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ract

field of Integrated Computational Materials Engineering (ICME) combines a broad range of methods to study mater
nses over a spectrum of length scales. A relatively unexplored aspect of microstructure-sensitive materials design is
inty propagation and quantification (UP/UQ) of materials’ microstructure, as well as establishing process-structure-prop
) relationships for inverse material design. In this study, an efficient UP technique built on the idea of changing probab
ures and a deep generative unsupervised representative machine learning method for microstructure-based design of the
uctivity of materials is proposed. Probability measures are used to represent microstructure space, and Wasserstein me
sed to test the efficiency of the UP method. By using deep Variational AutoEncoder (VAE), we identify the correlat
een the material/process parameters and the thermal conductivity of heterogeneous dual-phase microstructures. Thro
throughput screening, UP, and the deep-generative VAE method, PSP relationships that are too complex can be reveale
iting the materials’ design space with an emphasis on microstructures. As a last point, we demonstrate generative mac
ing serves as a useful tool for inverse microstructure-centered materials design, and we demonstrate this by examining
se design of thermal conductivity in nano-structured materials. The results reveal the effects of morphology, volume frac
cteristic length scale, and the individual thermal diffusivity of phases on the thermal conductivity of dual-phase alloys.
gs emphasize the advantages of high-throughput phase-field modeling and generative deep learning for linking PSP
se microstructure-centered materials design.

ords: computational materials design, process-structure-property linkage, microstructure, generative modeling,
-field modeling, uncertainty quantification, variational autoencoder

Introduction
material’s structure is key to connect processing conditions to resultant properties and performance, forming Proc
ture (PS) and Structure-Property (SP) relationships. Quasi-random micro-/nano-structures, central to the Integrated Com
alMaterials Engineering (ICME) paradigm, frequently appear in high-dimensional probabilistic materials science probl
lerating knowledge acquisition necessitates microstructure quantification, which relies on physical models and data sci
ods, essential for investigating and applying PSP relationships [1]. Materials informatics employs data, machine learn
ptimization techniques to systematically discern PSP relationships, guiding the predictive design of materials and proce
hieve desired properties [2]. Leveraging advancements in phase-field modeling [3], uncertainty quantification [4], and m
informatics methods [5], generative modeling [6] can build intelligent frameworks predicting emergent material proper
as electrical, thermal, mechanical, and magnetic characteristics, highlighting microstructure within the Integrated Com
al Materials Engineering (ICME) context.

e precise mesoscale simulation tools are currently available, in silico microstructure-centered materials design is still
tly pursued without considering optimal search strategies. Additionally, when search strategies are deployed, they are pa
a quantity of microstructures, rather than the entire microstructure with all its complexity. By combining existing mode
and knowledge of the materials, current methods often develop a forward computational relationship with some microst
metric (e.g., volume fraction [7], grain size distributions [8]) or its statistics (e.g., 2-point correlations [9]). For insta
eri et al. [7] proposed a Bayesian framework for microstructure-aware materials design to identify the best combinatio
istry and processing parameters for maximizing a targeted mechanical property of a model dual-phase steel. Accordin
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analysis, deliberate incorporation of microstructure information into materials design methodology dramatically impr
rials optimization. Despite this, they did not incorporate the microstructure seamlessly into the design process, instead,
sequent quantity of the microstructure, the volume fraction of the martensite phase (a potential attribute of the phase
). Similarly, in another work, Saunders et al. [10] have developed a Gaussian process-based method for establishing PS
ive manufacturing processes that indirectly establishes the connection with microstructure through microstructure feat
tics, rather than the microstructure itself. Although microstructural information has traditionally been captured by me
as grain size distributions and phase volume fractions, many properties of interest are not sufficiently accounted for by t
aches due to the inherent complexity of the microstructure.Identifying a design workflow that links a desired property to
rlying process/material parameters without reducing the microstructure to some subsequent quantity is a challenging
, it is necessary to quantify uncertainty in the PSP relationship for reliable designs [11].

tochastic nature inherent in the random heterogeneous structure of materials can introduce considerable uncertainty, the
romising precision. It is thus important for any ICME framework to properly quantify the uncertainty emanating from t
tions [12]. This uncertainty, particularly at the mesoscale, originates from complex and unpredictable short- and long-ra
ctions, manifesting as spatio-temporal fluctuations in field-induced gradients (e.g., chemomechanical interactions). T
ations generate hard-to-quantify uncertainties across all relevant scales (i.e., atomistic, molecular, and meso-scale). Mat
ility and performance can be compromised by this uncertainty, requiring meticulous and robust design considerations
ral, uncertainty in modeling material structure originates from five sources [4]: (i) model selection uncertainty, (ii) episte
rtainty in model variables due to limited computed or measured data or large ranges in prior knowledge, (iii) stochast
ase arrangements at any material point, (iv) randomness in phase morphology owing to significant spatial variation,
ariation of material properties due to the heterogeneous nature and scarcity of lower-scale characteristics, including def
aces, and bulk regions, which influence the macroscopic average property from a mesoscopic perspective. Uncerta
gation, on the other hand, facilitates the estimation of potential variability in material property or performance arising f
uncertain sources. Monte Carlo (MC) methods are generally recognized as the gold standard for Uncertainty Propaga
[13, 14]. However, despite their ubiquity and simplicity, MC simulations can be computationally demanding due to
sity of propagating a substantial number of samples through a computational model. To mitigate the computational bu
C simulation methods, more efficient approaches such as importance sampling [15] and adaptive sampling [16] have b
sed. However, a high-throughput (HTP) exploration becomes inefficient when a model is either (1) expensive or (2)
parametrically sampled. Alternative strategies for executing Uncertainty Propagation (UP) include local expansion-b
ods [17], which may not perform well in the presence of significant input variability, functional expansion-based m
18], and numerical integration-based methods [19]. An efficient approach to tackle UP problems suggests changing
bility measure to a desired input distribution (target) from a previously evaluated dataset regardless of its distribution (
) [20–22].

study aims to develop a data-driven general-purpose framework for materials design placing microstructure at the core
lishing forward PSP relations and furthermore inverse design of materials. For predictive modeling in unexplored dom
e array of unsupervised representation learning methods [23] has been extensively utilized across various fields. T
ods include deep belief networks [24], deep Boltzmann machines [25], deep diffusion models [26], and deep Variati
encoders (VAEs) [27]. The deep VAEs have gained popularity for their ability to generate novel data, including audio,
mages, through density estimation and subsequent sampling. We generate the microstructure dataset used to demons
ramework through high-throughput phase-field modeling. Subsequently, we compute the desired microstructural prop
previously established constitutive relations. At its core, our framework harnesses microstructure data alongside comp
nd processing conditions drawn from known probability distributions. Consequently, bottom-up material design entail
f a deep VAE to establish PSP relations, generate novel microstructures, and conduct inverse design through the captur
al relations between pixels in existing microstructure data. Additionally, the design would take into account the uncerta
e Radon-Nikodym (R-N) theorem [28, 29] that transforms a proposal measure (i.e., known probability measure) to a ta
ure to save resources by reducing any experimentation costs as the input distributions change due to induced uncertaint

ntly, there have been several applications of VAEs reported in the literature, spanning various fields. These include
n of drug-like molecules and novel chemical structures [30], the exploration of optimal microstructure spaces for mechan
rties [31], and the design of phononic bandgaps in metamaterials [32]. Additional applications feature the developmen
ic-martensitic steels [33], establishing links between interface energy and the morphology of microstructures underg
ogeneous nucleation and growth [34], and database development [35]. While data methods have progressed significa
ard methods for microstructure-centered materials design have yet to be developed. We anticipate that our developed d
n framework can contribute to the development of approaches to rational, uncertainty-aware microstructure-based mat
n by streamlining the creation of models utilizing microstructure data, such as those available in the Open Phase-
ostructure Database (OPMD)[36]. The rest of this article is arranged as follows: section 2 discusses our proposed meth
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n 3 presents the results and their discussion; and section 4 provides a brief conclusion. Additional details related to s
e results are provided in the supplementary document.

Methods
is study, we present a cost-minimal microstructure-centered materials design framework for linking process-struct
rty, and inverse materials design incorporating efficient uncertainty propagation built upon the idea of the change of pr
measure. This framework consists of (i) a microstructure evolution model based on phase-field theory, in which the the
uctivity of the microstructures is subsequently computed, (ii) an efficient UP framework using R-N theorem, and (iii) a d
rative VAE model for PSP linking and inverse design. A schematic of the proposed framework is shown in Fig. 1 where
lustrates the HTP process of calculating tens of thousands of time-series of microstructures from probability distribution
parameters and further calculation of thermal conductivity and other low-dimensional representations of the microstruc
(b) and (c) each schematically show the efficient UP method and VAE method developed in this study, respectively.

1: A schematic for efficient UP within a microstructure-sensitive materials design scenario. (a) Given the probability distributions of the material/pr
eters, a feasible microstructure space and associated properties is determined by a high-throughput phase-field model using 10,000 simulation insta
e process of efficient propagation of uncertainty by generating hypercubes centered around input samples and assigning weights to input samples. Se
le hypercubes of different sizes along with the linear system of equations that needs to be solved, Calculated cumulative density functions of th
ctivity for proposal, target, and weighted proposal estimations are shown. (c) Schematic of a Variational Autoencoder with microstructure images as
receiving input, the encoder produces a compressed representation, which is then fed into the decoder. Then, an image reconstruction is produced b
er. VAE involves learning stochastic mappings between microstructure spaces, whose empirical distributions are typically complicated.

Terminologies for Uncertainty in Microstructure Modeling
om heterogeneous materials feature intricate and diverse microstructures. These microstructures can be characterized u
lation functions (e.g., n-point probability, surface correlation, nearest-neighbor functions), fundamental to determining
rials’ effective properties [37]. A material’s microstructure can be defined probabilistically by an indicator function (e.
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-field variable, ϕ(r)), where the likelihood Pϕ(r) = 1 signals the presence of a phase at position r. Treating the microst
s a random process, a probability triple (Ω,F ,P) provides a mathematical model for the material’s microstructure. H
resents all possible microstructures, F signifies feasible, calculable microstructures, and P serves as a probability mea
ning each microstructure in Ω a likelihood between 0 and 1. For each microstructure F ∈ F , its probability P(F) is g
e expected value under P of the indicator of the microstructure (P(F) = EP(IP)). We view P(F) as a microstructure re
tion, encapsulating physical quantities of interest (e.g., volume fraction), microstructural correlation functions (e.g., n-p
bility functions), or desired properties (e.g., thermal conductivity).

onvenience, our exposition is restricted to boundary value problems. Let D ∈ Rd, d = 1, 2, 3, be a fixed physical dom
boundary ∂D, and r = {r1, ..., rd} be the coordinates. Let us consider a PDE,

L(r, ξ, u; y) = 0 in D;
B(r, u; y) = 0 on ∂D;

e L is a differential operator and B is a boundary operator. x ∈ D is a spatial variable, and y ∈ Γ is a vector of ran
bles in parameter domain Γ. Γ is often considered to be an N-dimensional hyper-cube. ξ denotes a (Gaussian) space-
noise inD. The solution of the stochastic computation to this problem set is:

u = u(t, r; y)

e t ∈ [0,T ] is a temporal variable in a temporal interval. The solution is a function of time, spatial variable, and random
ters y. When the PDE is a random differential equation it can contain random inhomogeneous coefficients, initial conditi
dary conditions, or force terms. The random or stochastic Cahn-Hilliard PDE is given as:

∂tu = ∆2u + P(u) + ξ,

e ∆ is the Laplacian and P(u) is a potential function that can take logarithmic, polynomial, or other similar forms. In prac
re interested in a set of quantities,

g = (g1, · · ·, gK) ∈ R
d (QoIs) that are functions of the solution u, in addition to the solution itself. QoI is a model output, which may be
solution itself, but is more often a consequence of the solution and could contain statistical information about the ou
terest. The outputs of interest in the phase-field model may be interpreted as a function of the PDE solution or statis
mation of such a solution. UP enables determining statistical information about the outputs of the phase-field model g
les generated using statistical information about the inputs. In the next section, we describe the model, the uncertain inp
he QoIs that we are interested in following the ML method for connecting PSP and inverse microstructure design f
ed property.

Microstructure Model
emonstrate our proposed framework, we first generate an extensive microstructure dataset. Leveraging high-throug
-field simulations, we generate time-series of synthetic microstructures, aiding in understanding the impact of propag
rtainties on the microstructure landscape of a hypothetical medium during isothermal thermal annealing. A phase-
l, based on the Cahn-Hilliard model [38], is employed to generate microstructures while accounting for bulk and curva
ts. This model addresses the process of spontaneous phase separation in an isotropic alloy with constant molar volume.
iated boundary value problem is presented as follows:

∂c
∂t
= ∇.
{
M∇(∂ fbulk

∂c
− κ∇2c)

} 0 < x, y < Lx, Ly
0 < t < t∗

BC: c(0, y, t) = c(Lx, y, t) c(x, 0, t) = c(x, Ly, t)
IC: c(x, y, 0) = c∗ + Aζ

e c is concentration, M is the inherently positive effective atomic mobility of the species, f is alloy free energy, and κ is
ent energy coefficient. The lengths of the simulation domain are set to Lx = Ly = 200 with grid size of 256 × 256 and
nal model run time. BC and IC denote the used boundary and initial conditions, respectively. c∗ is the initial average v
order parameter that is perturbed by a constant noise magnitude A, and ζ is a Gaussian random number with the interv
+1]. Here, we consider two free energy function forms for the bulk free energy:

f (c) = W(c − cα)2(c − cβ)2

5
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f (ϕ) = a(T ) +
a2(T )
2
ϕ2 +

a4(T )
4
ϕ4

e the first one (hereafter called model I) approximates a symmetric well for a two-phase alloy with barrier height of tr
ation ofW. cα = 0.35 and cβ = 0.69 are the equilibrium composition of α and β phases, respectively, and are fixed to red
odel dimension to four. The latter free energy function (hereafter called model II) is also a symmetric well in the f
forth-order Landau polynomial where the material-dependent coefficients a2 and a4 not only control the barrier heigh
formation, but also the corresponding equilibrium values of field-order parameter (ϕ). Below the critical temperature w
aterial becomes unstable and decomposition occurs, a2(T ) < 0 and a4(T ) > 0.
sing the Fourier-spectral method for the spatial variables, and, treating the linear fourth-order operators implicitly and
near terms explicitly, the first-order semi-implicit Fourier-spectral scheme [39, 40] is used to solve the boundary v
em. The resulting numerical scheme is:

(1 + M∆tκk4)c̃n+1(k) = c̃n(k) − ∆t, k2{µ̃(cn)}k

e k = (k1, k2) is a frequency vector in the Fourier space, k =
√
k21 + k

2
2 is the magnitude of this vector and c̃(k, t) repres

ourier transform of c(r, t).
r study, all model parameters are continuous data, albeit some are constrained within certain bounds. For instance
osition ranges between 0 and 1. Yet, the phase diagram introduces additional constraints on the composition data, fur
wing the feasible range. Consequently, potential statistical distributions can include normal, lognormal, F, chi-square
ntial, t-student, Weibull, and non-normal distributions. While we do not enforce a specific distribution, we ensure tha
bution type and range align with the physical context. For instance, we employ truncated normal and uniform distribut
resent the alloy composition of model I in both proposal and target spaces. This distribution type is then considered w
rming the random sampling procedure.

HTP process of sampling from parameter posterior distributions and microstructure data generation is briefly show
1(a). To generate the proposal (i.e., known probability measure, µ) and target microstructure data, we sampled 10,000
t combinations of [c∗,W, κc,M] and [ϕ∗, a2, a4, κϕ,M] parameters out of the distributions shown in Fig. S12 and Fig.
ctively, and ran forward the phase-field model.

over, we conducted a global sensitivity analysis using the Sobol method on time series of microstructure data to eval
pact of model inputs on its outputs and their potential interactions. The detailed results are documented in the supplem
aterial in Tables S1,S2, andS3. In essence, the composition significantly influences the model output, specifically the

uctivity, during the initial stages of microstructure evolution. However, as the evolution progresses, although the comp
ffect remains substantial, the interaction between the composition and the gradient energy coefficient becomes increasi
al.

theless, the study incorporates two types of free energy models and two spaces (target and proposal), resulting in a tot
0 phase-field runs. From each phase-field run, we acquired a series of 50 micrographs, yielding 40,000 images for
ination and an overall total of 200,000 microstructure images. Fig. 3b presents examples of microstructures in the prop
bility space of model I.

computation time for solving the Cahn-Hilliard equation is approximately 40 seconds per simulation. Each simula
ed a single CPU and 7 GBs of random access memory. By implementing batch job submission routines, we distrib
0,000 simulations across 500 CPUs. This approach significantly reduced the overall simulation time to roughly 2 hour
ast to the 444 hours it would have required for sequential execution.

Material Property: Thermal Conductivity
ramework is motivated by the prediction of the thermal conductivity of heterogeneous structures. Over the past few deca
rchers have conducted a significant amount of research on the thermal conductivity (λ) of nanostructured materials, suc
lms [41], nanowires [42], and bulk nanostructured materials [43] and the results often highlight the influence of quan
nement [44]. The thermal conductivity of amorphous solids and polycrystalline cubic materials is in general isotropic
r. Typically, only one type of energy carrier dominates λ. In a multiple carrier system, thermal conductivity is calcul
king into account a sum of contributions from the lattice (λL), electrons (λe), photons (λr), i.e., λ = λL + λe + λr. Am
rominent systems in which multiple carriers are critical include thermoelectric materials (λL and λe) and thermal ba
ngs at high temperature (λL and λr) [45]. Based on Carnot efficiency (ηCarnot = T hot−T cold

T hot ) and generalized Zener crite
(
√
1 + ZT − 1)/(√1 + ZT + 1)), the maximum power-generation efficiency of isotropic thermoelectric materials is defi

6
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6, 47]:

ηMax
local = ηCarnotZe

[ √
1 + ZT − 1√

1 + ZT + ( T cold

T hot )

]

e Z is the thermoelectric figure of merit of isotropic material (Z = S 2σ
λ
) derived using macroscopic heat balance in t

ectric legs. A composite material’s ZT factor cannot exceed the ZT of its individual phases, according to Bergman
[48]. Nonetheless, Joule heating and Peltier effects invoked by defects and interfaces have been left out in this ass
[44]. In this context, it has been demonstrated by Bian et al. [49] that heterogeneity is important in maximizing ther
ric response. Likewise, Snyder et al. [50] proposed a compatibility factor for designing functionally graded thermoele
rials. Through this, the grand problem of thermoelectric energy conversion is shifted to optimizing three macroscopic
urable transport parameters (σ, S, and λ) as a group. To build upon the framework, we, however, concentrate on the
of effective thermal conductivity in composite dual-phase materials. Provided a diverse set of dual-phase microstructu
ffective thermal conductivity of these microstructures can potentially be determined using generalized Ohm’s and Four
itutive relations [47]).

Calculation of Isotropic Thermal Conductivity
Fourier heat conductivity equation with heterogeneous coefficient is solved for the steady-state case to simulate heat
gh the computed microstructures. This boundary value problem is:

∇α.∇T = 0 0 < x, y < Lx, Ly
IC : T (x, y, t = 0) = 50
BC : q.n = 0.05

e T is temperature, α is space-dependent thermal diffusivity that is given by α = ϕαp1 + (1 − ϕ)αp2 + AGBϕ
2(1 − ϕ2) w

he order parameter and AGB is an amplitude factor that controls the grain boundary conductivity. To reduce the comple
is set to zero in this paper that ensures a linear change in thermal conductivity in the grain boundary zone. q is the l
flux density. The constant heat-flux boundary conditions on the microstructure in the direction of an orthogonal heat
bottom-left corner to top-right corner is applied. The thermal flow is driven by constant temperature difference boun
itions across the structure in the primary flow direction, and a constant temperature is used as initial condition. The equa
olved by successive-over relaxation method where convergence were achieved by satisfying an L2 norm of less than 1×
arantee that the computed thermal conductivity is independent of the relaxation time. The computational grids coinc
the grid points used for Cahn-Hilliard equation. For a classical, isotropic material, the defining equation for heat conduc
urier’s law [45],

q = −λ∇T
e λ represents the material’s scalar thermal conductivity expressed in the International System of Units (SI) as Wm−1

T is the temperature gradient vector.

omputation time required to calculate the effective thermal conductivity, satisfying the defined tolerance, is approxima
econds, utilizing 28 CPUs. We executed a total of 160,000 calculations across three microstructural stages (early, mid
nal) to determine their effective thermal conductivities. By distributing these computations across 500 CPUs, we subs
reduced the total computational time to roughly 14 hours.

Uncertainty Propagation
rtaking uncertainty propagation (UP) with computationally intensive models, such as atomistic Density Functional Th
) simulations or meso-scale multi-physics phase-field models, can present a challenge. Propagating an ample numbe
les from a desired distribution through such models is often impractical due to computational cost. Furthermore, genera
les from a specific distribution can also be computationally demanding. A potential solution lies in utilizing sam
different distributions that have already been propagated through the same model, or devising a distribution that is
utationally taxing for sample extraction. We then apply the concept of change of probability measure to these samples.

stances where both the target and proposal distributions are known, the Radon-Nikodym (R-N) theorem provides a v
ion for a change of measure by calculating the R-N derivatives (the ratio of the target to proposal densities) and assig
hts to the samples. However, in our scenario, we presume that both the target and proposal distributions are unkno
equently, direct application of the R-N theorem becomes infeasible. [51] In the sample-based approach, our objective
mine the importance weights for each proposal sample. These weights enable us to precisely approximate the target sam
ty within any subspace of the feature (measure) space by resampling the proposal samples, weighted accordingly. Ind

7
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oncept mirrors that used in calculating probability density functions to determine the probability of encountering sam
pecific location or within a defined range in the distribution’s support.

e the notion of change of measure, we assume that there are two sets of samples available: one set is called the target, w
re interested to quantify the uncertainty of a quantity of interest after propagating this set of samples to the model, and
own as the proposal, which we aim to represent the target samples with it via change of probability measure. The chang
bility measure refers to assigning importance weights (equivalent to proposing a new density function) to samples dr
a proposal distribution, thus, the distribution of samples after resampling according to the assigned weights represen
t distribution. The importance weights are the ratio of probability densities at different locations in the space.

lustrative example of efficient uncertainty propagation (UP) through the change of measure is depicted in Fig. 1(b), w
nstrates a 2-D distribution of proposal samples. In this approach, we segment the feature space into subspaces by genera
ently sized hypercubes centered around the available samples, as exemplified by the four squares shown. A linear sys
uations is then constructed, with each equation linked to a specific hypercube to correlate the target density with indivi
sal samples. By resolving this system, we can estimate the importance weights between the proposal and target probab
ures. Although hypercube sizes can vary, we adopt a strategic method to maintain process tractability: initially, a hyperc
mpassing the entire feature space is created, which is then successively divided by two in all dimensions to produce sm
rcubes. This halving process repeats until the hypercubes reach a pre-determined size threshold.

defining the hypercubes for each sample, the empirical measure of a given hypercube Si is calculated as:

µi =
1
n

n∑

j=1

ISi (x j)

e µi defines the proposal probability measure in hypercube Si and ISi (x j) is 1 if x j ∈ Si, else its value is 0. The goal he
igh the empirical proposal measure such that

µi =

n∑

j=1

w jISi (x j)→ νi

e νi is the target probability measure. To find the importance weights, a system of equations in the form of Aw=B is for
olved for the importance weights. First, using values Pi j for each point and each hypercube as

Pi j(µ) = ISi (x j)

x A is arranged as

A =



P11 P12 ... P1n
P21 P22 ... P2n
...

...
. . .

...
Pk1 Pk2 ... Pkn



e n is the number of proposal samples and k is the total number of generated hypercubes. By creating the importance wei
r as w = [w1,w2, ...,wn], the weighted empirical proposal measure for each hypercube is Aiw. Then, matrix B is a k
n vector that each entry is associated to a hypercube and is the ratio of target samples in that hypercube to the total num
get samples. Basically, this is an estimate of the probability of having target samples in each hypercube. Note that i
t distribution is known, each entry can be calculated by integrating the probability density function over the correspon
rcube and this approach is still valid. Finally, to solve the system of equation, Aw=B, any least squares technique ca
oyed satisfying two conditions: weights must be bounded to [0,1] and they must sum up to unity.

merit of the sample-based change of measure lies in its convenience and cost-efficiency. With this technique, it is
sary to conduct new simulations or experiments when the distribution of input samples changes. Instead, one can ut
sults from previously propagated samples, reweighting them to achieve the target distribution of a quantity of interest.
ach is applicable even without knowledge of the actual sample distribution, as it merely relies on the existence of prop
arget samples within the input space.

Deep Generative Machine Learning
tional autoencoders (VAEs) are a type of unsupervised learning algorithm that can be used to generate new data by m
atent representation. VAEs consist of an encoder, a decoder, and a loss objective (ELBO: Evidence Lower Bound). The
r takes input data and maps it to a latent space. The decoder takes the latent space and maps it back to the original data sp
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loss objective is used to measure the difference between the original data and the freshly generated data typically der
gh Jensen’s inequality [27]. Consider N images {x(n)}Nn=1, with x(n) ∈ RNx×Ny×Nc ; Nx and Ny represent the number of pi
ch spatial dimension, and Nc denoting the number of color bands in the image (Nc = 1 for gray-scale images and Nc = 3
images). The learning process is conducted by minimizing the variational ELBO. Figure 2 illustrates an schematic with
rlying network architectures for encoder and decoder networks used in this study. The detailed information regarding
ork can be found in Fig. S20.

Figure 2: VAE model and the architecture of the encoder (inference) and decoder (generative) networks.

e latent space of the VAE, a Gaussian distribution is utilized where a sampling layer is performed as per the form
+ ϵeσ/2. In this formula, ϵ is a random tensor corresponding to the size of the latent space, holding values from a no
bution with zero mean and unit variance. The terms µ and σ originate from the last convolutional layer, which are
ned and connected to two dense layers. For visualizing this in 2D, the latent space is further reduced using kernel princ
onent analysis (kPCA) with a linear basis function kernel. The architecture of the encoder model is mirrored in the deco
ing optimal tuning between the encoder and decoder networks.

ptimization objective of the VAE is the evidence lower bound that is for any choice of inference model qϕ(z|x) is given

Lθ,ϕ(x) = logpθ(x) − DKL

(
qϕ(z|x)||pθ(z|x)

)

e the loss function is composed of a reconstruction term that makes the encoding-decoding scheme efficient and a regu
n term that makes the latent space regular. The VAE loss is provided by the sum of the Kullback–Leibler divergence
age reconstruction binary cross entropy.

equently, a complex microstructure space characterized by a complicated empirical distribution is stochastically map
simpler, compressed latent space. The encoder model, represented as qϕ(z|x), provides an approximation to the true
utationally infeasible posterior of the generative model, denoted by pθ(z|x). This generative model learns a prior distribu
t distribution expressed as pθ(x, z), employing the latent space and a stochastic decoder along with a prior distribution
tent space.

Results and Discussion
cilitate the discussion, we first delve into the characterization of synthetic microstructures that are generated with the H
-field method. We then discuss the microstructure-thermal conductivity connection for the calculated set of microstruct
an emphasis on distinct types of microstructures. Next, we explain the efficient UP results and how to link PSP and inv
structure-centered materials design using the deep VAE method for designing for thermal conductivity of multi-p
osite materials.

Microstructure representation
ostructure-based design faces two challenges: presenting high-dimensional microstructure images concisely, and determ
he effective macroscopic properties linked to heterogeneous microstructures. A microstructure image of a multi-p

9
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rial that contains bulk and interfacial features is a valuable source of information regarding the material’s properties. Pi
se images represent degrees of freedom, resulting in a remarkably complex information space.

the past decade, numerous studies have attempted to represent images as low-dimensional objects by reducing their c
ty. An overview is provided here [52]. Besides conventional physical descriptors (e.g., area/volume fraction of pha
features have been proposed to aggregate local information into global descriptors. A number of these are based on H
xture statistics [53], as well as local binary patterns, contrast features, visual bag of words [54], auto- and cross-correla
ions (e.g., two-point correlations). An example application of two-point correlations can be found in [55] and also art
shed by a portion of the authors in this paper [56, 57].

is study, we begin by computing a time-series of microstructural evolution to generate a 2-D microstructure dataset. Su
tly, we calculate the effective thermal conductivity at three selected time points during the evolution of the microstructu
arly, middle, and final stages. Besides determining the effective thermal conductivity of the microstructure, we also com
physical microstructure descriptors: the area fractions for the 2D microstructure images (A f ), the characteristic length sc
ed from Fourier transforms of the microstructure, and the bulk compositions of the yellow and blue phases, represe
in and cmax respectively. These basic microstructure descriptors are computed for assessing potential correlations betw
tive thermal conductivity and these descriptors. Figure 3(a) shows the probability density functions used to represent m
put parameters. To reflect the physical limitations in the parameter range, these distributions are chosen to be trunc
sian. By way of example, the free energy model limits alloy composition within the 0.35-0.69 range. Furthermore, p
formation must have a positive gradient energy coefficient, mobility, and barrier height. These limitations are impose
g the lower and upper bounds of parameter distributions accordingly.

e 3(b) illustrates a 15×15 microstructure palette representing the morphological variability of the computed microstructu
e 3(c) shows empirical cumulative density functions (eCDF) for the four different physical descriptors extracted. In t
CDFs change to reflect changes in the microstructure ensembles.

area fraction of phases (A f ) is determined by applying a global image threshold using Otsu’s method [58] to grays
es. This method is particularly effective for semi- and fully-decomposed microstructures with phase area fractions gre
0.2. For the estimation of characteristic length scale, we compute the circularly averaged Fast Fourier Transform (FFT
hase-field order parameter. As established in our previous work [11], this yields a unique curve for each microstructure
time, with the curve and its peak progressively shifting towards the right as the annealing time increases. To illustrate
resent a graph of the empirical cumulative distribution functions (eCDFs) of effective thermal conductivity at early, mid
ate stages of evolution in Fig. 3(d).

Microstructure/Property Connection: Thermal Conductivity
section examines the role of microstructure characteristics on effective thermal conductivity using the constitutive boun
problem described in section 2.4. We assume that close to equilibrium, transport is well understood through Fourier’s
e expect the thermodynamic fields to be smooth and thus to have good homogenization properties [59]. Precisely d
g λ is challenging due to measurement difficulties and subtle microstructure variations. However, our focus is to em
al transport as a test problem, acknowledging that thermal conductivity is influenced by the phases’ nature, volume, sh
and topology.

itially examine two microstructures with distinct morphologies - circular and bicontinuous - with fixed phase area fract
and 0.5). To understand the individual phase’s thermal diffusivity role, we vary the precipitate thermal diffusivity to m
ratio from 0.01, 0.1, 1, 10, to 100 and repeat thermal conductivity calculations. Figure 4(a and b) presents steady-

conduction calculations for these cases and 5 ratio calculations each. Figure 4(c) offers a comparison of these microst
’ thermal conductivity as a function of the thermal diffusivity ratio between phases, morphologies, and particle area fracti

particle area fractions and phase thermal diffusivity significantly influence the effective thermal conductivity. For insta
icrostructure with highly diffusive precipitates (αp1/αp2 > 1), a circular morphology results in lower thermal conduct

a bicontinuous one. In contrast, for a highly diffusive matrix phase (αp1/αp2 < 1), the bicontinuous morphology exh
ed thermal conductivity. Here, p1 : ϕ(r) = 1 and p2 : ϕ(r) = 1 represent the two phases, with phase p1 having a higher
fraction. Also, the ratios of 0.1 and 10 essentially interchange the thermal diffusivity values of the phases. Results indi
material with circular precipitate morphology and a high thermal diffusivity ratio above 100 can decrease overall λ, w
be suitable for power generation or refrigeration. Additionally, there is approximately an order of magnitude difference
een circular and bicontinuous morphologies with the same thermal diffusivity ratio.
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(a) Input-parameter space (b) Structure space

(c) Quantities of Interest (QoI)

← time direction

← time direction

(d) Property Space: Thermal Conductivity

3: Proposal probability space for model I. (a) Proposed distributions for input parameters of the phase-field model, free energy model I (i.e., [c∗, ρs, κc
pical microstructures obtained from solving Cahn-Hilliard equation using a symmetric double-well potential. (c) Transient eCDF plots of four QoI
raction of phase α, radially averaged characteristic length scale, Max. and Min. concentrations in the domain (i.e., cα, cβ) extracted from the 1
structures. Different eCDF lines show evolution in probability measure as a function of time for different sets of microstructure images synthet
led the same amount of time. (d) Transient eCDF plots of thermal conductivity for three sets of microstructures (each set contains 10,000 microstruc
o cases of thermal conductivity ratios, αp1/αp2 = 0.1 and αp1/αp2 = 10. Set one corresponds to time 95.2 (early stage), set two corresponds to time
tage), and set three corresponds to time 600 (final stage).

lve deeper into the influence of phase fraction and characteristic length scale on λ, we ran heat conductivity calculat
040 diverse dual-phase microstructures selected from 10,000 proposal samples. We obtained A f and characteristic le
from each microstructure’s final simulation time-step.Figures 5(a-d) present 2D joint plots illustrating the impact of the
sivity ratios (αp1/αp2 = 0.1 and αp1/αp2 = 10) on thermal conductivity, which ranges approximately between 0.002
. In both cases, the lowest thermal conductivity is typically found in circular or semi-circular morphologies when the m
has lower thermal diffusivity. The thermal conductivity is inversely related to the area fraction A f for αp1/αp2 = 0.1,

tly proportional for αp1/αp2 = 10, implying an inversion in the pairplot distributions for different ratios.

rmining an immediate correlation in the characteristic length scale and thermal conductivity pair plots is difficult. Traditi
lots do not provide direct visual insight into microstructures and often require further labeling, impeding the establishm
P relationships. Due to the limitations of classical pair plots, it is difficult to understand the effects of alloy compositio
l parameters on thermal conductivity and we will conduct deep VAE to establish PSP in section 3.4. Our next objectiv
eate sequentially optimal sampling policies for the non-intrusive and efficient UP from model inputs to model outputs
E models.
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Temperature profiles

2 = 0.01 αp1 /αp2 = 0.1 αp1 /αp2 = 1

αp1 /αp2 = 10

αp1 /αp2 = 100

(b)
Temperature profiles

αp1 /αp2 = 0.01 αp1 /αp2 = 0.1 αp1 /αp2 = 1

αp1 /αp2 = 10

αp1 /αp2 = 100

αp1 /αp2 < 1⇐=—=⇒ αp1 /αp2
(c)

4: Example calculation of effective thermal conductivity for the microstructure cases shown in (a) circular and (b) bicontinuous. We have assume
etical materials in which the ratio of thermal diffusivity between the two phases are 0.01, 0.1, 1, 10 and 100. The heat flows from bottom-left corn
ht corner, and the calculated steady-state temperature profiles for each ratio are shown next to each microstructure. (c) The change in effective th
ctivity as a function of the ratio of thermal diffusivity of phases for the two microstructure cases and five hypothetical materials.

(a)
αp1/αp2 = 0.1

✂
✂✌

✄
✄
✄
✄✗

(b)
αp1/αp2 = 10

❈
❈
❈
❈❖

✂
✂
✂✌

(c)
αp1/αp2 = 0.1

(d)
αp1/αp2 = 10

5: (a) and (b) 2D kernel density estimates for thermal conductivity and area fraction with data points overlayed over this density for cases (a) αp1/αp2
) αp1/αp2 = 10. (c) and (d) 2D kernel density estimates for thermal conductivity and characteristic length scale with data points overlayed over this de
es (c) αp1/αp2 = 0.1 and (d) αp1/αp2 = 10. In the plots, the time of evolution is fixed at 600.

Efficient Uncertainty Quantification via Change of Measure
, we implement a general sample-based technique [21] for change of probability measure, regardless of the distribut
which samples were generated from. The motivation here is that computational complexity and cost are serious bottlen
e design process and if input space (e.g., distribution range or type) changes, we can therefore transform the results to a
ace.
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e 6 presents the empirical cumulative distribution functions (eCDFs) for four quantities of interest (QoI) at early and
lation stages for free energy models I and II. The overlay of target samples’ eCDFs confirms the accurate representatio
distribution by our weighted proposal samples. For detailed insights into the evolution of the eCDF shapes for each
time, see Figures S16 to S19 in the Supplementary Document.

7 shows the eCDFs of the thermal conductivity that we obtained in the cae of free energy models I. The goal here is to
ample-based technique to estimate importance weights to determine the uncertainty in QoI or property space by weigh
roposal samples accordingly, regardless of the type of initial prior distributions. Note that a reasonable choice to gene
sal samples when there is little knowledge about the target sample distribution is the uniform distribution. However, th
requirement.

Area fraction Circularly Averaged FFT cMax cMin

M
od

el
I

(a.1) (b.1) (c.1) (d.1)

(a.2) (b.2) (c.2) (d.2)

M
od

el
II

(e.1) (f.1) (g.1) (h.1)

(e.1) (f.1) (g.1) (h.1)

6: eCDFs corresponding to all QoIs at middle and final time increments for models I and II.Model I: (a.1) and (a.2) correspond to the first QoI
n) at middle and final states. (b.1) and (b.2) correspond to the second QoI (circularly averaged FFT of microstructure) at middle and final states. (c.1
orrespond to the third QoI (cMax) at middle and final states. (d.1) and (d.2) correspond to the fourth QoI (cMin) at middle and final states. The same
s for model II.

, we used 5,000 target and 10,000 proposal samples. These values might vary for different problems based on feature s
nsionality and input distributions. To validate the sufficiency of our proposal samples, we ran 100 simulations, each
mly selecting samples. Starting from 500 samples and increasing in steps of 500, we calculated importance weights
QoI. Instead of using eCDFs, we used the Wasserstein metric as a measure of similarity between the weighted proposal
t distributions. Lower metric values indicate more similarity, with zero indicating identical distributions. For more on
erstein metric, see Ref. [60].
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Figure 7: eCDFs corresponding to thermal conductivity at final time increments for model I.

(a) (b) (c) (d)

8: Mean and confidence interval of Wasserstein distances in model I between target and weighted proposal distributions of different QoI
on of number of proposal samples resulted from 100 replication of simulations. (a) First QoI. (b) Second QoI. (c) Third QoI. (d) Fourth QoI. A
r of available proposal samples increases, target and weighted proposal distributions get more similar.

g. 8, Wasserstein distances between target and weighted proposal for all four QoI are depicted versus number of prop
les. Increasing the number of proposal samples results in better convergence to target distribution (as Wasserstein dist
creasing). However, at some point, the improvement saturates, as the sampled points are already sufficient to produce
t distribution accurately.

is section, we used advanced UP and high-throughput phase-field modeling to explore the microstructure design spac
ward manner. Our results suggest that weighed sampling approaches can yield very accurate descriptions of propag
rtainty in complex models at a fraction of the expense necessary if one were to use brute force approaches.
e past few years, advances in machine learning have culminated in sophisticated generative models that can create real
l instances of the system under investigation by learning from distributions over real examples. the focus of this effort wa
rd propagation of information. An important aspect that remains to be explore in this work is how to exploit the avail
mation to carry out inverse design.
, traditional MC-based UP generated close to 40,000 time-series of microstructure data (total of 40,000×40 images).
provides sufficient information to train generative models (based in this case in VAEs). Provided the training samp
ient, generative models can greatly advance microstructure-centered materials design workflows, enabling the mate
opment in a fraction of the time needed in traditional methods. Our next section will explore the use of VAEs to
and design inverse microstructures for thermal conductivity. Yet, the framework is also useful for designing mechan
rical, or chemical properties.

PSP Relations and Inverse Microstructure-Centered Materials Design
e 9(a) displays the microstructure distribution in the latent space of the deep VAE model. Each microstructure im
sitioned in the kernel Principal Component Analysis (kPCA) representation, capturing the first two components. Th
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pace provides a qualitative environment to analyze correlations between model input variables and associated proper
mploying a basis transformation through a dense layer, the kPCA space combines the VAE images and input parame
representation reveals clear separations between microstructure classes, indicating significant correlations among the
ructures, the material parameters, and the resulting thermal conductivity. Microstructures in the kPCA space exhibit a c
lation with the physical phase diagram: yellow precipitation is located on the left, dark precipitation on the right, and bi
us structures in the middle. Increasing kPCA1 corresponds to a coarsening effect.

a) Microstructure Map

kPCA1

kPCA2

) composition (c) thermal conductivity

αp1/αp2 = 0.1
(d) thermal conductivity

αp1/αp2 = 10

9: The visualization of composition-microstructure-thermal conductivity relations. (a) Microstructure map in the latent space of the VAE model sho
nsition from yellow circular to bicontinous and then dark circular microstructures with a yellow matrix. In the phase diagram, we see the same morph
ansition moving from left to right in the unstable two-phase region. (b) The change in alloy composition as a function of the microstructure morpho
(d) The change in thermal conductivity as a function of the microstructure morphology for the cases of (c) αp1/αp2 = 0.1 and (d) αp1/αp2 = 10.

es 9(b-d) show the color-coded latent space, revealing the relationship between alloy composition and thermal conduct
tios of 0.1 and 10. The results indicate an inversion in thermal conductivity between the two cases, with outliers obse
e ratio 10. Specifically, when the matrix phase has lower thermal diffusivity (αp1/αp2 = 0.1), increasing alloy compos
to a decrease in thermal conductivity. The results reveal an inverted relationship for higher thermal diffusivity in the m
(αp1/αp2 = 10). Microstructures with finer particle morphology and lower matrix phase diffusivity exhibit lower the

uctivity. The thermal conductivity of the alloy is influenced by alloy composition, microstructure morphology, volume f
characteristic length scale, and the thermal diffusivity of individual phases. Engineering the phase interface offers pote
ol over the alloy’s thermal conductivity.

e the inference model and latent space characterization allowed us to establish PSP relationships, the generative m
les inverse design. With the use of the VAE decoder model, the material design process can now be inverted; instea
pting to find the source of improved performance from existing data, the model can be used to generate new microst
with the respective processing/material parameters that potentially have the desired performance.Figure 10(a) comp
structures generated by the VAE decoder model with those from the original dataset, showing their close resemblance.
cted estimates versus true target values in Fig.10(b) and Fig.10(c) demonstrate high accuracy with low residual MSE.
-field and VAE reconstructions in Fig. 10(d) indicate successful interpolation by the generative model. However, in ext
n, the VAE may struggle to recognize the boundary between unstable dual-phase and nucleation/growth regions, sugges
eed for training with a wider range of microstructures to fully capture the underlying physics.
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e 11(a) presents a composition-thermal conductivity diagram designed using the VAE model. The diagram allows for se
lloy compositions with desired microstructures and thermal conductivity while fixing the other model parameters. The t
oy thermal conductivity as a function of the ratio of thermal diffusivity of the phases is depicted in Fig. 11(b). The de
ach takes into account the influence of relative thermal diffusivity of phases on alloy microstructures and thermal con
. By understanding the relationship between alloy composition and thermal conductivity, the design identifies optimal a
ositions with desired microstructures and thermal conductivity. This optimized design has practical applications in fa
g materials with enhanced thermal properties for specific uses. It is especially valuable for thermoelectric materials, w
al conductivity plays a crucial role in performance. Through the optimization of alloy composition and microstructures
n can improve power output and efficiency in thermoelectric materials.

Original

=⇒

Generated

(b) (d)

(c)
G
ra
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en
tE

ne
rg
y
C
oe
f.
(κ
)

Extrapolation Interpolation
Composition −→

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.
Phase-field Method (True)

Variational AutoEncoder (Generated)

10: VAE model performance. (a) Analyzing the difference between actual and simulated microstructures as calculated by the phase-field method (orig
e VAE method (generated). (b) and (c) True (phase-field) vs. predicted (VAE) estimates of microstructures for extracted QoI (b) phase area-fractio
aracteristic length scale. The VAE exhibits excellent interpolation performance, while extrapolation cases show slight deviations (the tails). (d) De
f the phase-field and VAE microstructures for different compositions and λ. When the composition is below 0.4, the alloy does not show miscibilit
field modeling does not predict morphology. VAE, however, extrapolates a circular morphology that is not physical.

Summary and Conclusion
mmary, we introduced a general-purpose machine learning framework for inverse microstructure-centered materials de
redicting the effective thermal conductivity of multi-phase materials. We also introduced the use of R-N derivative
rm uncertainty propagation effectively when the design and in turn the range and type of data change. We built the fra
on microstructure data generated with high-throughput phase-field modeling. The created synthetic microstructure
nstrate spontaneously decomposing alloys that are curated on the Open Phase-field Microstructure Database, OPMD
p://microstructures.net) and Zenodo platform [61] (https://doi.org/10.5281/zenodo.7702179) for com
ccess. Overall, the methods proposed in this study allow generation of new microstructures with desired properties o
rial as a function of material composition and other variables.

ork uses a deep VAE to link alloy composition and model parameters to microstructures and consequently thermal con
. In the VAE model, the microstructure information (i.e. image) plays a fundamental role, and both material parameters
rties can be easily linked after successful training, leading to a process-structure-property relationship. Moreover, the V
tilize the learned representations to generate new microstructures as well as the creation of embeddings for microstruc
eters, allowing prediction of thermal conductivity. Additionally, deep VAE eliminates the need for reduction of microst
to physical or non-physical descriptors.

dition, we explored the microstructure design space using advanced UP in a forward manner. We found that weig
ling approaches can yield accurate descriptions of propagated uncertainty in complex models. We sampled from des
bility distributions and as the number of available proposal samples increased, the Wasserstein distance between target
hted proposal distributions got smaller, but at some point the improvement saturates. By implementing the R-N theo
we are able to change a measure from any set of evaluated data to a target measure without having to run new expen
riments.
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11: A microstructure map predicted by the VAE model in the space of composition and thermal conductivity. We assume that the other parameters
r height, mobility, and gradient energy coef.) are fixed for this visualization. (b) The general trend in thermal conductivity as a function of ratios of th
vity of the phases (i.e., 0.1 and 10).

ound that circular morphologies with lower thermal diffusivity in the matrix phase had lower thermal conductivity.
ge in thermal conductivity with respect to microstructure and corresponding material properties (e.g., alloy composition
ed in the latent space of the VAE allowing to establish PSP linkages. Additionally, the generator model is used to inver
n microstructures for a desired thermal conductivity. Thermoelectric designs should focus on creating a microstructure
uch of a difference in thermal diffusivity between the matrix and precipitate phases as possible, while also emphasizi
lar morphology to maximize the reduction of thermal conductivity. To further optimize thermoelectric performance,
al to consider the microstructure, its morphology, and the respective impacts on electrical and Seebeck coefficient.

e the current work represents a modest demonstration of the importance of uncertainty-aware analysis of PSP relationsh
nts toward important future research directions. It would be interesting, for example, to examine how this framework
corporated into more general frameworks aiming at microstructure-sensitive design and optimization. Other potentia
s for research are to investigate how the present VAE model can be further improved. Several directions can be expl
proving this approach to microstructure design. There are many ways to extend the VAE models. You can change

, the posterior/variational posterior, regularize the posterior, and change the architecture. Changing the architecture incl
ging the layers to RNNs/LSTMs/CNN layers, and using other divergence measures instead of KL divergence. Many of t
tions often include convolutional layers, even if not explicitly stated. Additionally, the effect of local grain boundarie
ffective thermal conductivity of a material will be considered in future studies.

Data Handling
ataset called OPMD version 1.0, contains 40,000×50 or 200,000 computationally generated microstructure images tha
ned from 40,000 distinct phase-field simulations where 50 time sequences is saved from each simulation. The datas
ed into two equal-sized sets called proposal samples and target samples. All images are 1167×875 px2 that compos
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parameter to a Red-Green-Blue (RGB) color scheme. The extraction of QoI is performed using the original raw data.
es were further resized to 64×64 before being fed into the VAE model. The microstructure dataset futures a diverse s
ical spinodal morphologies.

Data availability
ta DOI is available for the image data that the VAE model in this manuscript relies upon: https://doi.org/10.52
do.7702179 [62]. Alternatively, you can access the entire raw and image data at the Open Phase-field Microstruc
base (OPMD) website via the link https://microstructures.net [36].
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R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Agui
Iparraguirre, T. D. Hirzel, R. P. Adams, A. Aspuru-Guzik, Automatic chemical design using a data-driven continu
representation of molecules, ACS central science 4 (2) (2018) 268–276.
Y. Kim, H. K. Park, J. Jung, P. Asghari-Rad, S. Lee, J. Y. Kim, H. G. Jung, H. S. Kim, Exploration of optimal microstruc
and mechanical properties in continuous microstructure space using a variational autoencoder, Materials & Design
(2021) 109544.
Z. Wang, W. Xian, M. R. Baccouche, H. Lanzerath, Y. Li, H. Xu, Design of phononic bandgap metamaterials base
gaussian mixture beta variational autoencoder and iterative model updating, Journal of Mechanical Design 144 (4) (2
041705.
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