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Laplace Power-Expected-Posterior Priors for
Logistic Regression∗

Anupreet Porwal† and Abel Rodríguez‡

Abstract. Power-expected-posterior (PEP) methodology, which borrows ideas
from the literature on power priors, expected-posterior priors and unit informa-
tion priors, provides a systematic way to construct objective priors. The basic idea
is to use imaginary training samples to update a (possibly improper) prior into a
proper but minimally-informative one. In this work, we develop a novel definition
of PEP priors for logistic regression models that relies on a Laplace expansion of
the likelihood of the imaginary training sample. This approach has various advan-
tages over previous proposals for non-informative priors in logistic regression, and
can be easily extended to other generalized linear models. We study theoretical
properties of the prior and provide a number of empirical studies that demon-
strate superior performance both in terms of model selection and of parameter
estimation, especially for heavy-tailed versions.

Keywords: generalized linear model, logistic regression, Bayesian model
selection, expected-posterior priors, default priors.

1 Introduction
Generalized linear models (GLMs, e.g., see McCullagh and Nelder, 2019) are one of
the main workhorses of statistical analysis. They are widely used both to model data
directly and as building blocks for more complex hierarchical models. However, in spite
of their broad adoption, prior elicitation for GLMs in the absence of subjective informa-
tion remains an open problem, particularly in settings where the main goal is variable
selection. Indeed, because standard non-informative priors for GLMs that work well
for parameter estimation are often improper, they cannot be used in model selection
problems, as they typically lead to ill-defined Bayes factors (e.g., see Berger et al., 2001).

Within the class of Gaussian linear models, the literature on so-called “objective”
or “default” priors for model selection is extensive. Examples include point-mass spike-
&-slab priors (Mitchell and Beauchamp, 1988; Geweke, 1996), g-priors (Zellner, 1986),
mixtures of g-priors (Zellner and Siow, 1980; Liang et al., 2008), unit information pri-
ors (Kass and Wasserman, 1995), intrinsic Bayes factors (Berger and Pericchi, 1996a),
fractional Bayes factors (O’Hagan, 1995; De Santis and Spezzaferri, 2001), non-local pri-
ors (Johnson and Rossell, 2010, 2012), power-expected-posterior priors (Fouskakis et al.,
2015) and prior-based Bayesian information criterion (Bayarri et al., 2019), among other
approaches. See Consonni et al. (2018) for a comprehensive review of recent approaches
to objective Bayesian analysis, and Bayarri et al. (2012) for a review and discussion of
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desirable properties. The literature on default priors for GLMs is more limited, with
three main approaches dominating. These include those introduced by Bové and Held
(2011) and Li and Clyde (2018), both of which consider modifications of mixtures of g-
priors that are suitable for GLMs, and Fouskakis et al. (2018), who considers extensions
of power-expected-posterior priors that rely on unnormalized power likelihoods. One fea-
ture shared by all three approaches is that they can be thought of as being based on
the idea of calibrating (possibly improper) priors using either real or imaginary training
samples (e.g., see Berger and Pericchi, 1996b and Pérez and Berger, 2002).

In this paper we introduce a variant of the power-expected-posterior (PEP) prior
for GLMs that we call the Laplace PEP, or LPEP. While the formulation is general,
this manuscript emphasizes the development of the LPEP for logistic regression models.
This is because this subclass of models provides the best illustration of the theoretical
and practical advantages of our approach. For example, we note that the prior described
in Li and Clyde (2018) is improper when the maximum likelihood estimate (MLE) of
the regression coefficients under the observed data does not exist, leading to ill-defined
Bayes factors. In the case of logistic regression, this happens when there is separation
among the groups (e.g., see Albert and Anderson, 1984, Heinze and Schemper, 2002 and
Ghosh, 2019). Separation is reasonably common in practical applications, especially in
problems with relatively small samples and several unbalanced and highly predictive
risk factors. A similar issue arises with the PEP priors introduced in Fouskakis et al.
(2018) since the imaginary training samples are not restricted to yield finite MLEs.
Furthermore, both versions of the PEP prior proposed by Fouskakis et al. (2018) are
computationally intractable, requiring the use of reversible Jump Markov Chain Monte
Carlo algorithms (Green, 1995; Dellaportas et al., 2002). The LPEP is well defined
under separation as long as at least one training sample exists that yields finite MLEs
under the full model. Furthermore, because the LPEP can be written as a location-
and-scale mixture of Gaussian distribution, it is easy to incorporate into Markov chain
Monte Carlo algorithms that rely on data augmentation (e.g., Polson et al., 2013). This
feature also facilitates the development of prior-based Bayesian Information Criterion
(e.g., see Li and Clyde, 2018 and Bayarri et al., 2019) that avoids data augmentation
(at the potential cost of accuracy). Like Bové and Held (2011), Li and Clyde (2018) and
Fouskakis et al. (2018), LPEPs implicitly assume that q, the largest model size under
consideration is smaller than n. However, unlike previous works, we consider the model
selection consistency when both q and the number of variables p grow with n.

It is important to stress that the focus of this manuscript is on priors for variable
selection that place positive probability on specific coefficients being exactly zero. An
alternative approach to sparsity that is popular in the literature is to use continuous
shrinkage priors (see, e.g., Bhadra et al., 2019 for a comprehensive review). Continu-
ous shrinkage priors tend to have computational advantages and are very effective in
predictive settings. However, variable selection under these priors can be performed
only by thresholding. While ad-hoc techniques have been devised for this purpose (e.g.,
see Li and Pati, 2017), thresholding tends to work best in settings where enough prior
information is available to establish practical significance.
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2 Power-expected-posterior priors: A brief review
Power-expected-posterior (PEP) priors (Fouskakis et al., 2015) extend the expected-
posterior (EP) priors introduced by Pérez and Berger (2002) by controlling the amount
of information contained in the prior using the power approach originally developed by
Ibrahim and Chen (2000) and Chen et al. (2000) in the context of subjective priors.

Briefly, let y denote the n-dimensional vector containing the observed data, γ index
the model space, and βγ represent vector of parameters under model γ. We start with
a (potentially improper) prior πN

γ (βγ) under model γ and introduce an n∗-dimensional
vector of imaginary training samples arising from a distribution m∗(y∗). The EP prior
is then constructed as

πEP
γ (βγ) =

∫
fγ

(
y∗ | βγ

)
πN

γ

(
βγ

)
∫

fγ

(
y∗ | βγ

)
πN

γ

(
βγ

)
dβγ

m∗(y∗)dy∗

In words, the EP priors use the imaginary training sample y∗ to update the original
prior πN

γ (βγ), and addresses the possible effect of using any particular training sample
by averaging over the distribution m∗(y∗). The use of a common m∗(y∗) properly
calibrates the priors across the different models, even in situations where m∗(y∗) is
improper. Pérez and Berger (2002) discuss various possible choices of m∗(y∗) in both
informative and non-informative settings.

Note that an implicit assumption in the formulation of the PEP is that y∗ and n∗

are such that the posterior based on it is proper, i.e.,∫
fγ

(
y∗ | βγ

)
πN

γ

(
βγ

)
dβγ < ∞ (1)

for any y∗ in the support of m∗ (see Pérez and Berger, 2002 for details). However, large
values of n∗ will produce priors that are relatively concentrated. To balance these two
goals, it is common to choose n∗ as the size of the minimum training sample required
to satisfy (1) across all models.

Even though the EP prior attempts to ameliorate the effect of the y∗ by averaging
over m∗ and by using training samples that are as small as possible, in some applications
the prior might still be quite concentrated. Power-expected-posterior priors (Fouskakis
et al., 2015) address this by scaling the likelihood of the imaginary sample,

πP EP
γ (βγ) =

∫
f̃γ

(
y∗ | βγ , δ

)
πN

γ

(
βγ

)
∫

f̃γ

(
y∗ | βγ , δ

)
πN

γ

(
βγ

)
dβγ

m∗(y∗ | δ)f(δ | γ)dδdy∗,

where f̃γ

(
y∗ | βγ , δ

)
= fγ

(
y∗|βγ

) 1
δ∫

fγ

(
y∗|βγ

) 1
δ dβγ

is the normalized power likelihood for the train-

ing sample y∗ based on model γ, δ is the power parameter, m∗(y∗ | δ) is the predictive
distribution generating the imaginary samples y∗, and f(δ | γ) is a hyper-prior on δ.
Fouskakis et al. (2015) recommended m∗(y∗ | δ) = mN

0 (y∗ | δ), i.e., the marginal like-
lihood evaluated using the power likelihood of y∗ under the null model and baseline
prior πN

0 (β0). If δ = 1, then PEP prior reduces to the EP prior, while values of δ > 1
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yield priors with a larger variance (and therefore, less information) than the EP prior.
A particularly appealing choice is δ = n∗ (or, alternatively, a prior on δ that is centered
around n∗), which leads to a prior that can be considered as being unit information
(Kass and Wasserman, 1995). Note that δ plays a similar role to the g parameter in-
volved in the definition of (mixtures of) g priors. Hence, treating δ as random will
typically lead to priors that have heavier tails. In this paper, in addition to the unit
information setting where δ = n∗, we consider the hyper-g/n prior from Liang et al.
(2008) and the robust prior from Bayarri et al. (2012) as two choices for hyper priors
for δ. See Section 3 for more details. Furthermore, being able to use the parameter δ to
control the amount of information contained in the prior means that the choice of the
size of the training sample is less critical in the case of PEP priors. In the sequel, we
work with n∗ = n, a choice that is particularly convenient when dealing with regression
models. Indeed, taking n∗ = n allows us to select X∗, the design matrix associated with
the training sample y∗, as X∗ = X (see Section 3).

The PEP prior was originally derived for model selection in Gaussian linear models
(Fouskakis et al., 2015). In that case, normalizing constant

∫
fγ

(
y∗ | βγ

) 1
δ dβγ associ-

ated with f̃γ

(
y∗ | βγ , δ

)
is usually straightforward to compute. Indeed, for most stan-

dard choices of πN
γ

(
βγ

)
, the induced PEP can be written as a location-and-scale mix-

ture of Gaussian distributions, dramatically simplifying computation within a Markov
chain Monte Carlo framework. This property, however, does not extend to other GLMs.
To address this issue, Fouskakis et al. (2018) introduced two different modifications
of the PEP framework that rely on the unnormalized power likelihood fγ

(
y∗ | βγ

) 1
δ

rather than f̃γ

(
y∗ | βγ , δ

)
: the concentrated reference PEP (CRPEP) and the diffuse

reference PEP (DRPEP). However, while the use of the unnormalized power likelihood
avoids some of the computational difficulties associated with the original PEP prior,
many of them remain. In particular, neither πCRP EP

γ (βγ) nor πDRP EP
γ (βγ) belong to

standard families of distributions. This prevents closed-form integration of the regres-
sion coefficients and therefore requires the use Reversible Jump Markov chain Monte
Carlo algorithms (Green, 1995; Dellaportas et al., 2002). Furthermore, the definition of
the CRPEP and the DRPEP and the computational approach introduced by the au-
thors (which relies on Laplace approximations to compute certain normalizing constants
needed for the acceptance probabilities of various Metropolis-Hastings steps) implicitly
assume that the MLE of βγ exists for any training sample y∗ and model γ.

3 The Laplace power-expected-posterior prior for
logistic regression

Instead of working with the unnormalized power likelihood as in Fouskakis et al. (2018),
in this paper we propose replacing the likelihood of the imaginary samples with its
Laplace approximation before raising it to the power 1/δ. Hence, the name Laplace
PEP, or LPEP. More concretely, let the observations y = (y1, . . . , yn)T be generated
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from a logistic regression likelihood of the form

fγ(y | βγ) = exp
{

n∑
i=1

yix
T
γ,iβγ − log(1 + exp

{
xT

γ,iβγ

}
)
}

, (2)

where xi = (1, xi,1, . . . , xi,p)T is the p + 1 dimensional vector of regressors associated
with observation yi, β = (β0, . . . , βp)T is the p + 1 dimensional vector of regression
coefficients (including the intercept), γT = (γ0, γ1, . . . , γp) is a binary vector of length
p + 1 such that for all j ∈ {1, . . . , p}, γj = 1 if the j-th variable is included in the model
(i.e., if βj is different from zero) and γj = 0 otherwise, and xγ,i and βγ denote the
sub-vectors of xi and β with length pγ + 1 where pγ =

∑p
j=1 γj that include only those

components for which the corresponding γj is equal to 1. In the sequel we assume that
γ0 = 1 (i.e., intercept is always included in the model) and that n > p. The Laplace
approximation to (2) is given by

fγ

(
y | βγ

)
≈ fL

γ

(
y | βγ

)
∝ exp

{
−1

2

(
βγ − β̂γ(y)

)T

Hγ(y)
(

βγ − β̂γ(y)
)}

, (3)

where β̂γ(y) denotes the MLE of βγ based on sample y, and Hγ(y) is the (pγ + 1) ×
(pγ + 1) observed information matrix

Hγ(y) =
n∑

i=1

(
1 + exp

{
xT

γ,iβ̂γ(y)
})2

exp
{

xT
γ,iβ̂γ(y)

} xγ,ix
T
γ,i.

In the case of logistic regression models (and of regular exponential families more
broadly), it is well known that this approximation is accurate up to an O( 1

n ) order
term (e.g., see Schwarz, 1978). With this in mind, we define the LPEP as

πLP EP
γ (βγ) =

∫
f̃L

γ

(
y∗ | βγ , δ

)
πN

γ

(
βγ

)
∫

f̃L
γ

(
y∗ | βγ , δ

)
πN

γ

(
βγ

)
dβγ

m∗(y∗ | X∗)f(δ | γ)dδdy∗, (4)

where X∗ is the n∗ × (p + 1) matrix whose rows correspond to the xT
i vectors and

f̃L
γ

(
y∗ | βγ , δ

)
∝ δ− pγ +1

2 exp
{

− 1
2δ

(
βγ − β̂γ(y∗)

)T

Hγ(y∗)
(

βγ − β̂γ(y∗)
)}

.

As discussed in Pérez and Berger (2002), standard choices for the baseline prior
include the (improper) flat prior πN

γ (βγ) ∝ 1 and the Jeffreys prior for GLMs (Ibrahim

and Laud, 1991) where πN
γ (βγ) ∝

∣∣∣Eβγ
{Hγ(y)}

∣∣∣1/2
. In this paper, we focus our at-

tention on the flat prior πN
γ (βγ) ∝ 1, which was also used in Fouskakis et al. (2018).

There are two reasons for this. The first one is greater mathematical tractability, as the
Jeffreys prior for GLMs does not lead to tractable expressions for the LPEP. Secondly,
as we show in Section 4.3, the intrinsic prior associated with the LPEP derived under
πN

γ (βγ) ∝ 1 is the same as intrinsic prior associated with Bové and Held (2011).
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For the predictive distribution of the imaginary samples we consider

m∗(y∗ | X∗) ∝ m̃∗(y∗ | X∗)1 (y∗ ∈ A(X∗)) , (5)

where m̃∗(y∗ | X∗) is an unrestricted predictive distribution of y∗ given by

m̃∗(y∗) =
Γ

(∑n∗

i=1 y∗
i + 1

2

)
Γ

(
n∗ −

∑n∗

i=1 y∗
i + 1

2

)
Γ(n∗ + 1)Γ

( 1
2
)

Γ
( 1

2
) , (6)

(a Beta-Binomial distribution with both parameters equal to 1
2 , which is the predictive

distribution under the null model and its reference/Jeffreys prior), and 1 (y∗ ∈ A(X∗))
is the indicator function on A(X∗) =

{
ỹ | β̂γ (ỹ, X∗) exists and is finite for all γ

}
.

Note that our choice for m∗(y∗ | X∗) differs substantially from that in Fouskakis et al.
(2018). For example, (5) does not depend on the scaling factor δ. This makes intuitive
sense (there is no obvious reason why the power factor used to re-scale the information
in the training sample should also affect how the training sample is generated), and sim-
plifies both posterior computation and theoretical analysis. Furthermore, (5) explicitly
depends on X∗ in a way that ensures that the LPEP is proper (see Section 4.1).

At first sight, the computational implementation of (5) might seem daunting. How-
ever, the following theorem shows that, for a broad class of GLMs that includes logistic
regression, it is enough to check the existence of the MLE for the full model.

Theorem 1. Let �γ(βγ ; y) : Sγ → R denote a log-likelihood in the regular exponential
family of the form �(βγ ; y) =

∑n
i=1 T (yi)η

(
xT

γ,iβγ

)
+ A

(
xT

γ,iβγ

)
. Assume Sγ is an

open connected subset of Rp+1 and let γF = (1, . . . , 1) denote the full model. If

(i) �γF
(βγF

; y) is continuous and striclty concave on SγF

(ii) limβγF
→β∗ �γF

(βγF
; y) = −∞ for any β∗ ∈ ∂SγF

, the closure of SγF
.

Then, β̂γ(y), the MLE, exists under any other model γ.

The proof of Theorem 1 can be seen in supplementary Section A (Porwal and Ro-
dríguez, 2023). Note that, in the case of logistic regression, (i) is satisfied as long as
the design matrix X is full rank (which, in particular, requires p < n), while (ii) is
satisfied as long as the data does not suffers from separation under the full model (Al-
bert and Anderson, 1984). Separation checks can be carried out using the algorithms
in the R package detectseparation (Kosmidis and Schumacher, 2020). Section 4.6 of
Konis (2007) shows that the version of the test based on the dual program has the best
empirical worst-case time and that it scales linearly in both sample size n and number
of covariates p. Furthermore, the authors empirically showed that the dual program
takes approximately the same time as fitting a GLM using iteratively re-weighted least
squares (IRLS) algorithm.

Finally, we discuss the specification of the distribution on the power parameter δ.
As mentioned in Section 2, we consider three alternatives. First, we investigate the unit
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information LPEP (UI-LPEP) obtained by fixing δ = n∗. We also consider a version
of the hyper-g/n prior (Liang et al., 2008), fHGN (δ) =

(
1 + δ

n∗

)−2. We call this the
HGN-LPEP. The median of this hyper-g/n prior is equal to n∗, and the prior places
much of its mass around this value. Our third alternative is a version of the robust prior
recommended by Bayarri et al. (2012), fR(δ | γ) = 1

2(pγ +1)1/2
(n∗+1)1/2

(δ+1)3/2 1
(

δ >
n∗−pγ

pγ +1

)
,

which we call this the R-LPEP. Note that, under this prior, E(δ) = 3 n∗+1
p∗

γ +1 = O(n∗).

4 Properties of the LPEP prior
4.1 Proper prior
The LPEP for logistic regression can be written as a location-and-scale mixture,

πLP EP
γ (βγ) =

∑
y∗∈{0,1}n

[ ∫
φpγ +1

(
βγ | β̂γ(y∗), δH−1

γ (y∗)
)

f(δ | γ)dδ

]
m∗(y∗ | X),

where φp (· | μ, Σ) denotes the density of the p-variate normal with mean μ and co-
variance Σ. Note that, because the training samples are restricted to yield finite MLEs,
φpγ +1

(
βγ | β̂γ(y∗), δH−1

γ (y∗)
)

is proper for any model γ. Furthermore, m∗ (y∗ | X),
by construction, is also proper. Hence, the LPEP prior is also proper for every γ.

4.2 Tail behavior
It is straightforward to see that unit information LPEP (where δ = n∗), πUI−LP EP

γ (βγ)
has Gaussian tails. On the other hand, as the following theorem shows, the hyper-g/n
and the robust versions of the LPEP have heavier (polynomial) tails in every direction.

Theorem 2. For any model γ and vector v such that ‖v‖ = 1, let ζHGN (s | v, γ) =
πHGN−LP EP

γ (βγ)
∣∣
βγ =sv

and ζR(s | v, γ) = πR−LP EP
γ (βγ)

∣∣
βγ =sv

. Then there exist
bounded functions cHGN

γ (v) and cR
γ (v) such that

lim
s→∞

ζHGN (s | v, γ)

(1 + s2/(pγ + 1))− pγ +2
2

= cHGN
γ (v), lim

s→∞
ζR(s | v, γ)

(1 + s2/(pγ + 1))− pγ +2
2

= cR
γ (v).

The proof is presented in supplementary Section B. One important implication
of this result is that, from an estimation (rather than model selection) perspective,
πHGN−LP EP

γ (βγ) and πR−LP EP
γ (βγ) are robust, in the sense of having bounded influ-

ence in the case of likelihood-prior conflict (e.g., see Andrade and O’Hagan, 2006 and
Andrade and O’Hagan, 2011). A second implication relates to the existence of point
estimators such as the posterior mean and the posterior variance. Ghosh et al. (2018)
showed that, in the presence of separation, priors with Cauchy-like tails might lead to
proper posterior distribution that might have infinite means. The results in Theorem 2
guarantee that, even in the presence of separation, the model-averaged posterior means
are finite.
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4.3 Intrinsic consistency
The following theorem shows that the LPEP priors for logistic regression are intrinsically
consistent, i.e., that they converge to a proper prior as the size of the training sample
increases (see criteria 4 of Bayarri et al., 2012).

Theorem 3. Assume that, as n∗ grows, the covariate vectors x∗
1, x∗

2, . . . satisfy either
of the following two conditions:

(i) If x∗
1, x∗

2, . . . forms a deterministic sequence, then 1
n∗ [X∗]T X∗ −→

n∗→∞
Σ, where

Σ is positive definite.

(ii) If x∗
1, x∗

2, . . . are random, then they are independent and identically distributed
with mean 0 and finite, positive definite covariance matrix Σ.

Then, the unit information (δ = n∗), hyper-g/n and robust versions of the LPEP have
proper, non-degenerate intrinsic priors of the form

lim
n∗→∞

πUI−LP EP
γ (βγ) = φpγ +1

(
βγ | 0, 4 [Σγ ]−1

)
,

lim
n∗→∞

πHGN−LP EP
γ (βγ) =

∫
φpγ +1

(
βγ | 0, 4δ∗ [Σγ ]−1

)
(1 + δ∗)−2

dδ∗,

lim
n∗→∞

πR−LP EP
γ (βγ) =

∫
φpγ +1

(
βγ | 0, 4δ∗ [Σγ ]−1

) (δ∗)−3/2

2(pγ + 1) 1
2

1
(

δ∗ > 1
pγ +1

)
dδ∗,

where Σγ is the submatrix of Σ that includes only the rows and columns where γj = 1.

A proof of this result can be seen in supplementary Section C. Interestingly, we
note that these are the same intrinsic priors associated with the prior in Bové and Held
(2011) under the same asymptotic regime for X∗.

4.4 Model selection consistency
Model selection consistency refers to the ability of the procedure to choose the correct
model as n → ∞. Intuitively, when p is fixed, because the amount of information in
πLP EP

γ is kept approximately constant as n∗ increases, the associated Bayes factors
would behave asymptotically like those computed from the Bayesian Information Crite-
rion, which are known to be consistent. Our results, which rely on a slight extension of
those presented in Barber et al. (2016) for sparse high-dimensional logistic regression,
extend this intuition to situations in which p grows with n as long as n remains larger
than p and at most a moderate number of covariates q < p remain active.

We consider a sequence of variable selection problems indexed by the sample size
n, where y(n) represents the sample for the n-th problem, pn is the total number of
covariates, βT (n) is the true parameter, which is associated with the true model γT (n),
and pγT (n) =

∑pn

j=1 γT,j(n). Our interest lies in the recovery of γT (n) over the set
Γ =

{
γ(n) : γ(n) ∈ {0, 1}pn , pγ(n) ≤ qn

}
. An implicit assumption is that the true model



A. Porwal and A. Rodríguez 9

is contained in the set of models under consideration. The following theorem, a proof
of which can be seen in supplementary Section D, formalizes the result for UI-LPEP
prior.

Theorem 4. Assume that:

(i) qn = nψ for 0 ≤ ψ < 1/3.

(ii) pn = nκ for ψ < κ < 1.

(iii) βmin
γT (n)(n) = min

j:γT,j(n)=1

∣∣∣βγT,j(n)(n)
∣∣∣ ≥ n−φ/2 for some 0 ≤ φ < 1 − ψ.

(iv) ‖βT (n)‖2 ≤ a0 for a fixed constant a0 ∈ (0, ∞).

(v) For every i = 1, 2, . . ., the vector xi is such that ‖xi‖2 is bounded by a constant.

(vi) For all n, the smallest eigenvalue of 1
n XT X is bounded from below by a positive

constant.

(vii) P (γ(n)) ∝
(

pn

pγ(n)

)−1
I{pγ(n) ≤ qn}.

Define γ̃(n) = arg maxγ(n){P (γ(n)) × mUI−LP EP
γ(n) (y(n))}, where mUI−LP EP

γ(n) (y(n))
is the marginal likelihood of y(n).Then Pr (γ̃(n) = γT (n)| y(n)) → 1 as n → ∞.

Conditions (i) and (ii) are statements about the rate of growth of the number of
parameters and the maximum size of the model, while condition (iii) relates them to
the rate of decrease in the minimum signal size. Note that when φ = 0, (iii) holds true for
all 0 ≤ ψ < 1/3. However, in the worst case, when qn grows at the rate that is ≈ n1/3, we
require βmin

γT (n)(n) ≥ n−1/3. Condition (iv) is necessary to avoid separation. Conditions
(v) and (vi) are standard conditions for the existence of maximum likelihood estimators
(e.g., see Wedderburn, 1976). Assumptions (iv), (v) and (vi), or their implications, have
appeared previously in the literature (e.g., see Chen and Chen, 2012 and Luo and Chen,
2013). Condition (vii) limits the size of the models under consideration using a truncated
Beta-Binomial prior. Assuming priors on models that heavily penalize large models is
also common in high-dimensional regression (e.g., see Rossell et al., 2021).

5 Computation
5.1 Markov chain Monte Carlo sampling

The LPEP prior can be easily combined with the Polya-Gamma augmentation of Polson
et al. (2013) to generate an efficient Markov chain Monte Carlo algorithm for variable
selection in logistic regression. For this purpose, it is convenient to re-express (4) as

βγ | y∗, δ, γ ∼ N
(

β̂γ(y∗), δ {Hγ(y∗)}−1
)

, (7)
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with y∗ ∼ m∗ (y∗ | X∗) and δ | γ ∼ f(δ | γ). We can then use this hierarchical
framework to first sample from the conditional posterior distribution of (γ, βγ , δ | y∗, y)
followed by sampling from the full conditional posterior distribution of (y∗ | γ, βγ , δ, y).

Consider first sampling (γ, βγ , δ | y∗, y). From Theorem 1 of Polson et al. (2013),

fγ(y | βγ) ∝
n∏

i=1

(
exp

{
(yi − 1/2)xT

γ,iβγ

} ∫ ∞

0
exp

{
−ωi

2
(
xT

γ,iβγ

)2}
f(ωi | 1, 0)dωi

)
,

where f(ω | a, b) denotes the density of a Pòlya-Gamma random variate with parameters
a and b. Therefore, after introducing a vector of auxiliary variables ω = (ω1, . . . , ωn),

f(γ, βγ , δ | y∗, ω, y) ∝ f(γ)f(δ | γ)

φpγ +1

(
βγ | β̂γ(y∗), δH−1

γ (y∗)
)

φn

(
z | Xγβγ , Ω−1)

, (8)

where z = ((y1 − 1/2)/ω1, . . . , (yn − 1/2)/ωn)T , Ω = diag {ω1, . . . , ωn}, f(γ) is a prior
on 2p dimensional model space and f(δ | γ) is the prior on scale parameter δ. It is
straightforward to see that βγ can be integrated out of (8), yielding

f(γ, δ | y∗, ω, y) =
∫

f(γ, βγ , δ | y∗, ω, y)dβγ ∝ f(γ)f(δ | γ)φn(z | mγ
z , V γ

z ), (9)

where mγ
z = Xγ β̂γ(y∗), V γ

z = Ω−1 + δXγH−1
γ (y∗)XT

γ . Then, various versions of
Metropolis-Hastings algorithms can be implemented to explore the space of models
(e.g., see section 4.5 of George and McCulloch, 1997).

Once the model γ and the exponent δ have been updated, the regression coefficients
can be sampled using the fact that βγ | γ, δ, y∗, ω, y ∼ N (mγ,ω, V γ,ω), where

mγ,ω = V ω

(
XγΩz + 1

δ
Hγ(y∗)β̂γ(y∗)

)
, V γ,ω =

(
XT

γ ΩXγ + 1
δ

Hγ(y∗)
)−1

,

and each ωi can be updated from f(ωi | γ, βγ , δ, y∗, y), which corresponds to an up-
dated Pólya-Gamma distribution. Finally, (y∗ | γ, βγ , δ, y) can be easily updated using
either Gibbs sampling or random-walk Metropolis-Hastings steps. Further details of the
computational algorithm can be seen in supplementary Section E.

5.2 Model search using a prior-based Bayesian information criteria
In order to accelerate computation, Li and Clyde (2018) propose to use their default
prior, βγ | γ, δ ∼ N

(
0, δ{Hγ(y)}−1)

, to construct a prior-based Bayesian Information
Criterion (pBIC). In situations where p is at least moderately large, this pBIC is then
embedded into a random walk Metropolis-Hastings on the model space that has many
similarities with the algorithm described in the previous section. This approach, can be
applied across a wide variety of GLMs. In logistic regression, it sidesteps the need to
perform the kind of data augmentation with Pólya Gamma random variables, potentially
leading to computational gains (at the potential expense of accuracy).
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A similar approach can be developed for the LPEP priors. In particular, we can use
the Laplace approximation in (3) (applied this time to the likelihood of the observed
data) in combination with (7) to get

f(y | γ, δ, y∗) ≈ fL(y | γ, δ, y∗) = fγ

(
y | β̂γ

)
δ− pγ+1

2

(
|Hγ |∣∣Ṽ γ

∣∣
) 1

2

exp
{

−1
2

[
β̂

T

γ Hγ β̂γ + 1
δ

β̂
∗T

γ H∗
γβ̂

∗
γ − m̃T

γ Ṽ γm̃γ

]}
,

(10)

where

m̃γ = Ṽ
−1
γ

[
Hγ(y)β̂γ(y) + 1

δ
Hγ(y∗)β̂γ(y∗)

]
, Ṽ γ = Hγ(y) + 1

δ
Hγ(y∗). (11)

Equation (10) can be used to approximate the acceptance probabilities of a
Metropolis-Hastings algorithm that explores the posterior distribution f(γ, δ, y∗ | y)
by alternating between sampling from f(γ, δ | y∗, y) and f(y∗ | γ, δ, y). Then, samples
for the coefficients can be obtained from the approximate posterior βγ | γ, δ, y∗, y ∼
N

(
m̃γ , Ṽ

−1
γ

)
. Further details are provided in supplementary Section F.

6 Simulation studies
We conducted two simulation studies to compare the performance of Laplace PEP priors
with other existing model selection techniques. This section discusses the results from
the first study. Results for the second one can be seen in supplementary Section I.

The simulation study uses n = 500 and p = pγF
= 100, with the predictors being

drawn independently from a zero-mean, unit-scale multivariate normal distribution with
correlations given by cor(xi,j , xi,j′) = r|j−j′| for 1 ≤ j < j′ ≤ p. It involves eight
scenarios, which differ in terms of the sparsity level in the coefficients and the correlation
structure. More specifically, we consider all combinations of four levels of sparsity (pγT

∈
{0, 5, 10, 20}, please see Table 1) and two correlation coefficients (r ∈ {0, 0.9}).

A total of 100 datasets were generated for each of our 8 scenarios. We apply both
Bayesian procedures and penalized likelihood approaches to each dataset. In terms
of Bayesian procedures, we implement the LPEP prior using (i) the “exact” MCMC

pγT
βγT ,0 βγT ,1:5 βγT ,6:10 βγT ,11:15 βγT ,16:20

0 −0.5 0 0 0 0
5 −0.5 b 0 0 0
10 −0.5 b 0 b 0
20 −0.5 b 0.5b b 0.5b

Table 1: Value of intercept and coefficients in the true logistic regression model where
b = (2, −1, −1, 0.5, −0.5)T .
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procedure discussed in 5.1 (denoted as LPEPE in the sequel) and (ii) the “approximate”
MCMC discussed in 5.2 (denoted as LPEPL). We also consider the methodology of Li
and Clyde (2018), which relies on a mixture of g-priors using (i) a Laplace approximation
to compute the associated marginal likelihood (denoted LCL in the sequel), as well as (ii)
an “exact” version of their procedure based on a latent-variable augmentation similar
to the one described in Section 5.1 (denoted as LCE). Comparing LPEPE, LPEPL,
LCE and LCL allows us to disentangle the effect of the Laplace approximation from
that of the prior choice on the performance of these techniques. We use the R package
BAS-V1.5.5 (Clyde, 2020) to implement LCL, and a slight modification of our own code
to implement LCE. In all cases, we assume a Beta-Binomial(1,1) prior over the model
space, and run the MCMC chain for 217 ≈ 131, 000 iterations after a burn-in of 10, 000
iterations. We do not include the CRPEP and DRPEP priors from Fouskakis et al.
(2018) in this simulation study for two reasons. First, the computational complexity of
the methods makes a simulation study like this prohibitive. Not only is each iteration
of the algorithm more expensive than those of the other approaches, but the algorithm
mixes more slowly. Secondly, the algorithm provided by the authors broke down for a
number of our simulated datasets. In terms of penalized likelihood methods, we compare
against LASSO (Tibshirani, 1996), smoothly clipped absolute deviation (SCAD) (Fan
and Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010). We use the default
implementations of R package glmnet (Friedman et al., 2010) to implement LASSO,
and the package ncvreg (Breheny and Huang, 2011) for SCAD and MCP.

We evaluate the performance of these various methods in terms of model selection
performance using three metrics. First, we report the frequency with which the MAP
model matches the true model γT (see Table 2). For the penalized likelihood approaches
(for which a single model is reported for each dataset) the equivalent metric is simply
the number of datasets for which the technique reported the correct model.

Bayesian methods clearly outperform penalized likelihood approaches. Furthermore,
most Bayesian approaches tend to perform very well when the data is generated from
the null model, both in the uncorrelated and highly correlated cases. On the other hand,
as the number of non-zero coefficients increases, we observe that all approaches struggle
to identify the true model, particularly when the covariates are highly correlated. When
pγT

= 20, none of the procedures is able to identify the true model. Nonetheless, it
appears that, overall, LPEPE (and, specially, the robust and the hyper-g/n versions of
LPEPE) perform the best, and that the exact versions of the procedures (LPEPE and
LCE) perform better than their approximate counterparts (LPEPL and LCL).

While the MAP metric we discussed above provides some insights into model per-
formance, it tends to be less informative when there is substantial uncertainty on the
posterior distribution over the model space. Therefore, we also compute for each dataset
the F1 score for the MAP (Bayesian procedures) or selected (penalized likelihood pro-
cedures) model (see Figure 1). In this setting, the F1 score is defined as the harmonic
mean of the proportion of true positives among selected covariates (the precision) and
the proportion of selected covariates among true positive covariates (the recall). We
focus on precision and recall rather than false positive and false negatives because of
the class imbalance implied by the sparse nature of the true models used in our simula-
tion. Results are not presented for the null model since the F1 score is not well defined
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p 100
p(γ) Beta-Binomial(1,1)
pγT

0 5 10 20
r 0 0.9 0 0.9 0 0.9 0 0.9

δ = n

LPEPE 99 100* 47 0 13 0 0 0
LPEPL 100* 100* 47 0 12 0 0 0

LCE 100* 100* 48 0 9 0 0 0
LCL 100* 100* 44 0 9 0 0 0

δ ∼ robust

LPEPE 99 100* 50 0 14* 0 0 0
LPEPL 100* 100* 50 0 8 0 0 0

LCE 99 100* 39 0 0 0 0 0
LCL 100* 100* 45 0 2 0 0 0

δ ∼ hyper g/n

LPEPE 99 98 51* 0 11 0 0 0
LPEPL 98 98 50 0 6 0 0 0

LCE 97 98 21 0 0 0 0 0
LCL 66 80 4 0 0 0 0 0

LASSO 59 66 0 0 0 0 0 0
SCAD 57 62 0 0 0 0 0 0
MCP 73 70 8 0 3 0 0 0

Table 2: Number of times (over 100 replications) that the MAP model coincides with
the true model in the logistic regression ; BOLD represent group maximum; * represent
overall maximum.

in that scenario. In all cases, the methods based on LPEP priors tend to have higher
F1 scores, with the robust and hyper-g/n versions performing slightly better than the
unit information prior. We also see that, while all Bayesian procedures have very sim-
ilar performance under the unit information prior, exact versions of LPEP and the Li
and Clyde (2018) prior tend to outperform approximate versions under the robust and
hyper-g/n priors (in some cases, quite dramatically). We see a similar pattern among
methods in average model size selected for each data set (see supplementary Section G).

Next, we compare the procedures using the average mean squared error (AMSE) of
the estimated coefficients, AMSE(β) = 1

p

∑p
j=1(β̂j −βj,γT

)2, where β̂j and βj,γT
are the

estimated and true values of jth covariate, respectively. For the Bayesian procedures,
model-averaged posterior mean estimates are used for this calculation. For penalized
likelihood methods, the sparse point estimates of the coefficients are used. The results
in Table 3 indicate that, as the true model size pγT

and the true correlation between co-
variates increases, the AMSE increases for all techniques. However, as for other metrics,
heavy tailed versions of LPEP significantly outperform all other techniques in terms of
estimation performance under non-null true model scenarios.

Further discussions of the tradeoff between computational complexity and accuracy
for LPEPE, LPEPL, LCE and LCL can be found in supplementary Section H.
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Figure 1: F1 score for the MAP model estimated by various methods and prior com-
binations for 100 simulated datasets (n = 500, p = 100) under different scenarios of
correlation (r = 0: left; r = 0.9: right) and true number of non-zero coefficients speci-
fied in rows (p − true = pγT

); Red dots represent the average F1 score.
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p 100
p(γ) Beta-Binomial(1,1)
pγT

0 5 10 20
r 0 0.9 0 0.9 0 0.9 0 0.9

δ = n

LPEPE 0.11 0.10* 2.93 16.06 7.84 31.56 15.89 59.19
LPEPL 0.10* 0.10* 2.73 15.84 6.64 31.46 14.65 59.24

LCE 0.11 0.10* 3.05 16.17 8.30 31.92 16.96 59.94
LCL 0.10* 0.10* 2.87 16.05 7.09 31.57 16.31 60.09

δ ∼ robust

LPEPE 0.12 0.10* 2.64 14.58 6.35* 26.61 13.47 48.96
LPEPL 0.11 0.10* 2.51* 14.37 42.64 26.34* 125.96 47.21*

LCE 0.12 0.10* 5.57 14.47 68.70 29.67 147.02 58.43
LCL 0.10* 0.10* 8.80 14.58 3067.22 41.31 1744.03 112.74

δ ∼ hyper g/n

LPEPE 0.15 0.14 2.71 14.11* 6.59 26.52 13.29* 48.16
LPEPL 0.18 0.15 2.58 14.14 62.95 27.61 146.06 55.29

LCE 0.22 0.12 8.02 14.45 53.17 33.20 76.12 55.21
LCL 0.30 0.43 35.33 27.52 146.80 73.60 164.25 94.32

LASSO 0.25 0.21 7.08 19.62 16.96 33.66 28.99 54.68
SCAD 0.21 0.79 3.07 19.31 6.85 41.61 14.99 70.28
MCP 0.22 0.23 2.82 19.96 6.63 45.80 14.78 69.89

Table 3: 1000 times the AMSE for estimated coefficients over 100 replications; BOLD
represent group minimum; * represent overall minimum.

7 Real data applications
This section discusses the performance of the LPEP in two real datasets. Three addi-
tional datasets are considered in supplementary Sections J, K and L.

7.1 URINARY: Determinants of urinary incontinence

The URINARY data set (Potter, 2005; Mansournia et al., 2018) describes the results of
a small drug study with 21 subjects. The response corresponds to whether the sub-
ject developed urinary incontinence after receiving the drug. The explanatory variables
capture drug-induced physiological changes. While small, the data set is challenging to
analyze because it exhibits full separation.

Table 4 presents estimates of the regression coefficients for various Bayesian and
penalized likelihood methods. The results for LPEPE, CRPEP and DRPEP are based
on 10,000 iterations of the MCMC algorithm obtained after a burn-in period of 10,000
iterations. On the other hand, for LCL we use the full model enumeration procedure in
the R package BAS. For Bayesian procedures, we present model-averaged posterior means
and 95% credible intervals. Confidence intervals for the penalized likelihood procedures
are not presented because the R packages used to fit the models do not provide them.

Note that LCL always produces large point estimates and very wide credible for
the model coefficients. This is no surprise; the prior proposed by Li and Clyde (2018) is
proper only for models for which the MLEs are finite. Hence, for a data set like URINARY,
some of the Bayes factors associated with LCL are ill-defined. This is also why we do not
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β0 β1 β2 β3

δ = n

LPEPE 0.56 −0.70 −0.39 0.15
(−1.66, 2.85) (−2.32, 0.10) (−0.81, −0.13) (0.00, 0.37)

LCL −83.84 −2333.88 −1578.58 296.17
(−6009.26, 5897.13) (−161488.87, 158312.76) (−109266.01, 107118.14) (−19896.81, 20678.41)

CRPEP −1.15 −0.70 −0.34 0.00
(−3.21, 0.52) (−1.88, 0.30) (−0.63, −0.10) (−0.00, 0.00)

DRPEP 0.69 −1.00 0.00 0.06
(−0.55, 2.13) (−2.09, −0.19) (0.00, 0.00) (−0.03, 0.16)

δ ∼ robust
LPEPE 0.71 −0.98 −0.52 0.19

(−1.74, 3.55) (−3.82, 0.05) (−1.89, −0.12) (0.00, 0.54)

LCL −83.84 −2148.67 −1453.30 272.66
(−6250.14, 5980.74) (−161065.38, 154146.29) (−108979.51, 104298.98) (−19890.08, 20102.78)

δ ∼ hyper g/n

LPEPE 0.61 −0.75 −0.41 0.15
(−1.65, 3.07) (−2.74, 0.10) (−1.02, −0.09) (0.00, 0.39)

LCL −83.84 −1288.82 −871.72 163.55
(−6252.44, 5650.45) (−124412.67, 113166.12) (−84179.77, 76570.77) (−15457.94, 14685.16)

CRPEP −1.04 −0.66 −0.33 0.00
(−3.04, 0.62) (−1.78, 0.30) (−0.65, −0.08) (−0.00, 0.00)

DRPEP −0.89 0.00 −0.36 0.00
(−3.11, 0.69) (0.00, −0.00) (−0.76, −0.11) (−0.00, 0.00)

LASSO 0.36 −0.70 −0.31 0.11
SCAD 0.41 −0.23 −0.20 0.07
MCP 0.40 −0.17 −0.20 0.07

Table 4: Estimated BMA coefficients and 95% credible intervals for Bayesian techniques
for urinary dataset; For frequentist techniques, estimated coefficient is displayed.

show results for LCE and LPEPL; the posterior distribution for the associated MCMC
algorithms is improper if the full model is included in the analysis. Furthermore, note
that CRPEP yields point estimates that appear to be different from those generated by
LPEPE, DRPEP, and the penalized likelihood methods. This is clearer when looking at
the intercept of the model, which is negative with high probability under CRPEP but
positive with high probability under LPEPE and DRPEP under all hyperpriors.

Next, we present in Table 5 the posterior inclusion probabilities (PIPs) associated
with each of the three variables, along with the model selected by each of the penalized
likelihood methods. In all cases, LCL consistently places probability one on all vari-
ables.This is consistent with the results generated by the penalized likelihood methods.
On the other hand, LPEPE places very high PIP for the second and third variables,
but only a moderately high PIP for the first one. These results are consistent for all
specification of δ. In contrast, the results for the original PEP procedures in Fouskakis
et al. (2018) are completely different and, more importantly, inconsistent across the CR-
PEP and DRPEP and various choices of δ. For example, while the CRPEP consistently
favors excluding the third covariate, the DRPEP favors dropping either the second, or
both the first and the third covariates depending on which hyperprior is used for δ.
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P (γ1 �= 0 | y) P (γ2 �= 0 | y) P (γ3 �= 0 | y)

δ = n

LPEPE 0.725 0.996 0.908
LCL 1.000 1.000 1.000

CRPEP 1.000 1.000 0.000
DRPEP 1.000 0.000 1.000

δ ∼ robust LPEPE 0.743 0.996 0.901
LCL 1.000 1.000 1.000

δ ∼ hyper g/n

LPEPE 0.732 0.992 0.891
LCL 1.000 1.000 1.000

CRPEP 1.000 1.000 0.000
DRPEP 0.000 1.000 0.000
LASSO 1.000 1.000 1.000
SCAD 1.000 1.000 1.000
MCP 1.000 1.000 1.000

Table 5: Marginal posterior inclusion probabilities (PIPs) for urinary dataset (Bayesian
procedures) and variables included in the model (penalized likelihood methods).

7.2 GUSTO-I: Survival to treatments for occluded coronary arteries

Next, we consider data from the Global Utilization of Streptokinase and TPA for Oc-
cluded Coronary Arteries (GUSTO-I) trial (Califf et al., 1996), which was previously
analyzed in Held et al. (2015) and Li and Clyde (2018). We aim to model the binary end-
point of 30-day survival for a subgroup of n = 2188 patients using 17 clinical covariates
described in supplementary Section M.

Figure 2 displays the PIPs for Bayesian methods and the inferred model under
the penalized likelihood techniques. For all other Bayesian techniques, we use 131,000
iterations with a burn-in of 10,000 iterations. As in our simulation studies, all penalized
likelihood techniques select denser models than the Bayesian procedures. In line with Li
and Clyde (2018) and Held et al. (2015), we observe that AGE, KILLIP, HYP, HRT and STE
have high PIPs under all methods. However, the different versions of LCL perform quite
differently. In particular, the version of LCL that relies on a hyper-g/n hyperprior tends
to explore very dense models leading, to PIPs close to 0.5 for all variables. Similarly, the
hyper-g/n versions of CRPEP and DRPEP seem to differ from their δ = n versions with
respect to PMI and SEX variables. On the other hand, the different versions of LPEP are
roughly in agreement for all variables.

We also compare the different procedures in terms of their out-of-sample predictive
performance using 10-fold cross-validation. Table 6 presents the average value of four
different metrics across all 10 folds: the area under the ROC curve (AUC), the Calibra-
tion Slope (CS), the Logarithmic Score (LS) and the Brier score (BRIER). AUC and
CS allow us to evaluate discrimination and calibration. In both cases, scores closer to
1 indicate better performance. On the other hand, LS and BRIER measure the predic-
tive accuracy of methods. In both cases, lower scores indicate better performance. Most
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Figure 2: Marginal posterior inclusion probabilities (PIPs) for GUSTO-I data (Bayesian
procedures) and variables selected in the model (penalized likelihood methods).

methods perform similarly under these metrics. The main exceptions are both versions
of CRPEP and DRPEP, which seem to substantially underperform. LPEP procedures
slightly outperform other methods in terms of AUC and CS. On the other hand, LASSO
seems to slightly outperform all Bayesian procedures in terms of LS and Brier score.

8 Discussion
Our results show that LPEP priors for logistic regression are superior to existing tech-
niques, both in terms of model selection and of parameter estimation. The differences are
particularly striking when comparing the LPEP with the original CRPEP and DRPEP
proposed in Fouskakis et al. (2018), and for heavy-tailed versions of mixtures of g-priors
(Li and Clyde, 2018). When compared against the CRPEP and DRPEP, LPEP priors
substantially reduce the computational burden associated with the use of imaginary
samples. Furthermore, our empirical analyses show that the results generated by the
CRPEP and DRPEP can differ substantially from each other and from the consensus
of other methods, and that they can are affected by the choice of hyperpriors.

We were surprised by the poor behavior of the heavy-tailed versions of LCL and
LCE procedures. One point to note is that the setup of the simulations in Section 6
(n = 500, p = 100) was only briefly studied in Li and Clyde (2018). Indeed, most of the
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AUC CS LS BRIER

δ = n

LPEPE 0.8324* 0.9971* 0.1824 0.0496
LPEPL 0.8324* 1.0082 0.1824 0.0495

LCL 0.8300 0.9931 0.1831 0.0497
CRPEP 0.7789 1.0578 0.1965 0.0521
DRPEP 0.7790 1.0569 0.1963 0.0521

δ ∼ robust LPEPE 0.8322 1.0129 0.1822 0.0495
LPEPL 0.8320 1.0239 0.1820 0.0495

LCL 0.8316 0.9804 0.1822 0.0495

δ ∼ hyper g/n

LPEPE 0.8319 1.0074 0.1823 0.0495
LPEPL 0.8322 1.0197 0.1821 0.0495

LCL 0.8311 1.0109 0.1818 0.0493
CRPEP 0.7956 1.1677 0.1951 0.0522
DRPEP 0.7800 1.0571 0.1961 0.0520
LASSO 0.8305 1.0369 0.1816* 0.0492*
SCAD 0.8243 0.9135 0.1838 0.0496
MCP 0.8250 0.9196 0.1838 0.0496

Table 6: Average prediction accuracy measures in a 10-fold cross validation study for
GUSTO-I dataset; Bold represents group maximum for AUC, for CS closest to one, and
group minimum for LS and Brier score; * represents the best score among all methods.

simulation studies in Li and Clyde (2018) focus on settings involving fewer covariates
(p = 20). In this setting, LCL and LCE behave quite well (see supplementary Section I).
Our analyses suggest that these results are driven by a combination of sensitivity to the
choice of hyperprior for δ and issues with the way BAS integrates over δ. Interestingly,
the sensitivity to the hyperprior does not seem to be present for the LPEP procedures.
We believe that this stability represents a key advantage of our method.

This paper focuses on developing the LPEP for logistic regression. However, the
formulation can be easily extended to many other generalized linear models. Many of
the computational advantages of our procedure extend to binomial, negative binomial
and multinomial logic models where the data augmentation approach of Polson et al.
(2013) can be readily applied. This is also true for probit models, where computation
can rely on the data augmentation approach of Albert and Chib (1993), as well as for
loglinear regression using the approach of Frühwirth-Schnatter et al. (2009).

Supplementary Material
Supporting Information for “Laplace Power-expected-posterior priors for logistic regres-
sion” (DOI: 10.1214/23-BA1389SUPP; .pdf). Supplementary materials include detailed
proofs of Theorems 1, 2, 3 and 4, details of the MCMC algorithms for LPEP prior,
and results from additional simulation studies and three additional real datasets. Code
implementing our algorithms along with all real and simulated data sets are available

https://doi.org/10.1214/23-BA1389SUPP


20 Laplace Power-Expected-Posterior Priors for Logistic Regression

here. Code to replicate the results in the paper is available on Github.
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