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A deep neural network regressor for phase constitution
estimation in the high entropy alloy system
Al-Co-Cr-Fe-Mn-Nb-Ni
G. Vazquez 1✉, S. Chakravarty 1, R. Gurrola1 and R. Arróyave1,2,3

High Entropy Alloys (HEAs) are composed of more than one principal element and constitute a major paradigm in metals research.
The HEA space is vast and an exhaustive exploration is improbable. Therefore, a thorough estimation of the phases present in the
HEA is of paramount importance for alloy design. Machine Learning presents a feasible and non-expensive method for predicting
possible new HEAs on-the-fly. A deep neural network (DNN) model for the elemental system of: Mn, Ni, Fe, Al, Cr, Nb, and Co is
developed using a dataset generated by high-throughput computational thermodynamic calculations using Thermo-Calc. The
features list used for the neural network is developed based on literature and freely available databases. A feature significance
analysis matches the reported HEAs phase constitution trends on elemental properties and further expands it by providing so far-
overlooked features. The final regressor has a coefficient of determination (r2) greater than 0.96 for identifying the most recurrent
phases and the functionality is tested by running optimization tasks that simulate those required in alloy design. The DNN
developed constitutes an example of an emulator that can be used in fast, real-time materials discovery/design tasks.
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INTRODUCTION
For much of human history, the development of metallurgy has
been intrinsically tied to the development of civilization. Over the
course of modern history, new alloys were made by identifying
one principal element and different elements were added to this
matrix to achieve the desired properties, forming the principal
element alloy family. However, the number of elements in the
periodic table is limited, thus so are the number of alloy families
that can be developed conventionally. High Entropy Alloys
(HEAs)1–5 are defined as alloys composed of five or more elements
with concentrations from 5% to 35%6. Yeh et al. coined the term
and stated that configurational entropy (ΔScon) has a maximum
value when the elements are in equal proportions and increases
with the number of elements2. This high configurational entropy
would contribute to the stability of solid solutions relative to other
competing phases (such as intermetallic phases). While config-
urational entropy as a key alloying concept in HEAs now plays a
minor role, the unique properties and incredibly large search
space for HEAs make them an incredibly rich and attractive
research program for the metallurgy community.
Despite their promise, the vast compositional space in HEAs

makes it unfeasible to study through exhaustive experimental
approaches. In order to address this problem, there has been
considerable effort at trying to develop Machine Learning (ML)
techniques in order to make the exploration of the HEA space
more efficient and effective. In fact, ML-guided research in the
HEA field has covered substantial ground, particularly when it
comes to identifying single-phase solid solutions amenable for
further (experimental) development. Traditionally, to design solid
solutions, the most used criteria is the empirical Hume-Rothery
rules7,8. However, since the distinction between the solute and the
solvent is nebulous in HEAs, the thermodynamic relations are
accordingly modified9,10. Parameterization of unary and binary

properties have been used to draw empirical relationships for
phase selection11,12. Most notably, the average formation
enthalpy, the atomic size difference13, and the Valence Electron
Concentration (VEC)14 have been proposed as discerning para-
meters for phase selection. Recently, the idea behind the Hume-
Rothery rule has stimulated further interest in developing ML
frameworks for alloy design12. The accessibility of open-source ML
algorithms and a constantly growing database of experimentally
synthesized HEAs has opened the way for recent ML-assisted
exploration and phase stability predictions in the HEA chemical
space11,12,15–23. Zhou et al.12 used a featurization of 13 design
parameters heavily based on thermodynamic properties into
different ML models. Classification into four different classes was
thus achievable by using these design parameters. Wu et al.16

developed an ANN model to predict HEAs with near-eutectic
compositions. ML-assisted design of compositionally complex
HEAs was able to obtain superior mechanical properties.
Literature contributions to ML-guided models for HEA’s stable

phases are mainly applied towards classification, yet HEA phase
composition is a continuum space that could be described better
by regression. Deep Neural Networks (DNN), for example, have
been proven useful in real-world complex applications24 and in
materials science as well25,26, and should be able to quantitatively
predict the phase constitution of a system—i.e., specific numerical
phase fraction values—, provided sufficient data is available.
Moreover, the use of phase fraction values instead of alloy classes
could improve the efficiency at which ML models map the
potential energy landscape12,27–31 of competing phases in HEAs.
The major drawback of this approach is the lack of sufficient data
with accurate phase fraction value, since the objective multiphase
HEAs are rarely characterized as most of the literature is biased
around single solutions HEAs.
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In this work, an inline ML model for predicting phase fraction is
developed which can be used in conjunction with other available
computational tools for alloy design. In this regard, a deep neural
network is designed and trained using a dataset generated by
Thermo-Calc phase equilibria calculations for the elements: Mn, Ni,
Fe, Al, Cr, Nb, and Co. Featurization for the HEA space has been
approached by composition-dependent transformations inspired
by available literature in HEA phase classification11,12. This
parametrization from elemental properties is useful in that more
information is available to build the model and feature selection
may unveil new empiric relationships. The trained model was used
as a surrogate for computational phase equilibria calculations and
high-throughput search alloys with targeted phase composition.
We note that the major motivation for this work is the

demonstration that it is possible to develop fast-acting surrogates
for computational thermodynamic engines that otherwise would
be available in alloy design operations. To address this demanding
objective we propose a Deep Neural Network (DNN) trained on
high-throughput data obtained via the CALPHAD method to
accelerate the discovery of materials by accelerating optimization
techniques and advancing the knowledge on the feature
importance on the HEA design. The development of the proposed
model also serves as a demonstration of the ability of neural
networks to represent complex, highly-dimensional and non-
linear phase constitution spaces. The reader is referenced to the
Methods section for the DNN specifications.

RESULTS
Pearson’s correlation between the proposed feature space and the
phase classes are shown in Fig. 1. By visual inspection, feature
correlations for each phase have clear distinctions, creating a
unique phase-feature signature. While insufficient for discerning
between phases, given a composition vector and its subsequent
feature transformation, it points toward the fact that phases are
responsive to different features even if they are a transformation
of the same elemental property (avg, red, and diff).
Averages (avg) and harmonic averages (red) have almost the

same correlation values with the phases, however mean
differences (dif) have a distinctive correlation. For instance,
commonly referenced properties such as the VEC average have
a high correlation with the FCC phase, and therefore the harmonic
average too, but for the difference average, the correlation
becomes slightly negative. Alternatively, the BCC phase has a
negative correlation with the average and a positive correlation
with the difference. However, opposite correlation in difference
averaging to those in arithmetic avg and harmonic (red) does not
repeat for all properties. Therefore, different features turn out to
unveil new information not accessible by common averaging
methods.
A previously studied feature, the atomic difference (δ) feature,

has a strong negative correlation with FCC, interestingly it has a
slightly positive correlation with BCC. A low δ is usually linked to
single solutions, yet Pei et al.19 have shown that single BCC
solutions have higher delta values compared to HCP and FCC,
even overlapping with multi-phase alloys.
To further explore how this feature construction maps the HEA

space in question, a Principal Component Analysis (PCA) is run in
the whole feature space in the train dataset. Figure 2 shows the
two first Principal Components out of the PCA and a coloring
corresponding to the phase fraction of each phase/class: Regions
with a higher concentration of one of the classes cluster together
and are separated by faded borders to different classes. This
indicates the proposed space is linked to the phase fraction given
that there is enough information for each phase.
Even though some of the features have been proven to

efficiently discern between different phases and/or mixtures of
phases, this specific set has not yet been proven to do so. Thus

since PCA succesfully clusterizes the phase fraction in an
unsupervised training setup, we proceed to apply a more
computationally expensive model.
The DNN architecture consists of four hidden ReLU layers and a

single softmax output layer. As shown in Fig. 3, the DNN was
trained for 10,000 epochs, on which over-fitting on the training set
never compromised the validation loss, the loss chosen for
training is the mean squared error, in which errors for each data
point are taken in each class, squared, summed up and averaged.
This choice of loss also prefers smaller errors in all phases, rather
than a perfect match at the cost of more pronounced errors.
Activation functions in the hidden layers have been chosen due to
optimal performance and on the output due to the composition
problem constraint. We refer to the output layer as phase fractions
instead of the common probabilities used for soft-max-based
DNNs. Layer sizes are proven to capture the complexity of the
input space and efficiently map them to five different classes of
phases.
A K-medoids partition method was also tested as illustrated in

Supplementary Fig. 1 to test the model’s invariance under a
different splitting strategy and maximize the composition distance
between training data-points. The test showed a slight decrement
in the overall accuracy, yet the model still performs within
reasonable margin errors as shown in Supplementary Table 3.
Subsets of data are chosen randomly from each of the complexity

levels of the subsystems (3-component, 4-component, ...) so we
assure there is an equal partition in all levels of ideal entropy of the
alloy space: 70% for training, 10% for validation, and 20% for testing;
similar values for accuracy are expected through all subsets assuming
the data behave uniformly across the levels of complexity of the
system. Random data partition within each subset of different
elemental complexity ensures the testing data falls within a
reasonable alloy space composition that reflects the application of
the regressor and the training data alike32. In addition to the classic
training, validation, and test partition of the data-set, a 10-fold Cross-
Validation method was applied in the combined train and validation
data, where this set was split ten times randomly. Additional
information on each partition subsystem and prediction results are
provided in Supplementary Tables 1 and 2, respectively. For each
split, a DNN model trained and validated in 90% of the data is tested
in the rest of the available data. Lastly, the model is chosen and
results for prediction at each phase for training, validation, and
testing data-sets are shown in Fig. 4. Parity plots show the efficiency
of predicting the phase fraction for each final class for our
5-dimensional regressor. The DNN model not only follows this
premise but also restrains the coefficient of determination for all
classes to be above 0.95 and for simple solid solution classes FCC and
BCC above 0.98. This makes the trained DNN extremely efficient in
quickly map the system in search of concentrations that stabilize
simple solid solutions.

Feature significance
Unveiling elemental features that explain the relationship
between phase fraction and composition is of special interest
for HEA design. This work takes advantage of the heavy
featurization construction and the final surrogate model to
explore the Shapley values for each feature. A random subset of
5000 from the training data on the highest complexity subsystem
(7-element alloy) is analyzed to obtain the Shapley values33,34.
Shapley analysis returns SHAP values for each of the generated

classes. SHAP summary plots are shown in Fig. 5(a,c) for the
highest ranking features using a Deep Explainer to approximate
the shape values using a random subsection of the training data
of 5000 samples. The features returned by this SHAP analysis seem
to favor those historically used in HEA design (Sid,Hmix,Kstd, etc.).
Generated composition-based features for the model regressor
come in second by the SHAP analysis. Specifically,
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electronegativities appear to be ubiquitous in the model. Different
analytic definitions of electronegativity appear multiple times in
the top 30 features.
Two different background datasets were used to generate these

two analyses, one where 5000 datapoints are randomly chosen
and other where data is composed of 5000 high FCC concentra-
tion (>90%FCC) as per the DNN regressor output. Overall, common
features are chosen in both analyses. Nevertheless, high
concentration FCC changes the ranking of the features due to a
highest FCC concentration. Giving this single model changes the
concentration profile of the background more weight is given to
those features that are more likely to determine the single FCC
phase selection.
Feature selection for future analysis was chosen by selecting

commonly reported features in the literature11,35 in comparison
with obscure new feature vectors that appear in the Shapley
analysis. In Fig. 6, the simplified results from random sampling in
the seven-component system are showcased in order to visualize
the value for the chosen features and how phase constitution
results are arranged in a pseudo-ternary diagram. In this diagram,
FCC and BCC remain as a single-phase class and the rest of the
intermetallic phases are summed up together in a vertex of the
ternary representing the Rest (classes σ, C14,Laves, and IMs). The
diagram consists of 200,000 random data-points where those on
the sides of the triangle are filtered out. The features chosen by
the feature analysis are atomic size difference (δ), Valence Electron
Concentration (VEC), enthalpy of mixing (ΔHmix, Ideal Entropy of
Mixing Sid, Pauling Electronegativity (χPauling), and Polarizability (α).
The parameter δ qualitatively matches the previously reported

findings of a higher probability of finding a Solid Solutions at

lower values of δ13,35,36. Results match those presented by Pei et
al.19 in that FCC-rich zones undoubtedly show the lower values in
the feature, while BCC shows larger values, it makes it difficult to
tell apart from the IMs-rich zone values. Furthermore, VECavg
coincides with the available literature the highest values for VECavg
a high probability of FCC, and at values below 7, we start to see
BCC formation37,38. The difference between values near full BCC
and the Rest class are not far apart, but those for BCC are slightly
higher such as was shown by Yang et al.39. Again, a property-
related feature, the weighted difference mean VECdif, offers a
higher specificity towards BCC, with higher values pointing
towards the formation of this simple solution.
Thermodynamic quantities chosen return no surprising results,

entropy shows an almost uniform value throughout the sample
space with the slight higher concentration of lower values near
the full FCC vertex. Therefore, while entropy gives its name and
most probably its stability to this alloy subset is not the only
parameter that drives its stability. Enthalpy of mixing excludes
higher values for high-concentration FCC alloys in this work and it
agrees with previous reported works12,13,35. It also agrees with
previously reported range of solid solutions at enthalpies higher
than −5 kJ/mol and the more negative the enthalpy becomes, the
more likely there is compound formation37.
The electronegativity parameter chosen is the weighted

difference (χdifPauling). Yet, this value doesn’t match the trends of
standard deviation of electronegativity shown to favor solid
solutions at lower values37,40. In our case, the stoichiometrically
weighted mean difference goes from low value on intermetallic
phases, and higher values on high-concentration FCC. This stark
deviation from the expected behavior was analyzed by calculating

Fig. 1 Pearson’s correlations of feature space. Pearson’s correlation between the constructed feature space and the final five classes.
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the widely used standard deviation of electronegativity which
shows agreement with the previously reported trend, that
attributes single solution formation to smaller deviations improv-
ing the chemical compatibility. This contrasting difference is
attributed to the binary construction of the weighted difference
formula. The difference weighted mean is built to keep track of
the difference between each atom pair in the alloy in contrast with
the unary and averaged method used in standard deviation. This
result indicates that different approaches in featurization of the
same atomic property may benefit the robustness of an ML model
in HEAs providing more information of the system. Similarly,
average polarizability (α which is closely connected to electro-
negativity also draws a clear trend in which lower α have higher
concentrations of simple phases. This can be understood, in the
same manner, as a consequence of chemical compatibility in the
alloy. The atoms less likely to polarize are consequently more
stable in a solid solution.
The correlation profiles from the significant features are shown

in Fig. 7, the ones theorized to contain valuable information on
the phase space of the alloy, from these, we are set to draw
guidelines for the quick design of new alloys. The figure
showcases the scattered heat map of the phase composition
space using the same pseudo-ternary representation where the
coloring of the scattering corresponds to the RGB color code
obtained from the composition vector [FCC, BCC, Rest]. In the right-
hand corner the correlations are supported by Linear Suppport
Vector Classification (l-SVC) decision borders where classes
correspond to the highest concentration class in a data-point,
this is used as a quick visualization tool and a first approach for
alloy design. Also, the values for precision for the classification task
for each one of the classes are shown at the upper right-hand
corner to serve as quantitative reference for the visual inspection
of the features. From top to bottom, the values correspond to FCC
(red), BCC (green), and the Rest (blue).
The use of only two features may accelerate and simplify first

approaches towards composition optimization in the HEA space.

The features that appear to work the best towards this end are the
polarizability (α), the weighted difference (VECdif) and the average
of the valence (VECavg); they create the most partitions in phase
constitution concentration in the randomly sampled data-set. That
is, similar phase constitution profiles appear to cluster better when
using one of these features. Notably, the combination of αavg and
VECavg returns the highest values for the l-SVC model precision
followed by the pair αavg and δ. Polarizability has a higher
concentration of simple solutions at lower values and the use of
an extra feature allows to discern between FCC and BCC.
Therefore, alloys designed from only two easily calculated features
from atomic properties may yield single solid solutions. For
example, αavg and VECavg can be optimized for chemical
compatibility using polarizability and the topology governed by
the delta parameter discerns between FCC and BCC.
Some of the precision values are zero or one for the BCC phase,

this means the model broke at these parameters and is either
predicting none or just a few BCC-rich alloys, respectively. That is,
the model gives up BCC prediction for heavy superposition of
classes. Consequently, the use of this tool is only for visualization
purposes and it is not designed to be used as a robust model but
to give soft borders for general HEA design inspired by the Hume-
Rothery rules. Besides, following optimization mechanisms do take
advantage of the continuous output of the DNN regressor.

FCC phase prediction
The experimental data-set compiled by Ronald Machaka11 was
filtered for alloys that presented single FCC solutions annealed at a
temperature higher than 800∘C. The DNN is applied to these
points and it is expected for it to return values close to 1. At best,
the regressor trained with Thermo-Calc extracted values will be
able to emulate the phase fraction predictive capability of the
CALPHAD method. It will function as a simpler approach designed
to provide a faster and natively surrogate model for the phase
selection in the selected system in high-demand workflows. FCC
systems in the comprehensive experimental database contain

Fig. 2 Phase separation in PCA. Phase fraction heatmaps for the PCA transformation of the whole feature space in the training data set.
Phases with higher concentration of an specific phase/class cluster together.
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elements both in the chosen system and never seen by the DNN
model. In Fig. 8, predictions for all observed experimental alloys
that satisfy the criteria are shown. Alloys present in the elemental
system used in the training step are generally closer to unity in the
FCC phase fraction, while unused elements perform considerably
worse. Notable additions such as Ti and C lower the probability of
phase fraction of FCC, breaking the predictive power of the model
to only those elements considered beforehand. Recognizing this
shortcoming, following exploration of the material space is
restricted to the current system to unveil unique HEA composi-
tions. The predictions while erroneous still falls within a reason-
able difference from the Thermo-Calc predictions (shown as black
markers). Yet, there is an overall greater miss-match on composi-
tions outside the training space than inside. For example, the
addition of carbon seems to throw off the regressor estimation.
And addition of titanium seems to negatively affect the prediction
of both the CALPHAD implementation and the DNN regressor
alike.

Design and exploration of the HEA space
Given that the model is not restricted to a classification problem,
its application can be implemented as a part of an optimization
problem with a specific objective and loss function.

Bayesian optimization. Optimization in the composition space to
maximize a proposed phase is exemplified as a suitable first
attempt at alloy design. The short response time of the DNN
model makes the surrogate model the ideal kernel for optimiza-
tion tasks. Bayesian Optimizations is a widely known algorithm for
its efficiency, usually reaching global minimum within a few
optimization loops41,42. While the algorithm does not exploit the

high-throughput capabilities of the model, the optimization
showcases how the surrogate model mimics the continuous
nature of the alloy phase fractions with those of the constituents.
Three case scenarios were tested: a maximized FCC and a BCC

phase fraction, and one case where both have an equal phase
fraction of 0.5 and all other more complex phases are zero in all
test cases. All these specific objectives correspond to specific
interests in the alloy community, the last intermediate phase is
relevant for the retrieval of promising lamellar eutectic composi-
tions. The Bayesian Optimization algorithm fits a Gaussian
Processor (the Radial Basis Function kernel) to the prior knowl-
edge of the model given by an initial generation of random points
and its respective phase fraction as given by the DNN model.
Afterward, the Expected Improvement is used as the Acquisition
Function to obtain the next sampling point43. The optimization
loop starts with a random space of 20 points and runs over 500
iterations. The search space for the seven alloy component is
mapped onto an unconstrained 6-dimensional space using the
isometric logarithmic ratio transformation. With no stopping
criteria, the algorithm reaches the minimum on several occasions
or returns values near the absolute minima, below in Table 1 three
different data compositions are listed for each case. A list of
contrasting compositions was selected to showcase the versatility
of the model inside the seven element space. For the intermediate
composition, minima are harder to reach and so the number of
perfect solutions is scarcer, still, three points close to this signature
phase fraction and considerably different to each other are
obtained by the optimization.
Even though the application of a Bayesian Optimization may

seem counter-intuitive in a relatively non-expensive model, we
showcase the capability of the regressor as a driving agent for HEA
design: validating the previous feature analysis.

Fig. 3 DNN’s learning curve. Learning and validation loss curve for the training procedure. Metric losses are in Mean Squared Error values.
Solid curve corresponds to the averaged loss, while the soft color curve corresponds to the loss per epoch.
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Exhaustive search. Exhaustive search using single equilibrium
calculators is not always feasible. Assuming the DNN model is as
accurate in a randomly generated space as in the grid sampling it
was trained, then an accurate prediction for FCC and BCC phase
fractions in a high-throughput style is attainable in a matter of
minutes. To simulate the robustness of the grid method, random
sampling was carried in each one of the subsystems: in each
ternary, quaternary, and quinary 5000 points were sampled, each
senary 50,000 and the last septenary 500,000. While not rigorous,
the growth in the complexity of the system is replicated by an
increase in the number of data-points sampled in the subsystem.
Then, potential alloys for optimized FCC composition (xFCC) were
filtered from the most complex septenary system. Out of the
500,000 alloys, 1268 points showed an FCC fraction higher than
97%.
Results for the FCC selection task are shown in Fig. 9a, where the

high FCC fraction alloys are showcased on top of a 2-D t-Distributed
Stochastic Neighbor Embedding (tSNE) representation of the seven-
dimension composition space randomly generated to exemplify low
and high entropy regions in the HEA space. Where low entropy
regions are those in which any of the elements contributes to more
than 50%molar percentage of the alloy, using tSNE these regions are
excluded to the corner regions of the sampled space, effectively
leaving higher entropy regions at the center of the representation.
The background tSNE consists of 100,000 random points in the
seven-component system.
As a part of a high-throughput effort, this additional randomly

sampled dataset is queried on the CALPHAD engine in order to
validate the model for points outside the training grid (since
validation and test set in Fig. 4 are also randomly chosen grid points).
The results were favorable, the coefficient of determinations for all
phases stayed above 0.95, and for the simple solid solutions was
above 0.97. In addition to the consistent model accuracy, the

efficiency of the model is worth mentioning. A model capable of
mapping the almost 1,300,000 data points of the randomly sampled
data-set is trained in a data-set six times smaller. On top of that, the
surrogate model is built using commonly used ML frameworks that
are easily transferable.

Particle Swarm Optimization (PSO). Bayesian Optimization is
increasingly expensive as the number of observations increases,
mainly due to the computational cost associated with the fitting of
the Gaussian Process surrogate models used to emulate the
design space. While BO-type approaches tend to be preferable
when the querying of the problem space is costly41,44, other
optimization algorithms can be used when querying the space to
optimize is not a bottleneck. Here, we note that the trained DNN is
able to explore millions of new options as the optimization
algorithm requires. Particle Swarm Optimization (PSO) algorithms
tend to execute multiple queries to the problem space and can
thus benefit from using a fast-acting emulator45–47. The nature of
the PSO algorithm clusterize solutions around a local minimum,
since the number of local minima in this space is numerous and
are simultaneously global minima the algorithm quickly finds a
solution highly dependent on its initial position. Therefore,
constant refresh of the initial positions of the PSO task is done:
multiple optimizations are done to get scattered results, instead of
a single optimization with clustered solutions.
A high-throughput approach is then applied where FCC phase

fraction is optimized to the full composition for 100 PSO
optimizations, where at each run five optimized data points are
taken, totaling 500 different compositions. Each PSO run consists
of a swarm of 30 alloys and is run over 20 iterations, totaling up to
6000 function calls. As expected, PSO optimization is more
efficient than plain random search. Yet, even after the precautions
taken to avoid clusterization, results of multiple PSO appear to

Fig. 4 DNN’s prediction results for each data subset. Parity-plot for Predicted vs Calculated phase fraction for the training (top row),
validation (middle row), and testing (bottom row).
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Fig. 5 Shapley analysis. Top features with the highest summation of absolute Shapley values for Shapley analysis in a (a) random subset of
5000 samples for all model classes and c 5000 high FCC phase fraction alloys. b and d correspond to the same background data, respectively,
but only looking at the single FCC model.
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Fig. 6 Phase constitution pseudo-ternary analysis for features of interest. Pseudo-ternary phase fraction plots show a qualitative
representation of a random sampling with color heatmap that correspond to the values (Black arrows point towards the higher values in each
feature value) for a polarizability average, b the atomic size difference (δ), c ideal entropy of mixing, d mixing enthalpy, e the valence electron
concentration, f difference mean for the electron concentration, g difference mean for the Pauling electronegativity, and h the standard
deviation of electronegativity (not used in training).
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converge towards similar compositions. Swarm velocities at the
beginning of the optimization appear to bias the algorithm
heavily toward high Ni concentration. This optimization algorithm
combined with the surrogate model has the potential to produce
a large number of solutions in a high-throughput style. Even so,
multiple objectives can be part of the optimization task. From
Fig. 9b, optimized alloys clusterize and tend to be closer in
distance to those alloys with higher concentrations of Ni and Fe.
Which is not in line with the HEA definition of composition. To
alleviate this, we can add a high entropy optimizer for the alloy to
favor those alloys with higher ideal entropy of mixing as shown in
Fig. 9c. This not only lowers the possibility for the PSO to converge
towards high concentration areas but also reduces clusterization,
so multiple areas appear to optimize high FCC concentrations.
Robust search, Bayesian Optimization, and single- and multi-

objective PSO are showcased for specific phase profiles here. Yet,
there may be occasions for when there are more complex phase
fraction profiles to be desgined. Therefore, the true value of a

phase constitution regressor lies in the user’s needs and time
limitations. For all of the design methods, a CALPHAD prerun is
still needed and therefore the methodology shown here is aimed
to work together with CALPHAD to exploit as much as possible the
high-throuput possibilities of nowadays computational resources.

Time advantage on DNN-applied frameworks
As we mentioned above, a use case for the proposed trained DNN
is the development of a fast-acting emulator of CALPHAD-based
phase equilibria calculations amenable for inline deployment into
an alloy search/optimization workflow. We recognize that
ultimately, the ground truth derived from a rigorous computa-
tional thermodynamic analysis should be the gold standard for
computer-aided alloy design. Yet, we could envision scenarios in
which access to a rapid emulator may be highly beneficial.
Specifically, this ML-based extension of the CALPHAD-based
method could greatly decrease the time to initially screen vast

Fig. 7 Feature-pair analysis. Scatter plot of the phase composition where color is drawn in an RGB color value corresponding to
[FCC, BCC, Rest]. At the right hand, l-SVC decision borders and classification precision for the three classes are given.
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alloy spaces. This work exemplifies that even from a DNN trained
with a relatively small grid-sampled data-set (170,000) a high-
throughput random exploration can be carried out in an accurate
way.
Even though there is an initial investment in the training data

population and the consequent Neural Network training, sampling
using a DNN regressor is much faster than using the CALPHAD
method by itself. While the robustness of the training data and
DNN’s training parameters will vary from user to user, the
comparison for the estimation is straightforward: using the same
system specifications, the DNN surrogate model is approximately
436 times faster than Thermo-Calc’s TC-Python implementation
that runs in a multi-thread calculation. While this is considerably
faster, it only shortens tasks for which the only requirement is the
alloy’s phase constitution. The training data generation time is not
negligible: the time taken for training data generation and
running half a million data-points versus running half a million
data-points straight away is only about two times faster. Therefore,
the use of a DNN simulator is best when used in a set that requires
a high-throughput output of data. This acceleration could cut the
rapid screening of large alloy spaces from weeks to a matter of
hours in a conventional computer. It is worth mentioning that the
DNN implementation written in Tensorflow/Keras with Python
programming language can also be easily scaled to different
system’s specifications and the use of Graphical Processor Units.

Extrapolation from lower entropy subsystems
To study how well the featurization chosen extrapolates to higher
complexity subsystems within the same seven-component
system. Extra DNNs were trained on the lower subsystems of
the data-set containing up to ternaries, quaternaries, and
quinaries, these are subsequently randomly partitioned per
complexity level into training, validation, and testing data. The
remaining data is excluded for a final higher order (senaries and

septenaries) testing data-set as shown in Supplementary Fig. 2.
Validation results in Supplementary Table 4 show promising
accuracy values for both senaries and septenaries when using
training data from all of the lower complexity (3,4,5) systems in
the HEA.

Leave-one-element-out
Another partition method to study extrapolation is carried out by
leaving all data-points where a particular element is present out of
the training set and use it as a testing set as shown in
Supplementary Fig. 3. Accuracy results for this test in Supplemen-
tary Table 5 are far from useful and renders the model incapable
of extrapolating to system where it does not have previous
knowledge on all systems’ elements. Confirming the previous
observations on the FCC experimental prediction (Fig. 8).

DISCUSSION
Extrapolation is discarded for this work’s DNN product, the
approach is still worth considering and it is proposed to work
alongside more computationally expensive first principles and
thermodynamic single equilibrium calculators. In other words,
while the DNN works with the current system, its application and
feature significance inferred from the output, and consequently,
the database it originated from, cannot be translated to other
systems confidently. Yet, the accuracy and readability of the
model suggest a new high-throughput ML-CALPHAD framework
for the prediction of phase fractions and the design of complex
systems.
While empiric rules are not written in this work, correlations for

a few constructed features are shown to control the tendencies
towards simple phase (FCC and/or BCC) majority. High-throughput
calculation and featurization match previously reported findings
and shows potential for a new set of design rules including

Fig. 8 FCC prediction. DNN regressor predictions for the FCC phase in alloys experimentally characterized as single FCC phase at annealing
temperatures of 800 °C or higher. Those alloys with all elements considered in the training system and those which are not, are colored green
and red, respectively. Labels for the alloy correspond to the stoichiometry of the alloy and in parentheses the extra elements not considered in
the training. Black dots represent the FCC phase fraction prediction using Thermo-Calc single equilibrium running on the TCHEA5 database.
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polarizability. Also showcases how the mean difference48, which
builds in binary additions to feature difference in the overall alloy,
may add significant value for said rules, adding more information
than commonly used averages.
The model was validated using a High Throughput CALPHAD

sampling as well as experimental data when available. In the latter,
verification was done in an HEA space where the elements
matched those in the training data, the model predicted high FCC
phase fraction when not full simple solution except for the outlier:
Al0.5CoCrFeMnNi.
While the thermodynamic database (TCHEA5) and the CAL-

PHAD system is thoroughly tested and generated by expert
assessment from the Thermo-Calc group, uncertainity may still
propagate from the acquisition of data and the solid solution
modeling by the method. Based on Fig. 8 the authors recognize
the error on predictions originates in the original CALPHAD
estimation. Reinforcing the idea on that the model cannot surpass
the accuracy of the data is being trained on. Extrapolation of the
model to systems with elements not seen previously by it returns
poor predictions. By visual inspection, the more previously unseen
elements the system has, the further away from full FCC fraction.
This indicates the model loses predictability progressively as we
explore in the whole HEA space. Extrapolation is one of the
cornerstones of the CALPHAD method, but solely to higher-order
systems whose components are in the database. Still, extrapola-
tion within those boundaries is not trivial and accurate input data
has to be available for database generation. Therefore, to improve
the predictability of high complex subsystems the main objective
is the generation of new data for the assessment of ternary
systems49–51.
New alloys on the training system are proposed as candidates

for full FCC and BCC HEAs. Although the model is not built to
guarantee a single random solution due to its simplification, it has
a step forward towards stabilizing inter-metallic free alloys.
By following multiple objective functions PSO can effectively

track down FCC stabilized regions that do not account purely by
the high molar percentage of an FCC element, however, that is
closer to or in the commonly referred high entropy composition
region (5 < x < 35%). Accurate control of the phases present in
HEAs given the elemental input is of paramount importance.
Considering the large sample space of HEAs, marrying machine
learning methods to the design of HEAs will be an important tool
for the alloy-designing community.

METHODS
CALPHAD sampling
As our proposed method for data retrieval, we propose using
Thermo-Calc52 to query compositions for the case study [Mn, Ni,

Fe, Al, Cr, Nb, Co]. Preceding the training of the neural network,
the data was generated with the TC-Python module feature from
Thermo-Calc, using a grid sampling with steps of 5% molar
percentage carried over all subsystems starting by the ternaries,
consisting of 171 samples each, scaling up to the final septenary
system composed of 27,132 samples. This step resulted in a total
number of 229,824 alloy samples, of which, 229,156 were
successfully retrieved from the CALPHAD engine.
A thorough representation of the seven-dimensional composi-

tion space is required to ensure the DNN represents all space. In
addition to the composition space, temperature and pressure
were maintained constant through all single equilibrium calcula-
tions, hence features are only dependent on the composition. The
fixed temperature of 800 ∘C is used to mimic that of the common
annealing temperatures used in the literature, where single
solutions have been reported to be stable.
Post-processing consisted of filtering out faulty runs and

summing up all equivalent phases, so even though ordered
phases could be present, they are associated with the disordered
parent lattice. While this problem simplification lowers the
predictability of the final regressor, it serves the objective of
differentiating between simple FCC and BCC solutions and more
complex intermetallics. Lastly, we isolate the highest recurrent
phases in all the data: FCC, BCC, SIGMA, and LAVES, and the rest of
the phase fractions, making up an average of 7.8% in the whole
data contain the common intermetallics, as well as the HCP and its
ordered substructures. Proposing a less thermodynamically
selective oriented approach and simplifying the phase fraction
to either simple solutions (FCC and BCC) or intermetallics.

Feature construction
The featurization strategy used in ref. 53 is used for each elemental
property, resulting in three different composition-unique features.
These three transformations, the average, the harmonic average,
and the average difference, were applied to 30 features retrieved
from the Oliynyk elemental database from the open-source
software BestPractices54. Additionally, to further complement the
features set, six commonly used features in HEA machine learning
are described in ref. 12 are added. Resulting in a total number of 96
alloy-unique features, a summary of the transformations and
Formulae used to generate these are listed in Table 2.
While some works have found that Rectified Neural Networks

may be unaffected by the curse of dimensionality on specific
cases55,56 generalizing this idea to the current work is not trivial
and the model here could be benefited by an initial feature
selection. Still, feature relations with the phase fraction data are
one of the main interests of this work. Therefore, we opt to
maintain as many features as possible from our start training

Table 1. BO optimized compositions for each optimization case. Bayesian optimization results for the optimization tasks: Full FCC, full BCC, and mid-
point composition of 0.5,0.5 with simple phases.

Al Co Cr Fe Mn Nb Ni DNN Model Thermocalc

FCC BCC Other FCC BCC Other

0.0003 0.0429 0.0314 0.423 0.0063 0.0019 0.494 1 0 0 1 0 0

0.0023 0.0213 0.0381 0.704 0.0007 0.0029 0.231 1 0 0 0.996 0 0.004

0.0131 0.0835 0.0078 0.206 0.341 0.0064 0.343 0.99 0 0.01 0.999 0 0.001

0.0508 0.0767 0.723 0.014 0.119 0.0096 0.0069 0 1 0 0 0.97 0.03

0.0784 0.0085 0.3 0.589 0.0111 0.0075 0.0053 0 0.998 0.002 0 0.98 0.02

0.412 0.0244 0.0087 0.0207 0.214 0.0058 0.314 0 0.997 0.003 0 1 0

0.0982 0.0166 0.467 0.0326 0.0075 0.0245 0.353 0.471 0.483 0.046 0.481 0.497 0.022

0.03 0.0836 0.58 0.018 0.0077 0.0051 0.276 0.49 0.498 0.012 0.546 0.443 0.011

0.0814 0.0251 0.523 0.0414 0.0087 0.0058 0.314 0.488 0.487 0.245 0.514 0.486 0
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dataset to further draw feature-phase relations. As a first step
towards unveiling feature significance and phase-feature signa-
ture, we study the complete correlations between each feature
and the five classes (four major phases and the sum of the rest of
the alloy’s fraction).

Deep neural network
The overall data shape of the generated alloy database is of 5
output classes and 96 input features. Hence, the architecture of
the Deep Neural Network’s regressor has to be equivalent. The
hidden rectified linear layers will handle the complexity of the
problem. The architecture proposed takes into account the
composition constraint on the output: All phase fractions have
to sum up to 1. Therefore, the output layer is a softmax activation
layer, which constrains the output layer values to sum to 1 which
normally reflects class probability but in this case, is taken as
phase fraction values.
Before this last layer, the rest of the NN has a classic dense

architecture with a Rectified Linear Unit (ReLU) activation function.
Each one has a number of trainable parameters of ln−1 × ln+ ln,
where ln and ln−1 is the number of nodes in the current and
previous layer, respectively. The DNN architecture is composed of

an input layer of size 96, 4 hidden ReLU layers of size 128, 64, 64,
and 5, and a final output soft-max layer of size 5. The loss chosen
is the mean squared error in order to optimize all coefficients of
determination having all classes the same priority. The training
was carried through with an Adam AMSGrad optimizer57, a
learning ratio of 0.02 and a batch size of 1024 datapoints for a
10,000 epochs.

DATA AVAILABILITY
In order to comply with Thermo-Calc’s guidelines for sharing of calculated data. A
several times smaller data-set consisting of only phase fraction information is shared
(inside the CodeOcean capsule) to provide a placeholder for the user’s own data.

CODE AVAILABILITY
A reduced version of the code used in this work is available for use in the CodeOcean
capsule https://codeocean.com/capsule/6279423/tree.
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