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ABSTRACT
External flows of energy, entropy, and matter can cause sudden transitions in the stability of biological and industrial systems, fundamentally
altering their dynamical function. How might we control and design these transitions in chemical reaction networks? Here, we analyze
transitions giving rise to complex behavior in random reaction networks subject to external driving forces. In the absence of driving, we
characterize the uniqueness of the steady state and identify the percolation of a giant connected component in these networks as the number
of reactions increases. When subject to chemical driving (influx and outflux of chemical species), the steady state can undergo bifurcations,
leading to multistability or oscillatory dynamics. By quantifying the prevalence of these bifurcations, we show how chemical driving and
network sparsity tend to promote the emergence of these complex dynamics and increased rates of entropy production.We show that catalysis
also plays an important role in the emergence of complexity, strongly correlating with the prevalence of bifurcations. Our results suggest that
coupling aminimal number of chemical signatures with external driving can lead to features present in biochemical processes and abiogenesis.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0142589

I. INTRODUCTION

Characterizing the emergence of complex dynamical behaviors
in networks of chemical reactions is critical to our understanding
of natural and industrial processes, from abiogenesis1 and morpho-
genesis2 to combustion3–5 and atmospheric pollution.6 For example,
the dynamical mechanisms of oscillatory reactions, such as the
Belousov–Zhabotinsky reaction,7 and chemically active matter8 can
generate universal and functional patterns. In both synthetic and
biological systems, the appearance of multistability and/or nonsta-
tionarity9 in the chemical kinetics underlies functions such as mem-
ory, evolution, and responsiveness to environmental conditions.
However, an outstanding problem is how external conditions trig-
ger the nontrivial chemical dynamics in reaction networks. While
some understanding has been distilled from minimal models, it

is unclear how prevalent these dynamics are or how they might be
designed.

Random matrix theory has been one significant approach for
assessing the stability and universality of complex networks. Early
work motivated by ecological analogs of chemical networks, such
as the Lotka–Volterra model,10 suggested that complexity in the
network structure would inhibit the stability of dynamical states.11
These early developments relied on an (over)simplified theory of
dense matrices with uncorrelated matrix elements. Only later was
it recognized that the correlations of interactions and other non-
random factors can in fact favor a variety of phenomena leveraged by
living systems for biological function.12,13 While significant progress
has been achieved in sparse randommatrix theory with uncorrelated
elements,14 the effects of correlations encoded by Laplacian inter-
actions, for example, continue to attract attention.15,16 Of specific
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interest here is how externally imposed driving forces couple to
correlations following from the structures of chemical reaction
networks.

Among the features of chemical networks that lead to complex-
ity, catalysis (in which a chemical species acts to accelerate a reaction
rate by acting as both a reactant and a product) has long been
thought to play a central role. This hypothesis is bolstered by the
prominence of catalysis in classical models of complexity, such as the
Brusselator and Oregonator models for the Belousov–Zhabotinsky
chemical reaction.17,18 Catalysis also plays a central role in living
systems, motivating efforts to understand its effects on artificial
biologically inspired reaction networks.19–23 While recent progress
has been made in characterizing catalysis in arbitrary networks,24
the general problem of defining the extent of catalysis in a net-
work remains open. Specific forms of driving also play a role in the
development of complexity by producing multistability and persis-
tent oscillatory states in random chemical networks,25 in contrast
to the unique steady state observed in thermodynamic equilibrium.
When coupled with diffusion, local concentration inhomogeneities
can be amplified through (auto)catalysis if a small increase of one
species over its homogeneous steady state concentration induces
a further increase in concentration. Catalysis can also be indirect
where the catalyst accelerates the production of a product through
intermediate reactions with other substances.

Here, we computationally drive the formation of complexity in
the form of multistability and nonstationarity in artificial chemical
networks, analyzing both its emergence and prevalence. Specifically,
we consider the impacts of the number of species and reactions,
the proportion of catalytic reactions, and the strength of chemical
driving on the emergence of complex chemical dynamics in ran-
dom chemical reaction networks. In Sec. II A, we define a physically
relevant class of chemical networks, and we define the soft chemo-
stat that we use to drive these networks in Sec. II B. We relate our
networks to graphs in Sec. II C, characterize the steady states of
these networks in the absence of driving in Sec. II D, and note the
important role of atomic conservation laws in Sec. II E. We then
describe percolation transitions that occur as the number of reac-
tions increases in Sec. II F. In Sec. II G, we detail the transitions to
complex behavior through bifurcations caused by external driving.

In Sec. II H, we analyze the role of the total number of reactions and
the proportion of catalytic reactions on these transitions, uncovering
a thermodynamic tendency to increase the rate of entropy produc-
tion during bifurcations. Finally, we discuss the implications of the
results in Sec. III.

II. RESULTS
A. Reaction networks

Our model chemical reaction networks consist of a set of pos-
sible reactions between a set of chemical species {Ai} that can
occur within a reaction vessel, as shown in Fig. 1(a). We gener-
ate these networks randomly (as detailed below and summarized
in Appendix A), choosing n chemical species and ⌊rn⌋ chemical
reactions of the form

∑

i
νiℓAi

κ+ℓ
Ð→
←Ð

κ−
ℓ

∑

i
ηiℓAi. (1)

The parameter r controls the number of reactions in the network,
which has important consequences for the dynamics. These reac-
tions are defined by stoichiometric reactant and product vectors νiℓ
and ηiℓ and the forward and reverse reaction rate coefficients κ+ℓ
and κ−ℓ , where ℓ is the reaction index and i is the species index
(throughout, for notational brevity, we do not distinguish between
vectors/matrices and their components). The reaction vessel is at a
constant temperature and pressure so that the reaction rate coeffi-
cients are time-independent. We assume that the rate of the forward
and reverse reactions in Eq. (1) is determined bymass action kinetics
as j+ℓ ≡ κ

+
ℓ∏iX

νiℓ
i and j−ℓ ≡ κ

−
ℓ∏iX

ηiℓ
i , respectively, where Xi denotes

the concentration of Ai.

B. Chemical driving
A soft chemostat acts on these networks through driving terms

that push selected species toward prescribed concentrations. We
model this chemostat through source terms (which add species into
the system at fixed rates) and sink terms (which extract them at a
rate dependent on their concentrations), as indicated in Fig. 1(a).

FIG. 1. Random reaction networks. (a) Chemical network, defined as a collection of random reversible chemical reactions. Reaction rates, governed by mass-action
kinetics, are chemically driven through mass influxes and removal rates. (b) and (c) Projection graph of sample networks with nodes representing chemical species and
links representing reactions. When the number of reactions is small (b), the network is decomposed into multiple connected components. For a sufficiently large number of
reactions (c), all nodes are in a single connected component. Networks in (b) and (c) are generated with n = 128 chemical species, r = 0.48 in (b) and r = 0.97 in (c), and
isolated nodes representing species that do not participate in any reactions are not depicted.

J. Chem. Phys. 158, 225101 (2023); doi: 10.1063/5.0142589 158, 225101-2

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0142589/17979846/225101_1_5.0142589.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Crucially, this driving differs from an open exchange with a sin-
gle chemical reservoir at a prescribed chemical potential. In particu-
lar, the grand canonical potential describes the irreversible thermo-
dynamic relaxation to a unique equilibrium under open exchange
with a single reservoir at fixed chemical potential, while our chem-
ical networks may relax to nonunique steady states or to persistent
oscillatory or chaotic dynamics. Our driving can be described as an
open exchange with two ormore chemical reservoirs with incompat-
ible chemical potentials, much like a heat engine operating between
thermal reservoirs at differing temperatures. The differing chemi-
cal potentials and rate constants governing the exchanges permit the
influx and outflux rates to violate local detailed balance, leading to a
perpetual state of nonequilibrium. The external drive is thus defined
by independent influx and outflux ratesXin

i andRiXi. A number ⌊dn⌋
of species in the network are randomly selected to be driven in this
fashion, while Xin

i and Ri are set to zero for the remaining species.
The rate of change of the concentrations is then given by the set

of ordinary differential equations

dXi

dt
= Xin

i − RiXi +∑
ℓ

(ηiℓ − νiℓ)( j+ℓ − j−ℓ ). (2)

We relate the driving parameters to a driving magnitude ε and
an initial target concentration Z0

i via Xin
i /Ri = (1 + ε)Z0

i (see
Appendix B). The driving terms Xin

i − RiXi vanish as Xi → Zi
≡ Xin

i /Ri, so the drive can be considered as an external force pushing
the concentrations to the fixed level Zi.

C. Chemical reaction graphs
In the theory of chemical reaction networks,26 the species-

reaction graph encodes the structural features of the chemical reac-
tion mechanism. This representation consists of a bipartite network
with directed edges connecting species nodes and reaction nodes
according to the species’ membership as reactants and products.
Equivalent higher-order representations, such as hypergraph or sim-
plicial models, can also be employed,30 giving different perspectives
on the structure of this network. The species-reaction graph contains
all the structural information about a chemical reaction network, but
simpler pairwise network projections have been defined in order to
quantify percolation transitions for higher-order networks in other
contexts.31–33

Following these previous approaches to quantify percolation
transitions, we define a very simple projection of the chemical
reaction network to an undirected graph consisting of nodes cor-
responding to chemical species (as shown in Fig. 1). To do so, note
that the rate of change of Xi in Eq. (2) is determined by the rate
of the reactions in which Ai is either a reactant or a product. The
rates of these reactions are, in turn, determined by the concentra-
tionsXj of their respective reactants Aj, and so it is natural to include
a directed edge from Aj to Ai in the network. Since all reactions in
the network are reversible, all such links would be bidrectional, so
two species nodes can be connected with an undirected link if they
participate in the same reaction in the network. The set of reactions
thus defines an adjacency matrix for the network, which can be used
to construct the graph of connected species, as shown in Figs. 1(b)
and 1(c). Although this adjacencymatrix is random, its structure dif-
fers from traditional random matrices in that links between nodes
are not introduced independently but in groups depending on the

reaction order. For example, reversible bimolecular reactions of
the form Ai +A j ⇋ Ak +Al give rise to a large number of fully
connected four-node subgraphs in the network regardless of the net-
work size, whereas such subgraphs become increasingly infrequent
in Erdős–Rényi graphs as the network size increases.

D. Undriven steady states
We assume that each species can be assigned a standard Gibbs

energy Gi, and we take a local detailed balance assumption that
the ratio of the forward and reverse reaction rate constants (the
equilibrium constant) is given by the change in Gibbs energy (see
Appendix A). In the absence of driving (Xin

i = Ri = 0), the detailed
balance assumption implies that a steady state exists for each choice
of conserved quantities (see Sec. II E). In fact, it is easy to find one
such steady state, X0

i ≡ exp (−Gi/RT), which is determined by Gibbs
energies. The possibility of the nonuniqueness of this steady state
solution has long been a central problem in the theory of chemical
reaction networks.34 It is well known in both stochastic thermo-
dynamics and linear irreversible thermodynamics that undriven
chemical reaction networks exhibit dynamics with a Lyapunov func-
tion and a corresponding gradient form,27–29 relaxing to a unique
steady state for each stoichiometrically compatible initial condition
determined by the network conservation laws. For completeness, we
derive this result for our networks in Appendix C.

The stability of any steady state solution is determined by the
spectrum of the Jacobian matrix, whose elements are given by

Ji j = −Riδi j +∑
ℓ

κ+ℓ (ηiℓ − νiℓ)νjℓX
−1
j ∏

k
Xνkℓ
k

+∑

ℓ

κ−ℓ (νiℓ − ηiℓ)ηjℓX
−1
j ∏

k
Xηkℓ
k . (3)

The elements of the Jacobian can be considered as an assignment of
link weights on the adjacency network in Fig. 1(b) for any given state.
Although the Jacobian J0i j at the equilibrium X0

i (see Appendix C) is
not a symmetric or even a normal matrix, we observe numerically
that it has strictly real and nonpositive eigenvalues for every network
that we generate.35 In fact, given the gradient form of the linearized
dynamics, the Jacobian for the undriven system is guaranteed to
have strictly real, nonpositive eigenvalues. The symmetry in the net-
work dynamics encoded by the gradient form is analogous to the PT
symmetry in dissipative quantum Hamiltonians. The PT symmetry
concerns invariance upon a simultaneous reversal in time and parity,
which can guarantee real observables and unitary dynamics in sys-
tems that are not invariant under time reversal alone.36 For chemical
reaction networks, driving can break the analogous network symme-
try, as we will show below, enabling the emergence of multistability
and nonstationarity.

E. Conservation laws and random networks
Because the undriven dynamics can be expressed in a gradient

form and the Jacobian is negative semidefinite (see Appendix C), the
undriven steady state is unique so long as zero is not an eigenvalue
of the Jacobian. Furthermore, zero is an eigenvalue of the undriven
Jacobian if and only if the span of the nr stoichiometric vectors
ηiℓ − νiℓ has dimension less than the number of chemical species n.
Thus, the problem of determining if undriven the steady state is
unique reduces to the purely structural problem of determining the
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rank of the stoichiometric matrix ηiℓ − νiℓ. By the argument leading
to Eq. (C2) with k+ℓ = 1 and Gk = 0, the rank deficiency of ηiℓ − νiℓ
is equivalent to the singularity of the square matrix Mij = ∑ℓ(ηiℓ
− νiℓ) (νjℓ − ηjℓ). When the model possesses conserved quantities,
we expect a corresponding non-uniqueness in the steady state.

In the present context, a conservation law corresponds to a set
of weights li such that ∑i(ηiℓ − νiℓ)li = 0 because L ≡ ∑i liXi is then
a conserved quantity.38–40 Conservation laws emerge generically in
chemical reaction networks because of stoichiometric constraints
such as atomic conservation or the presence of conserved moi-
eties, and to assess stability, we restrict attention to chemically
accessible perturbations that do not alter the conserved quanti-
ties. Since we often expect a conservation law for each atomic
element in the model, we equate the number of imposed conserva-
tion laws with the number of atomic elements in the model. We,
therefore, expect the rank deficiency of Mij to be n − a, where a
is the number of atomic elements in the model. Additional con-
servation can arise both because the rank of the stoichiometric
matrix can be smaller than n − a for sufficiently sparse networks and
because of the presence of physically significant cycles in the reaction
network.

Our algorithm for generating a random chemical network with
a prescribed number of species n, reactions ⌊rn⌋, and atomic con-
servation laws a is presented in detail in Appendix A. For each
molecular species, we first randomly assign an atomic count Aik for

the number of atoms of type k in the chemical formula for Ai. The
number of atoms and the distribution of their appearance among
the molecular species are features of the reaction network that will
vary depending on the application area. For simplicity, througout
we restrict to a = 3 conservation laws, with Aik randomly sampled
between 0 and 5 for 1 ≤ k ≤ a. Such a number of conservation laws
would be appropriate for modeling hydrocarbon combustion, for
example. As a reference, we also consider the case of no conserva-
tion laws. For each reaction, we randomly choose the number of
reactant species and the number of product species to be one or
two (with equal probability), and we randomly select stoichiometric
coefficients for each reactant and product species to be one or two
(with equal probability). We then randomly select from all sets of
such reactants and products that satisfy all the atomic conservation
laws. Repeated reactions are excluded in the model generation.

In order to address the problem of quantifying the degree of
catalysis in a network, we simply deem reactions as catalytic if at least
one reactant is also a product. In order to control the degree of catal-
ysis in the network, we initially exclude randomly generated catalytic
reactions from the model. To assess the role of catalysis, we fix the
proportion c of the reactions in the network that will be made cat-
alytic and randomly select ⌊crn⌋ catalytic reactions. For each catalytic
reaction ℓ, we randomly select one of the reactants i and set ηiℓ = νiℓ
to ensure that this species i acts as a catalyst for the reaction. Larger
concentrations of a catalytic species thus accelerate both the forward

FIG. 2. Percolation transitions in Erdős–Rényi and chemical networks. (a)-(c) Average proportion of the network in the largest connected component for Erdős–Rényi
networks (a) and chemical networks with no conservation laws (b) and a = 3 conservation laws (c), where the insets show a blow-up of the percolation of the giant
connected components. (d)-(f) The proportion of networks that are fully connected (blue lines) and networks with full-rank Mij restricted to the giant connected component
(orange lines) for Erdős–Rényi networks (d) and chemical networks with a = 0 (e) and a = 3 (f). In all cases, plots show the results for 1024 network realizations with n = 64
(colored solid lines), n = 256 (colored dashed lines), and n = 1024 (colored dotted lines), and the black dotted lines mark the predicted transition threshold for Erdős–Rényi
networks.
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and the reverse rates of the reactions without impacting the stoi-
chiometric balance. We thus generate reaction networks with ⌊crn⌋
catalytic reactions, ensuring that the remaining ⌈(1 − c)rn⌉ reactions
have distinct reactants and products.

F. Chemical reaction network percolation
Classical percolation theory is based on Erdős–Rényi graphs, in

which each graph of N nodes withM edges is equally likely.37 As the
connectivity M/N increases for large N, this ensemble of networks
undergoes a series of percolation transitions. First, asM/N increases
above 1/2, the expected size of the largest connected component
becomes a finite fraction of the network, and a giant connected com-
ponent is said to emerge. Second, asM/N increases above log(N)/2,
the probability of disconnected components in the network almost
certainly vanishes.

For a large number of species n, our undriven networks
undergo a series of percolation-like transitions with increasing r.
These transitions differ from those in the classical percolation of
Erdős–Rényi networks, as shown in Fig. 2, because, as noted above,
the addition of each chemical reaction is represented by a collection
of links in the network connecting all reactants and products in the
reaction. Such a group of fully connected nodes is called a clique,
and each clique of m species corresponds to m(m − 1)/2 links in
the network. In our chemical networks with a = 0, each reaction has
a 1/4th chance of producing a two-species clique, a 2/4th chance
of producing a three-species clique, and 1/4th change of producing
a four-species clique, leading to an average of 13/4 links per reac-
tion. The classic results for Erdős–Rényi graphs would then imply
that the appearance of a giant connected component corresponds
to r > 0.5/(13/4) ≈ 0.15, and the onset of full connectivity would
(almost certainly) correspond to r/log(n) > 0.5/(13/4) ≈ 0.15. For
a > 0, the atomic conservation constraints alter the distribution of
cliques introduced with each reaction. Because it is harder to satisfy
the constraints when fewer reactants and products are involved, the
networks are biased toward more links per reaction.

Figures 2(a)–2(c) show the average proportion of the network
contained in the largest connected component for Erdős–Rényi net-
works and chemical networks with the same number of expected
links corresponding to the parameter r. For small r, the size of the
largest connected component decreases with the increasing network
size, but for r above a critical value of r = 0.075, a giant connected
component appears in each case. As n→∞, this transition becomes
more abrupt and, ultimately, the proportion of the network con-
tained within the largest connected component is zero for r < 0.075
and becomes positive for r > 0.075. Thus, in terms of the appear-
ance of the giant connected component, chemical networks behave
similarly to Erdős–Rényi networks.

Figures 2(d)–2(f) show the proportion of fully connected net-
works (blue lines) and the proportion of networks with maximal-
rank Mij (accounting for the conservation laws) when restricted
to the giant connected component (orange lines) as a function
of r/log(n) for Erdős–Rényi networks and chemical networks. In
all cases, the percolation transition from singular to full rank Mij
precedes the transition from disconnected to connected, and all
transitions sharpen with increasing n, leading to sharp transitions
in the n→∞ limit. For these connectivity transitions, however, the

chemical networks differ significantly from the Erdős–Rényi net-
works. While the Erdős–Rényi networks exhibit the transition at the
expected r/log(n) = 0.075, the chemical networks exhibit the transi-
tions at much larger r/log(n). Physically, the delayed crossover for
chemical reaction networks is a consequence of correlations in the
network structure encoding the chemistry. Since links in the chem-
ical reaction networks are introduced in cliques rather than inde-
pendently, the connectivity is more localized than for Erdős–Rényi
networks, and additional reactions are therefore required to con-
nect the entire network to the giant connected component. In real
reaction networks, we often expect a sufficiently large number of
reactions that the steady state will be unique (neglecting the stoi-
chiometric conservation laws related to the conservation of atomic
species here for simplicity). This follows since increasingly rare reac-
tions can always be introduced to themechanism, provided that they
satisfy conservation constraints, implying that the actual value of r is
very large. In order to ensure that almost all networks have nonsin-
gular Mij when restricted to the giant connected component (and,
consequently, a unique steady state), we assume that r/log(n) ≥ 0.5
and n ≥ 64 in what follows.

G. Emergence of complexity under driving
Now, we turn to understanding the effects of driving on

random reaction networks. To do so, we quasistatically increase
the driving amplitude ε and study the quasistatic response of the
undriven steady state (see Appendix B). Figure 3 shows the impact of
driving in three sample networks. The driving alters the spectrum of
the Jacobian qualitatively by both shifting the real parts of the eigen-
values and, importantly, allowing eigenvalues to acquire imaginary
components. For sufficiently large driving, the leading eigenvalue
may acquire a non-negative real component at a critical ε = εc, and
the steady state will then undergo a bifurcation [Figs. 3(a) and 3(b)].
The real part of the spectrum may be bounded above by either a
single real eigenvalue [Fig. 3(c)] or be a pair of complex conjugate
eigenvalues [Fig. 3(d)], leading to two qualitatively different bifur-
cations. Other one-parameter bifurcations, such as the pitchfork
bifurcation, are not structurally stable against random perturbations
and, hence, are not observed in our random networks.51

If a single real eigenvalue crosses the imaginary axis for suffi-
ciently large driving [Fig. 3(c)], the system undergoes a saddle-node
bifurcation. In this bifurcation, a second, unstable fixed point col-
lides with the stable fixed point X0

i (ε) when ε = εc and both fixed
points vanish for ε > εc. After the decay of an irreversible transient,
the chemical concentrations stabilize around a different secondary
branch of attracting solutions, as shown by the solid lines in Fig. 3(e).
If the driving were then relaxed back to ε < εc, the chemical concen-
trations would not immediately return to the original equilibrium
but would remain on this secondary solution branch as long as it
continues to exist. Thus, the appearance of a saddle-node bifurcation
can imply the emergence of multistability and hysteresis, enabling
chemical memory of the previous driving conditions for the system.

If, instead, two complex-conjugate eigenvalues simultaneously
acquire positive real components with increasing driving [Fig. 3(d)],
the system undergoes a Hopf bifurcation. In this bifurcation, a limit
cycle coincides with the fixed point at ε = εc, and the fixed point
becomes unstable for ε > εc. This bifurcation may be supercritical,
meaning that the limit cycle emerges as a stable attractor for ε > εc.
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FIG. 3. Bifurcations resulting from driving in chemical networks. (a) and (b) The maximum real part of the spectrum vs the driving strength ε for a system undergoing a
saddle-node bifurcation (a) and a Hopf bifurcation (b). (c) and (d) Eigenvalues for values of ε [marked by dots in (a) and (b)] just above critical driving εc at which the
solutions become unstable for the systems in (a) and (b). (e) Multistable steady state solution concentrations X i vs driving strength ε for the system in (a), with stable
(unstable) solutions shown as solid (dashed) lines. (f) Convergence of concentrations as a function of time to the limit-cycle attractor that emerges from the supercritical
Hopf bifurcation in (b). (g) Steady state concentration X0 as a function of driving strength for a different system undergoing a series of snaking bifurcations. (h) Steady state
concentration X0 as a function of driving strength exhibiting a secondary branch of solutions (orange lines). (i) Chaotic attractor observed in a catalytic network with ε = 75.
The systems here consist of n = 128 species with r/log(n) = 0.5, d = 0.1, a = 3, and c = 0 [(a)–(f)] or c = 0.5 [(g)-(i)].

In the supercritical case, the concentrations begin to oscillate peri-
odically around the limit cycle for ε > εc [Fig. 3(f)], and the system
would reversibly return to X0

i (ε) if the driving were relaxed to ε < εc.
This form of bifurcation thus enables nonstationary dynamics to
emerge in response to driving. Alternatively, the Hopf bifurcation
may be subcritical, meaning that the limit cycle emerges as an unsta-
ble state for ε < εc. As in the saddle-node bifurcation [Fig. 3(e)], the
concentrations will stabilize around a different attractor after the
decay of a transient for ε > εc in the subcritical case, and the system
exhibits hysteresis if the driving is decreased again to ε < εc.

As the driving intensity increases beyond an initial bifurcation,
additional bifurcations are likely to occur, resulting in yet more com-
plex dynamics. We observe that these behaviors are more common
for larger values of the catalytic parameter c. For example, solution
branches often undergo a snaking series of saddle-node and Hopf
bifurcations [blue line in Fig. 3(g)], resulting in the coexistence of
a plethora attracting steady states and limit cycles. Furthermore,
secondary solution branches that are not connected to the origi-
nal branch may appear [orange line in Fig. 3(h)]. Finally, the limit
cycles emerging from Hopf bifurcations can undergo subsequent
period-doubling and torus bifurcations, which can eventually result
in chaotic behavior. Although it can be difficult to rigorously con-
firm chaos in high-dimensional systems, chaotic attractors appar-
ently emerge in our networks [Fig. 3(i)] and have been previously
experimentally confirmed in specific chemical networks.41

H. Factors governing the development of complexity
To understand the impact of the number of reactions, the pro-

portion of catalytic reactions, and the chemical driving on the devel-
opment of complexity, we consider random networks of n = 128
species and a = 3 conservation laws for various parameter values.
For each combination of three parameter values for r/log(n), c, and
d, we numerically continue the undriven steady state in 4096 ran-
dom networks starting from ε = 0 until either a bifurcation occurs
or we reach ε = 100. Following a bifurcation, we numerically inte-
grate the dynamics in Eq. (2) just above the critical driving amplitude
starting from the last stable state of X0

i until the system relaxes to a
new attractor X′i , which may be a steady state or a time-dependent
(periodic, quasiperiodic, or chaotic) oscillatory state.

Figures 4(a)-4(d) show the proportions of these networks
exhibiting saddle-node and Hopf bifurcations and the proportions
of these networks relaxing to steady and oscillatory states following
a bifurcation as a function of the parameters. We observe several
trends in these data. First, the proportions of systems exhibiting
Hopf and saddle-node bifurcations and relaxing toward steady states
and oscillatory states are largest for sparse systems and decrease
monotonically with r/log(n). Second, these proportions increase
monotonically with the catalytic parameter c. This confirms the
prevailing hypothesis that catalysis underlies the emergence of com-
plexity in general systems beyond the previously known examples.
Third, these proportions show weaker, nonmonotonic dependence

J. Chem. Phys. 158, 225101 (2023); doi: 10.1063/5.0142589 158, 225101-6

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0142589/17979846/225101_1_5.0142589.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. Correlations between thermody-
namics and complexity. (a)-(d) Propor-
tion of networks exhibiting saddle-node
bifurcations (a) and Hopf bifurcations (b)
and relaxing to steady states (c) and
oscillatory states (d) following a bifurca-
tion, as a function of the scaled number
of reactions, proportion of catalytic reac-
tions, and driving proportion. Lines show
the result of a nonlinear least-squares fit
to a cubic polynomial, and each point
represents 4096 random networks for
the corresponding parameter combina-
tion with n = 128 species. (e) and (f)
Box plots of the relative entropy change
for each of the groups of parameters
are shown in (a)–(d) for subcritical Hopf
bifurcations (e) and saddle-node bifurca-
tions (f). The groups with differing c and
r/log(n) are divided by solid lines and
dashed lines, respectively, and ordered
by magnitude, while the groups differing
d are distinguished by color. Cases with
no boxes represent groups that exhibited
no such bifurcations. (g) Relative change
in the entropy production rate vs change
in chemical concentrations for saddle-
node and subcritical Hopf bifurcations in
(e) and (f), on a symlog scale.

on the proportion of driven species d, with most systems show-
ing the maximum proportion for intermediate 0.1 < d < 0.3. The
proportion of systems exhibiting Hopf bifurcations and relaxing
toward steady states exhibit peaks at a slightly larger driving propor-
tion than that of systems exhibiting Hopf bifurcation and relaxing
toward oscillatory states. Finally, saddle-node bifurcations and sys-
tems relaxing toward steady states are more common than Hopf
bifurcations and systems relaxing toward oscillatory states, and
the distribution for individual bifurcation types and relaxation
dynamics across parameters all follow similar trends.

To better quantify the thermodynamics of these bifurcations,
we consider the entropy density production rate,

Ṡi
V
= R∑

ℓ

(j+ℓ − j−ℓ ) log
j+ℓ
j−ℓ
, (4)

which quantifies the extent of detailed balance breaking in driven
reaction networks.38 We find that close to equilibrium in undriven
chemical networks, the dynamics follow a gradient descent governed

by Ṡi (see Appendix C), and we expect that the rate of entropy pro-
duction will play a role in dynamics far from equilibrium as well
(we average the entropy production rate over long times to obtain
the relevant time-averaged quantity for oscillatory states). To assess
this hypothesis, we consider the change in the entropy production
rate ΔṠi ≡ Ṡ′i − Ṡ0i between the time-averaged entropy production
rate of the state X′i after bifurcation, Ṡ

′
i , and that of X0

i just before
the bifurcation, Ṡ0i . Figure 4(e) and 4(f) show box-plots of ΔṠi rela-
tive to the average entropy production rates of the initial and final
states Ṡi ≡ (Ṡ′i + Ṡ

0
i )/2 for subcritical Hopf bifurcations (top row)

and saddle-node bifurcations (bottom row) with each of the para-
meter combinations in Figs. 4(a)-4(d). (We exclude supercritical
Hopf bifurcations in this analysis since the time-averaged entropy
production rate of the stable limit cycle does not differ from the
initial steady state significantly.) Since all entropy production rates
are positive, this relative change is restricted to the interval [−2, 2],
which aids in visualizing trends. While many bifurcations produce
little change in the entropy production rate, there appears to be a
bias toward a positive change in entropy production rates, especially
in the outliers.
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Physically, it is more relevant to consider the change in the
entropy production rate relative to Ṡ0i rather than Ṡi since the for-
mer defines the most relevant scale of Si prior to the bifurcation.
Figure 4(g) shows the change in the entropy production rate relative
to the initial entropy production rate as a function of the L2-norm of
the change in the time-averaged concentrations of the states, ΔXi.
We see first that many bifurcations result in very small ∥ΔXi/Xi∥ and
almost no change in entropy production. These cases occur when
the unstable states that emerge from the bifurcation immediately
turn around and become stable through a secondary bifurcation.
For bifurcation producing significant changes, on the other hand,
it is clear that the relative entropy production rate tends to increase
more than it tends to decrease. In fact, there is a statistically signif-
icant bias toward increasing entropy production rates following a
bifurcation in the accumulated data, with 57% of subcritical Hopf
bifurcations and 69% of saddle-node bifurcations exhibiting positive
ΔṠi and p < 10−10 in one-tailed binomial tests for both cases.

We can understand the bias in the change in the entropy pro-
duction rate by recognizing that the secondary solution branches
the system realizes are expected to be farther separated from equi-
librium than the initial state. The evolution of Ṡi can be naively
modeled as a randomly fluctuating variable that evolves along the
continuation of the equilibrium solution. Since Ṡi is strictly positive,
its value typically increases as one travels along the continuation.
The secondary solution branches that the system reaches follow-
ing a bifurcation often appear farther along the continuation than
the primary solution branch following a secondary bifurcation. In
Fig. 3(e), for example, the unstable state that emerges from the pri-
mary saddle-node bifurcation undergoes a secondary saddle-node
bifurcation farther along the continuation, leading to the secondary
branch of stable solutions, which is expected to have a larger entropy
production rate. These results generalize and provide a potential
mechanism for previous observation that emergent attractors in
chemical networks are fine-tuned to dissipate energy from a driving
apparatus.25

III. DISCUSSION
Our results demonstrate that design is not required to achieve

complex dynamics in chemical networks, but rather that such behav-
ior can emerge naturally under driving. We found that complexity
arises through bifurcations most easily in sparsely connected net-
works, and we confirmed the prevailing hypothesis that catalysis
promotes the emergence of complex dynamics. Importantly, we
established that, in the absence of driving, relaxation toward equilib-
rium is governed by equations with a gradient form determined by
the entropy production rate, while in the presence of driving, bifur-
cations leading to complex dynamics exhibit a small but statistically
significant bias toward increasing the rate of entropy production.
This bias is expected to further increase with the driving inten-
sity, given that secondary solution branches are expected to become
increasingly separated from the equilibrium state as the driving
strength is increased. Our percolation results also suggest a sim-
ple criterion nr ≳ 0.25n log(n) for assessing if a mechanism contains
enough reactions to likely represent a connected chemical reaction
network, cf. Figs. 2(e) and 2(f).

The study of biological systems, such as metabolic networks,
may benefit from our findings. The increasing tendency for sparse
networks to exhibit complex behavior may help explain some of
the specific structures observed in biochemical networks, in con-
trast to the less sparse networks seen in combustion and atmospheric
chemical reaction mechanics. Future studies may thus benefit from
focusing on the small r limit of our random chemical reaction net-
works. While stochastic thermodynamics42,43 is likely necessary to
realistically describe the dynamics of individual cells, we expect
that the entropy production rate may play a role in the develop-
ment of complexity across scales. This perspective may give insights
into important biological phenomena, such as synchronization phe-
nomena relevant to the circadian rhythm45 and cell division46 that
emerge from coupling between spatial compartmentalization44 and
emergent oscillations. We expect that accounting for spatiotempo-
ral dynamics, such as diffusion and hydrodynamics and noise,47
will give rise to a plethora of synchronous and pattern-forming
phenomena in randomly driven chemical networks. Although we
observed only a small tendency for driving to increase the entropy
production rate, this bias has the potential to significantly promote
the development of complexity over evolutionary time scales. It is
thus tempting to speculate that our results may ultimately con-
tribute to our understanding of the emergence of life, where the need
to preserve hereditary information despite a tendency to increase
entropy production has been previously implicated in symmetry-
breaking processes, leading to the formation of a primordial
genome.48
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APPENDIX A: RANDOM CHEMICAL NETWORK
GENERATION

We assume that each species can be assigned a standard Gibbs
energy Gi, and we take a local detailed balance assumption that the
ratio of the forward and reverse reaction rate constants (the equi-
librium constant) is given by the change in Gibbs energy, κ+ℓ /κ

−
ℓ

= exp [−∑i (ηiℓ − νiℓ)Gi/RT]. Motivated by well-characterized gas-
phase reactions, such as natural gas combustion and light hydro-
carbon pyrolysis,49,50 we sample Gibbs energies from a standard
normal distribution and forward reaction rates from an exponen-
tial distribution. We use a mean μ = 0 and a standard deviation
σ = 1 for the normal distribution and an exponential scale parameter
λ = ∑i(ηiℓ − νiℓ)Gi/RT determined by the change in Gibbs energy,
and we fix RT = 1 for simplicity. Algorithm 1 shows the pseudocode
summarizing our random chemical network generation algorithm.
An implementation in Python is also available in our GitHub
repository.35

APPENDIX B: NUMERICAL CONTINUATION
OF STEADY STATE SOLUTIONS UNDER
CHEMICAL DRIVING

Chemical driving is implemented through nonzero values of
the influxes Xin

i and removal rates Ri. We randomly select ⌊dn⌋
species to drive (where d < 1) and set the value of Xin

i = (1 + ε)X0
i R

0

and Ri = R0, where ε defines the magnitude of the driving away
from equilibrium. Thus, the initial target value for the chemostat
is given by the undriven steady state, Z0

i = X
0
i . We fix R0 = 106 for

concreteness, which defines a relatively fast timescale for the driving
compared to the chemical kinetics. For ε = 0, the state X0

i remains a
steady state since the driving vanishes for Xi = Zi = (1 + ε)X0

i . Note
that with sufficiently many driven species, the chemostat can act as a
source and sink for all conserved quantities in the undriven network.
Thus, the driving breaks the stoichiometric degeneracy in the steady
states and generically fixes X0

i as the unique steady state for ε = 0.
While we specifically focus on the continuation of X0

i here, future
studies may benefit from considering the continuation of other ini-
tial states. Furthermore, since the driving affects the Jacobian only
through the negative definite diagonal term −Riδij in Eq. (3), the
state X0

i is attractive for ε = 0 if it is attracting in the absence of
the chemostat.

We then quasistatically increase ε and use root finding to
numerically continue the steady state to X0

i (ε) for ε > 0. To do so,
we implement a pseudo-arclength continuation method designed
specifically for our chemical reaction networks. In this approach, we
seek a parameterized family of solutions (X0

i (s), ε(s)) for both the
chemical concentrations and the driving strength in terms of a new

parameter s (the pseudo-arclength). The steps taken by the tradi-
tional pseudo-arclength continuation are based on an approximate
geometric projection for the arclength of the solution curve.52 How-
ever, in our case, the chemical species concentrations can change by
orders of magnitude during the continuation, and the solution com-
ponents can come to quickly dominate the driving parameter in the
arclength approximation.

To overcome this issue, we instead numerically continue using
the log quantities Y i ≡ logXi. Given a current solution Ȳ i and ε̄,
we step the solution forward by solving the extended system of
equations,

Xin
i − RiXi +∑

ℓ

(ηiℓ − νiℓ)( j+ℓ − j−ℓ )∣Xi=exp (Yi) = 0, (B1)

∑

i
(Yi − Ȳ i)dYi/n + (ε − ε̄)dε − ds = 0, (B2)

where ds is the pseudo-arclength step size and (dY i,dε) is the
“direction vector.” The key to the pseudo-arclength method is that
the Jacobian for the extended system does not become singular at
regular solution points, which include both saddle-node and Hopf
bifurcation points. This is guaranteed by selecting the direction vec-
tor to be in the null space of the matrix [Ji jX j X0

i R
0δidriven], which

constitutes the first n rows of the step Jacobian for the extended sys-
tem, where δidriven is 1 for the driven species and 0 for the undriven
species. Since the null space is one-dimensional at regular solution
points and the final row of the step Jacobian is determined by the
direction vector itself, it follows that the step Jacobian is nonsingu-
lar and the continuation can be performed. It then follows that the
solution can be continued past saddle-node and Hopf bifurcations
efficiently.

Bifurcations are detected by monitoring the eigenvalues of the
Jacobian, and supercritical and subcritical Hopf bifurcations are dis-
tinguished via the first Lyapunov coefficient.51 Relevant growth and
oscillation timescales are extracted in order to numerically inte-
grate Eq. (2) following a bifurcation with an adaptive time-stepping,
stiffness switching integrator.35 The pseudo-arclength continuation
works well in most cases but sometimes suffers from finite precision
issues. Specifically, the condition number of the step Jacobian can
become smaller than the machine precision because of the extreme
scale differences in the species concentrations. When this occurs,
the direction vector and the stability of the solutions cannot be
accurately determined, and the continuation fails. Such failure is
also associated with extreme stiffness in numerical integration and
disparate timescales in the dynamics.

APPENDIX C: GRADIENT DYNAMICS
IN THE ABSENCE OF DRIVING

For completeness, we provide a derivation for the gradient
form of the dynamics for our undriven chemical reaction networks.
Inserting the undriven steady state X0

i into Eq. (3) and using the
detailed balance assumption, the Jacobian for the steady states in the
absence of driving is

J0i j =∑
ℓ

κ+ℓ (ηiℓ − νiℓ)(ν jℓ − η jℓ) exp [
G j −∑k νkℓGk

RT
]. (C1)
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ALGORITHM 1. Generate a random chemical reaction network.

Inputs: The # of species n
The # of reactions nr
The # of conservation laws na
The # of catalytic reactions nc
The maximum conserved quantity amax
The maximum iterations itmax

Output: Species Gibbs energies Gi
Species conserved quantities Aik
Reaction rate constants ki
Reaction stoichiometry coefficients νil and ηil

G← rand_normal(mean = 0, var = 1, size = (n))
A← rand_int(min = 0, max = amax, size = (n,na))
k← zeros(size = (2 ∗ nr))
η← zeros(size = (2 ∗ nr , n))
ν← zeros(size = (2 ∗ nr , n))
previously_enumerated← [ ] ⊳ Exclude repeated reactions
l ← 0 ⊳ Reaction index
i← 0 ⊳ Iteration number
while l < nr and i < itmax do
n_reac, n_prod← rand_int(min = 1, max = 2, size = (2))
react_stoi← rand_int(min = 1, max = 2, size = (n_reac))
prod_stoi← rand_int(min = 1, max = 2, size = (n_prod))
reac_sp_choices← combinations(max = n, num = n_reac)
prod_sp_choices← combinations(max = n, num = n_prod)
reac_sp← random_choice(reac_sp_choices)
reac_atoms← sum(A[reac_sp] ∗ reac_stoi, axis = 0)
prod _sp _choices← cases(prod _sp in prod _sp _choices ∣ sum(A[prod _sp]∗prod _stoi, axis = 0) == reac _atoms) ⊳ Ensure conservation
prod _sp _choices← cases(prod _sp in prod _sp _choices ∣ intersect(prod _sp, reac _sp) == None) ⊳ Exclude catalytic reactions
if prod_sp_choices is not None then

prod_sp← random_choice(prod_sp_choices)
if not [[reac _sp, reac _atoms], [prod _sp, prod _atoms]] in previously _enumerated then ⊳ Add forward and reverse reactions

previously _enumerated← append(previously _enumerated, [[reac _sp, reac _atoms], [prod _sp, prod _atoms]])
previously _enumerated← append(previously _enumerated, [[prod _sp, prod _atoms], [reac _sp, reac _atoms]])
ν[2 ∗ l, reac_sp]← reac_stoi
η[2 ∗ l, prod_sp]← prod_stoi
if l < nc then ⊳Make this reaction catalytic

cat_sp← rand_choice(union(reac_sp, prod_sp))
ν[2 ∗ l, cat_sp]← ν[2 ∗ l, cat_sp] + 1
η[2 ∗ l, cat_sp]← η[2 ∗ l, cat_sp] + 1

end if
ν[2 ∗ l + 1, prod_sp]← prod_stoi
η[2 ∗ l + 1, reac_sp]← reac_stoi
ΔG← sum(η[2 ∗ l] ∗ G) − sum(ν[2 ∗ l] ∗ G)
if ΔG > 0 then ⊳ Sample forward reaction rate from exponential

k[2 ∗ l]← rand_exp(ΔG)
k[2 ∗ l + 1]← k[2 ∗ l] ∗ exp(−ΔG)

else
k[2 ∗ l + 1]← rand_exp(−ΔG)
k[2 ∗ l]← k[2 ∗ l + 1] ∗ exp(ΔG)

end if
l ← l + 1

end if
end if
i← i + 1

end while
return (G,A, k, ν,η)
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The real spectrum of J0i j follows from the fact that the relax-
ation to thermodynamic equilibrium is governed by an irreversible
gradient descent in undriven chemical networks, as we show
here. In particular, let Xi = X0

i + δi for small δi. The lineariza-
tion of Eq. (2) gives dδi/dt = ∑ j J

0
i jδ j . Taking ui ≡ exp(Gi/2RT)δi

transforms the linearized dynamics into dui/dt = ∑j Aijuj with Aij

≡ exp [(Gi −G j)/2RT]J0i j . It is easy to verify that this transformation
symmetrizes the system, Aij = Aji. Since J0i j is related to a symmetric
matrix by a (nonunitary) similarity transformation, it follows that
the eigenvalues of J0i j are strictly real. Furthermore, it follows from
the symmetry of Aij that the evolution can be written in the gradi-
ent form dui/dt = dF/dui, where F ≡ ∑ij uiAijuj/2. Note that F can
be factored into a sum of negative semidefinite terms,

F = −∑
ℓ

κ f
ℓ(∑

i
ui(ηiℓ − νiℓ)eGi/2RT

)

2 e−∑k νkℓGk/RT

2
, (C2)

and so F ≤ 0. Thus, Aij is negative semidefinite, which confirms
that J0i j has strictly nonpositive eigenvalues. Furthermore, note that
dF/dt = ∑i(dF/dui) × (dui/dt) = ∑i∣dF/dui∣

2
≥ 0. Thus, the func-

tion F is a Lyapunov function for the system, which implies irre-
versible decay to equilibrium. In fact, the Lyapunov function in
Eq. (C2) is 1/2RV times the linearization of the entropy production
rate in Eq. (4), which is thought to carry thermodynamic informa-
tion outside of the linear regime as well.38 Outside the linear regime,
we find that the entropy production rate and the dynamics can be
related via

dXi

dt
=

Xi

RV
dṠ
dXi
−∑

ℓ

(νiℓ j+ℓ − ηiℓ j
−
ℓ ) log

j+ℓ
j−ℓ
. (C3)

The second term on the right-hand side of Eq. (C3) is exactly one-
half times the first in the linear regime, leading to the gradient form
for the linear dynamics.
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