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Abstract

The field of Integrated Computational Materials Engineering (ICME) combines a broad range of methods to study materials’
responses over a spectrum of length scales. A relatively unexplored aspect of microstructure-sensitive materials design is un-
certainty propagation and quantification (UP/UQ) of materials’ microstructure, as well as establishing process-structure-property
(PSP) relationships for inverse material design. In this study, an efficient UP technique built on the idea of changing probability
measures and a deep generative unsupervised representative machine learning method for microstructure-based design of thermal
conductivity of materials is proposed. Probability measures are used to represent microstructure space, and Wasserstein metrics
are used to test the efficiency of the UP method. By using deep Variational AutoEncoder (VAE), we identify the correlations
between the material/process parameters and the thermal conductivity of heterogeneous dual-phase microstructures. Through
high-throughput screening, UP, and the deep-generative VAE method, PSP relationships that are too complex can be revealed by
exploiting the materials’ design space with an emphasis on microstructures. As a last point, we demonstrate generative machine
learning serves as a useful tool for inverse microstructure-centered materials design, and we demonstrate this by examining the
inverse design of thermal conductivity in nano-structured materials. The results reveal the effects of morphology, volume fraction,
characteristic length scale, and the individual thermal diffusivity of phases on the thermal conductivity of dual-phase alloys. Our
findings emphasize the advantages of high-throughput phase-field modeling and generative deep learning for linking PSP and
inverse microstructure-centered materials design.

Keywords: computational materials design, process-structure-property linkage, microstructure, generative modeling,
phase-field modeling, uncertainty quantification, variational autoencoder

1 Introduction

The material’s structure is key to connect processing conditions to resultant properties and performance, forming Process-
Structure (PS) and Structure-Property (SP) relationships. Quasi-random micro-/nano-structures, central to the Integrated Compu-
tational Materials Engineering (ICME) paradigm, frequently appear in high-dimensional probabilistic materials science problems.
Accelerating knowledge acquisition necessitates microstructure quantification, which relies on physical models and data science
methods, essential for investigating and applying PSP relationships [1]. Materials informatics employs data, machine learning,
and optimization techniques to systematically discern PSP relationships, guiding the predictive design of materials and processes
to achieve desired properties [2]. Leveraging advancements in phase-field modeling [3], uncertainty quantification [4], and mate-
rials informatics methods [5], generative modeling [6] can build intelligent frameworks predicting emergent material properties,
such as electrical, thermal, mechanical, and magnetic characteristics, highlighting microstructure within the Integrated Compu-
tational Materials Engineering (ICME) context.

While precise mesoscale simulation tools are currently available, in silico microstructure-centered materials design is still fre-
quently pursued without considering optimal search strategies. Additionally, when search strategies are deployed, they are paired
with a quantity of microstructures, rather than the entire microstructure with all its complexity. By combining existing modeling
tools and knowledge of the materials, current methods often develop a forward computational relationship with some microstruc-
tural metric (e.g., volume fraction [7], grain size distributions [8]) or its statistics (e.g., 2-point correlations [9]). For instance,
Molkeri et al. [7] proposed a Bayesian framework for microstructure-aware materials design to identify the best combination of
chemistry and processing parameters for maximizing a targeted mechanical property of a model dual-phase steel. According to
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their analysis, deliberate incorporation of microstructure information into materials design methodology dramatically improves
materials optimization. Despite this, they did not incorporate the microstructure seamlessly into the design process, instead, used
a subsequent quantity of the microstructure, the volume fraction of the martensite phase (a potential attribute of the phase dia-
gram). Similarly, in another work, Saunders et al. [10] have developed a Gaussian process-based method for establishing PSP in
additive manufacturing processes that indirectly establishes the connection with microstructure through microstructure features
statistics, rather than the microstructure itself. Although microstructural information has traditionally been captured by metrics
such as grain size distributions and phase volume fractions, many properties of interest are not sufficiently accounted for by these
approaches due to the inherent complexity of the microstructure.ldentifying a design workflow that links a desired property to the
underlying process/material parameters without reducing the microstructure to some subsequent quantity is a challenging task.
Also, it is necessary to quantify uncertainty in the PSP relationship for reliable designs [11].

The stochastic nature inherent in the random heterogeneous structure of materials can introduce considerable uncertainty, thereby
compromising precision. It is thus important for any ICME framework to properly quantify the uncertainty emanating from these
variations [12]. This uncertainty, particularly at the mesoscale, originates from complex and unpredictable short- and long-range
interactions, manifesting as spatio-temporal fluctuations in field-induced gradients (e.g., chemomechanical interactions). These
fluctuations generate hard-to-quantify uncertainties across all relevant scales (i.e., atomistic, molecular, and meso-scale). Material
reliability and performance can be compromised by this uncertainty, requiring meticulous and robust design considerations. In
general, uncertainty in modeling material structure originates from five sources [4]: (i) model selection uncertainty, (ii) epistemic
uncertainty in model variables due to limited computed or measured data or large ranges in prior knowledge, (iii) stochasticity
in phase arrangements at any material point, (iv) randomness in phase morphology owing to significant spatial variation, and
(v) variation of material properties due to the heterogeneous nature and scarcity of lower-scale characteristics, including defects,
interfaces, and bulk regions, which influence the macroscopic average property from a mesoscopic perspective. Uncertainty
propagation, on the other hand, facilitates the estimation of potential variability in material property or performance arising from
these uncertain sources. Monte Carlo (MC) methods are generally recognized as the gold standard for Uncertainty Propagation
(UP) [13, 14]. However, despite their ubiquity and simplicity, MC simulations can be computationally demanding due to the
necessity of propagating a substantial number of samples through a computational model. To mitigate the computational burden
of MC simulation methods, more efficient approaches such as importance sampling [15] and adaptive sampling [16] have been
proposed. However, a high-throughput (HTP) exploration becomes inefficient when a model is either (1) expensive or (2) not
fully parametrically sampled. Alternative strategies for executing Uncertainty Propagation (UP) include local expansion-based
methods [17], which may not perform well in the presence of significant input variability, functional expansion-based meth-
ods [18], and numerical integration-based methods [19]. An efficient approach to tackle UP problems suggests changing the
probability measure to a desired input distribution (target) from a previously evaluated dataset regardless of its distribution (pro-
posal) [20-22].

This study aims to develop a data-driven general-purpose framework for materials design placing microstructure at the core for
establishing forward PSP relations and furthermore inverse design of materials. For predictive modeling in unexplored domains,
a wide array of unsupervised representation learning methods [23] has been extensively utilized across various fields. These
methods include deep belief networks [24], deep Boltzmann machines [25], deep diffusion models [26], and deep Variational
Autoencoders (VAEs) [27]. The deep VAEs have gained popularity for their ability to generate novel data, including audio, text,
and images, through density estimation and subsequent sampling. We generate the microstructure dataset used to demonstrate
this framework through high-throughput phase-field modeling. Subsequently, we compute the desired microstructural property
using previously established constitutive relations. At its core, our framework harnesses microstructure data alongside composi-
tion and processing conditions drawn from known probability distributions. Consequently, bottom-up material design entails the
use of a deep VAE to establish PSP relations, generate novel microstructures, and conduct inverse design through the capture of
spatial relations between pixels in existing microstructure data. Additionally, the design would take into account the uncertainty
by the Radon-Nikodym (R-N) theorem [28, 29] that transforms a proposal measure (i.e., known probability measure) to a target
measure to save resources by reducing any experimentation costs as the input distributions change due to induced uncertainties.

Recently, there have been several applications of VAEs reported in the literature, spanning various fields. These include the
design of drug-like molecules and novel chemical structures [30], the exploration of optimal microstructure spaces for mechanical
properties [31], and the design of phononic bandgaps in metamaterials [32]. Additional applications feature the development of
ferritic-martensitic steels [33], establishing links between interface energy and the morphology of microstructures undergoing
heterogeneous nucleation and growth [34], and database development [35]. While data methods have progressed significantly,
standard methods for microstructure-centered materials design have yet to be developed. We anticipate that our developed data-
driven framework can contribute to the development of approaches to rational, uncertainty-aware microstructure-based material
design by streamlining the creation of models utilizing microstructure data, such as those available in the Open Phase-field
Microstructure Database (OPMD)[36]. The rest of this article is arranged as follows: section 2 discusses our proposed methods;



section 3 presents the results and their discussion; and section 4 provides a brief conclusion. Additional details related to some
of the results are provided in the supplementary document.

2 Methods

In this study, we present a cost-minimal microstructure-centered materials design framework for linking process-structure-
property, and inverse materials design incorporating efficient uncertainty propagation built upon the idea of the change of proba-
bility measure. This framework consists of (i) a microstructure evolution model based on phase-field theory, in which the thermal
conductivity of the microstructures is subsequently computed, (ii) an efficient UP framework using R-N theorem, and (iii) a deep
generative VAE model for PSP linking and inverse design. A schematic of the proposed framework is shown in Fig. 1 where box
(a) illustrates the HTP process of calculating tens of thousands of time-series of microstructures from probability distributions of
input parameters and further calculation of thermal conductivity and other low-dimensional representations of the microstructure.
Box (b) and (c) each schematically show the efficient UP method and VAE method developed in this study, respectively.
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Figure 1: A schematic for efficient UP within a microstructure-sensitive materials design scenario. (a) Given the probability distributions of the material/process
parameters, a feasible microstructure space and associated properties is determined by a high-throughput phase-field model using 10,000 simulation instances.
(b) The process of efficient propagation of uncertainty by generating hypercubes centered around input samples and assigning weights to input samples. Several
example hypercubes of different sizes along with the linear system of equations that needs to be solved, Calculated cumulative density functions of thermal
conductivity for proposal, target, and weighted proposal estimations are shown. (c) Schematic of a Variational Autoencoder with microstructure images as input.
After receiving input, the encoder produces a compressed representation, which is then fed into the decoder. Then, an image reconstruction is produced by the
decoder. VAE involves learning stochastic mappings between microstructure spaces, whose empirical distributions are typically complicated.

2.1 Terminologies for Uncertainty in Microstructure Modeling

Random heterogeneous materials feature intricate and diverse microstructures. These microstructures can be characterized using
correlation functions (e.g., n-point probability, surface correlation, nearest-neighbor functions), fundamental to determining the
materials’ effective properties [37]. A material’s microstructure can be defined probabilistically by an indicator function (e.g., a



phase-field variable, ¢(r)), where the likelihood P¢(r) = 1 signals the presence of a phase at position . Treating the microstruc-
ture as a random process, a probability triple (2, ¥, %) provides a mathematical model for the material’s microstructure. Here,
Q represents all possible microstructures, F signifies feasible, calculable microstructures, and # serves as a probability measure
assigning each microstructure in Q a likelihood between 0 and 1. For each microstructure F' € ¥, its probability P(F) is given
by the expected value under P of the indicator of the microstructure (P(F) = Ep(lp)). We view P(F) as a microstructure repre-
sentation, encapsulating physical quantities of interest (e.g., volume fraction), microstructural correlation functions (e.g., n-point
probability functions), or desired properties (e.g., thermal conductivity).

For convenience, our exposition is restricted to boundary value problems. Let D € R?,d = 1,2,3, be a fixed physical domain
with boundary 09, and r = {ry, ..., r4} be the coordinates. Let us consider a PDE,

L(réuy)=0 in D W
B(r,u;y) =0 on 0D;

where L is a differential operator and B is a boundary operator. x € D is a spatial variable, and y € I is a vector of random
variables in parameter domain I'. T is often considered to be an N-dimensional hyper-cube. & denotes a (Gaussian) space-time
white noise in D. The solution of the stochastic computation to this problem set is:

u=u(tr;y) 2)

where ¢ € [0, T'] is a temporal variable in a temporal interval. The solution is a function of time, spatial variable, and random pa-
rameters y. When the PDE is a random differential equation it can contain random inhomogeneous coefficients, initial conditions,
boundary conditions, or force terms. The random or stochastic Cahn-Hilliard PDE is given as:

A = Nu+ P(u) + &, (3)

where A is the Laplacian and P(u) is a potential function that can take logarithmic, polynomial, or other similar forms. In practice,
we are interested in a set of quantities,
§=(1, -8k €R (C))

called (Qols) that are functions of the solution u, in addition to the solution itself. Qol is a model output, which may be the
PDE solution itself, but is more often a consequence of the solution and could contain statistical information about the output
of interest. The outputs of interest in the phase-field model may be interpreted as a function of the PDE solution or statistical
information of such a solution. UP enables determining statistical information about the outputs of the phase-field model given
samples generated using statistical information about the inputs. In the next section, we describe the model, the uncertain inputs,
and the Qols that we are interested in following the ML method for connecting PSP and inverse microstructure design for a
desired property.

2.2 Microstructure Model

To demonstrate our proposed framework, we first generate an extensive microstructure dataset. Leveraging high-throughput
phase-field simulations, we generate time-series of synthetic microstructures, aiding in understanding the impact of propagated
uncertainties on the microstructure landscape of a hypothetical medium during isothermal thermal annealing. A phase-field
model, based on the Cahn-Hilliard model [38], is employed to generate microstructures while accounting for bulk and curvature
effects. This model addresses the process of spontaneous phase separation in an isotropic alloy with constant molar volume. The
associated boundary value problem is presented as follows:

dc _ O fouik ) 0<xy<LyL,
E_V'{MV( dc —Kv C)} O<r<t*
)
BC: c0,y,0) = c(Ly, y, 1) c(x,0,1) = c(x, Ly, 1)
IC: c(x,y,0) =c" + AL

where c is concentration, M is the inherently positive effective atomic mobility of the species, f is alloy free energy, and « is the
gradient energy coefficient. The lengths of the simulation domain are set to L, = L, = 200 with grid size of 256 x 256 and t* is
the final model run time. BC and IC denote the used boundary and initial conditions, respectively. ¢* is the initial average value
of the order parameter that is perturbed by a constant noise magnitude A, and ¢ is a Gaussian random number with the interval of
[-1, +1]. Here, we consider two free energy function forms for the bulk free energy:

fle) = W(e = ca)*(c — cp)? (©6)



@) = atr) + EDg + 40

where the first one (hereafter called model I) approximates a symmetric well for a two-phase alloy with barrier height of trans-
formation of W. ¢, = 0.35 and ¢z = 0.69 are the equilibrium composition of @ and § phases, respectively, and are fixed to reduce
the model dimension to four. The latter free energy function (hereafter called model II) is also a symmetric well in the form
of a forth-order Landau polynomial where the material-dependent coefficients a, and a4 not only control the barrier height of
transformation, but also the corresponding equilibrium values of field-order parameter (¢). Below the critical temperature where
the material becomes unstable and decomposition occurs, a;(T') < 0 and a4(T) > 0.

By using the Fourier-spectral method for the spatial variables, and, treating the linear fourth-order operators implicitly and the
nonlinear terms explicitly, the first-order semi-implicit Fourier-spectral scheme [39, 40] is used to solve the boundary value
problem. The resulting numerical scheme is:

¢* (7

(1 + MAtEHE* N K) = &(K) — At KH{a(c™) 8)

where k = (k;, ky) is a frequency vector in the Fourier space, k = /k% + k% is the magnitude of this vector and ¢(k, 7) represents
the Fourier transform of ¢(r, t).

In our study, all model parameters are continuous data, albeit some are constrained within certain bounds. For instance, the
composition ranges between 0 and 1. Yet, the phase diagram introduces additional constraints on the composition data, further
narrowing the feasible range. Consequently, potential statistical distributions can include normal, lognormal, F, chi-square, ex-
ponential, t-student, Weibull, and non-normal distributions. While we do not enforce a specific distribution, we ensure that the
distribution type and range align with the physical context. For instance, we employ truncated normal and uniform distributions
to represent the alloy composition of model I in both proposal and target spaces. This distribution type is then considered when
performing the random sampling procedure.

The HTP process of sampling from parameter posterior distributions and microstructure data generation is briefly shown in
Fig. 1(a). To generate the proposal (i.e., known probability measure, ) and target microstructure data, we sampled 10,000 dif-
ferent combinations of [c*, W, k., M] and [¢", a, a4, ks, M] parameters out of the distributions shown in Fig. S12 and Fig. S13,
respectively, and ran forward the phase-field model.

Moreover, we conducted a global sensitivity analysis using the Sobol method on time series of microstructure data to evaluate
the impact of model inputs on its outputs and their potential interactions. The detailed results are documented in the supplemen-
tary material in Tables S1,S2, andS3. In essence, the composition significantly influences the model output, specifically thermal
conductivity, during the initial stages of microstructure evolution. However, as the evolution progresses, although the composi-
tion effect remains substantial, the interaction between the composition and the gradient energy coefficient becomes increasingly
crucial.

Nonetheless, the study incorporates two types of free energy models and two spaces (target and proposal), resulting in a total of
40,000 phase-field runs. From each phase-field run, we acquired a series of 50 micrographs, yielding 40,000 images for each
combination and an overall total of 200,000 microstructure images. Fig. 3b presents examples of microstructures in the proposal
probability space of model I.

The computation time for solving the Cahn-Hilliard equation is approximately 40 seconds per simulation. Each simulation
utilized a single CPU and 7 GBs of random access memory. By implementing batch job submission routines, we distributed
the 40,000 simulations across 500 CPUs. This approach significantly reduced the overall simulation time to roughly 2 hours, in
contrast to the 444 hours it would have required for sequential execution.

2.3 Material Property: Thermal Conductivity

The framework is motivated by the prediction of the thermal conductivity of heterogeneous structures. Over the past few decades,
researchers have conducted a significant amount of research on the thermal conductivity (1) of nanostructured materials, such as
thin films [41], nanowires [42], and bulk nanostructured materials [43] and the results often highlight the influence of quantum
confinement [44]. The thermal conductivity of amorphous solids and polycrystalline cubic materials is in general isotropic and
scalar. Typically, only one type of energy carrier dominates A. In a multiple carrier system, thermal conductivity is calculated
by taking into account a sum of contributions from the lattice (4.), electrons (4,), photons (4,), i.e., 4 = Ay + 4, + 4,. Among
the prominent systems in which multiple carriers are critical include thermoelectric materials (4, and A.) and thermal barrier

coatings at high temperature (4, and 4,) [45]. Based on Carnot efficiency (camot = TMT"MT,WM) and generalized Zener criterion

(Ze = (N1 + ZT = 1)/(N1 + ZT + 1)), the maximum power-generation efficiency of isotropic thermoelectric materials is defined




as [46, 47]:
VI+ZT -1

Max
Niocal = UCarn«)tze[ ol ©)

VI+ZT + (L)

where Z is the thermoelectric figure of merit of isotropic material (Z = %’) derived using macroscopic heat balance in ther-
moelectric legs. A composite material’s ZT factor cannot exceed the ZT of its individual phases, according to Bergman and
Levy [48]. Nonetheless, Joule heating and Peltier effects invoked by defects and interfaces have been left out in this assess-
ment [44]. In this context, it has been demonstrated by Bian et al. [49] that heterogeneity is important in maximizing thermo-
electric response. Likewise, Snyder et al. [S0] proposed a compatibility factor for designing functionally graded thermoelectric
materials. Through this, the grand problem of thermoelectric energy conversion is shifted to optimizing three macroscopically
measurable transport parameters (o, S, and 1) as a group. To build upon the framework, we, however, concentrate on the de-
sign of effective thermal conductivity in composite dual-phase materials. Provided a diverse set of dual-phase microstructures,
the effective thermal conductivity of these microstructures can potentially be determined using generalized Ohm’s and Fourier’s
constitutive relations [47]).

2.4 Calculation of Isotropic Thermal Conductivity

The Fourier heat conductivity equation with heterogeneous coefficient is solved for the steady-state case to simulate heat flow
through the computed microstructures. This boundary value problem is:

Va.VT =0 O0<x,y<LL,
IC: T(x,y,t=0)=50 (10)
BC : g.n =0.05

where T is temperature, « is space-dependent thermal diffusivity that is given by & = ¢a,, + (1 - d)a,, + Agpd*(1 — ¢*) where
¢ is the order parameter and Agp is an amplitude factor that controls the grain boundary conductivity. To reduce the complexity,
Ags is set to zero in this paper that ensures a linear change in thermal conductivity in the grain boundary zone. g is the local
heat flux density. The constant heat-flux boundary conditions on the microstructure in the direction of an orthogonal heat flow
from bottom-left corner to top-right corner is applied. The thermal flow is driven by constant temperature difference boundary
conditions across the structure in the primary flow direction, and a constant temperature is used as initial condition. The equation
was solved by successive-over relaxation method where convergence were achieved by satisfying an L, norm of less than 1x 1077
to guarantee that the computed thermal conductivity is independent of the relaxation time. The computational grids coincides
with the grid points used for Cahn-Hilliard equation. For a classical, isotropic material, the defining equation for heat conduction
is Fourier’s law [45],

q=-AVT (11)

where A represents the material’s scalar thermal conductivity expressed in the International System of Units (SI) as Wm™'K~!
and AT is the temperature gradient vector.

The computation time required to calculate the effective thermal conductivity, satisfying the defined tolerance, is approximately
250 seconds, utilizing 28 CPUs. We executed a total of 160,000 calculations across three microstructural stages (early, middle,
and final) to determine their effective thermal conductivities. By distributing these computations across 500 CPUs, we substan-
tially reduced the total computational time to roughly 14 hours.

2.5 Uncertainty Propagation

Undertaking uncertainty propagation (UP) with computationally intensive models, such as atomistic Density Functional Theory
(DFT) simulations or meso-scale multi-physics phase-field models, can present a challenge. Propagating an ample number of
samples from a desired distribution through such models is often impractical due to computational cost. Furthermore, generating
samples from a specific distribution can also be computationally demanding. A potential solution lies in utilizing samples
from different distributions that have already been propagated through the same model, or devising a distribution that is less
computationally taxing for sample extraction. We then apply the concept of change of probability measure to these samples.

In instances where both the target and proposal distributions are known, the Radon-Nikodym (R-N) theorem provides a valid
solution for a change of measure by calculating the R-N derivatives (the ratio of the target to proposal densities) and assigning
weights to the samples. However, in our scenario, we presume that both the target and proposal distributions are unknown.
Consequently, direct application of the R-N theorem becomes infeasible. [51] In the sample-based approach, our objective is to
determine the importance weights for each proposal sample. These weights enable us to precisely approximate the target sample
density within any subspace of the feature (measure) space by resampling the proposal samples, weighted accordingly. Indeed,



this concept mirrors that used in calculating probability density functions to determine the probability of encountering samples
at a specific location or within a defined range in the distribution’s support.

To use the notion of change of measure, we assume that there are two sets of samples available: one set is called the target, which
we are interested to quantify the uncertainty of a quantity of interest after propagating this set of samples to the model, and one
is known as the proposal, which we aim to represent the target samples with it via change of probability measure. The change of
probability measure refers to assigning importance weights (equivalent to proposing a new density function) to samples drawn
from a proposal distribution, thus, the distribution of samples after resampling according to the assigned weights represents a
target distribution. The importance weights are the ratio of probability densities at different locations in the space.

An illustrative example of efficient uncertainty propagation (UP) through the change of measure is depicted in Fig. 1(b), which
demonstrates a 2-D distribution of proposal samples. In this approach, we segment the feature space into subspaces by generating
differently sized hypercubes centered around the available samples, as exemplified by the four squares shown. A linear system
of equations is then constructed, with each equation linked to a specific hypercube to correlate the target density with individual
proposal samples. By resolving this system, we can estimate the importance weights between the proposal and target probability
measures. Although hypercube sizes can vary, we adopt a strategic method to maintain process tractability: initially, a hypercube
encompassing the entire feature space is created, which is then successively divided by two in all dimensions to produce smaller
hypercubes. This halving process repeats until the hypercubes reach a pre-determined size threshold.

After defining the hypercubes for each sample, the empirical measure of a given hypercube S; is calculated as:
1 n
m=;2¥ﬂw (12)
=

where y; defines the proposal probability measure in hypercube S; and I, (x/)is 1if x/ € S;, else its value is 0. The goal here is
to weigh the empirical proposal measure such that

n
pi= Y wills(x)) = v; (13)
j=1

where v; is the target probability measure. To find the importance weights, a system of equations in the form of Aw=B is formed
and solved for the importance weights. First, using values P;; for each point and each hypercube as

Pij(u) = Is,(x)) (14)
matrix A is arranged as
Py P .. Py
P2] P22 eee Pzn
A=|. . . 15)
Pau P .. Pu

where 7 is the number of proposal samples and & is the total number of generated hypercubes. By creating the importance weights
vector as W = [wy, wa, ..., w,], the weighted empirical proposal measure for each hypercube is A;w. Then, matrix B is a k by 1
column vector that each entry is associated to a hypercube and is the ratio of target samples in that hypercube to the total number
of target samples. Basically, this is an estimate of the probability of having target samples in each hypercube. Note that if the
target distribution is known, each entry can be calculated by integrating the probability density function over the corresponding
hypercube and this approach is still valid. Finally, to solve the system of equation, Aw=B, any least squares technique can be
employed satisfying two conditions: weights must be bounded to [0,1] and they must sum up to unity.

The merit of the sample-based change of measure lies in its convenience and cost-efficiency. With this technique, it is not
necessary to conduct new simulations or experiments when the distribution of input samples changes. Instead, one can utilize
the results from previously propagated samples, reweighting them to achieve the target distribution of a quantity of interest. This
approach is applicable even without knowledge of the actual sample distribution, as it merely relies on the existence of proposal
and target samples within the input space.

2.6 Deep Generative Machine Learning

Variational autoencoders (VAEs) are a type of unsupervised learning algorithm that can be used to generate new data by means
of a latent representation. VAEs consist of an encoder, a decoder, and a loss objective (ELBO: Evidence Lower Bound). The en-
coder takes input data and maps it to a latent space. The decoder takes the latent space and maps it back to the original data space.



The loss objective is used to measure the difference between the original data and the freshly generated data typically derived
through Jensen’s inequality [27]. Consider N images {x™}Y_,, with x® € RV=>*¥*Ne; N\ and N, represent the number of pixels
in each spatial dimension, and N, denoting the number of color bands in the image (N, = 1 for gray-scale images and N, = 3 for
RGB images). The learning process is conducted by minimizing the variational ELBO. Figure 2 illustrates an schematic with the
underlying network architectures for encoder and decoder networks used in this study. The detailed information regarding each
network can be found in Fig. S20.
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Figure 2: VAE model and the architecture of the encoder (inference) and decoder (generative) networks.

In the latent space of the VAE, a Gaussian distribution is utilized where a sampling layer is performed as per the formula
7 = u + ee’’?. In this formula, € is a random tensor corresponding to the size of the latent space, holding values from a normal
distribution with zero mean and unit variance. The terms u and o originate from the last convolutional layer, which are then
flattened and connected to two dense layers. For visualizing this in 2D, the latent space is further reduced using kernel principal
component analysis (KPCA) with a linear basis function kernel. The architecture of the encoder model is mirrored in the decoder,
ensuring optimal tuning between the encoder and decoder networks.

The optimization objective of the VAE is the evidence lower bound that is for any choice of inference model g4(z|x) is given as:

Lo 4(x) = logpy(x) - DKL(qaﬁ(le)”pé)(le)) 16)

where the loss function is composed of a reconstruction term that makes the encoding-decoding scheme efficient and a regular-
ization term that makes the latent space regular. The VAE loss is provided by the sum of the Kullback-Leibler divergence and
the image reconstruction binary cross entropy.

Consequently, a complex microstructure space characterized by a complicated empirical distribution is stochastically mapped
to a simpler, compressed latent space. The encoder model, represented as g4(z|x), provides an approximation to the true but
computationally infeasible posterior of the generative model, denoted by py(z|x). This generative model learns a prior distribution,
a joint distribution expressed as pg(x, z), employing the latent space and a stochastic decoder along with a prior distribution over
the latent space.

3 Results and Discussion

To facilitate the discussion, we first delve into the characterization of synthetic microstructures that are generated with the HTP
phase-field method. We then discuss the microstructure-thermal conductivity connection for the calculated set of microstructures
with an emphasis on distinct types of microstructures. Next, we explain the efficient UP results and how to link PSP and inverse
microstructure-centered materials design using the deep VAE method for designing for thermal conductivity of multi-phase
composite materials.

3.1 Microstructure representation
Microstructure-based design faces two challenges: presenting high-dimensional microstructure images concisely, and determin-
ing the effective macroscopic properties linked to heterogeneous microstructures. A microstructure image of a multi-phase



material that contains bulk and interfacial features is a valuable source of information regarding the material’s properties. Pixels
in these images represent degrees of freedom, resulting in a remarkably complex information space.

Over the past decade, numerous studies have attempted to represent images as low-dimensional objects by reducing their com-
plexity. An overview is provided here [52]. Besides conventional physical descriptors (e.g., area/volume fraction of phases),
other features have been proposed to aggregate local information into global descriptors. A number of these are based on Haral-
ick texture statistics [53], as well as local binary patterns, contrast features, visual bag of words [54], auto- and cross-correlation
functions (e.g., two-point correlations). An example application of two-point correlations can be found in [55] and also articles
published by a portion of the authors in this paper [56, 57].

In this study, we begin by computing a time-series of microstructural evolution to generate a 2-D microstructure dataset. Subse-
quently, we calculate the effective thermal conductivity at three selected time points during the evolution of the microstructures -
the early, middle, and final stages. Besides determining the effective thermal conductivity of the microstructure, we also compute
four physical microstructure descriptors: the area fractions for the 2D microstructure images (A7), the characteristic length scales
derived from Fourier transforms of the microstructure, and the bulk compositions of the yellow and blue phases, represented
by Cmin and ¢4, respectively. These basic microstructure descriptors are computed for assessing potential correlations between
effective thermal conductivity and these descriptors. Figure 3(a) shows the probability density functions used to represent model
I’s input parameters. To reflect the physical limitations in the parameter range, these distributions are chosen to be truncated
Gaussian. By way of example, the free energy model limits alloy composition within the 0.35-0.69 range. Furthermore, phase
transformation must have a positive gradient energy coefficient, mobility, and barrier height. These limitations are imposed by
setting the lower and upper bounds of parameter distributions accordingly.

Figure 3(b) illustrates a 15X 15 microstructure palette representing the morphological variability of the computed microstructures.
Figure 3(c) shows empirical cumulative density functions (eCDF) for the four different physical descriptors extracted. In time,
the eCDFs change to reflect changes in the microstructure ensembles.

The area fraction of phases (Ay) is determined by applying a global image threshold using Otsu’s method [58] to grayscale
images. This method is particularly effective for semi- and fully-decomposed microstructures with phase area fractions greater
than 0.2. For the estimation of characteristic length scale, we compute the circularly averaged Fast Fourier Transform (FFT) of
the phase-field order parameter. As established in our previous work [11], this yields a unique curve for each microstructure at a
fixed time, with the curve and its peak progressively shifting towards the right as the annealing time increases. To illustrate this,
we present a graph of the empirical cumulative distribution functions (eCDFs) of effective thermal conductivity at early, middle,
and late stages of evolution in Fig. 3(d).

3.2 Microstructure/Property Connection: Thermal Conductivity

This section examines the role of microstructure characteristics on effective thermal conductivity using the constitutive boundary
value problem described in section 2.4. We assume that close to equilibrium, transport is well understood through Fourier’s law,
and we expect the thermodynamic fields to be smooth and thus to have good homogenization properties [59]. Precisely deter-
mining A is challenging due to measurement difficulties and subtle microstructure variations. However, our focus is to employ
thermal transport as a test problem, acknowledging that thermal conductivity is influenced by the phases’ nature, volume, shape,
size, and topology.

We initially examine two microstructures with distinct morphologies - circular and bicontinuous - with fixed phase area fractions
(0.23 and 0.5). To understand the individual phase’s thermal diffusivity role, we vary the precipitate thermal diffusivity to matrix
phase ratio from 0.01, 0.1, 1, 10, to 100 and repeat thermal conductivity calculations. Figure 4(a and b) presents steady-state
heat conduction calculations for these cases and 5 ratio calculations each. Figure 4(c) offers a comparison of these microstruc-
tures’ thermal conductivity as a function of the thermal diffusivity ratio between phases, morphologies, and particle area fractions.

Both particle area fractions and phase thermal diffusivity significantly influence the effective thermal conductivity. For instance,
in a microstructure with highly diffusive precipitates (@,, /«,, > 1), a circular morphology results in lower thermal conductivity
than a bicontinuous one. In contrast, for a highly diffusive matrix phase (@, /a,, < 1), the bicontinuous morphology exhibits
reduced thermal conductivity. Here, p; : ¢(r) = 1 and p; : ¢(r) = 1 represent the two phases, with phase p; having a higher vol-
ume fraction. Also, the ratios of 0.1 and 10 essentially interchange the thermal diffusivity values of the phases. Results indicate
that a material with circular precipitate morphology and a high thermal diffusivity ratio above 100 can decrease overall A, which
may be suitable for power generation or refrigeration. Additionally, there is approximately an order of magnitude difference in A
between circular and bicontinuous morphologies with the same thermal diffusivity ratio.
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Figure 3: Proposal probability space for model I. (a) Proposed distributions for input parameters of the phase-field model, free energy model I (i.e., [¢*, py, k¢, M]).
(b) Typical microstructures obtained from solving Cahn-Hilliard equation using a symmetric double-well potential. (c) Transient eCDF plots of four Qol (i.e.,
Area fraction of phase «, radially averaged characteristic length scale, Max. and Min. concentrations in the domain (i.e., cq, cg) extracted from the 10,000
microstructures. Different eCDF lines show evolution in probability measure as a function of time for different sets of microstructure images synthetically
annealed the same amount of time. (d) Transient eCDF plots of thermal conductivity for three sets of microstructures (each set contains 10,000 microstructures)
for two cases of thermal conductivity ratios, @, /@, = 0.1 and @, /@,, = 10. Set one corresponds to time 95.2 (early stage), set two corresponds to time 232.2
(mid stage), and set three corresponds to time 600 (final stage).

To delve deeper into the influence of phase fraction and characteristic length scale on A, we ran heat conductivity calculations
on 6,040 diverse dual-phase microstructures selected from 10,000 proposal samples. We obtained A and characteristic length
scale from each microstructure’s final simulation time-step.Figures 5(a-d) present 2D joint plots illustrating the impact of thermal
diffusivity ratios (@, /a,, = 0.1 and @), /a,, = 10) on thermal conductivity, which ranges approximately between 0.002 and
0.006. In both cases, the lowest thermal conductivity is typically found in circular or semi-circular morphologies when the matrix
phase has lower thermal diffusivity. The thermal conductivity is inversely related to the area fraction A for @), /@, = 0.1, and
directly proportional for @), /a,, = 10, implying an inversion in the pairplot distributions for different ratios.

Determining an immediate correlation in the characteristic length scale and thermal conductivity pair plots is difficult. Traditional
pair plots do not provide direct visual insight into microstructures and often require further labeling, impeding the establishment
of PSP relationships. Due to the limitations of classical pair plots, it is difficult to understand the effects of alloy composition or
model parameters on thermal conductivity and we will conduct deep VAE to establish PSP in section 3.4. Our next objective is
to create sequentially optimal sampling policies for the non-intrusive and efficient UP from model inputs to model outputs for
ICME models.
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and (b) a,, /a;, = 10. (c) and (d) 2D kernel density estimates for thermal conductivity and characteristic length scale with data points overlayed over this density
for cases (¢) ap, /ap, = 0.1 and (d) a;, /@), = 10. In the plots, the time of evolution is fixed at 600.

3.3 Efficient Uncertainty Quantification via Change of Measure

Next, we implement a general sample-based technique [21] for change of probability measure, regardless of the distributions
from which samples were generated from. The motivation here is that computational complexity and cost are serious bottlenecks
for the design process and if input space (e.g., distribution range or type) changes, we can therefore transform the results to a new
subspace.
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Figure 6 presents the empirical cumulative distribution functions (eCDFs) for four quantities of interest (Qol) at early and final
simulation stages for free energy models I and II. The overlay of target samples’ eCDFs confirms the accurate representation of
their distribution by our weighted proposal samples. For detailed insights into the evolution of the eCDF shapes for each Qol
over time, see Figures S16 to S19 in the Supplementary Document.

Fig. 7 shows the eCDFs of the thermal conductivity that we obtained in the cae of free energy models I. The goal here is to use
the sample-based technique to estimate importance weights to determine the uncertainty in Qol or property space by weighting
the proposal samples accordingly, regardless of the type of initial prior distributions. Note that a reasonable choice to generate
proposal samples when there is little knowledge about the target sample distribution is the uniform distribution. However, this is
not a requirement.
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Figure 6: eCDFs corresponding to all Qols at middle and final time increments for models I and II. Model I: (a.1) and (a.2) correspond to the first QoI (Area
fraction) at middle and final states. (b.1) and (b.2) correspond to the second Qol (circularly averaged FFT of microstructure) at middle and final states. (c.1) and
(c.2) correspond to the third Qol (cpqy) at middle and final states. (d.1) and (d.2) correspond to the fourth Qol (cyi,) at middle and final states. The same order
applies for model II.

Here, we used 5,000 target and 10,000 proposal samples. These values might vary for different problems based on feature space
dimensionality and input distributions. To validate the sufficiency of our proposal samples, we ran 100 simulations, each time
randomly selecting samples. Starting from 500 samples and increasing in steps of 500, we calculated importance weights for
each Qol. Instead of using eCDFs, we used the Wasserstein metric as a measure of similarity between the weighted proposal and
target distributions. Lower metric values indicate more similarity, with zero indicating identical distributions. For more on the
Wasserstein metric, see Ref. [60].
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In Fig. 8, Wasserstein distances between target and weighted proposal for all four Qol are depicted versus number of proposal
samples. Increasing the number of proposal samples results in better convergence to target distribution (as Wasserstein distance
is decreasing). However, at some point, the improvement saturates, as the sampled points are already sufficient to produce the
target distribution accurately.

In this section, we used advanced UP and high-throughput phase-field modeling to explore the microstructure design space in
a forward manner. Our results suggest that weighed sampling approaches can yield very accurate descriptions of propagated
uncertainty in complex models at a fraction of the expense necessary if one were to use brute force approaches.

In the past few years, advances in machine learning have culminated in sophisticated generative models that can create realistic
novel instances of the system under investigation by learning from distributions over real examples. the focus of this effort was on
forward propagation of information. An important aspect that remains to be explore in this work is how to exploit the available
information to carry out inverse design.

Here, traditional MC-based UP generated close to 40,000 time-series of microstructure data (total of 40,000x40 images). This
data provides sufficient information to train generative models (based in this case in VAEs). Provided the training sample is
sufficient, generative models can greatly advance microstructure-centered materials design workflows, enabling the materials
development in a fraction of the time needed in traditional methods. Our next section will explore the use of VAEs to link
PSPs and design inverse microstructures for thermal conductivity. Yet, the framework is also useful for designing mechanical,
electrical, or chemical properties.

3.4 PSP Relations and Inverse Microstructure-Centered Materials Design

Figure 9(a) displays the microstructure distribution in the latent space of the deep VAE model. Each microstructure image
is positioned in the kernel Principal Component Analysis (KPCA) representation, capturing the first two components. The la-
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tent space provides a qualitative environment to analyze correlations between model input variables and associated properties.
By employing a basis transformation through a dense layer, the KPCA space combines the VAE images and input parameters.
This representation reveals clear separations between microstructure classes, indicating significant correlations among the mi-
crostructures, the material parameters, and the resulting thermal conductivity. Microstructures in the kPCA space exhibit a clear
correlation with the physical phase diagram: yellow precipitation is located on the left, dark precipitation on the right, and bicon-
tinuous structures in the middle. Increasing kPCA| corresponds to a coarsening effect.
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Figure 9: The visualization of composition-microstructure-thermal conductivity relations. (a) Microstructure map in the latent space of the VAE model showing
the transition from yellow circular to bicontinous and then dark circular microstructures with a yellow matrix. In the phase diagram, we see the same morpholog-
ical transition moving from left to right in the unstable two-phase region. (b) The change in alloy composition as a function of the microstructure morphology.
(c) and (d) The change in thermal conductivity as a function of the microstructure morphology for the cases of (c) @), /ap, = 0.1 and (d) @), /@), = 10.

Figures 9(b-d) show the color-coded latent space, revealing the relationship between alloy composition and thermal conductivity
for ratios of 0.1 and 10. The results indicate an inversion in thermal conductivity between the two cases, with outliers observed
for the ratio 10. Specifically, when the matrix phase has lower thermal diffusivity (), /@,, = 0.1), increasing alloy composition
leads to a decrease in thermal conductivity. The results reveal an inverted relationship for higher thermal diffusivity in the matrix
phase (@, /@), = 10). Microstructures with finer particle morphology and lower matrix phase diffusivity exhibit lower thermal
conductivity. The thermal conductivity of the alloy is influenced by alloy composition, microstructure morphology, volume frac-
tion, characteristic length scale, and the thermal diffusivity of individual phases. Engineering the phase interface offers potential
control over the alloy’s thermal conductivity.

While the inference model and latent space characterization allowed us to establish PSP relationships, the generative model
enables inverse design. With the use of the VAE decoder model, the material design process can now be inverted; instead of
attempting to find the source of improved performance from existing data, the model can be used to generate new microstruc-
tures with the respective processing/material parameters that potentially have the desired performance.Figure 10(a) compares
microstructures generated by the VAE decoder model with those from the original dataset, showing their close resemblance. The
predicted estimates versus true target values in Fig.10(b) and Fig.10(c) demonstrate high accuracy with low residual MSE. The
phase-field and VAE reconstructions in Fig. 10(d) indicate successful interpolation by the generative model. However, in extrap-
olation, the VAE may struggle to recognize the boundary between unstable dual-phase and nucleation/growth regions, suggesting
the need for training with a wider range of microstructures to fully capture the underlying physics.
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Figure 11(a) presents a composition-thermal conductivity diagram designed using the VAE model. The diagram allows for select-
ing alloy compositions with desired microstructures and thermal conductivity while fixing the other model parameters. The trend
of alloy thermal conductivity as a function of the ratio of thermal diffusivity of the phases is depicted in Fig. 11(b). The design
approach takes into account the influence of relative thermal diffusivity of phases on alloy microstructures and thermal conduc-
tivity. By understanding the relationship between alloy composition and thermal conductivity, the design identifies optimal alloy
compositions with desired microstructures and thermal conductivity. This optimized design has practical applications in fabri-
cating materials with enhanced thermal properties for specific uses. It is especially valuable for thermoelectric materials, where
thermal conductivity plays a crucial role in performance. Through the optimization of alloy composition and microstructures, the
design can improve power output and efficiency in thermoelectric materials.
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Figure 10: VAE model performance. (a) Analyzing the difference between actual and simulated microstructures as calculated by the phase-field method (original)
and the VAE method (generated). (b) and (c) True (phase-field) vs. predicted (VAE) estimates of microstructures for extracted Qol (b) phase area-fraction and
(c) characteristic length scale. The VAE exhibits excellent interpolation performance, while extrapolation cases show slight deviations (the tails). (d) Detailed
view of the phase-field and VAE microstructures for different compositions and 4. When the composition is below 0.4, the alloy does not show miscibility and
phase-field modeling does not predict morphology. VAE, however, extrapolates a circular morphology that is not physical.

4 Summary and Conclusion

In summary, we introduced a general-purpose machine learning framework for inverse microstructure-centered materials design
for predicting the effective thermal conductivity of multi-phase materials. We also introduced the use of R-N derivatives to
perform uncertainty propagation effectively when the design and in turn the range and type of data change. We built the frame-
work on microstructure data generated with high-throughput phase-field modeling. The created synthetic microstructure data
demonstrate spontaneously decomposing alloys that are curated on the Open Phase-field Microstructure Database, OPMD [36]
(http://microstructures.net) and Zenodo platform [61] (https://doi.org/10.5281/zenodo.7702179) for commu-
nity access. Overall, the methods proposed in this study allow generation of new microstructures with desired properties of the
material as a function of material composition and other variables.

Our work uses a deep VAE to link alloy composition and model parameters to microstructures and consequently thermal conduc-
tivity. In the VAE model, the microstructure information (i.e. image) plays a fundamental role, and both material parameters and
properties can be easily linked after successful training, leading to a process-structure-property relationship. Moreover, the VAE
can utilize the learned representations to generate new microstructures as well as the creation of embeddings for microstructural
parameters, allowing prediction of thermal conductivity. Additionally, deep VAE eliminates the need for reduction of microstruc-
tures to physical or non-physical descriptors.

In addition, we explored the microstructure design space using advanced UP in a forward manner. We found that weighted
sampling approaches can yield accurate descriptions of propagated uncertainty in complex models. We sampled from desired
probability distributions and as the number of available proposal samples increased, the Wasserstein distance between target and
weighted proposal distributions got smaller, but at some point the improvement saturates. By implementing the R-N theorem
here, we are able to change a measure from any set of evaluated data to a target measure without having to run new expensive
experiments.
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Figure 11: A microstructure map predicted by the VAE model in the space of composition and thermal conductivity. We assume that the other parameters (i.e.,
barrier height, mobility, and gradient energy coef.) are fixed for this visualization. (b) The general trend in thermal conductivity as a function of ratios of thermal
diffusivity of the phases (i.e., 0.1 and 10).

We found that circular morphologies with lower thermal diffusivity in the matrix phase had lower thermal conductivity. The
change in thermal conductivity with respect to microstructure and corresponding material properties (e.g., alloy composition) are
mapped in the latent space of the VAE allowing to establish PSP linkages. Additionally, the generator model is used to inversely
design microstructures for a desired thermal conductivity. Thermoelectric designs should focus on creating a microstructure with
as much of a difference in thermal diffusivity between the matrix and precipitate phases as possible, while also emphasizing a
circular morphology to maximize the reduction of thermal conductivity. To further optimize thermoelectric performance, it is
critical to consider the microstructure, its morphology, and the respective impacts on electrical and Seebeck coefficient.

While the current work represents a modest demonstration of the importance of uncertainty-aware analysis of PSP relationships,
it points toward important future research directions. It would be interesting, for example, to examine how this framework can
be incorporated into more general frameworks aiming at microstructure-sensitive design and optimization. Other potential av-
enues for research are to investigate how the present VAE model can be further improved. Several directions can be explored
for improving this approach to microstructure design. There are many ways to extend the VAE models. You can change the
prior, the posterior/variational posterior, regularize the posterior, and change the architecture. Changing the architecture includes
changing the layers to RNNs/LSTMs/CNN layers, and using other divergence measures instead of KL divergence. Many of these
variations often include convolutional layers, even if not explicitly stated. Additionally, the effect of local grain boundaries on
the effective thermal conductivity of a material will be considered in future studies.

4.1 Data Handling

The dataset called OPMD version 1.0, contains 40,000x50 or 200,000 computationally generated microstructure images that are
obtained from 40,000 distinct phase-field simulations where 50 time sequences is saved from each simulation. The dataset is
divided into two equal-sized sets called proposal samples and target samples. All images are 1167x875 px> that composition
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order parameter to a Red-Green-Blue (RGB) color scheme. The extraction of Qol is performed using the original raw data. The
images were further resized to 64x64 before being fed into the VAE model. The microstructure dataset futures a diverse set of
chemical spinodal morphologies.

5 Data availability

A Data DOI is available for the image data that the VAE model in this manuscript relies upon: https://doi.org/10.5281/
zenodo.7702179 [62]. Alternatively, you can access the entire raw and image data at the Open Phase-field Microstructure
Database (OPMD) website via the link https://microstructures.net [36].
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