline
RSS, both approaches still rely on network flow as the unit
of load to be balanced. Flows are coarser-grained than RPCs,
which are ultimately the end-to-end unit of work for modern
online services. There is growing consensus that RPC-oriented
transports are a better fit than conventional bytestream trans-
ports in datacenter settings, because they enable improved flow
control [33], [37], latency-aware routing [19], inter- and intra-
server load balancing [12], [26], [44], and drastic datacenter
workload acceleration opportunities [27], [31], [43], [47].
Therefore, it is timely and natural to transition to solutions
that handle network traffic load balancing across cores at the
RPC rather than flow granularity, enabling the finer-grained
decisions needed to optimize for the tail latency of FLT RPCs.

C. RPC-Oriented NIC-Driven Load Balancing
Among prior work, RPCValet [12] is the solution that best

caters to tail latency optimization for FLT RPCs. RPCValet
balances RPCs to cores by implementing a—theoretically opti-
mal for light-tailed service time distributions [39], [42], [46]—
single-queue FCFS policy. To implement synchronization-free
single-queue load balancing, RPCValet maintains a single
queue of incoming RPCs at the NIC and only dispatches the
RPC at the head of the queue as soon as a core becomes
available, as sketched in Fig. 1a.

RPCValet’s approach is only applicable to highly integrated
SoC designs, where the interaction latency between the NIC
and cores is negligible even compared to the most short-lived
RPCs (i.e., 10s of ns). Servers in modern datacenters, however,
predominantly feature discrete (rather than integrated) PCIe-
attached NICs, where a single interface crossing incurs a
latency overhead in the order of 500ns [34]. As a result,
implementing RPCValet on a discrete NIC would result in
prohibitive performance overheads. To illustrate, for a server
running Memcached with an average service time of 2µs and
a one-way interface-crossing latency of 500ns, RPCValet’s
greedy dispatch policy would incur a 1µs execution bubble
per request, throttling peak sustainable throughput by 30%.
This hefty overhead grows higher for more optimized software
stacks that achieve even lower per-RPC service time, or for
platforms with higher effective interface latency.

In summary, we investigate load-balancing mechanisms
to optimize the tail latency of FLT RPCs implemented on
modern discrete programmable NICs. Given the deployment of
programmable NICs in datacenters [4], [9], [10], [16], our goal

is to provide a practical proof-of-concept toolbox of policies
for FLT RPC tail latency optimization in such platforms.

III. LOAD-BALANCING EFFECT ON µS-SCALE RPCS

We perform a theoretical queuing analysis to demon-
strate why the—theoretically optimal for light-tailed service
time distributions—single-queue FCFS load-balancing policy
is sub-optimal for discrete-NIC platforms with considerable
NIC-CPU interface latency. We employ discrete event simula-
tion to model a system with 16 serving units, Poisson request
arrivals, and four load-balancing policies, shown in Fig. 1:
• Centralized FCFS (c-FCFS): The theoretically optimal

single-queue load-balancing policy. Incoming requests wait
in a single centralized queue and the request at the head of
the queue is only dispatched to a serving unit as soon as
the latter indicates its availability (Fig. 1a).

• Distributed FCFS–random (d-FCFS(r)): Incoming requests
are assigned to serving units uniformly at random upon
arrival by applying a hash function to each packet’s header
(Fig. 1b). d-FCFS(r)’s static nature resembles RSS, although
RSS makes coarser-grained decisions than what we model
here, as it distributes entire network flows rather than
individual requests. d-FCFS(r) is more akin to Sprayer [41],
which distributes load at a packet granularity.

• d-FCFS–round-robin (d-FCFS(rr)): Round-robin assign-
ment of incoming requests to serving units upon their arrival
(Fig. 1b). d-FCFS(rr) improves load balance for light-tailed
distributions by replacing stateless hashing with minimal
state in the request dispatching logic.

• Join Shortest Queue (JSQ): Each incoming request is as-
signed to the serving unit with the shallowest queue of
pending requests (Fig. 1c). We consider JSQ because it can
be practically implemented on a programmable NIC while
maintaining minimal on-NIC state.
The interface latency between the on-NIC dispatch logic and

the serving units affects the performance of feedback-based
policies like c-FCFS. To illustrate, we model two different
interface latencies as a fraction of average service time latency:
0% and 25%. 0% latency implies a negligible interface latency,
as would be the case in an architecture with an integrated NIC
like Scale-Out NUMA [35]. 25% means that the (one-way)
latency to traverse the NIC-CPU interface is equal to 1

4 of
the average service time. For example, for a system handling
2µs RPCs and a PCIe-attached NIC incurring a NIC-to-CPU
latency of ⇠ 500ns [34], the interface latency is 25%. The
same system’s relative interface overhead would be lower for

(a) 0% NIC-CPU interface latency.

(b) 25% NIC-CPU interface latency.

Fig. 2: Tail latency on a system with 16 serving units as a
function of load-balancing policy for a bimodal service time
distribution (10% of queries are 5⇥ longer). X-axis shows load
normalized to the system’s theoretical peak.

workloads with higher service times, and higher for workloads
with sub-µs service times such as the MICA/HERD Key-Value
Store [23], [28] or emerging “nanoservices” [20], [21].

For each of the four aforementioned system configurations,
we model three service time distributions—fixed, exponential,
and bimodal where 10% of requests have 5⇥ longer service
time than the short ones—and evaluate performance as peak
sustainable load under a 99% SLO of 30⇥ the query service
time. Fig. 2 only shows results for the bimodal distribution for
brevity, but our qualitative observations similarly apply to the
other distributions.

Fig. 2a shows the behavior of a system with negligible NIC-
CPU interface latency, as assumed by RPCValet [12]. c-FCFS
is the best-performing policy, as theoretically expected. JSQ
closely follows c-FCFS, as it ensures that the number of as-
signed requests per serving unit is always balanced. d-FCFS(r)
is significantly outperformed by every other policy, and its
gap from c-FCFS grows with the service time distribution’s
variability (not shown). Finally, although d-FCFS(rr) matches
c-FCFS and JSQ for a fixed service time, it results in signif-
icant throughput loss for service time distributions with non-
zero variability, like the shown bimodal distribution.

Fig. 2b shows the same results when the NIC-CPU inter-
face latency equals 25% of the average service time, which
drastically changes the landscape of relative load-balancing
policy performance. c-FCFS is now the worst policy because
of significant execution bubbles (c.f. §II-C). The relative trends
between the remaining three policies remain similar to Fig. 2a.
The relative performance gap between c-FCFS and other
policies grows as a function of interface latency, because
c-FCFS is directly affected by it, while the other policies
are largely insensitive. The relative performance of JSQ and
the two d-FCFS variants is minimally affected by the change

in interface latency. JSQ outperforms c-FCFS, d-FCFS(r),
and d-FCFS(rr) by 1.5⇥, 1.2⇥, and 1.1⇥, respectively. The
performance gap further grows to 1.5⇥, 2.0⇥, and 1.4⇥ at a
more stringent SLO target of 10⇥ the query service time.

In summary, while proactive NIC-driven load-balancing
decisions are necessary to maximize the handling efficiency of
FLT RPCs, the c-FCFS policy implemented by the RPCValet
state-of-the-art solution is not viable for discrete NICs, due
to considerable NIC-CPU interface latency. This work revisits
NIC-driven load-balancing policies for platforms with discrete
(as opposed to integrated) programmable NICs and proceeds
to implement and evaluate their efficacy using capabilities of
such commercially available platforms.

IV. TURBO DESIGN

This section delves into the insights and assumptions guid-
ing Turbo’s design. Turbo aims to remove any software
involvement and inter-core synchronization overheads from
the data plane of load-balancing decisions. We first discuss
Turbo’s architecture, followed by proactive load-balancing
policies that are a good fit for practical hardware implemen-
tation on current discrete NICs.

A. High-level Architecture
Turbo is designed to implement variants of the JSQ load-

balancing policy, depicted in Fig. 1c. Turbo’s architecture
comprises four main components:

i. State bookkeeping: NIC-side tracking of work that has
been assigned to each core and is still pending. The state
maintained depends on the load-balancing policy (§IV-B).

ii. RPC assignment: per-RPC work assignment decisions.
Turbo’s logic on the NIC inspects each incoming RPC
and consults the current per-core state to select the core
to assign the RPC to.

iii. Ingress state update: update of bookkeeping state upon
RPC assignment.

iv. Egress state update: periodic feedback from the server’s
cores to update the on-NIC bookkeeping state. This feed-
back notifies the NIC what units of previously assigned
work have been completed to reclaim resource allocations.
Similar to the R2P2 protocol [26], we rely on the inherent
request-response nature of RPCs to avoid introducing a
new out-of-band communication mechanism between the
CPU and the NIC. Thus, every outgoing RPC response
carries metadata that the NIC consumes to update its state.

A critical requirement in Turbo’s design is performing the
above functionality at line rate without adding considerable
latency on each RPC’s critical path.

B. Load-Balancing Policies
Turbo leverages the architecture described in §IV-A to im-

plement different load-balancing policies. Given the character-
istics of FLT RPCs, the policies we consider are (i) proactive,
as opposed to reactive; (ii) dynamic, as opposed to static; (iii)
work-conserving for maximized resource utilization, and (iv)
fully hardware offloaded, to avoid any software overhead. We

implement two policies: Join Shortest Queue (JSQ) and its
variant Join Lightest Queue (JLQ).

1) Join Shortest Queue (JSQ): As introduced in §III, JSQ
is an approximation of c-FCFS that is more fitting for discrete
NICs. To implement JSQ, Turbo’s four main components are
configured as follows:

i. State tracking: A single value Counteri per core, keeping
track of how many RPCs that have been assigned to each
of the N cores used by the application are still pending.

ii. RPC assignment: Assign the newly arrived RPC to the
core i with the currently smallest Counteri value.

iii. Ingress state update: For the selected core i, increment
Counteri.

iv. Egress state update: Every RPC response from core i
received on the egress path decrements Counteri.

2) Join Lightest Queue (JLQ): JLQ is a variant of JSQ that
refines JSQ’s per-core pending work estimation granularity by
taking into account the expected service time of each incoming
RPC and using it as a weight for state updates. While not
generally applicable, estimating the expected service time at
the time of RPC reception is possible for certain applications.
The expected service time can either be directly indicated by
the client in a dedicated field of the RPC header, or inferred
by the NIC. Any such inference must be lightweight and
should not compromise line rate operation or increase the
RPC’s end-to-end latency. For instance, for a KVS supporting
reads, writes, and range queries, it is simple to install expected
average service time per request type in a small lookup
table on the NIC, and implement shallow RPC inspection at
arrival time that checks the request type to infer that RPC’s
expected service time. To implement JLQ, Turbo’s four main
components are configured as follows:

i. State tracking: A single value Weighti per core, keeping
track of the expected aggregate service time of all currently
pending RPCs on core i.

ii. RPC assignment: Assign the newly arrived RPC to the
core i with the currently smallest Weighti value.

iii. Ingress state update: Infer the expected service time ST
for the arrived RPC and increment the selected core i’s
Weighti by ST .

iv. Egress state update: Whenever an RPC response is re-
ceived on the egress path from core i, decrement Weighti
by the originally inferred service time ST .

The simplicity of the load-balancing policies considered
affords a straightforward hardware design featuring minimal
state and simple logic. Simplicity caters to our underlying
requirements of preserving the NIC’s line rate and avoiding
any noticeable increase of RPC end-to-end latency.

V. TURBO SMARTNIC IMPLEMENTATION

This section describes Turbo’s implementation as an inline
(“bump-in-the-wire”) accelerator on a reconfigurable FPGA-
based SmartNIC.

SmartNIC

Ingress

Server Threads

NIC
Egress

QPs and
receive buffers

Parse
Header

Select work
Queue

Update Packet
Destination Queue

+ Pending Work
@ Queue i

Parse
Header

- Pending Work
@ Queue i

3

FPGA
40 GbE

56

RDMA
Verbs

1 2

4

ingress
egress

Work Queue State (Pending Service Time)

......

Fig. 3: Turbo implementation on a smartNIC.

A. Turbo RPC Load-Balancing Accelerator

We base our implementation on the Mellanox Innova Flex
4 Lx EN [1], which combines an RDMA-capable 40Gbps
ConnectX-4 network adapter with a Xilinx Kintex Ultrascale
FPGA. We build Turbo on top of the RoCEv2 RDMA UD
transport. Each core registers its own Queue Pair (QP) and
registers it with the NIC. Load-balancing decisions involve
selecting one of the registered QPs to enqueue each arrived
packet in. Our prototype implementation assumes a one-to-
one packet to RPC request correspondence, hence no packet
reassembly is involved; thus, making a load-balancing decision
for an incoming packet is equivalent to making a decision
for an incoming RPC. While this assumption facilitates our
proof-of-concept implementation, the practical limitation it
introduces is minimal, as we discuss in §V-D.

Fig. 3 shows a block diagram of our implementation. The
FPGA is positioned between the network and the NIC, allow-
ing it to inspect all network traffic and make load-balancing
decisions at the NIC’s 40Gbps line rate. Turbo features logic
on both the ingress and egress path, sharing state that keeps
track of the pending work per registered QP. The ingress path
logic is responsible for inspecting every incoming packet and
consulting the Work Queue State (WQS) maintained on the
FPGA to determine which QP to assign the packet to (steps
1 to 3 in Fig. 3). The FPGA then modifies the destination

QP field of the packet’s header, and the NIC DMA’s the packet
into the corresponding QP’s receive buffer in the server’s
memory (step 4). Cores are continuously polling on their QPs
for request arrivals and, after pulling a request and servicing
it, they respond by posting a send. Finally, on the egress
path, the FPGA inspects outgoing packets and uses extracted
information to update the WQS (steps 5 and 6).

Fig. 4 demonstrates the microarchitecture of Turbo’s ingress
and egress path logic. The efficacy of any Turbo imple-
mentation lies in identifying the target QP, according to the
implemented load-balancing algorithm, in a handful of clock
cycles, while sustaining line rate operation. The first stage of
both the ingress and egress datapath identifies the packets of

From
 / to server

Fr
om

 /
to

 n
et

w
or

k

Legend
ST = estimated service time WQS = work queue state
QPN = QP number ST LUT = ST look-up table
SQP = src QPN

<

<

< <<

<

WQS of N QPs

lo
g 2

(N
) l

ev
el

s

Winner (W)

...

... ...
<

Req
Type

ST

Put x

Get x

Scan N*x

256
256

if RoCE pkt

WQS[SQP] -= ST Extract
ST

256
256

if RoCE pkt

QPN = W
WQS[W] += ST

Extract
Req Type

ST LUT

Fig. 4: Turbo ingress/egress logic.

interest using the destination port number in the UDP header
encapsulated in the RoCE packets. Packets that do not match
that destination port bypass the remainder of the ingress/egress
datapaths. Fig. 5 shows the typical structure of a RoCEv2
packet used in our implementation.

Ingress path: The ingress path completes two functions for
every incoming packet of interest: (i) it identifies the QP the
packet must be assigned to, according to the load-balancing
policy, and (ii) it updates the WQS tracking the pending work
on the selected QP. The former function relies on a pipelined
binary tree structure to continuously—independently of packet
arrivals—identify the lightest-loaded QP (the “QP winner”)
and return its updated search result to the datapath every
clock cycle, allowing Turbo to make load-balancing decisions
on a per-packet basis. The latter function’s performed action
depends on the implemented load-balancing policy. For JSQ,
Turbo simply increments the state of the QP winner, indicating
there is one more unit of work pending in that QP. For
JLQ, Turbo must first infer the expected service time for the
request. We implement this as a lookup table (ST LUT), with
Fig. 4 demonstrating an example for a KVS application using
Put/Get/Scan requests. The ingress path’s logic extracts
the request type from the packet’s RPC header and uses it to
index ST LUT and retrieve the expected service time, which
is then used to update the QP winner’s corresponding WQS
entry. Finally, the ingress path logic modifies the destination
QP number (QPN) in the packet’s InfiniBand header, to control
the QP the NIC will DMA the packet to. We disable the
NIC’s header checksum and invariant CRC (iCRC) validation
to avoid packet drops due to intentional QPN modification.

Egress path: The egress path shares similarities with the
ingress path, but is simpler, as it only has to update QP state
for each outgoing packet corresponding to an RPC response,

InfiniBand
Header Payload iCRCIPETH UDP

Header RP
C

He
ad

er

16-bit Turbo extension

De
st

.
Po

rt

De
st

.
Q

PN

Fig. 5: RoCEv2 packet structure.

but doesn’t have to make any load-balancing decisions. For
each outgoing RPC response from QPi, the egress path adjusts
the QP’s corresponding pending work state. For JSQ, this
adjustment simply requires decrementing QPi’s WQS by one.
For JLQ, Turbo must decrement QPi’s WQS by a value equal
to the expected service time assumed by the ingress path at
the time of the RPC’s arrival. This could be done by inferring
again what the RPC’s service time was by looking up the
service time table, as in the ingress path. We opt for a simpler
alternative: when an incoming RPC’s service time is inferred
on the ingress path, that value is embedded as part of the RPC
payload. The response packet also carries this value, which the
egress path extracts and uses to decrement QPi’s state. Doing
that requires a new field in the RPC header, shown as “16-bit
Turbo extension” in Fig. 5 and further discussed in §V-B.

B. API and Software Extensions
We design Turbo for the low-latency RDMA transport

to achieve kernel bypass and zero-copy data movement.
Each thread servicing the target application registers its
own QP and send/recv buffers using the ibv create qp()
and ibv reg mr() APIs. Threads use send/recv RDMA
Verbs [3] to exchange RPC requests and responses. Our
implementation uses the RoCE network protocol, which en-
capsulates InfiniBand transport packets over Ethernet.

To enable the JLQ policy, we extend the RPC layer with a
16-bit Request Type (RT) field, which encodes each RPC’s type
(Fig. 5). Turbo extracts the RT from the RPC header and uses
it to retrieve the expected Service Time (ST) from ST LUT, as
described in §V-A. ST LUT’s contents are pre-populated by
the deployed application at initialization time. Alternatively,
the RT field can be directly populated in each RPC by the
application’s client to indicate the expected service time for
the outgoing request. In the latter mode of operation, ST LUT’s
contents implement the identity function. The absolute values
RT is set to are unimportant; the effectiveness of JLQ depends
on the accuracy of the relative service time values used for
requests of different types with considerably different service
times. The RPC library on the server side ensures the RT
header value of each outgoing RPC response is carried over
from the corresponding RPC request, so that Turbo’s egress
path updates the WQS correctly.

C. FPGA Platform Details
We use Vivado HLS to describe §V-A’s datapaths in C++.

Packets are streamed to the FPGA every clock cycle over
a 256-bit AXI-Stream interface. The ingress and egress path
logic operate on packets at 256-bit flit granularity—thus, the
smallest RoCE packet consists of 3 flits. Once exported as an
IP, our design is synthesized along with the NIC’s wrapper

LUTs FFs Power (mW) Clock (MHz)
2116 (0.6%) 2138 (0.3%) 26 mW 217

TABLE I: FPGA resource utilization for Turbo.

logic, placed and routed on the FPGA, and loaded onto
the hardware in the form of a bitstream. All WQS memory
elements are synthesized as flip-flops. Writes to the queue
states from the ingress and egress path logic are scheduled
on different clock cycles to always ensure a valid state of
pending service time in each QP’s corresponding WQS entry.

The smartNIC is attached to a 12-core server, so we base our
evaluation on a system that exposes 12 QPs (16 in §VII-B’s
experiments employing 8 cores with 2-way SMT), resulting in
a QP winner selection binary tree of four comparator levels
(Fig. 4). More QPs can be trivially supported by increasing
the tree’s depth. Each of Turbo’s ingress and egress datapaths
add a single FPGA cycle to each packet’s critical path. The
ingress path’s comparator tree is pipelined into four stages
for our design’s 4-level comparator tree, but is not on each
packet’s critical path, as the QP winner at any given time is
continuously determined in the background, regardless of new
packet arrivals.

The achieved clock period is 4.6ns, which results in a peak
sustainable arrival rate of ⇠ 56Gbps, exceeding the NIC’s
40Gbps line rate. SmartNICs supporting higher line rates
typically provision a wider interface to the FPGA (than our
platform’s 256 bits), allowing for a straightforward adaptation
of Turbo’s pipelines to meet those higher line rates. In addition,
Turbo’s ingress/egress path logic, which currently adds a single
cycle per direction on the critical path, can be pipelined to
achieve a higher clock rate if needed.

Table I summarizes Turbo’s FPGA resource utilization,
along with its resulting peak power consumption and clock
frequency, as reported by Vivado post place and route. Turbo
occupies a negligible fraction of the FPGA’s resources, leaving
ample room for more sophisticated policies or other accelera-
tors to co-exist on the same smartNIC.

D. Turbo’s Scope and Limitations

Turbo is a specialized NIC-driven load-balancing solution
that specifically targets workloads relying on FLT RPCs. Thus,
it consciously trades off flexibility and generality for high
performance on such challenging applications, and is not
intended as a replacement for more general software-based
load-balancing mechanisms [14], [22], [36], [38]. Turbo can
simply be disabled for applications that do not fit that profile.

Turbo currently has two limitations stemming from its
implementation rather than its design. First, it’s built on
top of the RoCE UD transport to facilitate implementation.
Although the same techniques could be carried over to an
alternative implementation over connection-oriented and reli-
able transports, several applications already use lightweight
unreliable datagrams (UDP or RoCE/IB UD). Second, a side-
effect of using UD is the need to fit an RPC request (but not
its response) in a single packet. Although Ethernet’s typical
MTU is 1.5KB, datacenter networks commonly support jumbo

Se
rv

er

2⇥ 12-core Intel Xeon Silver 4214 CPU
Mellanox Innova Flex 4 Lx EN SmartNIC [1], 40GbE,
Xilinx Kintex Ultrascale XCKU060 FPGA
RHEL 7.2 - Linux 3.10.0-327.el7.x86 64
Xilinx Vivado (HLS) 2016.2
MLNX OFED LINUX-3.3-1.0.4.0.3

C
lie

nt 2⇥ 12-core Intel Xeon Silver 4214 CPU
Mellanox ConnectX-6 Dx EN, 100GbE
MLNX OFED LINUX-4.9-0.1.7.0

TABLE II: Experimental testbed specs and configuration.

frames (up to 9KB) [5], [31]. Given that the vast majority
of messages in production datacenters are < 1KB [33], we
do not consider Turbo’s current MTU limitation as a major
concern. Furthermore, the MTU limitation does not preclude
Turbo’s use by applications requiring an occasional larger-
than-MTU RPC. Prior work with similar limitations describes
performance-neutral alternatives to handle infrequent large
RPCs [24]. Finally, given Turbo’s focus on FLT RPCs, we
see little value in providing a “fast path” for larger-than-
MTU RPCs, as serialization latency alone of large packets
is comparable to the service time ranges we focus on (e.g.,
serializing a 16KB frame over 40Gbps exceeds 3µs).

VI. METHODOLOGY

We developed two platforms to evaluate Turbo’s load-
balancing strategies: a discrete-event queuing simulator for
fast first-order evaluation of different queuing systems and
balancing policies, and a real-system experimental platform
to evaluate our FPGA-based implementation.

a) Discrete-Event Simulator: We employ a C++ discrete-
event queuing simulator for rapid design space exploration.
The simulator was used to produce §III’s motivational results,
and in §VII to sanity-check results obtained from the real
platform, extrapolate performance numbers to larger-scale
systems, and estimate the behavior of prior relevant designs.
The simulator models Poisson arrivals and offers a range of
configurable parameters: arrival rate, number of serving units,
service time distribution, load-balancing policy, and interface
latency between the load-balancing logic and the serving units.

b) Experimental Platform: Our experiments were con-
ducted on a pair of directly connected machines, with hardware
specs detailed in Table II. One machine features a conventional
100G RDMA-capable NIC and is configured to be the client
generating requests to load the server. The second machine
is the server and features an FPGA-based programmable NIC
where we deploy Turbo. On the server machine, we only use
the 12 cores of the socket directly attached to the NIC, to
isolate the impact of NUMA effects.

The client machine’s role is two-fold: to put configurable
load on the server and to accurately measure end-to-end
request latency. To meet these two roles, we employ multiple
loading threads and a single measuring thread—a separation
necessary to avoid measuring bias due to client-side queuing
effects [48]. The number of loading threads and outstanding
requests per thread are the main knobs for controlling the gen-
erated load in each experiment. The measuring thread always
has a single outstanding request. All latencies reported in the

(a) fixed. (b) exponential. (c) bimodal 5⇥-10%. (d) bimodal 10⇥-40%.

Fig. 6: Microbenchmark load-latency graphs for different service time distributions and load-balancing policies implemented
on Turbo.

evaluation refer to the measuring client’s end-to-end latency
measurements and are averaged over three trials of one million
RPCs issued by the measuring client. Our main evaluation
metric is throughput under SLO in terms of achieved Million
Requests Per Second (MRPS). Throughout our evaluation’s
load-latency graphs, we assume a default upper-bound p99
SLO of 30⇥ the average service time of the measuring client’s
requests, and therefore, bound the y-axis to that value, but
also mark the 10⇥ and 20⇥ thresholds with horizontal lines
to investigate system behavior at tighter SLO bounds.

c) Workloads: We employ a microbenchmark to explic-
itly control the service time distribution and validate Turbo’s
high-level behavior with the queuing model. The clients embed
a processing time value in the RT header field of each
request they generate. The cores on the server side emulate
the processing time indicated in the request, by invoking a
usleep for the specified value. For our microbenchmark-
based evaluations, the RT value in each request is also used
by Turbo’s JLQ policy to infer each request’s expected service
time (c.f. §V-B, second mode of ST LUT operation).

We also use the Masstree Key-Value Store (KVS) [30]
to evaluate Turbo’s load-balancing policies on a software
component that is a cornerstone of virtually every online
service. We replace stock Masstree’s [2] UDP transport with
send/recv RoCE UD verbs. We select Masstree because
it is a high-performance KVS with µs-scale service times
that also supports SCAN operations in addition to basic
GET/PUT operations that many KVS are limited to. The mix
of supported operations enables workloads with more service
time distribution variety. For Masstree, Turbo implements JLQ
by pre-populating its ST LUT with the average service time
we measured for each query type via application profiling.

VII. EVALUATION

In this section, we first employ our real-system Turbo
implementation to answer the following three questions:
• Does Turbo deliver performance improvements for FLT

RPCs that are in line with the expectations set by §III’s
theoretical queuing model (§VII-A)?

• How does Turbo compare to specialized software solutions
for µs-scale RPCs (§VII-B)?

• What are Turbo’s performance gains on a production-grade
application with µs-scale service times (§VII-C)?

Next, we validate our discrete-event simulator’s queuing model
with the real-system results and use the validated model to
answer three additional questions:

• How do Turbo’s performance gains scale with higher CPU
core counts (§VII-D)?

• How important is it to balance load at the individual RPC
granularity (§VII-E)?

• What range of service time distributions is Turbo’s proactive
load balancing good for (§VII-F)?

A. Gains on Throughput under SLO
We first use the microbenchmark, instrumenting the loading

clients to send requests following (1) a fixed processing time
of 2µs; (2) an exponential processing time distribution with an
average processing time of 2µs; and two bimodal processing
time distributions where short requests have a processing time
of 2µs and (3a) 10% of the requests are 5⇥ longer, (3b) 40%
of the requests are 10⇥ longer. The measuring client always
sends requests with a fixed 2µs processing time.

Fig. 6 shows the results. For fixed processing time (Fig. 6a),
JSQ and JLQ are practically identical policies and achieve
a peak throughput of 5.1MRPS. Turbo’s JSQ/JLQ barely
outperform d-FCFS(rr), as the lack of variability in service
time results in no load imbalance. d-FCFS(r) achieves a 10%
lower throughput than JSQ/JLQ because of the load imbalance
caused by static load-oblivious inter-core RPC distribution.

Performance trends are more interesting for processing
time distributions with non-zero variability (Figs. 6b to 6d).
Turbo’s load-balancing policies boost throughput under SLO
by 1.17 � 1.85⇥ and 1.08 � 1.34⇥ compared to d-FCFS(r)
and d-FCFS(rr), respectively. The merits of JLQ’s ability
to infer the service time of every RPC and balance load
accordingly are more pronounced with larger service time
variability. Although JSQ and JLQ achieve the same peak
throughput, JLQ yields up to 40% lower tail latency at
medium loads. In addition, throughput gaps between different
load-balancing policies become more pronounced for more
stringent SLOs (with the exception of the zero-variability fixed
processing time distribution). For instance, for a 10⇥ SLO,
JSQ outperforms d-FCFS(r) and d-FCFS(rr) by 1.45 � 95⇥
and 1.0�1.7⇥, respectively, with JLQ achieving an additional
throughput boost of up to 10% over JSQ.

B. Comparison to Specialized Software Solutions
Turbo is a solution specialized for FLT RPCs with < 10µs

service times. Therefore, as previously mentioned in § II-B
and V-D, it is not directly comparable with advanced software-
based solutions for tail-latency optimization, which are much
more flexible, offering robust performance for a wide range of

(a) 50% GET, 50% PUT. (b) bimodal: 90% GET,
10% SCAN18.

(c) bimodal: 60% GET,
40% SCAN46.

(d) trimodal: 34% GET,
33% SCAN46, 33% SCAN105.

Fig. 7: Effect of load-balancing policy on different query mixes on Masstree. The average service time for each of the used
query types is: GET = 975ns, PUT = 1.35µs, SCAN18 = 4.7µs, SCAN46 = 9.18µs, and SCAN105 = 17.7µs. The X subscript
in SCANX denotes the number of KV pairs retrieved by the query.

(a) Fixed service time. (b) Exponential service time.

Fig. 8: Comparison to Shinjuku and Caladan.

service time distributions, but are sub-optimal for workloads
dominated by FLT RPCs. However, we attempt to provide a
quantitative comparison point to highlight the fact that Turbo
and software-based solutions target operational regions and
timescales of qualitatively different ballparks.

We compare against Shinjuku [22] and Caladan [17] at an
operational region where Turbo shines. To align our evaluation
with experiments performed in the respective papers, we (i)
use 16 hardware contexts on 8 cores (i.e., 2-way SMT)1;
and (ii) deploy a microbenchmark that models synthetic RPC
processing following a fixed and an exponential service time
distribution, with a 1µs average service time. We reproduce
results for Caladan by deploying the experiment on our ex-
perimental platform. We do not deploy Shinjuku, but directly
use data presented in the respective paper that correspond to
the same experimental setup [22, Figs. 5a & 5b].

Fig. 8 compares the results. Shinjuku cannot meet a 20⇥
p99 SLO target even at the lowest load. At the same SLO
target, Caladan delivers a peak throughput of 8.8MRPS, 23%
lower than Turbo’s achieved throughput of 11.5MRPS. At a
relaxed SLO of 100⇥ the average service time (i.e., 100µs),
Turbo outperforms Shinjuku and Caladan by 2.8⇥ and 1.3⇥,
respectively. While Turbo delivers large performance gains
over Shinjuku and Caladan, we note that these systems are de-
signed to flexibly handle service time distributions with higher
variance and, therefore, have a broader range of applicability.
However, this comparison serves as a clear demonstration of
the need for hardware support for FLT RPCs.

C. Masstree Key-Value Store
We continue our evaluation with the Masstree KVS. Fig. 7

shows results for four different query mixes generated by the

1We note that this setup is an outlier, used solely in §VII-B’s experiments.
The rest of our evaluation uses 12 server cores with SMT disabled.

loading clients. Fig. 7a corresponds to YCSB-A [11]; results
for the YCSB-B and YCSB-C workloads are largely similar
to YCSB-A, due to the comparable service times of GET and
PUT queries, and are therefore omitted. Figs. 7b and 7c’s
bimodal distributions roughly match those evaluated in §VII-A
using the synthetic service time microbenchmark, and Fig. 7d
evaluates a trimodal service time distribution. The measuring
client measures latency using GET requests.

Performance trends largely follow those observed in
§VII-A’s microbenchmark evaluation. d-FCFS(r) (correspond-
ing to a static RSS-based mechanism like Sprayer [41]) is
always the most inferior policy. YCSB-A (Fig. 7a) results in
roughly fixed service times, hence JSQ and JLQ perform iden-
tically, while d-FCFS(rr) slightly lags behind due to naturally
occurring small service time variability that JSQ/JLQ dynam-
ically adapt to. JLQ noticeably outperforms JSQ only when
the workload’s service time variability grows considerably.

For the trimodal distribution (Fig. 7d), JSQ outperforms
d-FCFS(r) and d-FCFS(rr) by 5⇥ and 1.5⇥ respectively. JLQ
achieves an additional 6% boost. Turbo’s delivered throughput
under SLO nearly matches the peak theoretical throughput
for the used service time distributions. For instance, for the
trimodal distribution, JLQ’s peak achieved throughput under
SLO is within 4% of the theoretical maximum throughput
(computed as number of cores divided by the workload’s
average service time of 9.2µs: 12

9.2µs = 1.3MRPS). This
minuscule gap is expected to grow for service times with
higher variance, due to the limitations of proactive load
balancing, which works very well for FLT RPCs, but its
efficacy deteriorates for heavy-tailed service time distributions.
We further explore the limits of proactive load balancing in
§VII-F.

D. Scalability Analysis

This section studies Turbo’s impact as a function of the
number of cores. To overcome our experimental platform’s
core count limitations, we collect results up to 12 cores and
extrapolate performance up to 64 cores using our discrete-
event simulator’s queuing model (§VI). We first confirm that
the model accurately predicts the real platform’s performance.
Queuing model validation. To get an accurate NIC-CPU
interface latency estimate, we perform a zero-load experiment
where the server immediately echoes every received message.
The FPGA timestamps each packet on its ingress and on

Fig. 9: Queuing model validation using Fig. 6c’s 5⇥-10%
bimodal distribution.

Fig. 10: Scalability analysis of attainable peak throughput
under 30⇥ 99% tail latency SLO.

its egress to derive timeon�server and the CPU measures
the time between each packet’s reception and the subsequent
send operation (timeon�cpu). We estimate the one-way
NIC-CPU interface latency to be about 550ns, computed as
timeon�server�timeon�cpu

2 , and use this value to instrument the
queuing model.

Fig. 9 overlays the measured load-latency curve for the
bimodal 5⇥-10% service time distribution from Fig. 6c with
the model’s predicted results, omitting other service time dis-
tributions for brevity. We observe that the model predicts the
real system implementation’s performance with high accuracy.
The maximum deviation in the model’s predicted p99 latency
is high (2.3⇥) for JSQ under medium load, but in every other
case, the deviation is negligible. Most importantly, there is
a near-perfect match between the predicted and actual peak
throughput under our target 10⇥ and 30⇥ SLO. Hence, we
next use the queuing model to accurately predict the peak
achievable throughput under SLO with core counts exceeding
our experimental platform’s capabilities.

Scalability results. Fig. 10 shows achieved throughput under
SLO with d-FCFS(r) and JLQ for Fig. 6’s two bimodal
distributions—5⇥-10% and 10⇥-40%—when scaling the core
count from 2 to 64. Results in the 2–12 range are obtained
from both our experimental platform and the validated queuing
model, and results in the 12–64 range are extrapolated using
the model. The complete overlap of the system and model
lines in the 2–12 range further supports the model’s accuracy.
Turbo’s improved load balancing allows near-linear throughput
scaling under SLO, resulting in growing performance gap
between JLQ and d-FCFS(r) with the number of cores, as
inter-core load imbalance hampers the latter’s performance.

E. Impact of per-RPC Load-Balancing Decisions

We now use our queuing model to demonstrate why Turbo’s
per-RPC load-balancing decisions are in principle superior to

Fig. 11: Per-RPC load balancing vs. periodic rebalancing for
exponential service time and 12 serving units at 80% load.
Ideal c-FCFS assumes no interface latency between load-
balancing decision-making and serving units.

adaptive RSS-based solutions like RSS++ [6] or eRSS [40]
that periodically reassign connection hash buckets to cores.
We model an optimistic instance of an adaptive RSS-based
solution as follows: each incoming packet is hashed to one
of 512 buckets, and then buckets are assigned to 12 cores
(⇠ 43 buckets per core on average). We evaluate a best-
case regrouping of buckets that minimizes inter-core load
imbalance every 1ms and every 100µs, assuming zero cost
for such rebalancing. The queuing model is instrumented as
detailed in §VII-D and results are shown in Fig. 11.

Evidently, higher reassignment frequency (every 100µs in-
stead of every 1ms) places a tighter bound on tail latency.
However, recomputing bucket groupings and reconfiguring
the hardware on the NIC faces practical limitations, which
led RSS++ [6] to a minimum reconfiguration window of
1ms. Rebalancing every 1ms fares similarly to the d-FCFS(r)
policy that distributes load at a per-RPC (rather than per-flow)
granularity using a static hash function without any periodic
bucket rebalancing across cores. A 10⇥ lower rebalancing
interval (every 100µs) helps reduce average tail latency and
jitter, but still results in almost 3⇥ higher tail latency than
JSQ. Even a simple round-robin policy at the individual RPC
granularity (i.e., d-FCFS(rr)) fares better than the two adaptive
RSS-like solutions, due to the short-tailed service time of the
requests. Finally, Turbo’s JSQ yields lower tail latency and
jitter than all alternatives, approaching an ideal c-FCFS policy
with zero latency between the load-balancer and the serving
units (i.e., similar to RPCValet [12] that assumes an on-chip
integrated NIC).

We reiterate that RSS-based solutions with periodic re-
balancing strive to preserve network flow affinity, which
Turbo’s balancing at RPC granularity foregoes. However, as
argued in §II-B, there is mounting evidence that RPC-oriented
transports are a better fit than bytestream-oriented ones for
online services in datacenters. Thus, for a significant class of
applications, foregoing flow affinity for improved per-RPC tail
latency is a favorable tradeoff.

(a) Ideal PS. (b) JSQ. (c) JLQ.

Fig. 12: Limits of proactive load balancing as function of ser-
vice time variability. Peak sustainable load under 99% latency
SLO of 30⇥ average service time for bimodal distributions
where B% of requests have A⇥ longer service time.

F. Limits of Proactive Load Balancing

We conclude our evaluation by investigating the applica-
bility range and limits of Turbo’s proactive load-balancing
approach beyond its main focus of fine-grained light-tailed
RPCs, for which load-balancing policies in the FIFO family
are optimal. We use our queuing model to evaluate the range
of service time distributions where Turbo remains effective
without requiring reactive software mechanisms for dynamic
load rebalancing. We use bimodal distributions to cover a
range of service time variability and compare JSQ/JLQ against
ideal Processor Sharing (PS) in terms of peak throughput
achieved under SLO. Ideal PS cycles through all pending
requests at a 10ns granularity, with zero overhead.

Fig. 12 shows the results for a range of bimodal distributions
where B% of requests have A⇥ longer service time, with
A 2 [0, 20] and B 2 [0%, 40%]. PS remains insensitive to
service time variability. In contrast, JLQ and JSQ become
less effective as variability grows. However, their efficacy
remains quite high for a significant range: JSQ’s throughput
under SLO virtually matches ideal PS when A  8, and
remains within 20% of ideal PS when Fig. 12’s entire service
time distribution range is considered. Compared to JSQ, JLQ
improves throughput under SLO by up to 12%, especially for
the more heavily skewed distributions, and performs within
11% of ideal PS across the board.

In conclusion, while Turbo’s proactive load-balancing poli-
cies are most effective for FLT RPCs, they work quite well
for service time distributions with considerable variability.
Maximizing performance for a wide range of service time
distributions requires software support for fast preemption or
work-stealing investigated in prior work [22], [38]. Combining
such techniques with Turbo can achieve the best of both
worlds: peak performance for FLT RPCs, and high flexibility
for applications with highly variable service time profiles.

VIII. RELATED WORK

The growing significance of µs-scale online services and tail
latency as a key figure of merit has given rise to a plethora
of proposals, both software- and hardware-based, optimizing
for advanced load-balancing techniques of µs-scale tasks to
mitigate queuing effects on end-to-end latency. As discussed in
§II-B, Turbo is a hardware-based solution for modern discrete

NICs, drawing a high-level distinction between (i) software-
based solutions, which are more flexible for wide service time
distributions but sub-optimal for FLT RPCs, and (ii) hardware-
based solutions that assume exotic NIC architectures [12] or
make coarse-grained rebalancing decisions at the network flow
granularity [6], [40]. We further elaborate on each category of
related work next.

Specialized OSes. IX [8] leverages RSS to achieve scalable,
high-performance userspace network stack processing, but
does not consider load-balancing effects on queuing delays.
ZygOS [38] and Shenango [36] leverage low-overhead work
stealing to reactively counteract load imbalance arising due
to the static load distribution nature of RSS. However, their
efficiency compared to the—theoretically optimal for FLT
RPCs—c-FCFS policy drops significantly below 10µs service
times, where the relative overhead of work stealing becomes
considerable. Shenango’s follow-on work, Caladan [17], mon-
itors contention on shared resources (i.e. cores, memory
bandwidth, and caches) and dynamically re-allocates cores
to tasks at a 20µs granularity, which remains too coarse-
grained in the context of FLT RPCs. Shinjuku [22] employs
lightweight preemption at a 5µs granularity to achieve near-
optimal tail behavior for heavily tailed workloads, but is not
designed for FLT RPCs with single-digit µs average service
time. Perséphone [14] adopts a non-work-conserving approach
by dedicating cores to requests with low service time, to
avoid high relative queuing delays in the presence of heavily
tailed service time distributions. In contrast to all OS-based
approaches, Turbo targets the narrower scope of FLT RPCs,
without introducing any software overheads and without re-
quiring any OS modifications or an elaborate runtime system.
Turbo could be combined with such specialized software
systems for efficient handling of both FLT RPCs and heavy-
tailed service time distributions.

RSS Variants. To mitigate load imbalance stemming from
RSS’s static nature of hash-based load distribution, recent
hardware-focused proposals introduce mechanisms for peri-
odic reconfiguration of the RSS indirection table that controls
hash bucket to core mapping. RSS++ dynamically changes
the RSS indirection table to redistribute load across cores
at a 100ms–1s granularity [6]. We showed in §VII-E that
such coarse-grained rebalancing leaves a large performance
improvement opportunity on the table. eRSS proposes updat-
ing its on-NIC load distribution logic at a finer granularity of as
low as 10µs [40]. eRSS aims to drive core allocation decisions
in addition to inter-core load distribution, but, unlike Turbo,
the proposed design is not implemented and demonstrated
on a real system. Finally, although RSS variants preserve
flow affinity, in contrast to Turbo’s balancing at the per-RPC
granularity, extensive prior work posits that new RPC-oriented
transports are more fitting to datacenters than bytestreams [12],
[19], [26], [33], [37], [44] (as previously discussed in §II-B).

Specialized Architectures. As elaborated in §II-C, the inter-
face latency between on-NIC load-balancing logic and the on-
server compute units affects the efficacy of the implemented

load-balancing policy. Specialized highly integrated architec-
tures like RPCValet [12] and nanoPU [20] proposing NIC-
CPU integration feature ns-scale interface latencies, making
such designs apt for the single queue c-FCFS load distribution
policy that is ideal for FLT RPCs. There have also been some
commercial processors with an integrated NIC, like Tilera’s
TILE64 and Oracle’s Sonoma [45], but such designs have not,
so far, been mainstreamed in large enterprise system deploy-
ments. Turbo focuses on conventional architectures where the
NIC is attached to the server over an IO interface—typically
PCIe—which introduces considerable latency in NIC-CPU
interactions.

SmartNICs, Switches, Middleboxes. A range of prior work
employs switches, middleboxes, and programmable NICs for
load balancing. Sprayer [41] identifies that the effectiveness of
RSS in middleboxes directly depends on the number of flows,
with too few flows yielding low CPU core utilization and
too many flows causing imbalanced flow distribution across
cores. Sprayer proposes finer-grained load balancing at the
packet rather than flow granularity, but does not delve into
adaptive load balancing and an in-depth study of its impact
on tail latency. R2P2 [26] implements a JBSQ (Join Bounded
Shortest Queue) policy on a switch to improve inter-server
load-balancing—and by extension tail latency—at rack scale.
Dagger [27] leverages a UPI memory interconnect between
its smartNIC-offloaded RPC stack and the host CPU, but
only considers a static distribution of requests across RX
rings. FlexNIC [25] implements key-based steering to Key-
Value access requests, which aims at improving throughput
via improved data locality but may exacerbate inter-core load
imbalance and amplify response tail latency. PANIC [29] hints
at the feasibility of offloading packet scheduling algorithms on
programmable NICs but does not investigate dynamic load-
balancing policies on the NIC and their effect on queuing delay
and tail latency on FLT RPCs. Frameworks like NICA [15]
and alternative smartNIC architectures like FlexNIC, PANIC,
or PsPIN [18] are orthogonal to Turbo’s proposed approach to
RPC load balancing and can be leveraged to produce instances
of Turbo on different platforms.

IX. CONCLUSION

We presented Turbo, an on-NIC hardware-based load-
balancing mechanism specialized for the light-tailed µs-scale
RPCs prevalent in modern online services. Turbo is readily
deployable on current programmable smartNICs, as demon-
strated by our prototype on the FPGA-based Mellanox Innova
Flex NIC. Turbo’s load-balancing decisions are proactive and
are made at the individual RPC granularity, without any
software involvement, which introduces considerable overhead
in the context of µs-scale RPCs. Turbo’s fine-grained decisions
lower tail latency and improve latency predictability, as com-
pared to RSS-based alternatives with periodic reconfiguration.
Using a set of microbenchmarks and the Masstree high-
performance KVS, Turbo boosts peak throughput by up to
5⇥/95⇥ under a stringent 99th percentile tail latency SLO of

30⇥/10⇥ the request’s service time, respectively, compared to
static load distribution using existing RSS NIC capabilities.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
comments and feedback. We are grateful to Haggai Eran,
Rafael Oliveira, and Callie Hao for their invaluable help on
technical problems encountered while working on the Innova
Flex platform, to Xueyang Liu who helped develop the initial
RDMA microbenchmark used in the evaluation, and to Joshua
Fried who assisted with deploying Caladan on our servers. We
also thank Marina Vemmou, Albert Cho, Anirudh Sarma, and
Divya Kiran Kadiyala for their constructive feedback at early
stages of the work and on drafts of the paper. This work was
supported by the National Science Foundation (award NSF-
CCF-2006602) and by a Google Faculty Research award.

APPENDIX

A. Artifact Abstract

This artifact contains the discrete-event queuing simulator
used in Turbo’s methodology to model a discrete NIC en-
queuing Poisson-arrived requests with various service time
distributions into queues of a multi-core system and simulates
the static and dynamic load-balancing policies we assessed
in § III and VII. This artifact provides the infrastructure to
reproduce Figs. 2 and 10 to 12. The objective of this artifact
is to allow users to reproduce the results presented in this paper
and encourage the research community to use our simulator
for other relevant research.

B. Artifact Checklist (meta-information)

• Compilation: Although other versions may work equally
well, we recommend using gcc version 7.5.0 for compi-
lation.

• Runtime Environment: Root access is not required to
reproduce the results of this paper.

• Metrics: The unit of data reported is 99th percentile
latency as a multiple of service time.

• Outputs: Once the experiments have completed, the
measured latency for each load point is stored in CSV
files, which are then converted to figures as PDF files
after plotting the data.

• Experiments: Scripts are included to reproduce results
generated with our evaluation methodology’s queuing
model, namely Figs. 2 and 10 to 12 of the paper.

• Required Disk Space: 1.5GB.
• Time needed to complete experiments: Approximately

2–3 hours, assuming a server processor with 24 cores.
Runtime will largely depend on the number of cores used,
as the executed simulations are highly parallelizable.

• Publicly Available: Yes.
• Code licenses: MIT.
• Workflow framework used: Bash script.
• Archived: https://doi.org/10.5281/zenodo.7410082.

https://doi.org/10.5281/zenodo.7410082

C. Description
1) How to access: The artifact can be downloaded from

Zenodo: https://doi.org/10.5281/zenodo.7410082.
2) Hardware dependencies: There are no specific require-

ments, however, we recommend running the experiments on
a machine with � 24 cores for completion within the afore-
mentioned timeframe.

3) Software dependencies: The artifact requires a setup
with gcc version 7.5.0 and Python 3.9.7—installed via
Anaconda—with plotting library matplotlib and data analysis
library pandas installed as well.

D. Installation
• gcc: Please ensure you have gcc version 7.5.0 installed

on your system.
• Python: If you don’t have Python 3.9.7 installed

please visit https://docs.anaconda.com/anaconda/install/
index.html for installation steps. Installing Python via
Anaconda will also install numpy, pandas, and matplotlib,
all of which are required for plotting.

E. Experiment Workflow
After installing the required software and downloading the

artifact, the user should invoke the run.sh script. The script
launches all experiments, generates data for the plots, and plots
the figures.

F. Results
After the aforementioned script’s execution completes, the

plots folder will contain subfolders for each of the following
plots in the paper:

• interface_latency reproduces Fig. 2.
• scalability reproduces the data corresponding to

Fig. 10’s discrete-event simulation results.
• timeline reproduces Fig. 11.
• surface reproduces Fig. 12.

G. Notes
• We have tested this artifact against gcc 7.5.0 and Python

3.9.7, and although other versions may work equally well,
we recommend that these versions are used.

• The generated results are not deterministic across many
runs, however, they can be directly compared against the
prevalent trends present in our paper’s figures.

H. Methodology
This artifact was prepared following the methodology rec-

ommended by the cTuning foundation: http://cTuning.org/ae/
submission-20201122.html.

REFERENCES

[1] Innova Flex 4 Lx EN Adapter Card. https://pdf4pro.com/amp/cdn/
innova-flex-4-lx-en-adapter-card-compsource-com-4bb05c.pdf.

[2] Masstree. https://github.com/kohler/masstree-beta/commit/
cef4cc4f68953bdc4d0aec736cb8e1ce0700a4ae.

[3] RDMA Aware Networks Programming User Manual.
https://network.nvidia.com/related-docs/prod software/RDMA Aware
Programming user manual.pdf.

[4] Amazon Web Services. Amazon EC2 F1 Instances: Enable faster
FPGA accelerator development and deployment in the cloud. https:
//aws.amazon.com/ec2/instance-types/f1/.

[5] Amazon Web Services. AWS FPGA developer kit now supports
Jumbo frames in virtual ethernet frameworks for Amazon EC2 F1
instances. https://aws.amazon.com/about-aws/whats-new/2021/10/aws-
fpga-jumbo-amazon-ec2-instances/.

[6] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire Jr., and Dejan
Kostic. RSS++: load and state-aware receive side scaling. In Proceedings
of the 2019 ACM Conference on Emerging Networking Experiments and
Technology (CoNEXT), pages 318–333, 2019.

[7] Luiz André Barroso, Mike Marty, David A. Patterson, and Parthasarathy
Ranganathan. Attack of the killer microseconds. Commun. ACM,
60(4):48–54, 2017.

[8] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A Protected Dataplane Operating
System for High Throughput and Low Latency. In Proceedings of
the 11th Symposium on Operating System Design and Implementation
(OSDI), pages 49–65, 2014.

[9] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. A cloud-scale acceleration architecture. In
Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 7:1–7:13, 2016.

[10] Jian Chen, Xiaoyu Zhang, Tao Wang, Ying Zhang, Tao Chen, Jiajun
Chen, Mingxu Xie, and Qiang Liu. Fidas: fortifying the cloud via
comprehensive FPGA-based offloading for intrusion detection: industrial
product. In Proceedings of the 49th International Symposium on
Computer Architecture (ISCA), pages 1029–1041, 2022.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 2010 ACM Symposium on Cloud Computing (SOCC),
pages 143–154, 2010.

[12] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. RPCValet: NI-
Driven Tail-Aware Balancing of µs-Scale RPCs. In Proceedings of the
24th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-XXIV), pages 35–48,
2019.

[13] Jeffrey Dean and Luiz André Barroso. The tail at scale. Commun. ACM,
56(2):74–80, 2013.

[14] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. When Idling is
Ideal: Optimizing Tail-Latency for Heavy-Tailed Datacenter Workloads
with Perséphone. In Proceedings of the 28th ACM Symposium on
Operating Systems Principles (SOSP), pages 621–637, 2021.

[15] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Sil-
berstein. NICA: An Infrastructure for Inline Acceleration of Network
Applications. In Proceedings of the 2019 USENIX Annual Technical
Conference (ATC), pages 345–362, 2019.

[16] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian M. Caulfield, Eric S. Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
Proceedings of the 15th Symposium on Networked Systems Design and
Implementation (NSDI), pages 51–66, 2018.

[17] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 281–297, 2020.

[18] Salvatore Di Girolamo, Andreas Kurth, Alexandru Calotoiu, Thomas
Benz, Timo Schneider, Jakub Beránek, Luca Benini, and Torsten Hoefler.
A RISC-V in-network accelerator for flexible high-performance low-
power packet processing. In Proceedings of the 48th International
Symposium on Computer Architecture (ISCA), pages 958–971, 2021.

[19] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. Re-architecting
datacenter networks and stacks for low latency and high performance.
In Proceedings of the ACM SIGCOMM 2017 Conference, pages 29–42,
2017.

https://doi.org/10.5281/zenodo.7410082
https://docs.anaconda.com/anaconda/install/index.html
https://docs.anaconda.com/anaconda/install/index.html
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/submission-20201122.html
https://pdf4pro.com/amp/cdn/innova-flex-4-lx-en-adapter-card-compsource-com-4bb05c.pdf
https://pdf4pro.com/amp/cdn/innova-flex-4-lx-en-adapter-card-compsource-com-4bb05c.pdf
https://github.com/kohler/masstree-beta/commit/cef4cc4f68953bdc4d0aec736cb8e1ce0700a4ae
https://github.com/kohler/masstree-beta/commit/cef4cc4f68953bdc4d0aec736cb8e1ce0700a4ae
https://network.nvidia.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://network.nvidia.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/about-aws/whats-new/2021/10/aws-fpga-jumbo-amazon-ec2-instances/
https://aws.amazon.com/about-aws/whats-new/2021/10/aws-fpga-jumbo-amazon-ec2-instances/

[20] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad
Shahbaz, Changhoon Kim, and Nick McKeown. The nanoPU: A
Nanosecond Network Stack for Datacenters. In Proceedings of the 15th
Symposium on Operating System Design and Implementation (OSDI),
pages 239–256, 2021.

[21] Stephen Ibanez, Muhammad Shahbaz, and Nick McKeown. The Case
for a Network Fast Path to the CPU. In Proceedings of The 18th ACM
Workshop on Hot Topics in Networks (HotNets-XVIII), pages 52–59,
2019.

[22] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. Shinjuku: Preemptive Schedul-
ing for µs-scale Tail Latency. In Proceedings of the 16th Symposium on
Networked Systems Design and Implementation (NSDI), pages 345–360,
2019.

[23] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA
efficiently for key-value services. In Proceedings of the ACM SIGCOMM
2014 Conference, pages 295–306, 2014.

[24] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-Sided (RDMA)
Datagram RPCs. In Proceedings of the 12th Symposium on Operating
System Design and Implementation (OSDI), pages 185–201, 2016.

[25] Antoine Kaufmann, Simon Peter, Thomas E. Anderson, and Arvind
Krishnamurthy. FlexNIC: Rethinking Network DMA. In Proceedings
of The 15th Workshop on Hot Topics in Operating Systems (HotOS-XV),
2015.

[26] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2P2: Making RPCs first-class datacenter citizens. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC),
pages 863–880, 2019.

[27] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina
Delimitrou. Dagger: efficient and fast RPCs in cloud microservices
with near-memory reconfigurable NICs. In Proceedings of the 26th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XXVI), pages 36–51, 2021.

[28] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. MICA: A Holistic Approach to Fast In-Memory Key-Value Storage.
In Proceedings of the 11th Symposium on Networked Systems Design
and Implementation (NSDI), pages 429–444, 2014.

[29] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and
Aditya Akella. PANIC: A High-Performance Programmable NIC for
Multi-tenant Networks. In Proceedings of the 14th Symposium on
Operating System Design and Implementation (OSDI), pages 243–259,
2020.

[30] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache
craftiness for fast multicore key-value storage. In Proceedings of the
2012 EuroSys Conference, pages 183–196, 2012.

[31] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve D. Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena E. Olson, Erik
Rubow, Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius,
Xi Wang, and Amin Vahdat. Snap: a microkernel approach to host
networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), pages 399–413, 2019.

[32] Microsoft Corp. Receive Side Scaling. http://msdn.microsoft.com/
library/windows/hardware/ff556942.aspx.

[33] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John K.
Ousterhout. Homa: a receiver-driven low-latency transport protocol

using network priorities. In Proceedings of the ACM SIGCOMM 2018
Conference, pages 221–235, 2018.

[34] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. Understanding PCIe
performance for end host networking. In Proceedings of the ACM
SIGCOMM 2018 Conference, pages 327–341, 2018.

[35] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. Scale-out NUMA. In Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XIX), pages 3–18, 2014.

[36] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari
Balakrishnan. Shenango: Achieving High CPU Efficiency for Latency-
sensitive Datacenter Workloads. In Proceedings of the 16th Symposium
on Networked Systems Design and Implementation (NSDI), pages 361–
378, 2019.

[37] John K. Ousterhout. A Linux Kernel Implementation of the Homa
Transport Protocol. In Proceedings of the 2021 USENIX Annual
Technical Conference (ATC), pages 99–115, 2021.

[38] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achiev-
ing Low Tail Latency for Microsecond-scale Networked Tasks. In Pro-
ceedings of the 26th ACM Symposium on Operating Systems Principles
(SOSP), pages 325–341, 2017.

[39] Kavita Ramanan and Alexander L. Stolyar. Largest weighted delay
first scheduling: large deviations and optimality. Annals of Applied
Probability, 11:1–48, 2001.

[40] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and Kunle
Olukotun. Elastic RSS: Co-Scheduling Packets and Cores Using
Programmable NICs. In Proceedings of the 3rd Asia-Pacific Workshop
on Networking (APNet), pages 71–77, 2019.

[41] Hugo Sadok, Miguel Elias M. Campista, and Luı́s Henrique M. K. Costa.
A Case for Spraying Packets in Software Middleboxes. In Proceedings
of The 17th ACM Workshop on Hot Topics in Networks (HotNets-XVII),
pages 127–133, 2018.

[42] Alexander L. Stolyar. Control of end-to-end delay tails in a multiclass
network: LWDF discipline optimality. Annals of Applied Probability,
13:1151–1206, 2003.

[43] Mark Sutherland, Babak Falsafi, and Alexandros Daglis. Cooperative
Concurrency Control for Write-Intensive Key-Value Workloads. In
Proceedings of the 28th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
XXVIII), 2023.

[44] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra J. Marathe,
Dionisios N. Pnevmatikatos, and Alexandros Daglis. The NeBuLa
RPC-Optimized Architecture. In Proceedings of the 47th International
Symposium on Computer Architecture (ISCA), pages 199–212, 2020.

[45] Basant Vinaik and Rahoul Puri. Oracle’s Sonoma processor: Advanced
low-cost SPARC processor for enterprise workloads. In Hot Chips
Symposium, pages 1–23, 2015.

[46] Adam Wierman and Bert Zwart. Is Tail-Optimal Scheduling Possible?
Oper. Res., 60(5):1249–1257, 2012.

[47] Arash Pourhabibi Zarandi, Mark Sutherland, Alexandros Daglis, and
Babak Falsafi. Cerebros: Evading the RPC Tax in Datacenters. In
Proceedings of the 54th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 407–420, 2021.

[48] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. Treadmill:
Attributing the Source of Tail Latency through Precise Load Testing
and Statistical Inference. In Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA), pages 456–468, 2016.

http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx

	Introduction
	Background
	s-Scale RPCs and Tail Latency
	Optimizing Queuing at s Scale
	RPC-Oriented NIC-Driven Load Balancing

	Load-Balancing Effect on s-Scale RPCs
	Turbo Design
	High-level Architecture
	Load-Balancing Policies
	Join Shortest Queue (JSQ)
	Join Lightest Queue (JLQ)

	Turbo SmartNIC Implementation
	Turbo RPC Load-Balancing Accelerator
	API and Software Extensions
	FPGA Platform Details
	Turbo's Scope and Limitations

	Methodology
	Evaluation
	Gains on Throughput under SLO
	Comparison to Specialized Software Solutions
	Masstree Key-Value Store
	Scalability Analysis
	Impact of per-RPC Load-Balancing Decisions
	Limits of Proactive Load Balancing

	Related Work
	Conclusion
	Appendix
	Artifact Abstract
	Artifact Checklist (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment Workflow
	Results
	Notes
	Methodology

	References

