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ABSTRACT

Living systems are built from microscopic components that function dynamically; they generate work with molecular motors, assemble and
disassemble structures such as microtubules, keep time with circadian clocks, and catalyze the replication of DNA. How do we implement
these functions in synthetic nanostructured materials to execute them before the onset of dissipative losses? Answering this question requires a
quantitative understanding of when we can improve performance and speed while minimizing the dissipative losses associated with operating
in a fluctuating environment. Here, we show that there are four modalities for optimizing dynamical functions that can guide the design
of nanoscale systems. We analyze Markov models that span the design space: a clock, ratchet, replicator, and self-assembling system. Using
stochastic thermodynamics and an exact expression for path probabilities, we classify these models of dynamical functions based on the
correlation of speed with dissipation and with the chosen performance metric. We also analyze random networks to identify the model
features that affect their classification and the optimization of their functionality. Overall, our results show that the possible nonequilibrium
paths can determine our ability to optimize the performance of dynamical functions, despite ever-present dissipation, when there is a need

for speed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125479

I. INTRODUCTION

Synthetic and biological systems can perform dynamical func-
tions."” These functions include the assembly’ * and replication® of
structure, keeping of time,” and generation of work.” For example,
biological motor proteins transport nutrients along microtubules,
accomplishing their work on precise timescales in order to sustain
cell functions.” ATP fuels the motive force of hauling cellular cargo,
despite the dissipative loss of energy as heat, with the speed required
to sustain cellular life. Synthetic materials are now being driven
out of equilibrium to quickly execute these dynamical functions:
outputting work,' self-replicating,'" and self-destroying.'”'” Recent
experiments on responsive materials'* suggest the potential to tune
environmental stimuli'” that speed up or slow down these processes.
However, it is unclear how to balance speed against performance and
the dissipation of entropy or heat, making it a challenge to optimize
the functionality.

Exacerbating this challenge to the design of nanoscale sys-
tems is that the fluctuations of their dissipative processes can be

comparable in magnitude to the motions executing the function.
While the principles of thermodynamics meet our need to opti-
mize the energy efficiency of slow-moving macroscopic matter, they
do not readily translate to these practically important fast-moving,
stochastic materials.'® One way to overcome this challenge could be
to create systems that can deliver work or high-yield structures on
timescales that are shorter than those of entropic losses. However,
is this type of process possible for a given system? Implement-
ing this design feature requires a detailed understanding of how
the speed of stochastic paths correlates with dissipation'” and the
function performance. We address this question here by mapping
the design space for optimization and establishing a protocol for
assigning a given model to a particular functional modality. These
steps enable us to classify the potential to optimize dynamical func-
tions over finite timescales, despite their stochastic and dissipative
nature.

To measure the thermodynamic costs and benefits of
dynamical functionality, we adopt the framework of stochastic
thermodynamics, 1919 which has established measures of dissipation
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for individual stochastic paths.”’** Recent work in this area led
to thermodynamic speed limits on observables which are global
bounds on speed and dissipation.”’ *” Some of these’” combine with
the time-energy uncertainty relation to give general speed limits on
open quantum systems.”® (In fact, their quantum analog, the time-
energy uncertainty relation, has been used as a design principle for
synthetic molecular motors.””) These bounds on the speed of dissi-
pation rates suggest the need for a closer analysis of the relationships
between these variables for stochastic paths.

Taking up this analysis here, we show how to classify dynamical
functions based on whether the speed, dissipation, and performance
can be simultaneously optimized by tuning experimentally control-
lable parameters, such as temperature, pH, and potential difference.
We map the design space using stochastic paths, identifying four
distinct optimization modalities, Fig. 1. This categorization suggests
a protocol to determine our ability to optimize the performance of
models for dynamically functioning systems. Applying this protocol
to both known and random models shows that in only one mode
are there high-performing paths that can occur sufficiently quickly
to avoid dissipative losses.
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FIG. 1. Design space of dynamical function: Schematic illustration of four opti-
mization modalities for dynamical functions from the perspective of stochastic
path observables. Each quadrant shows representative datasets for the dissipa-
tion (orange) and the performance metric (blue) as a function of the path speed
across an ensemble of stochastic paths that execute a function: timekeeping,
structure formation or replication, and work generation. The correlation between
speed and performance (blue), together with the correlation between speed and
dissipation (orange), across these stochastic paths, maps the design space. The
observables that can be simultaneously optimized label each regime. In I, faster
paths enhance performance and suppress dissipative losses. In Il, slower paths
enhance performance but also increase dissipative losses. In lll, slower paths
enhance performance and suppress dissipative losses. In IV, faster paths enhance
performance but also increase dissipative losses.
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Il. PROTOCOL FOR CLASSIFYING MODELS
OF DYNAMICAL FUNCTION

Can we modulate external conditions to simultaneously opti-
mize speed, dissipation, and the performance metric for a particular
model of a system that functions dynamically? To answer this ques-
tion with stochastic paths, there are five steps we take to assign a
model to a particular optimization mode.

A. Input Markov model for dynamical function

As input, we take a discrete-state, continuous-time Markov
model that consists of a set of N states, x = 1,2,...,N. The master
equation governs the dynamics,”

Cp0) = LIwGhp(nd) - wip(ed) W)

}’#X

with time-homogeneous transition rates w(x|y) between any two
states x and y, determining the temporal evolution of the probabil-
ity distribution over model states.”® The second term includes the
escape rate, wy = Zﬁ;xw(ﬂx), from x. One solution of the master
equation expresses the marginal probabilities, p(x, f), as a sum over

20,21,29

pxs,t) = i > u(Cn = x0, X1, .. > Xp, 1), )

n=0 C,

which accounts for the joint probability, u(Cy, t), of visiting all the
possible paths, xo,x1,. .. SXfs that the system can take through the
physical states that end in x = x at time .

B. Sample or enumerate stochastic paths

We will distinguish between the terms path and trajectory.
A path is a series of time-ordered states, Cy := X0, X1, . . ., Xn—1, Xn-
A trajectory is a series of time-ordered states and the asso-
ciated times when the system transitions to each state,
T = X0, b0 X15 13+« + 5 Xn1> Ene1; Xn» En. Many trajectories will
follow the same path with different sequences of transition times.
Our focus here is on the stochastic paths that transition between an
initial and final state in a given amount of time, t. Each model here
has a clear initial, xo, and final, x, state associated with a particular
function, so we only generate stochastic paths between these fixed
endpoints.

Given the initial and final states, different numerical
approaches are available to generate a set of paths. For shorter
paths, we can generate the entire ensemble by brute-force enumer-
ation. For longer paths, other approaches, such as sampling with
kinetic Monte Carlo,” are necessary. Here, we explicitly enumerate
sequences of states for a chosen number of state-to-state transitions
n between the initial and final states. We find all paths of each
length # up to a maximum length #max. To minimize some of the
computational expense, the enumeration accounts for whether a
transition from state x; to x;y1 is possible; in increasing the path
length by one transition, we only add states for which there is a
nonzero transition rate in the input model. The maximum length
of paths we use is nmax = 22 for the clock, 20 for the ratchet, 17 for
self-assembly, and 15 for the copier.
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C. Compute probabilities for stochastic paths

Paths in the chosen ensemble can vary in the time they take
to execute a function, the amount of energy and entropy they dis-
sipate, and the probability of their occurrence.”” " To identify
which paths, among the myriad, deliver the desired work, yield,
or precision in a desired amount of time, we use the contracted
path probability, 4(Cy, t).!” This probability is the exact, closed-form
expression for the joint probability, 4(Cy,t), that the system takes
a path C, of n jumps that ends in x; after time ¢. It has contribu-
tions from all trajectories following the path that complete within the
time t. From Bayes’ rule, it is the product

#(Cnrt) = p(Ca)p(#|Cn) €

of the probability of a path,

p(C) = ploonto) [ 2L, w
i=1

Xi-1

and the probability that path will complete within time ¢,

PCtC) = pox [pr# [pax [+ apum e )] (9)

which is the convolution of each of the exponentially-distributed
waiting time distributions. The last exponential factor is the survival

probability in the final state. The waiting time, At; = tiy1 — t;, in each
state x; along the path is exponentially distributed,
p(At) = pi = wxle’wx,Afx, (6)

with respect to the escape rate from that state, wy,.

Evaluating the convolutions is a challenge, in part because the
escape rates along a particular path can be degenerate. Others have
shown that the contracted path probability is a sum of partial deriva-
tives’! with respect to the umque escape rates. We recently derived
the closed-form expression,"”

mj—1 *wﬁt
#(Curt) = p(xo,to)Hw(lexz 1)2 < (my ),1)1 o
! IT (wx, - wx/')m’(
k;}
S

I=1

accounting for the n’ unique escape rates, each with a degeneracy or
number of occurrences m; along the path. The function a'" repre-
sents the mixing of the derivative terms resulting from the nested
convolutions of the waiting time distributions. Jupyter notebooks
are available online’ with minimal working implementations of this
formula and known simplifications.

D. Compute observables for stochastic paths

With this contracted path probability, we can determine a
variety of observables and their moments: measures of speed, dissi-
pation, and performance for model systems accomplishing a dynam-
ical function. With these observables, we can then assess the quality
of that dynamical function as a basis for optimization.

ARTICLE scitation.org/journalljcp

The observables common to all of our models of dynamical
functions are “speed” and dissipation. Because the waiting times
along a path are independent and exponentially distributed, the
mean time to traverse a path is the sum of the mean waiting times in
each state,”

e = > wil (8)
i=0

This path occurrence time is an intrinsic measure of the average time
it will take for a system to follow a given path. Here, we calculate
the contracted path probability at the mean path occurrence time
(t)e,'”” and define the speed of a path by the inverse of the path
occurrence time, 1/(7)c,. This observable measures how quickly a
path completes as an average over possible waiting times in each
state.

Stochastic thermodynamics has measures of the dissipation
associated with the trajectories taking a particular path: the entropy
flow and entropy production.'”'” The entropy production,

sG] pGwt) | TIw(xal)
=— -1 R 9
o M pGwto) M ITLw(ale) ©

is the amount of entropy produced by the system. The entropy flow,

$e[Cn - _In H w(x1|x1 1) (10)

T w(xioi|xi)

is the amount of entropy produced by the surroundings.'® If all
transition rates are exponentially related to the energy, w(xj|x;)
oc AeP2¢, the entropy flow also gives the heat dissipated,”* g[C,]
= —kpTs.[Cn]. We measure the entropy dissipated by the system to
the surroundings with the negative of the entropy flow, —s.[Cy]/ks.

Each history of the stochastic processes we consider executes
a dynamical function. To quantitatively assess these functions, we
choose an appropriate performance metric, such as timekeeping
precision, the amount of work generated, or the yield of a desired
structure. We average these observables, as well as measures of dissi-
pation and speed, for each path using uniform-length time windows.
We include paths in a window if their mean occurrence time falls
within ¢ < (7)¢, <t + At. Averaging an observable, O, within each
time window,

t+At

O)i = Y Oc,u(Cny (7)c,), (11)

produces a series of time-ordered observable values. The choice of
time window size should give a time series, (O);, for each observ-
able that is reasonably smooth to identify clear correlations between
speed/dissipation and between speed/performance. Here, we var-
ied the length of time windows Af to find a value that showed a
clear trend in observables without significant discreteness. The time
window sizes we used here depended on the parameter values for
each model, but they were generally around 0.1-2. We also average
observables over all paths of length 0 < 7 < #imax,

Mmax

0) = 3> 3.0c,u(Cas (7)c,)- (12)

n=0 C,
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We scan all the parameters of each model to analyze their
effect on these ensemble averages: positive valued parameters
over 0.1,0.2,...,1,2,...,10 and negative valued parameters over
-0.1,-0.2,...,-1,-2,...,-10. The only exceptions were the
copier-model parameters §, which we vary over 6 € [0.7,6], and e,
which we vary over e € [20,100].

E. Output assignment of optimization mode

The final step of this protocol is to output an assignment of
the optimization mode of the model. Our objective is to determine
whether the system following faster stochastic paths improves the
performance metric and the associated dissipation. Given measures
of speed, dissipation, and performance for the input model, we aver-
age each observable over an ensemble of stochastic paths in fixed
time intervals, At. To assign the optimization mode, we analyze the
pairwise correlation of speed with the performance metric and speed
with dissipation over time. As illustrated in Fig. 1, we use these cor-
relations to assign each model to a particular modality (I-IV), with
each modality representing how we can optimize its functional per-
formance. From our survey of models for dynamical function, all
four combinations of positive and negative correlations are possible.
The exact modality depends on the positivity or negativity of the cor-
relation, regardless of its linearity or the strength of the correlation,
between the speed and the dissipation and between the speed and
the performance metric.

lll. FOUR OPTIMIZATION MODES OF DYNAMICAL
FUNCTION MODELS

We demonstrate the protocol with Markov models for dynami-
cal functions. The first we will discuss are four representative models
from Ref. 1: a clock for timekeeping, a ratchet for generating work,
a copier capable of self-replication, and a system that self-assembles
into a desired structure.”® Each of these dynamical functions has a
natural measure of performance. The clock measures time with a
certain precision, the ratchet outputs useful work in discrete incre-
ments, the self-assembling system generates a certain yield of fully
assembled structures, and the replicator creates a correct copy with
a certain yield. Jupyter notebooks demonstrating the protocol for
these models of dynamical function are available online.”> We find
that each of these models belongs to a different optimization mode.

A. Faster stochastic paths enhance performance
and suppress dissipative losses

In constructing artificial molecular motors, for example, a par-
ticularly desirable mode of function is one in which speeding up
the process improves the delivery of work and simultaneously sup-
presses dissipative losses.” In this case, one could design systems to
execute tasks quickly with high efficiency by evolving along stochas-
tic paths in which speed negatively correlates with dissipation and
positively correlates with performance, Fig. 1.

As a representative application of our protocol, we analyzed
the timekeeping ability of a model electromechanical oscillator. The
state diagram of this four-state Markov model is in Fig. 2(a). Phys-
ically, the system keeps time by oscillating a particle between two
electrodes.””® Two states in the model represent when the particle is

ARTICLE scitation.org/journalljcp

at the first electrode, and two states represent when it is at the sec-
ond electrode; in each pair of states, the particle has either the same
or opposite charge as the electrode. The model also captures the
two types of possible transitions: physical translocation and charge
change. The rates of charge transfer, k., and physical translocation,
km, in the electrostatically favored direction are keeF % and ke F
in the electrostatically unfavorable direction. The energy difference
between electrodes F and the affinity, A = 2eV, where = 1/ksT
and eV is electron affinity, act as barriers to transitioning in the elec-
trostatically unfavorable direction (a particle moving to an electrode
of the same charge as the particle).

The objective when physically implementing a timekeeping
device is to select a kinetics that keeps time with high resolution
(each “tick” occurs at a high speed), high precision (each tick is of
approximately the same length), and minimal dissipative losses (the
operating cost is low). Our ability to resolve time in the model, to
resolve each “tick,” and to measure it precisely depends on the dis-
tribution of occurrence times of stochastic paths. Each “tick” of the
model clock corresponds to the set of fixed-endpoint paths that start
and end in state 1; that is, each tick of the clock corresponds to a path
completing one revolution around the cycle, xo = x; = 1. Each time
the particle returns to a designated “first” electrode marks one unit
of time.

From the perspective of the stochastic paths, high-resolution
timekeeping (short intervals of time) requires fast paths in the
Markov model. Our measure of resolution is (7);. Our measure
of precision is the inverse of the relative variance of the mean
occurrence time (7)?/07(7), which is similar to measures used to
analyze other classical clocks.””” We also measure the dissipation
—se[Cn]/kp for each path C,. To resolve the relationships among
precision, time resolution (speed), and dissipation, we generate an
ensemble of paths conditioned on time, averaging observables over
the set of paths that occur, (7),, within time intervals of uniform
length, At.

Analyzing this model clock, we found that its timekeeping
ability belongs to mode I. Figure 2(b) shows that, for the time-
resolved ensemble of paths, the entropy dissipated, —A.S;/ks, is
inversely related to the speed of path completion, (1/7);. We also
see that the precision increases with the speed, Fig. 2(b). That is, the
clock operates more precisely and with less dissipation by increas-
ing the time resolution (path speed). At this level of description,
faster paths are more precise and dissipate less, which is consistent
with observations of other classical clocks.”** This observation sug-
gests that we can experimentally tune the temperature and voltage
difference to increase the resolution (speed), (1/7):, and precision
of timekeeping while simultaneously suppressing the dissipation,
—AeSt/ks.

The correlation of these observables at the level of stochastic
paths translates into our ability to optimize dynamical functions in
practice by tuning experimentally controllable parameters. Explor-
ing the parameter space, one would like to find regimes in which the
time keeping is as accurate as possible (largest (7)*/o*(7)) with as
little cost as possible (—A.S/kg closest to zero). We hypothesize from
our calculations of path observables that these regimes are achievable
by identifying parameters that weight the shortest paths (fewest tran-
sitions) in our ensemble averages, which are the fastest, most precise,
and least dissipative. To test this hypothesis, we averaged all gener-
ated paths to compare across experimental conditions. Figure 2(c)
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FIG. 2. Mode I: Faster stochastic paths enhance performance and suppress dissipative losses. (a) A four-state Markov model of a clock. (b) Time-resolved entropy dissipated
—A¢St/ks (left axis) decreases with the rate of path completion (1/7);. The precision of timekeeping (7)?/0?(7) (right axis) increases with the rate of path completion.
Each point corresponds to the subset of paths that occur in regularly spaced time intervals, At = 0.5. All model parameters are unity. (c) Entropy dissipated —A¢S/ks
and resolution (path speed) (1/7) averaged over all paths upon varying the energy difference between electrodes F (blue) over values F € [0.1,0.2,...,1,2,...,10]
with other parameters set to 1. (d) Over all paths in the ensemble, the precision (t)2/a?(7) is a monotonically increasing function of the resolution (1/7) when varying
the energy difference between electrodes F, as in (c). Scanning F as we do here does not change the assignment of the function to I. Mode II: Slower stochastic paths
enhance performance but also increase dissipative losses. (e) A four-state Markov model of a ratchet generating work through clockwise transitions. (f) Time-resolved
(At =1.2) entropy dissipated —AeS;/kg (left axis) and work output (W); (right axis) tend to decrease with the rate of path completion (1/7);. Model parameters are
F=k:.=A=1and fz=0.38. (g) Over all paths in the ensemble, the entropy dissipated —A.S/kg decreases with (1/7) when varying the energy difference between
electrodes F € [0.1,0.2,...,1,2,...,10] with other parameters set to 1. (h) The work output W decreases with increasing speed (1/7), varying the energy difference
between electrodes F, as in (g).

shows the effect of the energy difference between electrodes, F, an
experimentally controllable parameter, on the resolution (speed),
(1/7), and dissipation, —A.S/ks. The total magnitude of the entropy
dissipated (over the ensemble of paths completing at any time) is
smallest when the magnitude of the energy difference between elec-
trodes is large, with no preference for which electrode has a larger
energy (large |F|), when the particle has approximately no charge
(A ~ 0), and when the particle charge does not change (k. = 0) or
changes rapidly (large k).

Our numerical calculations also show that both the precision
and the resolution (speed) are highest when the affinity is small
(achieved at high temperatures), charges change quickly (k. is large),
and the energy difference between electrodes is large (F is large and
positive), Figs. 2(c) and 2(d). The shortest paths effectively domi-
nate the ensemble averages under these conditions, confirming our
hypothesis. Thus, for the fastest, most precise, and most entropically
efficient measurement of time, charge transfer k. and particle motion
ky must be fast, electrodes should have a large energy difference F,
and the affinity A should be as small as possible, Figs. 2(c) and 2(d).
From these data, we can distill out the features associated with the
first mode in our classification: resolution/speed improves precision

and suppresses dissipation, and we can simultaneously extremize all
three observables.

An immediate question is whether this mode I is specific to this
model or, more generally, for timekeeping. Based on our survey of
models so far, it seems unlikely that all clocks belong to this mode.
We have found that not all models that belong to this mode are
clocks. For example, we analyzed a model of nonequilibrium self-
assembly'” and found that it belongs in this mode of optimization
(see supplementary material Fig. 10). Our findings here show that
the optimization modes in Fig. | are for each model rather than each
function. We also analyzed Markovian networks consisting of linear
chains of states with randomly sampled transition rates, “Network
features controlling modes of dynamical function models.” How-
ever, we could not assign any of these models to I or II, suggesting
that models for these modes need to be carefully and intentionally
designed.

B. Slower stochastic paths enhance performance
but also increase dissipative losses

Not all processes have paths that occur on short timescales
with high efficiency. Another modality is possible in which we can
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simultaneously optimize speed and dissipation at the expense of
deteriorating functional performance. In this case, speed/dissipation
and speed/performance are both negatively correlated, II
of Fig. 1.

As an example of mode II, we consider a model ratchet. Power
output is an important deliverable for many practically important
systems.”” Modified ratchet models can represent the transport of
materials in cells via molecular motors.”*"*' Like the clock, our
example model for this mode represents an electromechanical oscil-
lator, but one that operates with an applied load to generate work.’
The applied load adds three model parameters: an applied load f,
a period z, and a dimensionless directionality parameter y = 0.001.
With these additional parameters, one revolution around the cycle
of states can deliver work in the preferred direction W, = fz and
takes an amount of work W¢, = —fz in the non-preferred direc-
tion. We consider paths that start and end in state 1, xo = xp=1,
generating a fixed amount of work, +fz, for each path traversing
the cycle. The work done is W = fz for each clockwise revolution;
work is done on the system, rather than by the system, W = —fz
if the system completes one revolution in the counterclockwise
direction.

Analyzing the path space for this model ratchet, we find that
slow paths tend to generate more work output but also produce more
dissipation. The path speed is the mean speed, 1/(7)c,, where the
average here is over the trajectories taking the path. On average, fast
paths have a shorter path length (the number of transitions along the
path, n), supplementary material Fig. 2(b). As we found for the clock,
fast paths dissipate less than slow paths, Fig. 2(f). However, these fast
paths also tend to result in less work, Fig. 2(f). There are then two
competing objectives for optimizing the functionality of this model:
one can either aim to operate slowly to accomplish more work and
pay the price of a large amount of dissipation, or one can aim to
operate quickly to minimize the dissipation (to the extent possible)
at the expense of delivering less work.

Averaging observables over the ensemble of paths, we found
that it is possible to increase both power and speed while suppress-
ing dissipation by tuning the working conditions of the ratchet. The
clock and ratchet respond similarly in terms of speed and dissipation
with respect to their common parameters: A, k., and F. As shown in
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Fig. 2(g), the speed at which the ratchet operates is faster and the
dissipation is less when the affinity is small A ~ 0, the rate of charge
change k. is large, and the energy difference between electrodes F is
large and positive. Physically, these parameter regimes correspond
to a particle with a small charge oscillating between electrodes with a
large difference in energy and changing the sign of its charge quickly.
However, because work and speed are negatively correlated, modu-
lating the parameters to increase the speed and decrease dissipation
will also suppress the work output, Figs. 2(g) and 2(h). This mode
of optimization persists when varying all parameters of this model,
Fig. 2(h).

Unlike the clock, the ratchet model here is an example of a
system in which speed, dissipation, and performance cannot all be
optimized simultaneously. However, not all systems that produce
power necessarily belong to this modality. What determines the
modality of a given model depends on the space of stochastic paths;
for the two models so far, the fastest paths of the clock are also the
most precise, but the fastest paths of the ratchet have the least work
output.

C. Slower stochastic paths enhance performance
and suppress dissipative losses

So far, we have seen two modalities where fast stochastic paths
incur smaller dissipative losses. However, Markov models are pos-
sible in which faster paths have larger dissipative costs. In mode III
of Fig. 1, the speed is positively correlated with dissipation but nega-
tively correlated with performance. For this modality, we consider
a system capable of replication (e.g., DNA transcription), repre-
sented by the Markov model,' as shown in Fig. 3(a). The model
consists of nucleotide monomers and dimers with concentrations
cm and ¢y, respectively. A dimer of nucleotides can be correctly
or incorrectly copied.”"" Like and unlike monomers interact with
energies € — § and € and bind at rate B. The energy levels of these
interactions have a difference of F. The performance of the copier
is the ratio of the yield of the correct copy to the incorrect copy,
[copy yield]/[miscopy yield]. The objective is to generate as much
of the correct copy as possible or minimizing the amount of the
incorrect copy.
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FIG. 3. Mode IlI: Slower stochastic paths enhance performance and suppress dissipative losses. (a) Diagram of a Markov model of DNA transcription. Monomers add to
create a correct or incorrect copy of the initial dimer. (b) Time-resolved entropy dissipated (left, black) and ratio of correct yield vs speed (right, blue). Observable averages
are over uniform-length time windows, At = 1.75. All model parameters are one. (c) Entropy dissipated vs speed with varying parameter values € [0.1, 1] with a step of 0.1
and € [1, 10] with a step of 1 for F (gray), ¢4 (black), and cm (blue), and other parameters set to one. (d) Ratio of correct to incorrect yield vs speed with varying parameters
values € [0.1,1] with a step of 0.1 and € [1, 10] with a step of 1 for F (gray), ¢4 (black), and ¢, (blue), and other parameters set to one.
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To optimize this dynamical function, we analyze paths that
start from the dimer (xo = 1) and end in either the correct copy
(x5 =3) or the incorrect copy (xf =5) of the dimer. Paths with
a larger 1/(7)c, will quickly self-assemble structures and dissipate
an amount of entropy, —s.[C,]/ks, the thermodynamic cost of the
process. From our numerical calculations, paths with low (1/7)¢
generate a greater proportion of the correct copy and suppress
dissipation, —A.S;. Figure 3(b) shows that in the temporally coarse-
grained ensemble of paths, increasing the path speed also increases
the entropy dissipated. However, the proportion of the yield corre-
sponding to correct copies decreases with increasing speed, (1/7):,
Fig. 3(b). Put simply, expediting the copying process introduces
errors, so there is an advantage to following slower stochastic paths
in this model to ensure a high yield of correct copies and the
suppression of dissipative losses.

Modulating parameters, we can find parameter regimes that
optimize the performance of this copier over all paths complet-
ing at any time up to time t. We varied the concentration of
the monomer c¢,,, the interaction energy between like monomers
€—0, and the binding energy associated with the dimer B.
Figures 3(c) and 3(d) shows that we can simultaneously increase
the ratio of the correct yield and decrease the dissipation with these
parameters. What improves the dynamical functionality is increas-
ing the concentration of correct dimers (large c;), decreasing the
concentration of monomers (small c,), and decreasing the energy
difference between states (small F). However, these adjustments also
decrease the speed of the process, (1/7). So, slowing down the copier
increases the ratio of correct yield and decreases the dissipative losses
of operation. This trade-off is a consequence of the correlations
between speed/dissipation and speed/performance in the temporally
coarse-grained paths.

D. Faster stochastic paths enhance performance
but also dissipative losses

The final modality, IV of Fig. 1, for dynamical functions has
both dissipation and performance positively correlated with speed.
One example of this modality is the Markov model of self-assembly’
shown in Fig. 4(a). The model represents gold nanoparticles assem-
bling into a tetrahedral structure,””"* which is characteristic of a
larger class of systems in which there are efforts to design’*
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subunits that autonomously form larger structures,”” often out of
equilibrium.”"* The nanoparticles can be in active or inactive forms,
both of which can aggregate into a larger structure. The transition
rates of the model depend on the concentrations of the assem-
bled structure ¢, and the monomer ¢;, the kinetic rate constant
for the driven k, and undriven k; processes, the interaction energy
between monomers ¢, the energy difference between levels F, and the
affinity A.

As a measure of performance, we choose the yield of the fully
assembled tetramer, which is the amount of the fully assembled
structure ¥y >3 4(Cy,t) at a time £. We can directly measure
the yield from the path probability y(Cy, (7)c, ) evaluated at the mean
path occurrence time (7)c,. The paths here are those connecting
x0 =1 andxf =4,

From our numerical calculations, the temporally coarse-
graining observables show that the speed and entropy dissipation
of paths exhibit a maximum, Fig. 4(b). Both the maximum speed
and dissipation coincide with the maximum yield, Fig. 4(b). Maxima
in dynamic yields have been observed experimentally in dissipative
self-assembling systems driven by chemical reactions.'* Here, the
decline in speed and dissipation following the maxima is likely due
to the maximum length of paths generated. To confirm, we increased
the path length and saw that the average observable values converge.
Because the path length and time required to complete a path are
strongly linked, enumerating paths biases toward shorter, and there-
fore faster, paths, supplementary material Fig. 5. The paths included
in our calculations are an accurate representation of the short-term
behavior of interest here.

Unlike the clock and ratchet models, speed and dissipation
are positively correlated in this model for self-assembly, [Fig. 4(b),
left]. However, the nonequilibrium self-assembly model in Ref. 17
belongs to mode I, supplementary material Fig. 10. In that model,
a positive correlation for speed/dissipation is only possible when
the yield is negligibly small, meaning the function is not effectively
accomplished. This result suggests that each model cannot change its
mode of classification without also sacrificing its ability to perform
its intended function. The distinct modalities of these models con-
firm that self-assembly is not restricted to mode IV, confirming that
the protocol is assigning each model, not each function, to a given
modality.

0
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FIG. 4. Mode IV: Faster stochastic paths enhance performance but also dissipative losses. (a) Diagram of Markov model representing the self-assembly of gold nanoparticle
tetramers. Progressing from left to right, monomeric units combine to create an assembled structure. Each monomer that adds can be in an active or inactive state. (b)
Time-resolved entropy dissipated (left, black) and yield vs speed (right, blue). Averaging is within uniform-length time windows, At = 0.5. All parameters are one. (c) Entropy
dissipated vs speed with varying each parameter p over values p € [0.1, 1] with a step of 0.1 and p € [1, 10] with a step of 1 for F (blue), ¢4 (black), and € (gray), and other
parameters set to one. (d) Yield is monotonically increasing with path speed when varying parameter values as in (c).
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Figure 4(c) shows that while the binding energy, concentra-
tion of the assembled structure, and energy difference increase
yield and speed simultaneously, they also increase the entropy dis-
sipated. Panel (d) shows that high yields are possible on short
timescales with large affinity A > 1, large monomer concentrations
ca and ¢;, € > 4, lower energy for conformations of all active particles
F < -2, and medial activation and deactivation rates k, ~ 1 and
0.5 < ki <2. Based on the relationships across the ensembles of
paths, we can tune the parameters of this model to simultane-
ously optimize only two of the three observables of interest: we can
increase the speed and yield, but only at the expense of dissipating
more entropy.

1. Network features controlling the mode
of dynamical function models

To identify the model features that affect the classification
and optimization of their functionality, we analyzed both artifi-
cial” and designed networks. Applying the protocol, we can identify
some emerging features of Markovian networks that determine their
classification and optimization.

As a reference point and to systematically analyze the fluctua-
tions in the transition rates over the network, we generated random
networks of fully connected sets of N = 4 states with transition rates
sampled from a Gaussian distribution with a mean of 5 and variances
of 5, 10, 15, and 20. For our path analysis, we selected random ini-
tial and final states. These models are both fully connected and lack
any systematic asymmetry in the forward/reverse transition rates,
and we could consistently classify them as mode IV using either
precision or yield as the performance metric. We see a positive cor-
relation between speed and dissipation (faster paths generate greater
dissipative losses) and between speed and performance (faster paths
perform better in terms of either yield or precision).

In the four models for dynamical function here, the forward
and reverse transition rates between two states are often unequal.
When there is a net asymmetry in the transition rates around a
cycle (e.g., the clock and ratchet models), there is the potential for
more dissipation compared to the randomly generated models and
the classification of a model as either (I, II) or (III, IV). To analyze
the effect of this network feature on the classification, we introduced
asymmetry into the rates of the fully connected models by instead
sampling the rates from an exponential distribution with a mean
of 10. In this case, the mode of these fully connected networks
depends on the performance metric: IV using the yield and III using
the precision. Imposing this amount of asymmetry on the network
edges is insufficient to change the correlation between speed and dis-
sipation, so modes I and II are still inaccessible. These results suggest
that the performance metric is important in assigning the mode of
a model for dynamical function, particularly when the forward and
reverse transition rates are asymmetric.

Looking at the networks of the four models presented above,
they also vary in their connectivity. To analyze this structural feature
of the network, we generated networks of linear chains of three and
four states on an energy gradient. Transitions downhill in energy
have Arrhenius-like rate coefficients e 2¢/%s T with Ae = 100 and
kgT = 100. Transitions uphill have a concentration dependence of
¢=0.1,1, 10, 100, and 1000. The mode of these linear networks again
depends on the performance metric: IV using the yield and III using
the precision. This assignment suggests that the performance metric
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can outweigh the network structure in determining the optimization
of dynamical functions. However, this finding is not universal. For a
single five-state cycle with forward (reverse) transition rates of 5 (1),
the mode was I with both the yield and precision.

From our analysis of these random and designed models, what
controls the classification is, in part, the structure of the network
and its topological features (e.g., cycles and chains). For example,
the presence of cycles is typically responsible for the negative cor-
relation between speed and dissipation: traversing a cycle of states
will have a net contribution to the entropy flow (when forward and
reverse rates are unequal) and tend to delay the time to complete the
function (when between the initial and final states). When there is a
net-dissipative cycle, there is the possibility of a negative correlation
between speed and dissipation, hence the assignment of the model
as mode I or mode II. The distinction between mode I and mode
IT will depend on the correlation between the performance metric
and speed, which is more dependent on the particular function and
choice of metric.

The presence of a dissipative cycle or cycles is necessary but
does not seem to be sufficient for classification as mode I or mode
IL. From our analysis of these random models, the cycle should also
be a dominant feature of the network structure and its kinetics in
order to affect the correlation between speed and dissipation. Oth-
erwise, off-cycle transitions mask the dissipative losses in traversing
the cycle and lead to a positive correlation between speed and dissi-
pation. For example, the clock and ratchet models are both entirely
composed of a single net-dissipative cycle, which is sufficient for a
negative correlation between speed and dissipation and classification
into mode I or mode II. However, the copier and self-assembling
system belong to mode IIT or mode IV, despite having multiple net-
dissipative cycles. These cycles constitute a smaller portion of the
total structure of the network and are not sufficient for a negative
correlation between speed and dissipation.

IV. CONCLUSIONS

Physical systems, whether living or synthetic, can function
dynamically. To determine when these dynamical functions can be
optimized for speed, we have mapped the design space by examining
known, designed, and random models, including a Markov model
clock, ratchet, self-assembling system, and copier. For a given set of
external conditions, we view this design space from the perspective
of the correlations between stochastic thermodynamic observables
constrained by time across an ensemble of stochastic paths. These
correlations determine the extent to which we can optimize the
speed, performance, and dissipation of a dynamical function by tun-
ing external conditions. The stochastic paths of dynamical functions
show that optimizing the performance of their functionality depends
on how the speed of these paths controls productive behavior and
the dissipation of energy.

Our analysis also suggests a computational protocol to classify
and design dynamical functions using stochastic thermodynamics.
We demonstrated our protocol and each mode of optimization
by examining known, designed, and random models of dynami-
cal function, four of which span the design space of optimization
modes: a clock, a ratchet, a self-assembling system, and a copier.
Tuning external parameters, the models we analyzed here do not
switch between modalities, except when they lose their ability to
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actually function. Moreover, while each model belongs to a partic-
ular modality, other models of that function need not belong to the
same modality; not all models for timekeeping will be more pre-
cise and less dissipative along faster stochastic paths. The protocol
we propose is sufficiently general to apply to other Markov models
of systems that function dynamically to determine to what extent
we can optimize their speed, dissipation, and performance. Further
applications could have implications for our understanding of the
kinetics and thermodynamics of dynamical functions and the build-
ing of synthetic materials that accomplish functions on a specified
timescale.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional data and
equations.
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