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Abstract— We study the problem of off-policy evaluation in the
multi-armed bandit model with bounded rewards, and develop
minimax rate-optimal procedures under three seftings. First,
when the behavior policy is known, we show that the Switch
estimator, a method that alternates between the plug-in and
importance sampling estimators, is minimax rate-optimal for
all sample sizes. Second, when the behavior policy is unknown,
we analyze performance in terms of the competitive ratio, thereby
revealing a fundamental gap between the settings of known
and unknown behavior policies. When the behavior policy is
unknown, any estimator must have mean-squared error larger—
relative to the oracle estimator equipped with the knowledge of
the behavior policy— by a multiplicative factor proportional to
the support size of the target policy. Moreover, we demonstrate
that the plug-in approach achieves this worst-case competitive
ratio up to a logarithmic factor. Third, we initiate the study of
the partial knowledge setting in which it is assumed that the
minimum probability taken by the behavior policy is known.
We show that the plug-in estimator is optimal for relatively
large values of the minimum probability, but is sub-optimal
when the minimum probability is low. In order to remedy
this gap, we propose a new estimator based on approximation
by Chebyshev polynomials that provably achieves the optimal
estimation error. Numerical experiments on both simulated and
real data corroborate our theoretical findings.

Index Terms— Off-policy evaluation, multi-armed bandits,
minimax optimality, importance sampling.

I. INTRODUCTION

ARIOUS forms of sequential decision-making, including
multi-armed bandits [1], contextual bandits [2], [3], and
Markov decision processes [4], [5], are characterized in terms
of policies that prescribe actions to be taken. A central problem
in all of these settings is that of policy evaluation—that is,
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estimating the performance of a given target policy. As a
concrete example, given a new policy for deciding between
treatments for cancer patients, one would be interested in
assessing the effect on mortality when it is applied to a certain
population of patients.

Perhaps the most natural idea is to deploy the target policy
in an actual system, thereby collecting a dataset of samples,
and use them to construct an estimate of the performance.
Such an approach is known as on-policy evaluation, since the
policy is evaluated using data that were collected under the
same target policy. However, on-policy evaluation may not be
feasible; in certain applications, it can be costly, dangerous
and/or unethical, such as in clinical trials and autonomous
driving. In light of these concerns, a plausible work-around
is to evaluate the target policy using historical data collected
under a different behavior policy; doing so obviates the need
for any further interactions with the real environment. This
alternative approach is known as off-policy evaluation, or OPE
for short. Methods for off-policy evaluation have various
applications, among them news recommendation [6], online
advertising [7], robotics [8], to name just a few. Although
OPE is appealing in not requiring collection of additional data,
it also presents statistical challenges, in that the target policy
to be evaluated is usually different from the behavioral policy
that generates the data.

A. Gaps in Current Statistical Understanding of OPE

Recent years have witnessed considerable progress in the
development and analysis of methods for OPE. Nonetheless,
there remain a number of salient gaps in our current statis-
tical understanding of off-policy evaluation, and these gaps
motivate our work.

1) Non-Asymptotic Analysis of OPE: The classical analysis
of OPE relies upon asymptotics in which the size of historical
dataset, call it n, increases to infinity with all other aspects
of the problem set-up held fixed. Such analysis shows that
a simple plug-in estimator, to be described in the sequel,
is asymptotically efficient for the OPE problem in certain
settings [9]. However, such classical analysis fails to capture
the modern practice of OPE, in which the sample size n may
be of the same order as other problem parameters, such as
the number of actions k. Thus, it is of considerable interest
to obtain non-asymptotic guarantees on the performance of
different methods, along with explicit dependence on different
problem parameters. Li ef al. [10] and Wang ef al. [11] went
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beyond the asymptotic setting and studied the OPE problem
for multi-armed bandits and contextual bandits, respectively,
from a non-asymptotic perspective. However, as we discuss
in the sequel, their analyses and results are applicable only
when the sample size n is sufficiently large. In this large
sample regime, a number of estimators, including the plug-in,
importance sampling and Switch estimators to be discussed in
this paper, are all minimax rate-optimal. Thus, analysis of this
type falls short of differentiating between different estimators.
In particular, are they all rate-optimal for the full range of
sample sizes, or is one estimator better than others?

2) Known vs. Unknown Behavior Policies: In practice, the
behavior policy generating the historical data might be known
or unknown to the statistician, depending on the application at
hand. This difference in available knowledge raises a natural
question: is there any fundamental difference between OPE
problems with known or unknown behavior policies? This
question, though natural, appears to have been less explored
in the literature. As we noted above from an asymptotic point
of view, the plug-in estimator—which requires no information
about the behavior policy—is optimal. In other words, asymp-
totically speaking, knowing the behavior policy brings no extra
benefits to solving the OPE problem. Does this remarkable
property continue to hold in the finite sample setting?

3) OPE With Partial Knowledge of the Behavior Policy:
The known and unknown cases form two extremes of a
continuum: in practice, one often has partial knowledge about
the behavior policy. For instance, one might have a rough idea
on how well the behavior policy covers/approximates the target
policy, as measured in terms of likelihood ratios defined by the
two policies. Alternatively, there might be a guarantee on the
overall exploration level of the behavior policy, as measured
by the minimum probability of observing each state/action
under the behavior policy. How does such extra knowledge
alter the statistical nature of the OPE problem? Can one
develop estimators that fully exploit this information and yield
improvements over the case of a fully unknown behavior
policy?

B. Contributions and Organizations

In this paper, we focus on the off-policy evaluation problem
under the multi-armed bandit model with bounded rewards.
This setting, while seemingly simple, is rich enough to reveal
some non-trivial issues in developing optimal methods for
OPE.

More concretely, consider a bandit model with a total of k
possible actions to take, also known as arms. Any (possibly
randomized) policy m can be thought of as a probability
distribution over the action space [k] := {1,2,...,k}. Given
a target policy m: and a collection of action-reward pairs
{(A;, R;)}, generated i.i.d. from the behavior policy 7, and
the reward distributions {f(- | @)}ac[x), the goal of OPE is
to estimate the value function V() of the target policy m,
given by

Vi(me) := Z m(a)rs(a).

aclk]
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Here the quantity rf(a) := Egr~f(.|o)[R] denotes the mean
reward of the arm a. Our goal is to provide a sharp non-
asymptotic characterization of the statistical limits of the OPE
problem in three different settings: (i) when the behavior
policy m, is known; (ii) when m, is unknown; and (iii) when
we have partial knowledge about m,. Along the way, we also
develop computationally efficient procedures that achieve the
minimax rates, up to a universal constant, for all sample sizes.
The detailed statements of our main results are deferred to
Section III, but let us highlight here our contributions that we
make in each of the three settings.

1) Known Behavior Policy: First, when the behavior policy
mp is known to the statistician, we sharply characterize the
minimax risk of estimating the target value function V() in
Theorem 1. Notably, this bound holds for all sample sizes,
in contrast to previous statistical analysis of OPE, which
are either asymptotic or valid only when the sample size
is sufficiently large. In addition, we show in Proposition 1
that the so-called Switch estimator achieves this optimal risk.
The family of Switch estimators interpolate between two base
estimators: a direct method based on the plug-in principle
applied to actions in some set .S, and an importance sampling
estimate applied to its complement S°. Our theory identifies
a simple convex program that specifies the optimal choice
of subset: solving this program specifies a threshold level of
the likelihood ratio at which to switch between the two base
estimators. We prove that this choice yields a minimax-optimal
estimator, one that reduces the variance of the importance
sampling estimator alone.

2) Unknown Behavior Policy: Moving onto the case when
the behavior policy m, is completely unknown, we first argue
that the global minimax risk is no longer a sensible criterion
to measure the performance of different estimators. Instead,
we propose a different metric, namely the minimax competitive
rafio, that measures the performance of an estimator against
the best achievable via an oracle—in this setting, an oracle
with the knowledge of the behavior policy. With this new
metric in place, we uncover a fundamental statistical gap
between the known and unknown behavior policy cases in
Theorem 3. More specifically, when evaluating a target policy
m; that can take at most s actions (for some s € {1,2,...,k}),
any estimator without the knowledge of the behavior policy
must pay multiplicative factor of s (modulo a log factor)
compared to the oracle Switch estimator given knowledge of
the behavior policy. We further demonstrate that the plug-in
estimator alone achieves this optimal worst-case competitive
ratio (up to a log factor), illustrating its near-optimality in the
unknown 7, case (cf. Theorem 2).

3) Partially Known Behavior Policy: In the third part
of the paper, we initiate the study of the middle ground
between the previous two extreme cases: what if we have
some partial knowledge regarding the behavior policy? More
concretely, we assume the knowledge of the minimum prob-
ability min,c[x mp(a) that is taken by the behavior policy in
Section ITI-C. Under such circumstance, we first show that
the plug-in estimator is sub-optimal when the behavior policy
is less exploratory—that is, in the regime mingcp m(a) <
(logk)/n. We then propose a new estimator based on
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approximation by Chebyshev polynomials and show that it
is optimal in estimating a large family of target policies. It is
worth pointing out that this optimality is established under a
different but closely related Poisson sampling model—instead
of the usual multinomial sampling one—with the benefit of
simplifying the analysis.

C. Related Work

Off-policy evaluation has been extensively studied in the
past decades and by now there has been an immense body of
literature on this topic. Here we limit ourselves to discussion
of work directly related to the current paper.

1) Various Estimators for OPE: There exist two classical
approaches to the OPE problem. The first is a direct method
based on the plug-in principle: it estimates the value of the
target policy using the reward and/or the transition dynamics
estimated from the data. In the multi-armed bandit setting,
the direct method uses the data to estimate the mean rewards,
and plugs these estimates into the expression for the target
value function. The other approach is based on importance
sampling [12], also known as inverse propensity scoring (IPS)
in the causal inference literature. It reweights the observed
rewards according to the likelihood ratios between the target
and the behavior policies. Both methods are widely used in
practice; we refer interested readers to the recent empirical
study [13] for various forms of these estimators. A number
of authors [11], [14] have proposed hybrid estimators that
involve a combination of these two approaches, a line of
work that inspired our analysis of the Switch estimator. In this
context, our novel contribution is to specify a particular set for
switching between the two estimators, and showing that the
resulting Switch estimator is minimax-optimal for any sample
size.

2) Statistical Analysis of OPE: Statistical analysis of OPE
can be separated into two categories: asymptotic and non-
asymptotic. On one hand, the asymptotic properties of the OPE
estimators are quite well-understood, with plug-in methods
known to be asymptotically efficient [9], and asymptotically
minimax optimal in multi-armed bandits [10]. Moving beyond
bandits, a Cramér-Rao lower bound was recently provided for
tabular Markov decision processes [15], and approaches based
on the plug-in principle were shown to approach this limit
asymptotically [16], [17].

Relative to such asymptotic analysis, there are fewer non-
asymptotic guarantees for OPE; of particular relevance are the
two papers [10], [11]. Li ef al. [10] also studied the OPE prob-
lem under the multi-armed bandit model, but under different
assumptions on the reward distributions than this paper. They
proved a minimax lower bound that holds when the sample
size is large enough, but did not give matching upper bounds in
this regime. Wang ef al. [11] extended this line of analysis to
the contextual bandit setting with uncountably many contexts.
They provided matching upper and lower bounds, but again
ones that only hold when the sample size is sufficiently large.
Notably, in this large sample regime and under the bounded
reward condition of this paper, all three estimators (plug-in,
importance sampling and Switch) are minimax optimal up to
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constant factors. Thus, restricting attention to this particular
regime fails to uncover the benefits of the Switch estimator.
This paper provides a complete picture of the non-asymptotic
behavior of these estimators for the OPE problem, showing
that only the Switch estimator is minimax-optimal for all
sample sizes.

3) Estimation of Nonsmooth Functionals via Function
Approximation: The OPE problem with an unknown behavior
policy is intimately connected to the problem of estimating
nonsmooth functionals. Portions of our analysis and the devel-
opment of the Chebyshev estimator exploit this connection.
The use of function approximation in functional estimation
was pioneered by Ibragimov ef al. [18], and was later gen-
eralized to nonsmooth functionals by Lepski ef al. [19] and
Cai and Low [20]. The underlying techniques have been
used to devise optimal estimators for a variety of nonsmooth
functionals, including Shannon entropy [21]-[23], KL diver-
gence [24], support size [25]-[27], among others. Our devel-
opment of the Chebyshev estimator is largely inspired by the
paper [27] on estimating the support size, which can be viewed
as a special case of OPE.

4) Notation: For the reader’s convenience, let us summarize
the notation used throughout the remainder of the paper.
We reserve boldfaced symbols for vectors. For instance, the
symbol O denotes the all-zeros vector, whose dimension can
be inferred from the context. For a positive integer k, we refer
to [k] as the set {1,2, ..., k}. For a finite set S, we use |S| to
denote its cardinality. We denote by 1{£} the indicator of the
event £. For any distribution i on R, we denote by supp(p) its
support. For any distribution 7 on [k] and any subset S C [§],
we define 7(S) :=>___ 7(a). We follow the convention that
0/0=0.

acS

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we introduce the multi-armed bandit model
with stochastic rewards, and then formally define the off-policy
evaluation (OPE) problem in this bandit setting. We also intro-
duce two existing estimators—the plug-in and the importance
sampling estimators—for the OPE problem.

A. Multi-Armed Bandits and Value Functions

A multi-armed bandit (MAB) model is specified by an
action space .4 and a collection of reward distributions f :=
{f(- | a)}aca, where f(- | a) is the reward distribution
associated with the action or arm a. Throughout the paper,
we focus on the MAB model with k possible actions, and we
index the action space A by [k] = {1,2,...,k}. In addition,
we assume that the collection of reward distributions f belongs
to the family of distributions with bounded support—that is,

F(Tmax) == {f|supp(f(- | @)) C [0, Trnax) for each a € [K]}.
(1)

When the maximum reward 7., is understood from the con-
text, we adopt the shorthand F for this class of distributions.

A (randomized) policy wm is simply a distribution over
the action space [k|, where m(a) specifies the probability of
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selecting the action a. Correspondingly, we can define the
value function V() of the policy 7 to be

Vi(m) = Y n(a)rs(a),

aclk]

2

where r¢(a) = Ef[R | A = a| denotes the mean reward
under f given that action a is taken. Here R denotes a reward
random variable distributed according to f(- | a).

B. Observation Model and Off-Policy Evaluation

Suppose that we have collected a collection of pairs
{(A;, R;)}?_,, where the action A; is randomly drawn from
the behavior policy mp, whereas the reward R; is distributed
according to the reward distribution f( - | A;). Given a target
policy m, the goal of off-policy evaluation (OPE) is to evaluate
the value function of the target policy, given by

Vi(m) = Z m(a)rs(a).
ac(k]

Note that this problem is non-trivial because the data
{(A;, R;)} 4 is collected under the behavior policy p,, which
is typically distinct from the target policy .

(3)

C. Plug-In and Importance Sampling Estimators

A variety of estimators have been designed to estimate
the value function V(). Here we introduce two important
ones most relevant to our development, namely the plug-in
estimator and the importance sampling estimator. We note that
in some of the literature, the plug-in estimator is also known
as the regression estimator.

1) Plug-In Estimator: Perhaps the simplest method is based
on applying the usual plug-in principle. Observe that the only
unknown quantities in the definition (3) of the value function
are the mean rewards {rs(a)}. These unknown quantities can
be estimated by their empirical counterparts

(a) == ﬁ > o1 Ril1{A; = a}, if n(a) > 1, and
. 0 otherwise,

“4)

where n(a) := Y ;- ; 1{A; = a} denotes the number of times
that action a is observed in the data set. Substituting these
empirical estimates into the definition of the value function
yields the plug-in estimator

Voug := ) me(a)f(a),

ac[k]

&)

Observe that this estimator is fully agnostic to the behavior
policy. Thus, it can also be used when the behavior policy
is unknown, a setting that we also study in the sequel.

2) Importance Sampling Estimator: An alternative estima-
tor, one which does require knowledge of the behavior policy,
is based on the idea of importance sampling. More precisely,
let p(a) := m(a)/mp(a) denote the likelihood ratio associated
with the action a. The importance sampling (IS) estimator is
given by

= I
Vis := ; E P(Ai)R:'- (6)
i=1
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In words, it weighs the observed reward R; based on the
corresponding likelihood ratio p(A;). As long as p(a) < oo
for all a € [k], the importance sampling estimator Vjs is an
unbiased estimate of V(). Note that the IS estimate relies
on knowledge of the behavior policy m, via its use of the
likelihood ratio.

It is worth mentioning that the plug-in estimator can also
be viewed as the importance sampling estimator in which the
weights are estimated from the data.

III. MAIN RESULTS

We now move onto the main results of this paper. We begin
in Section III-A with results in the case when the behavior
policy m, is known a priori. In Section III-B, we provide
guarantees when the behavior policy is completely unknown,
whereas Section III-C is devoted to the setting where certain
partial knowledge about the behavior policy, say the minimum
value min, ¢ mp(a), is known.

A. Switch Estimator With Known mp

When the behavior policy is known, both the plug-in esti-
mator and the importance sampling estimator are applicable.
In fact, they belong to the family of Swifch estimators,
as introduced in past' work [11], [28]. For any subset S C [k],
we define the Switch estimator associated with S as

Vauitch(S) ==Y _ me(a)7(a) + % Y p(Ai)Ril{A; ¢ S},
i=1

acsS
)]

where 7(a) is the empirical mean reward defined in equa-
tion (4). By making the choices S = [k] or § = 0,
respectively, the Switch estimator Vyitch (S) reduces either to
the plug-in estimator (5) or to the IS estimator (6). Choices
of S intermediate between these two extremes allow us to
interpolate (or switch) between the plug-in estimator and the
IS estimator.

The following proposition, whose proof is relatively elemen-
tary, provides a unified performance guarantee for the family
of Switch estimators.

Proposition 1: For any subset S C [k], we have

Enyo01[(Vawiten (S) — Vi (m))?]
oz {si9+ Deesm@P @)

See Section IV-A for the proof of this claim.

Given the family of Switch estimators {Vuitch(S)} SCIk>
it is natural to ask: how to choose the subset S among all
possible subsets of the action space? The unified upper bounds
established in Proposition 1 offer us a reasonable guideline:
one should select a subset S to minimize the error bound (8),
ie.,

®)

a 2 a
Za;ésﬂl:l( )P ( )} (9)

. 2
i {20+

To be clear, the paper [11] considers a restricted version of this family,
in which the subset S is restricted to be of the form {a € [k] | p(a) > T}
for some threshold T > 0, whereas we define the estimator for any set.
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At first glance, the minimization problem (9) is combinatorial
in nature, which indicates the possible computational hardness
in solving it. Fortunately, it turns out that such an “ambitious™
goal can instead be achieved via solving a tractable convex
program. To make this claim precise, let us consider the
following convex program

Snz

aclk]

[m(a) — v(a)]

min s

10
vERE (10)

Wiy Z v(a)l

at‘:‘[k]

where v = (v(1),v(2),...,v(k))" is a vector of decision
variables. The convex program (10) can be viewed as a convex
relaxation of the combinotorial problem (9). Let v* be a
minimizer of this optimization problem (10), whose existence
is guaranteed by the coerciveness of the objective function.
Correspondingly, we define

*:={a| v*(a) # 0} an

to be the support of v*. It turns out that the choice S5 = 5*
solves the best subset selection problem (9) up to a constant
factor. We summarize in the following:

Proposition 2: There exists a universal constant ¢ > 0 such
that

. 2
(o

Y ags m(a)p*(a) }

Lo m@P@)

>c {wf(s*) +

See Section IV-B for the proof of the optimality of S*.
Thus, we conclude that the among the family of Switch
estimators, the optimal estimator is given by

Tieeh(5%) = 3 mu(@)7(@) + = 3 p(A)RiL{As ¢ 5°).
acsS* i=1
(13a)

In view of Proposition 1, it enjoys the following performance
guarantee

Envor[(Vawitch (S*) — Vy(mr))?]
< 372 {rf(S*) 4 Lags® e } .

n

(13b)

From now on, we shall refer to f’switch(S*) as the Switch
estimator.

1) Is the Switch Estimator Optimal?: The above discussion
establishes the optimality of the Switch estimator Vaitch(S*)
among the family of estimators (7) parameterized by a choice
of subset S. However, does the Switch estimator continue to
be optimal in a larger context? This question can be assessed
by determining whether it achieves, say up to a constant factor,
the minimax risk given by

R (i mp) := inf sup Enor[(V = Vy(m))?l,  (14)
V feF

Here the infimum ranges over all measurable functions 14

of the data {(A;, R;)}? ;. whereas the supremum is taken

over all reward distributions f belonging to our family 7 of
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bounded mean distributions. The following theorem provides
a lower bound on this minimax risk:

Theorem 1: There exists a universal positive constant c
such that for all pairs (7, 7¢), we have

Zaes* ﬂ},(a}pz(a) } )

R (i) > 12 {wE(S*) 4

See Section IV-C for the proof of this lower bound.

By combining Theorem 1 and the upper bound (13b) on
the mean-squared error of the Switch estimator 1i:’,“,.,it.:h(S*),
we obtain a finite-sample characterization of the minimax risk
up to universal constants—namely

Zaes* Wb(a}pz (a} } A

R (3 o) < 7o {rf(S*J ik (15)
Consequently, we see that the Switch estimator 1i?g.,.,it.:h(S"“) is
optimal among all estimators in a minimax sense.

In order to gain intuition for this optimality result, it is
helpful to consider some special cases.

a) Degenerate case of on-policy evaluation: First, con-
sider the degenerate setting m; = ., so that our OPE problem
actually reduces to a standard on-policy evaluation problem.
In this case, the IS estimator reduces to the standard Monte
Carlo estimate

T Z p(A:)R; = ZR
i=1

A straightforward calculation shows that it has mean-squared
error 72__/n, which we claim is order-optimal. To reach
this conclusion from our expression (15) for the minimax
risk, it suffices to check that v* = 0 is a minimizer of
the optimization problem (10). This fact can be certified
by showing that the all-zeros vector 0 obeys the first-order
optimality condition associated with the convex program (10).
More precisely, for all actions a € [k], we have

/ 1 m (a]/ﬂ},(a) 1
.f T&(G)}Z
uE[k] m(a)

b) Large-sample regime: Returning to the general
off-policy case (m: # mp), suppose that the sample size n
satisfies a lower bound of the form

= 2 (16)

n>e ]II.a.Xa(:- (a)

e WP =
for a sufficiently large constant c. In this case, the all-zeros
vector 0 is again optimal for the convex program (10) since
the first-order optimality condition (16) is met as long as
c is large enough. As a consequence, we conclude that the
Switch estimator reduces to the IS estimator in the large-
sample regime defined by the lower bound (17). In this
regime, the IS estimator achieves mean-squared error 72 _
Zae[k] mp(a)p?(a)/n. Under the bounded reward condition,
this result recovers the rate provided by Li ef al [10] in
the large sample regime (17) up to a constant factor; see
Theorem 1 in their paper.

It is worthwhile elaborating further on the connections with
the paper of Li ef al. [10]: they studied classes of reward
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distributions that are parameterized by bounds on their means
(as implied by our bounded rewards) and variances. In this
sense, their analysis is finer-grained than our study of bounded
rewards only. However, when their results are specialized to
bounded reward distributions (1), their minimax risk result
(cf. equation (2) in their paper) applies only in the large sample
regime defined by the lower bound (17). As we have discussed,
when this lower bound holds, the IS estimator itself is order
optimal, so analysis restricted to this regime fails to reveal the
tradeoff between the two terms in the minimax rate (15), and
in particular, the potential sub-optimality of the IS estimator
(as reflected by the presence of the additional term 72(S*) in
the minimax bound).

2) A Closer Look at the Switch Estimator: In this subsec-
tion, we take a closer look at some properties of the Switch
estimator, and in particular its connection to truncation of the
likelihood ratio.

a) Link to likelihood truncation: We begin by inves-
tigating the nature of the best subset S*, as defined in
equation (11). Let us assume without loss of generality that
the actions are ordered according to the likelihood ratios—viz.

p(1) < p(2) < --- < plk). (18)
Under this condition, unraveling the proof of Proposition 2
shows that the optimal subset S* takes the form

S*={s,s+1,...,k} for some integer s € [k]. (19)
Here it should be understood that the choice s = k corre-
sponds to S* = (). Thus, the significance of the optimization
problem (10) is that it specifies the optimal threshold at which
to truncate the likelihood ratio. Although we cannot provide
closed form solutions to the optimal threshold, it is interesting
to see that the optimal subset S* automatically singles out the
set of actions with large likelihood ratios, which agrees with
the intuition that the IS estimator has large variance for such
actions.

As noted previously, Wang ef al. [11] studied the sub-
family of Switch estimators obtained by varying the truncation
thresholds of the likelihood ratios. Similar to Li er al. [10],
they studied the large sample regime in which the IS estimator
without any truncation is already minimax optimal up to
constant factors. This fails to explain the benefits of truncating
large likelihood ratios and the associated Switch estimator.
In contrast, the key optimization problem (10) informs us
of the optimal subset S* and hence an optimal truncation
threshold, which allows the Switch estimator thﬁ(S*) to
optimally estimate the target value function for all sample
sizes. This result is especially relevant for smaller sample sizes
in which the problem is challenging, and the IS estimator can
exhibit rather poor behavior.

b) Role of the plug-in component: The Switch estima-
tor (13a) is based on applying the plug-in principle to the
actions in S* with large likelihood ratios. However, doing
so is not actually necessary to achieve the optimal rate of
convergence (15). In fact, if we simply estimate the mean
reward by zero for any action in S*, then we obtain the
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estimate

o g (o .
Vie=— ;pm;)m{m ¢ S*}, (20)
which is also minimax-optimal up to a constant factor. The
intuition is that for actions on the support S*, the likelihood
ratios are so large that the off-policy data is essentially useless,
and can be ignored. It suffices to use the zero estimate, yielding
a squared bias of the order 72(S*). On the other hand, for
actions in the complement (5*)¢, the likelihood ratios are
comparatively small, so that the off-policy data should be
exploited.

We note that truncated IS estimators of the type (20) have
been explored in empirical work on counterfactual reason-
ing [29] and reinforcement learning [30]; our work appears to
be the first to establish their optimality for general likelihood
ratios. Also noteworthy is the paper by Ionides [31], who
analyzed the rate at which the truncation level should decay,
assuming that the likelihood ratios decay at a polynomial rate.
Our theory, while focused on finite action spaces, instead
works for any configuration of the likelihood ratios, and in
addition provides a precise truncation level instead of only a
rate.

3) Numerical Experiments: In this section, we report the
results of some simple numerical experiments on simulated
data that serve to illustrate the possible differences between
the three methods: Switch, plug-in and IS estimators. We per-
formed experiments with the uniform target policy (i.e.,
m(a) = 1/k for all actions a € [k]), and for each action
a, we defined the reward distribution f(- | a) to be an
equi-probable Bernoulli distribution over {0, 1}, so that ., =
1.

For each choice of k, we constructed a behavior policy of
the following form

1
F:

m(VE+1) =m(VE+2)=---=m(k) =

(1) = mp(2) = - -- = mp(VE) = and

1- 5
k—vE~

In words, we set the first /k actions with a low probability
2= Whereas for the remaining k — /& actions, the behavior
probabilities are relatively large, which is close to % As we
will see momentarily, this choice allows us to demonstrate
interesting differences between the three estimators.

As is standard in high-dimensional statistics [32], we study
a sequence of such problems indexed by the pair (n,k); in
order to obtain an interesting slice of this two-dimensional
space, we set n = 1.5k. For such a sequence of problems,
we can explicitly compute that the mean-squared errors of the
three estimators scale as follows:

Enor(Voug — Vi(m))?] < 1, (21a)
Ernorl(Vis — Vi(m))?] xn~'/%, and  (21b)
Enos[(Vowitch(S*) — Vi(m))?] < n 7. 21c)

The purpose of our numerical experiments is to illustrate this
theoretically predicted scaling.
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Fig. 1. Log-log plot of the estimation errors vs. the sample size. All

results reported are averaged over 10° random trials. The legends also contain
the estimated slopes and their standard errors obtained by performing linear
regressions on the logarithms of the error and the sample size.

Figure 1 shows the mean-squared errors of these three
estimators versus the sample size n, plotted on a log-log
scale. The results are averaged over 10° random trials. As can
be seen from Figure 1, the Switch estimator performs better
than the two competitors uniformly across different sample
sizes. Note that our theory (21) predicts that the mean-squared
errors should scale as n—°", where 3* € {0,1/2,1} for the
plug-in, IS, and SWITCH estimators respectively. In order
to assess these theoretical predictions, we performed a linear
regression of the log MSE on log(n), thereby obtaining an
estimated exponent 3 for each estimator. These estimates and
their standard errors are shown in the legend of Figure 1.
Clearly, the estimated slopes are quite close to the theoretical
predictions (21).

B. OPE When m, Is Unknown: Competitive Ratio

Our analysis thus far has taken the behavior policy m, to
be known. This condition, while realistic in some settings,
is unrealistic in others. Accordingly, we now turn to the version
of the OPE problem in which the only knowledge provided
are the action-reward pairs {(A;, R;)}? ;. Note that the impor-
tance sampling estimator 1715 and Switch estimators Vm-,[ch(S )
are no longer applicable, since they require knowledge of
the behavior policy. Consequently, we are led to the natural
question: what is an optimal estimator when m, is unknown?
Before answering this question, one needs to first settle upon
a suitable notion of optimality.

1) Optimality via the Minimax Competitive Ratio: The first
important observation is that when the behavior policy is
unknown, the global minimax risk is no longer a suitable
metric for assessing optimality. Indeed, for any target policy
¢, one can construct a “nasty” behavior policy m, such that
for any estimator V, we have a lower bound of the form

sup Er,of[(V — Vi(m))?] > er2.,
feF

for some universal constant ¢ > 0. For this reason, if we
measure optimality according to the global minimax risk, then
the trivial “always return zero” estimator V' = 0 is optimal,
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and hence the global minimax risk is not a sensible criterion
in this setting.

This pathology arises from the fact that the adversary has
too much power: it is allowed to choose an arbitrarily bad
behavior policy while suffering no consequences for doing so.
In order to mitigate this deficiency, it is natural to consider the
notion of a competitive ratio, as is standard in the literature on
online learning [33]. An analysis in terms of the competitive
ratio measures the performance of an estimator against the best
achievable by some oracle—in this case, an oracle equipped
with the knowledge of .

For a given target policy m: and behavior policy m,, recall
the definition (14) of the minimax risk R}, (m;mp); it corre-
sponds to smallest mean-squared error that can be guaranteed,
uniformly over a class of reward distributions F, by any
method equipped with the oracle knowledge of mp. Given
an estimator V' and a reward distribution f, we can measure
its performance relative to this oracle lower bound via the
competitive ratio

> T Tt 2
C(Vim,m, f) == Eﬂ@f;g;m;ﬁg ) ].

(22)

An estimator V with a small competitive ratio—that is, close
to 1—is guaranteed to perform almost as well as the oracle
that knows the behavior policy mp. On the other hand, a large
competitive ratio indicates poor performance relative to the
oracle.

__ As one concrete example, the “always return zero” estimator
V = 0 is far from ideal when considered in terms of the
competitive ratio (22). Indeed, suppose that m, = m and
77(@) = Twmax /2; we then have

Enesl(V — Vi(m))?

> Em@f[(v =¥ ("‘Tt))z]

su
o feF R, (7e; mb) R, (5 mb)
® Ener[(Vy(m)*] @

(23)

Here step (i) follows from the fact that V=0 by defin-

ition, along with the scaling R}, (m; m) =< rf‘?‘”‘ established
in Section III-A.1. Step (ii) follows from the assumption
that 77(a) = Toa /2, which implies that E g ([(V}())?] =
rjm /4. Thus, we see that the “always return zero” estimator
V' = 0 performs extremely badly relative to the oracle, and
its competitive ratio further degrades as the sample size n
increases.

2) Competitive Ratio of the Plug-in Estimator: As we
have emphasized earlier, the plug-in approach is applicable
even if the behavior policy mp is unknown. The following
theorem provides a guarantee on its behavior in terms of the
competitive ratio:

Theorem 2: There exists a universal constant ¢ > 0 such
that for any target policy m;, the plug-in estimator Vg
satisfies the bound

sup C(f’"; TTt.,‘lT]].,f) < c|supp(m)].
“b:fer

See Section IV-D for the proof of this theorem.
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Fig. 2. [Illustration of the competitive ratio the plug-in estimator vs. the
support size of the target policy. Throughout the experiments, we set k =
100,n = 2k. The behavior policy obeys m,(a) = (nlogk)~! for a €
[k — 1], and my(k) = 1 — (k — 1)/(nlogk). For each support size s,
we take the target policy 7: to be the uniform distribution over [s]. Since
‘R (m;mp) is not known precisely, we use the mean-squared error of the
Switch estimator as a surrogate, which is correct up to a constant. The results
reported are averaged over 10* Monte Carlo trials.

Several remarks are in order. Note that the upper bound
on the competitive ratio is at most ck, achieved for a target
distribution that places mass on all k£ actions. Comparing this
worst-case guarantee with that of the “always return zero”
estimator (23) shows that plug-in estimator is strictly better
as soon as the sample size n exceeds a multiple of k. Note
that this is a relatively mild condition on the sample size.
In addition, Theorem 2 guarantees worst-case competitive ratio
of the plug-in estimator scales linearly with the support size
of m. This showcases the automatic adaptivity of the plug-in
estimator to the target policy under consideration. See Figure 2
for a numerical illustration of this phenomenon.

We note that Li ef al. [10] established a similar guarantee
(see Theorem 3 in their paper [10]). One importance difference
is that their guarantee only holds in the large sample regime
(cf. the restriction (17)), whereas ours covers the full spectrum
of the sample size. Moreover, their upper bound is proportional
to k for any target policy, and so does not reveal the adaptivity
of the plug-in estimator to the support size.

3) Is the Plug-In Estimator Optimal?: A natural follow-up
question is to investigate the optimality of the plug-in
approach—in the sense of the worst-case competitive ratio—
in the unknown p, case. It turns out that, the plug-in estimator
is close to optimal, as demonstrated by the following theorem.

Theorem 3: Suppose that the sample size is lower bounded
asn > cﬁ for a positive constant c. Then for each s €
Pl 2 iy k?, there exists a target policy m: supported on s
actions and

inf sup C(V; e, Mh, f) > ¢/ max {i, 1} , (29
V m,feF logk

where ¢’ > 0 is a universal constant.
See Section IV-E for the proof of Theorem 3.

As shown in the proof of Theorem 3, for each given integer
s € [k], the lower bound (24) is met by taking the target policy
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that chooses actions uniformly from the set {1,2,..., s}. This
lower bound shows that when evaluating a policy with support
size s, the gap—between performance when knowing the
behavior policy m, relative to not knowing it—scales as s up to
a logarithmic factor; thus, these two settings are very different
in terms of their statistical difficulty. In addition, comparing
the lower bound in Theorem 3 with the upper bound provided
in Theorem 2, one can see that the plug-in estimator f’pmg is
optimal up to a logarithmic factor, measured by the worst-case
competitive ratio.

C. OPE With Lower Bounds on the Minimum Exploration
Probability

The preceding subsections consider two extreme cases in
which the behavior policy is either known or completely
unknown. This leaves us with an interesting middle ground:
what if we have some partial knowledge regarding the behavior
policy? How can such information be properly exploited by
estimators?

In this section, we initiate the investigation of these ques-
tions by focusing on a particular type of partial knowledge—
namely, the minimum exploration probability min, ¢z m(a).
More precisely, for a given scalar » > 0, consider the
collection of distributions

O(v) := {r | :2_1[?] m(a) > v}

Given that any randomized policy m must sum to one, i.e.,
Zae[k] m(a) = 1, this family is non-empty only when
v € [0,1/k]. Our goal in this section is to characterize the
difficulty of the OPE problem when it is known that m, € II(v)
for some choice of v. We first analyze the plug-in estimator,
which does nof require knowledge of v. We then derive a
minimax lower bound, which shows that the plug-in estimator
is sub-optimal for certain choices of v. In the end, we design
an alternative estimator, based on approximation by Chebyshev
polynomials, that has optimality guarantees for a large family
of target policies, albeit under a different but closely related
Poisson sampling model.

1) Performance of the Plug-in Estimator: We begin with
establishing a performance guarantee for the plug-in estimator.

Theorem 4: There exist universal constants c,c¢’ > 0 such
that for any m, € II(v), one has

sup Er.e[(Voug — Vy(m))?]
feF

=c {Tfm - exp(—2nv) + R} (m; m,}} : (25a)
In addition, if v > loﬁk, then we have
sup Eros[(Vowg — Vi (m))?] < R} (mi;m).  (25b)

See Section IV-F for the proof of these two claims.

Two interesting observations are worth making. First, if the
behavior policy is sufficiently exploratory, in the sense that
it belongs to the family II(») for some v > '—”ﬁ—k, then the
plug-in estimator f;;,mg achieves the optimal estimation error
R} (m;m) up to a constant factor. In other words, the side
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condition mingc k) mh(a) > logk s sufficient for the plug-in
approach to perform optimally.

On the other hand, when the behavior policy is less
exploratory—meaning that v < log"‘ —its mean-squared error
involves the additional term 72 exp( 2nv). As shown in
the proof of the upper bound (253), this extra price stems from
bias of the plug-in estimator: if we fail to observe rewards for
some action a, then the plug-in estimator has no avenue for
estimating the mean reward 7 (a); any estimate that it makes
incurs a bias of the order nZ(a) - 2_ . When mp(a) = v,
such an event takes place with probability on the order of
exp(—nwv).

2) Is the Plug-in Estimator Optimal Under Partial Knowl-
edge?: Ts the extra price r2__ - exp(—2nv) necessary for
all estimators? In order to answer this question, we need to
characterize the constrained minimax risk

Ry (7, n,v) := inf sup
V (m.f)EN(w)xF

Enor[(V — Vi(m))?,

(26)

where the supremum is taken over all possible behavior
policies in II(v), and reward distributions in F. In view of
our guarantee (25b) for the plug-in approach, it can be seen
that when v > ]°§ k  then

sup Ry (m;mp),
mpEI(v)

RKI" (Wtu n, V) =

Consequently, the plug-in estimator is optimal when the behav-
ior policy is sufficiently exploratory.

As a result, in the remainder of this section, we concentrate
on the regime v < hﬁ" . We begin by stating a minimax lower
bound in this regime:

Theorem 5: Consider the case v < —g— If v further
satisfies v < 5 and v > cn]og 5 for some sufﬁcwntly large
constant ¢ > 0 then there exists another universal positive

constant ¢’ such that

R;ﬂ (ﬁt': 1, V)

> { sup RE(m;mp) + 12 - exp(—2004/ nvlogk)} :
T EM(1)

27

See Section IV-G for the proof of this theorem.

Note thatif v < log % the worst-case risk is lower bounded
as Q(r2_ ). Combining the lower bound in Theorem 5 with
the upper bound shown in Theorem 4, we conclude that
the plug-in approach is minimax optimal up to constants
once v 2 logk/n. However, observe that there remains a
gap between the upper and lower bounds when the behavior

po]icy is known to be less exploratory—that is, in the regime
2 k-
nlog [3 (S v =
3) Optimal Esnmators via Chebyshev Polynomials in the
Poisson Model: In this section, we devote ourselves to the
design of optimal estimators when the behavior policy m, is

less exploratory, meaning that m, € II(v) for some

W T
i nlogk ~
v <& %.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

a) The Poisson model: In order to bring the key issues
to the fore, we analyze the estimator under the Poissonized
sampling model that is standard in the functional estimation
literature. Recall that in the multinomial observation model,
the action counts {n(a),a < [k]} follow a multinomial distri-
bution with parameters n and 7. In the alternative Poisson
model, the total number of samples is assumed to be random,
distributed according to a Poisson distribution with parameter
n. As a result, the action counts obey n(a) £ Poi(nmp(a))
for a € [k]. Correspondingly, we can define the minimax risk

under the Poisson model as
Rp(me,m,v) = Enerl(V — Vi(m)7,

(28)

sup
V (ms, f)EN (V) xF

where the expectation is taken under the Poisson model.
Although the two sampling models differ, the difference
is not actually essential in terms of characterizing minimax
risks. In particular, the corresponding risks Rp (7, n, ) and
Ry(m,n,v) are closely related, as demonstrated by the
following lemma.
Lemma 1: For any € (0,1), we have

Ri(m, (1 — B)n,v)
1—exp(—nB?/2)
See Appendix A for the proof of this bound.

Setting 3 = 1/2 in the above lemma reveals that
Ry(me,n,v) < Rp(m,in,v). Consequently, in order to
obtain an upper bound on the risk under multinomial sampling,
it suffices to control the risk under the Poisson model.

b) The Chebyshev estimator: Now we turn to the con-
struction of the optimal estimator under the Poisson model.
It turns out that Chebyshev polynomials play a central role
in such a construction. Recall that the Chebyshev polynomial
with degree L is given by

R;ﬂ(ﬂh n, .I'./] S

(29)

Qr(z) := cos(L arccosx)

for x € [—1, 1]. Correspondingly, for any pair of scalars such
that > £ > 0, we can define a shifted and scaled polynomial

Ppr(z) =

QL(h T ;) Zadz

Q (3=

where ag denotes the coefficient of x%. Using the coefficients
of this polynomial as a building block, we then define a
function, with domain the set of nonnegative integers, given

by
o a; L +1, forj=0,1,...,L, and
1 if j > L.

In terms of these quantities, the Chebyshev estimator takes the
form

Ve := Y m(a)f(a)gr(n(a)), (30)

ac[k]

where 7(a) is the empirical mean reward defined in equa-
tion (4). In words, when the action count n(a) is larger than the

Authonzed licensed use limited to: Stanford University. Downloaded on August 13,2023 at 17:57:47 UTC from IEEE Xplore. Restnctions apply.



MA ef al.: MINIMAX OFF-POLICY EVALUATION FOR MULTI-ARMED BANDITS

degree L, one uses the usual sample mean reward 7(a). On the
other hand, when the action count n(a) is below this threshold,
the Chebyshev estimator rescales the empirical mean reward
by the value gz.(n(a)). The goal of this rescaling is to reduce
the bias of the plug-in estimate.

A little calculation helps to provide intuition regarding this
bias-reduction effect. Under the Poisson sampling model, the
biases of the Chebyshev estimator and the plug-in estimator
are given by

E[Vc] - Vi(m) = ) m(a)rs(a)e ™™ Pr(mp(a)), and

ac[k]
E[Vpiug] — Vi (m) = D m(a)rs(a)e ™™,
aclk]

respectively. For the plug-in estimator, if we allow the behavior
policy 7, to range over the family II(r), then the bias can be
as large as 7., - exp(—nv).

By construction, the Chebyshev polynomial P is the
unique degree-L polynomial such that Pr(0) = —1, and that
is closest in sup norm to the all-zeros function on the interval
[£,7]; see Exercise 2.13.14 in the book [34]. By suitable
choices of the triple (¢,r,L), we can shape the additional
modulation factor Pr(mp(a)) so as to reduce the bias of the
plug-in estimator. The following theorem makes this intuition
precise:

Theorem 6: Suppose that the target policy satisfies the
bound

1
Y mia) < o forsome scalar v >0,  (31)

ac[k]

and that we implement the Chebyshev estimator with

£:=v, T:=cilogk/n, and L =cplogk,

for some sufficiently large constant ¢; > 0 and some constant
cop < /7. Then under the Poisson sampling model, there
exists a pair of positive constants (c,c’) such that

-~ 2
E[(Ve - Vy(m))’|

sup
(e, IEM(W) < F

<c {rﬁu exp(—c’\/nvlogk) + sup

mp (v

R (m; mp) } A
)
(32)

See Section IV-H for the proof of this upper bound.

Several comments are in order. First, when v < log k/n, the
worst-case risk (32) of the Chebyshev estimator (30) matches
the lower bound (27) derived in Theorem 5, which showcases
the optimality of the Chebyshev estimator when the partial
knowledge v is available.

Second, the restriction (31) on the evaluation policy is worth
emphasizing. In words, the constraint (31) requires the target
policy to be somewhat “de-localized”—that is, there is no
action a that has an extremely large probability mass. As an
example, the uniform policy on [k] satisfies such a constraint.

Third, it should be noted that the Chebyshev estimator
requires knowledge of the minimum exploration probability
v. This property makes it less practically applicable a priori,
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Fig. 3. Log-log plot of the estimation errors vs. the sample size. All results
reported are averaged over 10* random trials. The legends also contain the
estimated slopes obtained by performing a linear regression of the log error
on the log sample size.

and how to design an estimator that can adapt to the nested
family of behavior policies {II(v)}o<y<1/x is an interesting
question for future work.

4) Numerical Experiments: We conclude this section with
experiments on both simulated data and real data to assess
the performance of the Chebyshev estimator relative to other
choices.

a) Simulated data: We begin with some experiments on
simulated data. As in our previous simulations, we fix the
target policy to be uniform over [k], and for each action a €
[k], we choose the reward distribution f( - | @) to be an equi-
probable Bernoulli distribution over {0, 1}, so that r,, = 1.
For each k, we define the behavior policy

E—1
1
m(2) =mp(3) =--- = m(k) = 75

mp(l) =1— and

Again, we consider a particular scaling of the pair (n, k) that
highlights interesting differences. In particular, when the sam-
ple size n scales as n = k-, then our theory predicts that the
plug-in and Chebyshev estimators should have mean-squared
error scaling as

Enrer[(Voig — Vi (m))?] < 1,
Erorl(Vc — Vi(m))?] < n~% for some § > 0,

and

respectively. Figure 3 plots the mean-squared errors of the
two estimators vs. the sample size n on a log-log scale. The
results are averaged over 10* random trials. It is clear from
Figure 3 that the Chebyshev estimator performs better than
the one based on the plug-in principle. Based on the estimated
slopes (as shown in the legend), the mean-squared error of the
Chebyshev estimator decays as n~'/2, while consistent with
our theory, that of the plug-in estimator nearly plateaus.

To further evaluate the performance of the Chebyshev
estimator, we conduct the same experiment as before under
diverse target policies. More specifically, fixing some a > 0,
we set

m(i) x 1/i® forall i > 1.

Authonzed licensed use limited to: Stanford University. Downloaded on August 13,2023 at 17:57:47 UTC from IEEE Xplore. Restnctions apply.



5324

S o

—

Mear-squared error
Maan-squared arror

= Mugn § = 0027 seif] = 2004

| — Chabyitan = 0.5 sulf) - 0.027
B A

sample size n

sample size n

—— Mugin F = 0008 self] = 0.002
—— Chebyshey § = -0.36 seff) = 0010

—- Mugn § = 2004 saifly = w208
— Ot f = 2,020 sy = .00

¥

i

R s

Mean-squared arror
s
Mear-squared error

e e - e e i

1 i
sample size n sample sire n

Fig. 4. Performance comparison between the plug-in and the Chebyshev
estimators under non-uniform target policies. The parameter « takes the value
of 0.1,0.5,1,1.5 from left to right, up to bottom.

Clearly, when a = 0, the target policy m: becomes uniform,
while a larger o corresponds to more non-uniform test policies.
Figure 4 reports the results for both the Chebyshev estimator
and the plug-in estimator for four different values of a: 0.1,
0.5, 1, 1.5. It can be seen that the Chebyshev estimator
performs uniformly better than the plug-in estimator. However,
as the target policy becomes peaked (i.e., o increases) and
the assumption in equation (31) is violated, the performance
improvement is less significant. This partially suggests the
necessity of the assumption (31).

b) Real data: We now turn to some experiments with
the MovieLens 25M data set [35]. In order to form a bandit
problem, we extracted a random subset of 500 movies that
each have at least 10 ratings. This subset of movies defines an
action space [k] with k& = 500. For each movie, we average
its rating over all samples in order to define the mean reward
rf(a) associated with the movie a. This is the ground truth
that defines our problem instance. Setting the target policy to
be uniform, our goal is to estimate the mean rating of these
500 movies—that is, the quantity } . 77(a)/k.

In order to evaluate our methods, we need to generate an
off-policy dataset. In order to do so, we uniformly subsample n
ratings from the set of all ratings on our subset of 500 movies.
This procedure implicitly defines a behavior policy that is very
different from the uniform target policy, because the number
of ratings for each movie vary drastically. Given such an off-
policy dataset, we evaluate the mean-squared errors of four
different estimators—the plug-in estimator, the IS estimator,
the Switch estimator as well as the Chebyshev estimator.
We repeat this procedure for a total of 10* trials for a range
of sample sizes n.

Figure 5 plots the mean-squared error (averaged over the
trials) versus the sample size n for the four estimators. To be
clear, the Switch estimator and the IS estimator have the luxury
of knowing the behavior policy whereas the Chebyshev esti-
mator is given minimum exploration probability. The plug-in
estimator requires no side information. Given the oracle
knowledge of the behavior policy, the Switch estimator always
outperforms other estimators, including the IS estimator with
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Fig. 5. Mean-squared errors of four different estimators vs. the sample size
n on the MovieLens 25M data set. The results are averaged over 10° trials.
See the text for further details on the experimental set-up.

the same knowledge. In addition, the Chebyshev estimator
outperforms plug-in estimator, especially in the small sample
regime. These qualitative changes are consistent with our
theoretical predictions.

IV. PROOFS

We now turn to the proofs of the main results presented
in Section III. We begin in Section IV-A with the proof
of Proposition 1, followed by the proof of Proposition 2 in
Section I'V-B. Sections IV-C through IV-H are devoted to the
proofs of Theorems 1 through 6.

A. Proof of Proposition 1
We begin with the standard bias-variance decomposition
Ens[(Vawiceh(5) — Vi (m))’]
= 2 =
= (Enesoitch(S)] — Vs(m)) +Var (Vowicn(S)) -
(33)

Our proof involves establishing the following two bounds

(EnrPaien(S)] — Vi(x) < r2.72(S), and (340)
RO

Var (?mimh(S)) <2 {Wt?(s) 5
(34b)

The claim of the proposition follows by substituting these
bounds into the bias-variance decomposition (33).

1) Proof of the Bias Bound (34a): Using the shorthand E
for the expectation over 7, ® f, we have

E[Vaicch(S)] = ) _ me(a)E[F(a)] + E[p(A:)Ri1{A; ¢ S}]

acgs
=" m(a)E[f(a)] + Y m(a)rs(a).
acs ags
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Recalling the definition (3) of V¢ (), we have

2
(EVawicn(S)] - V;(m))2 = (Z m(a) {E[f(a)] _Tf(a)})

acsS
2 (S),
where the final inequality follows
[E[f(a)] — r7(a)| < e
2) Proof of the Variance Bound (34b): Using the inequality
Var(X +Y) < 2Var(X) + 2Var(Y'), we have

Var (ﬁmch(S)) < 9Var (Z :frt(a}"?’(a})

acS

from the bound

+ 2Var (% Zﬂ: p(A:)Ri1{A; ¢ 5}) .
i=1

The first term can be bounded as

2
Var (Z ﬁt(a)ﬂa)) <E (Z Trt(a)F(a))
acs acsS
2
<. (z m}) _ 2 ),

acsS

where the penultimate relation arises from the fact that
[F(@)] < 7Tma. With regards to the variance brought by
importance sampling, one has

ar (% Zp(Ai}Ri]l{Ai ¢ S})
i=1
= %Var (p(A:)Ri1{A; ¢ S})
< %]E[pz(Ai)Rf]].{Ai ¢ 5]
<2 ElP(A)1{A: ¢ S}

— " max

o ,r2 ZGQES 7'rtl'("']").\('."2((1)

n

where the last inequality uses the fact that |R;| < ... Com-
bining the two terms yields the claimed variance bound (34b).

B. Proof of Proposition 2

Recall that the subset S* corresponds to the support set of
the solution v* to the convex program (10). Here we state
an important connection between the objective value of the
problem (10) and this support set:

Lemma 2: We have

[m(a) — v(a)]?
e [v(a)]
vERk a;[k] mb(a) a;[k]
——_— \/zaes, n::(a)p%a), 35)

where =< denotes equality up to a universal constant.
See Appendix B-A for the proof of this lemma.
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In light of the equivalence (35) as well as the sandwich
bound z2 + 32 < (z + y)? < 222 + 242 for any z,y > 0,
proving the bound (12) reduces to establishing the lower bound

> ags ™(a)p*(a)
mﬂ{ () Zes }

Sn Z [Trt( U(a) e Z |’U(G}|

ac[k] () ae{k

> min
vERE

(36)

Letting £{(a) € {0,1} denote a binary indicator variable for
the event {a € S}, the optimization problem on the left hand
side is equivalent to

Y ac g (@)p?(a)(1 — £(a)) }
8n

"= mi 1 m(a)é(a
P —gﬂ{f‘,ﬂezm w(a)(a) +
s.t. £(a) € {0,1} for all a € [K].

By relaxing to the requirement £(a) € [0,1], we obtain a
convex lower bound

P> min {; 3" m(a)é(a)+ 4

£cRk et

s.t. £(a) € [0,1] for all a € [k].

Y et m(@)p2(a)(1 — £(a)) }

Since the inclusion £(a) € [0,1] guarantees that 1 — £(a) >
(1 —£&(a))?, we can further relax to obtain the lower bound

¥ aepy ™()P?(a)(1 — £(a))? }

aclk] S

s.t. £(a) € [0,1] for all a € [k].

p"> min {% 3" m(@)é(a)+

Now we are ready to prove the claimed bound (36). Applying
the change of variables £(a) = v(a)/m(a), we can transform
the problem above into

1
2 Z v(a) +

min §{ —
ac[k]

Z [ﬁt(a} —v(a))?
ae[k] ﬁb(a)
subject to the constraints v(a) € [0,m(a)] for all a € [k].
In fact, following some simple calculations, one can see that
it is equivalent to the following unconstrained problem

= 5 + Z lv(a)|

aclk] ae{k

[m(a) — v(a)]

it} (37)

min
vERk

Note that this is identical to the lower bound we aim at in
equation (36), and hence the proof is finished.

C. Proof of Theorem 1

Our proof is based on using Le Cam’s method to lower
bound the minimax risk. In doing so, a key step is to construct
two similar reward distributions f;, fa € F such that the
absolute distance |Vy, (7) — Vy, ()| is large.

For each action a, let f3( - | @) be a Bernoulli distribution on
the set {0, 7.,...} with parameter 1, let f1( - | a) be a Bernoulli
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distribution over {0, 7.} with parameter 3 L 4 5(a) for some
d(a) € [0, 2] From Le Cam’s inequality (see Theorem 36.8 in
the article [36]), we have the lower bound

inf sup Er,gr[(V — Vy(m))?]
V feF

il
> §(Vn (r) — sz (ﬁ))Qe—nDKL(Wb&h I m®f2)

With this choice of f; and f>, one can verify that

Die(m ® f1lm ® f2) = ) my(a)Dxn(f1 | f2)

ac[k]

<4 m(a)d*(a),

aclk]

where the inequality arises from the relation Dy (Bern(3 +
&(a)) | Bern(3)) < 46%(a). In addition, it is easily seen that

u( ¥ ﬂt(a)é(a))z.

aclk]

(Vi (m) = Vpo(m)? = 7

Therefore, we can obtain a lower bound on the minimax risk—
one that is optimal within this particular family—by solving
the optimization problem

(X m(@i(@)”

k
dcR aclk]
1
L 2 i
subject to 4 Eglk]m,(a)& (a) < 5 and

é(a) € [0, 3] for all a € [k]. (38)

First, we make the observation that the optimization prob-
lem (38) is equivalent to the following optimization problem in
the sense that they share the same minimizer and the minimum
values are in a one-to-one correspondence

= Z m(a)é(a)
aclk]
3 2 1
< —
subject to Z mp(a)d“(a) < = and

ac[k]
5(a) € [0, 1] for all a € [k]. (39)

Note that this is a convex problem with quadratic con-
straints. We find it easier to look at its dual formulation, which
is supplied in the following lemma.

Lemma 3: The Fenchel dual problem of the optimization
program (39) is given by

[m(a) — v(a)]?

m(a)

=

n
aclk]

s Zlv(a)l ;

veRk
aE[k

(40)

which shares the same optimal objective value as that of the
problem (39).
See Appendix C for the proof of this result.
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Fortunately, the minimum value of the dual program (40)
has been characterized in Lemma 2, namely

[m(a) — v(a)]?

min +35 2 [v(a)l
el Bl a%;] =Ea) a;m
< m(57) + | Bt DA

where =< denotes equality up to universal constants.

Taking the preceding equivalence relationships collectively
and use the elementary relation (z + v)? =< z2 + 32, we can
arrive at the desired conclusion

inf sup Ex,o7[(V — V(m))?]
vV feF

ZQES* ﬂb(a}pz(a} }

> et {5+
with ¢ a universal positive constant.

D. Proof of Theorem 2

The mean-squared error of 17p|ug can be decomposed as

Eﬂ—hg_f [(f/;lug = Vf(ﬂt))z]
2
= (X m(@rs(@)(1 - m(a)")

ac[k]
+ Y mi(a)o}(a)E o0l
ac[k]

+Var( Y m(a)rs(a)l{n(a) > 0}). 1)

ac[k]

See Appendix A.6 of the paper [10] for the calculations
underlying this decomposition. Here the first term represents
the squared bias of Vjug, while the remaining two correspond
to the variance of Vpiyg.

Fix any behavior policy mp, and let S* be defined as
in equation (11). Our proof consists of upper bounding the
squared bias and variance in terms of functions of R} (7; mp).
More precisely, we prove the following two bounds

(3 m@rs@ - m@))’

acgk]

< c | supp(m)| Ry, (me; ™), and (42a)
Y- w2 (a)o}(a)E a0l |
ac[k]
PE Var( Y m(a)rs(a)lin(a) > 0})
aclk]
< & Ry (me; my), (42b)

for some universal constants (c, ¢’). Since the bounds (42) hold
for any m, the desired conclusion follows by combining the
above two bounds. In the sequel, we focus on establishing the
bounds (42).
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1) Proof of the Bias Bound (42a): Beginning with the
squared bias, we have

(X mlars@ - m@)")
aclk]
0]

22 (¥ m@-m@))’
i aclk]
222 (¥ m@-m@)r)
acS*
+( Y m@-m@)r)}
ag(S*)e
(? 2r2 {Trt (5%)4 ( Z m(a)(1 — 'rrb(a))“)Q}.

ag(s*)“
(43)

Here the first inequality (i) arises from the assumption
[r7(a)| < Twmax the second relation (ii) applies the inequality
(a +b)?2 < 2(a®? + b?), and the last one (iii) uses the fact
(1-mp(a)" < 1.

Applying the Cauchy—Schwarz inequality yields

(Y m(a)1-ma)")®
ac(S*)e
b 2

ag(5*)°Nsupp(m:)

me(a)(1 — m(a))")’

< [(8*)°Nsupp(m)| [ H

ac(S*)e

¢ (a)(1 — mp(a))"

¢ (a)(1 — m(a))*"

< |supp(m)| Y

ac(8*)c
S |Supp(7rt)| Z 2( ) {ﬂ.)
ac(8*)c
where the last inequality follows from the bound
(1 — mp(a))® < 1/(nmp(a)). Combining the preceding

two bounds with our previous expression (15) for R} (m; mb)
yields the claimed bound (42a).

2) Proof of the Variance Bound (42b): We now move onto
the two variance terms. Since crf(a) < r2__, we can write

Y m(a)of(a)E [E_{M}

nia)
ac[k]
<2 {3 rwe[eggn) 5 ez
acS* ags*

Since E [l—{%l] < 1, the first term on the right-hand side
can be upper bounded as
2()E | Un(@>0} | - 2
Y m(@E |5 < ) wa).
acS* acs*
From Lemma 1 of the paper [10], we have the bound
]E|:]l{n(a)>0}:| <

5
nia) — nmy(a)?

which implies the second term is
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upper bounded as
0
Y w@E [HaeR0] < 2 3 o)
agsS* ags*
By combining these two inequalities, we conclude that
Z 7(3((1)0_% (a)E [M} < e R (me; ™),

nia)
ac[k]

(44)

for a universal constant c.
Turning to the second quantity in the variance, we have

Var | )" m(a)rs(a)1{n(a) > 0}

ack]
< Y m(a)r}(a)(1 — m(a)”
ac[k]
o e {Z 2 (a)(1—mp(a))"+ Y wi(a)(1- 7Tb(a))“}
acsS* agS*
(i)
< Tin (@) + T (a
{ngb; ( ) a%S:* ( )nﬂb(a)}

< eRy(me; M),

where step (i) follows from the elementary inequalities
(1—mp(a))™ <1and (1—mp(a))™ < 1/(nmp(a)). Combining
this bound with our earlier inequality (44) yields the claimed
bound (42b).

E. Proof of Theorem 3

We first show that the competitive ratio is lower bounded
by 1. From the elementary inequality infsup > supinf,
we see that

]Em,@f[(1l7 = Vf(ﬂt))z]

inf sup
V m,feF Ry (me; mb)
E V —Vi(m))?] @
S mf(( 7(m)°] @ 1,
m V feF R (me; mp)
where equality (i) follows from the definition (14) of
R, (7re; ).

The remainder of our analysis is to prove a lower bound
in terms of s/ log k. Throughout this analysis, we consider a
target distribution m; that is uniform over {1,2,...,s}, and
we consider the set

(v) := {mp | min my(a) > v}, where v :=1/(nlogk).

ack]
Since II(r) is a subset of all behavior policies, we have

Erorl(V —Vi(m))

inf
s R (1 )

V m,fEF

>‘ ]Ilf SUp —=——
172 m,E]'I(u) Rs (Trt-; '"b)

2 infy SUPg, eni(v) SUPfer Ererl(V — Vf(frt))z]
- SUPx, eri(v) R (7; )

D Enos[(V - Vy(m))’]

» (45)

where in the second line we use the trivial upper bound
R (73 ) < supren) Ry (m m) for any m, € (v).
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In view of the lower bound (45), the proof can be decom-
posed into two steps: (1) Provide a lower bound on the numer-
ator; and (2) Establish an upper bound on the denominator.

1) Step 1: The required lower bound on the numerator in
equation (45) can be obtained by applying Theorem 5. More
specifically, doing so with v = 1/(nlogk) yields

inf sup Sup]E?Tb@f[(V Vi(m))’] 2 2.
V mel(v) fEF

(46)

In light of this lower bound and equation (45), any upper
bound on sup,, ci() Ry (73 ™) yields a valid lower bound
on the competitive ratio.

2) Step 2: We now turn to the upper bound on the denom-
inator of equation (45). By combining Lemma 2 with the
characterization (15) of R, (m; m), we find that

[Ra (me; m) /72, ] °

z= inf
veRk

Z [Trt(a) —v(a)]?

mp(a)

di Z |v(a)l

a. E[k] a clk]
which further implies

sup [RE(mm)/r2] "

m, eII(v)
[re(a)—v(@)?
= sup inf +— |v(a)|
mpETl(v) VERF \ E‘ mb(a) ae%]
: [m:(a) —v(a)]?
251, e +2 ¥ lo(a)
vERF 1 cTI(1) \ 8n cg{;‘] m(a) ae%]

Here, the last inequality arises from the elementary fact
supinf < infsup. Focusing on the inner maximization prob-
lem, we can easily see that

- [re(a) —v(a)? -
ey %; Ll Z fo(a)
logk
< > Im(a) —v(a))? + 5 Z v(a)l,
aclk] ae[k]

where we substitute in the definition of ». Combine the
previous two bounds together to reach

sup [Ri(me;m)/r2.]"°

mpEM(r)
log k
< inf sup 2= im(a)- v(a}12+ 3 fv(a)]
vER® mel(v) aclk] ae{k]
logk
8s ’

where the final inequality follows by setting v = 0 and using
the definition of ;. Consequently, we have established the
upper bound

log k = @7

max

sup Ry(m;m) S
mpE(v)
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Combining equation (45) with equations (46), and (47) yields
the desired conclusion.

F. Proof of Theorem 4
Recall the decomposition (41) of the mean-squared error

incurred by the plug-in estimator:

Enos|(Voing — V(7))

2
= (X m(@)rs(@)(1—m(a)")
ac[k]
+ 3 m¥(a)o}()E Mool ]

n(a)
ack]

g Var( 3" m(a)rs(a)l{n(a) > 0}).

ac[k]

(48a)

As shown in equation (42b), the variance components are
well-behaved in the sense that

> w(a)o}(a)E [Loe0l]

nia)
ac[k]

Y Var( 3" m(a)rs(a)l{n(a) > 0})
ac[k]

< & Ry (m; ™) (48b)

for some universal constant ¢’. As a result, we only need
to focus on the squared bias term. Corresponding to the
statements in Theorem 4, we split the proof into two cases:
(1) v is arbitrary, and (2) v > logk/n.

1) Case 1: We begin with the case of an arbitrary v. Since
min, mp(a) > v, one has (1 — mp(a))” < exp(—nmp(a)) <
exp(—nv). This combined with the fact that |rf(a)| < 7.
yields

(3 mlars@ —m@)")

ac[k]
<2 (3 mla) exp(-mv)”
aglk]

=r2__exp(—2nv), (48c)

where the last equality arises from the fact that Zaei K Tt(a) =
1. Combining the bounds (48a), L(48b) and (48c) yields the
claimed bound (25a).

2) Case 2: Now suppose that v is lower bounded as v >
log k/n. By applying the bias bound (43), we find that

(3 m(ayrs@)( — m@)”)’

aclk]
0 {ﬁf(s*) + ( Z me(a)(1 — nb(a})")z}. (49a)
as(S*)e

We then apply the Cauchy—Schwarz inequality to obtain

> m(@) - m@)")
ac(S*)e
)

<k- ¢ (a)(1 — mp(a))*"
ac(S*)e
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< Y w@1-m(@)"

ac(8*)e
1
< ), m@——7. (49b)
ae(S*)e nﬂb(a)

Here, the middle line follows from (1 — mp(a))” <
exp(—nmp(a)) < exp(—nv) < 1/k, and the last inequal-
ity holds since (1 — mp(a))® < ﬁ Combining the

bounds (48a), (48b), (49a), (49b) with the expression (15) of
R (m; mp), we arrive at the desired bound (25b).

G. Proof of Theorem 5

Without loss of generality, we may assume that the actions
are ordered such that m (1) > m(2) = --- > m(k). First,
observe that

RK!" (Trt) n, V) T ly:f sup
V mpell(v).feF

Emos[(V — Vi(m))’]

(i) ) -

> sup infsup Exe[(V — Vi(m))?]
mpEll(v) V fcF

D sp R (mim),
mpEM ()

(30)

where the inequality (i) follows from the fact that inf sup >
supinf, whereas the equality (ii) uses the definition (14) of
R, (m; mp ). This yields the first term in the lower bound (27).
In particular, if

72 (1) exp(—2nv) > exp(—200/nvlogk),
then the bound (50) tells us that

(D)

RKI" (Wtu n, V) = sup R:;.(Trt; TT'b}
mp M)

@1

> ()1 -

i) 1
> T (1) exp(—2nv)

m

(Z) %rfmc exp(—200y/nvlogk).
Here, the first relation (i) uses Theorem 1 in the paper [10],
the second inequality (ii) uses the elementary relation
(1—v)" > e 2™ for v € [0, 3], while the last one (iii) arises
from the condition (51). In words, when the largest mass m+(1)
in {m;(a)} is sufficiently large (cf. the condition (51)), the term
SUPy, cri(v) Ko (me; mp) dominates r2__-exp(—200y/nvlogk),
and hence the desired lower bound (27) follows.

Therefore, in the remaining part of this section, we concen-

trate on establishing the lower bound for the case when

72(1) exp(—2nv) < exp(—200y/nvlogk).

We record an immediate consequence of the relation (52) that
will be useful later

(32)

k-1
Z 72(a) < m(1) < exp(nv — 100y/nv logk). (53)
a=1

In order to prove lower bound in this case, it is convenient to
make use of a Poissonized model.
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1) The Poissonized Model: Recall that in the multino-
mial observation model, (n(1),n(2),...,n(k)) follows a
multinomial distribution with parameters n and m,. Here
the dependence among the counts {n(a)},cx) complicates
the analysis. In order to sidestep this dependence, we con-
sider the Poisson model in which each action a is taken
with n(a) times with n(a) ~ Poi(nmp(a)) independently
across actions. Then conditional on the count n(a) = t,
a total of ¢ rewards are observed independently for each
action a. Note that in the Poissonized model, {n(a)} are
mutually independent by design, which greatly facilitates the
analysis. Another difference that is worth pointing out is
that in the original multinomial model, Zae[k] mp(a) must
sum to 1, while in the Poisson case, this restriction does
not necessarily hold. To account for this fact, we define
the following c-relaxed probability simplex for a parameter

0<e<1:
O(v,e) == {ﬂ}, > 0 | min mp(a) >v, | Z nb(a)—l‘ < &‘}.
aclk]
(54)

ac[k]

Correspondingly we can define the minimax risk over the
relaxed parameter set under the Poisson model as

R} (e, n,v,€) := inf Enorl(V — Vi(m))?,

A sup
V myed(ve),feF

(33)

where we note that the expectation Er, o[- is taken under
the Poissonized model. It turns out that the risks under
these two models, i.e., the multinomial model and the Pois-
son model, are closely related, as shown in the following
lemma.

Lemma 4: For any ¢ < (0,1/4), the following relation
holds:

R} (me,n,v,€) < Ry (m,m/2,v/(14+€)) + €372 2
See Appendix D for the proof of this claim.

Lemma 4 shows that it suffices to establish a good lower
bound on Rp (7, n,v,€), and the remainder of our analysis
focuses on this sub-problem.

2) The Bernoulli Reward Model: Recall that f can be any
reward distribution supported on [0, r,,.]. For the purpose of
the lower bound, we can restrict our attention to Bernoulli
reward models, in which each action is associated with a
Bernoulli reward distribution over {0, ., } with the parameter
7(a)/Tmax- Here 0 < 7r(a) < 7., iS a parameter associated
with the action a. This Bernoulli reward model, in conjunction
with the Poisson sampling model yields two observations
{P,,N,} for each action a

P, ~ Poi(nmy(a)22L), and N, ~ Poi(nm(a)(1 — 220)).

Here, P, denotes the number of positive rewards (i.e., the
rewards with value r_.,) obtained for arm a, while N, denotes
the number of “negative” rewards—meaning those with value
0. We naturally have

RE’ (ﬂt:nzv:&‘} :j'g.f sup
V meB(v.e),fEF

Emor[(V — Vi(m))?]
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> inf sup

V mEB(v,e),{r(a)}

Ermorl(V — Vi(m))?,
(56)

where the set of numbers {r(a)} dictates the Bernoulli reward
model f.

3) A Useful Reparameterization: Now we introduce a repa-
rameterization of the models introduced above. Let us denote

vp(a) == m,(a]%, and wp(a) == mp(a)(l — %) 57

Using this notation, we can translate our target V() into
T(6) :=Vi(m) = Y m(a)r(a)
ac[k]
vp(a)

= 2O @

ac[k]

where we denote by 8 € R2X the collection of parameters
under the new parametrization, i.e.,

0 == (vp(1),n(1),%p(2),va(2), - -- 1Vp(k)1vn(k))T

Note that there is a one-to-one mapping between the original
parameterization {mp(a),(a)} and the new one 6. Hence,
with an abuse of notation, we shall denote

Sfv;e) = {e >0| ( 3" vp(a) + vala) - 1| <e,
aclk]

vp(a) +vn(a) >v, forallac [k]}

With this set of notation in place, the lower bound in equa-
tion (56) can be equivalently written as

inf sup Eo[(V(2)—T(6))], (58)
V 9eB(v,e)
where Z := (P;,Ny,---,Px,Ng)T € [n]** denotes the

observations following the Poisson sampling and the Bernoulli
reward models.

We intend to invoke Lemma 10 to obtain a good lower
bound. It all boils down to constructing two prior distributions
=0, =1 over the parameter space ©(v, <) such that the func-
tional values 7T'(#) are well separated under different priors,
while at the same time one cannot differentiate those two
distributions based on the data alone.

4) A Construction of Two Priors =g, =, Over O(v,<): The
construction of the two priors hinges on the existence of two
random variables X, X', introduced in the following lemma.

Lemma 5: There exist two random variables X, X’ sup-
ported on [0, 1] such that

X X! 1
E sl e 2 5 exp
lX+8]ogk] lX+8]ogk] B

(—96 nv log k)

(59a)
E[X] =E[X] = ¢ ”L, (59b)

E[X’] =E[(X')’], foralll 5 j < [48logk].
(59)

See Appendix D for the proof of this claim.
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Now we are ready to construct two “helper” priors I'p, I'y
on O(v,¢). Under both priors, we always set vy(a) = v for
1<a<k-1,andvy(k) =0.Under 'y, welet X1, -+ , X1
be i.i.d. copies of X, and set vp(a) = Slek. X frl<a<
k-1, vp(k) =1 — (k- 1)v — (k — 1)%5E[X]. Similarly,
under 'y, we let X{,--- . X; ; bei.id. copies of X', and set
vpla) =2EE . X! for 1 <a<k—1 y(k)=1—(k—1)
v— (k- l)lE[X ]. Tt is straightforward to check that under
both priors I'y and I'y

8 log k. nv
'8 logk

vpk)=1-(k-1)v—-(k-1)
=1-2(k— 1 >vr,

as long as v < % Finally, for 7 € {0, 1}, we define the prior
=; to be the push-forward measure of the restriction of I'; to
the following set:

E; :=06(v,1/5)
0 {01170 -Eaurriey) < BEXVED)

(60)

5) Application of Le Cam’s Method: Now we are positioned
to invoke Le Cam’s method, in the form of Lemma 10, with
the choices

o Ex, [T'(0)] + E=, [T(0)]
2 ?
. exp(—gﬁl\ﬁfrwlogk) gt sl
O :=06(rv,1/5).
From the constructions of the priors = and =;, we have
Ez,[T(0)] — E=, [T'(9)]
e vp(a)
B | 2 ™ @
vp(a)
Tomax - B, mila)—t
2. ™00 @
= Z mr(a)

gl & [ gl £
X+ gy X'+ g

> i'rmu exp (—96 nv log k) =ds,
where the last inequality arises from the property of
X, X" (cf. the inequality (59a)) as well as the fact that
> 1<a<k_1 Te(a) > 1/2. Consequently, T'(8) < £ — s almost
surely for @ ~ =, and T'(6) > £+ s almost surely for 8 ~ =y,
which immediately implies Sy = 1 = 0 in Lemma 10.

It remains to control the total variation distance between
Zp and Z;. To begin with, denoting T, = T'; o (8%™)~! for
1 € {0,1}, the triangle inequality gives

TV(Z0,%1) < TV(Z0,To) + TV(T1, E1) + TV(T,T7)
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< So(Eg) + E1(EY) + TV(To, Iy).

Regarding the last term TV(T', T} ), we invoke Lemma 11 to
obtain
TV(T',T7)
< (k—1)TV(Ex[Poi(8logk - X)] — Ex/[Poi(8logk - X")])

16elogk B 1
b i b il
— \ 48logk — 10

as long as the number k of actions is sufficiently large. For
the remaining two terms =Zo(E§)+ =1 (Ef), we concentrate on
the term Zy(E§) and the same argument and bound apply to
the term =, (EY). By definition, one has

1

5

exp(—96./nvlogn - )
8 max =

(61)

Eo(E§)<Ps, | | Y wp(@)+va(a)—-1| >

ack]

+Ps, (| T(6)~E=,[T(0)] |

In regard to the first term, one has

k—1
3 vela) +a(a) — 1= 2L (3 x, ~E[X,]),
aclk] a=1

which together with the Chebyshev’s inequality gives

1)
B -
~

Pz,

[

> (@) +vala) — 1 >

aclk]
E—1

=P ( L I (ZXE _]E[Xa.])
a=1

3
k402 log? kVar(X)
= 2
mn
k4021log?k 1
s gl )
. n? — 10
Here the penultimate inequality follows from the fact that X <
[0,1] and hence Var(X) < 1, and the last relation holds as
long as k > Vklogk.
Moving on to the second term in the equation (61), we have
via the Chebyshev’s inequality that

Ps, (I T(6) — E=,[T(0)] |> e}fp(—%gw _ ,_m)

< 82Var [Elgagk—l me(a) - ﬁ]
= exp(—96/nv Togk)

_ 8% 1<a<k_17¢ (@)

~ exp(—96/nvlogk)

Recall that we are working under the assumption (52) in which
the restriction (53) holds. This observation leads to

P, (I7(0) - B=, 7o) > SRV EEE )

< 82m(1) exp(96+/nw log k)
< 82 exp(nv — 4/nv logk)
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< 82exp(—3+y/nvlogk) < %

Here the last line holds under the assumption that v < 1—°§£
and nv logk > 1.
In all, we have arrived at the conclusion that
S 3
TV (Z0,51) < 10’
which allows us to combine Lemma 10 and Lemma 4 to finish
the proof.

H. Proof of Theorem 6

Recall that we work under the Poisson sampling model, and
hence throughout this section we use the shorthand notation
E[-] to denote expectation under the Poisson model.

Denoting by Bias(Vc) = E[Vc] — Vj(m) the bias of
the Chebyshev estimator, we have the usual bias-variance
decomposition—namely

E [(?c ~V; (wt))“‘] = (Bias(Vc))” + Var(Vo).

As before, we break the analysis into two parts, namely
controlling the bias and variance, and aim at proving the
following two bounds:

(Bias(Vc))” < 162, exp(—2y/ Cnwlogk), and (62a)
Var(Vc) < & {Rn(m;m) + cora, logk - k™73,
(62b)

with ¢/ > 0 a universal constant. Taking the above two bounds
together, we can deduce that

E[ (Ve - V;(m)’]

< 1672 exp(—2 cﬁznu logk)
+ R (me; mp) + cor’ logk - ki

< ef i exp-2y/Envlogh) + Ru(mim) .

as long as ¢y < /7, and ¢ > 0 is an absolute constant. Taking
the supremum over m, completes the proof of Theorem 6.
The remaining two sections are devoted to establishing the
bounds (62).
1) Proof of the Bias Bound (62a): It is easily seen from the
definition (30) of the Chebyshev estimator that

E[Vc] = ) m(a)E [F(a)gz (n(a))]

a<[k]
=Y m(a)Y_ E[f(a)gr(n(a)) | n(a) = 51 B (n(a) = j)
aclk] j=0
=Y m(a)rs(a) Y gr(G)P (n(a) = 4),
aclk] j=0

where the last relation hinges on the fact that gr,(0) = 0.
Consequently, the bias of V¢ is given by

Bias(c) = 3 m(a)rs(@) { 3 9P (n(a) = j) — 1

aclk] j=0
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= 3" m(@rr(@1 Y (9()-1)P(n(a) = 5)
ac[k] j=0
L
= 3 m(@rs(@) { ™Y a(my(a))’
aclk] j=0
= 3" m(a)rs(@)e™™@ Py (my(a)). (63)
aclk]

Here the middle line uses the fact that Z;’iu P(n(a) =3) =
1, and the last one follows from the definitions of g (j) and
Py (mb(a))-

In light of equation (63), the key in bounding the bias is to
control e ""(%) Py (m,(a)), which is supplied in the following
lemma.

Lemma 6: For any mp(a) > v, one has

’e_““(“)PL(ﬁb(a))' £dexp (—L\/L’/r) ,
See Appendix E-A for the proof of this claim.

In all, this leads us to conclude that

Bias(Ve)| < druue Y me(a) exp (—Lv’f/_r)

ac[k]

< dr,.. exp (—\(‘ %?nv log k) "

where we have used the definitions £ = v, 7 = ¢y logk/n as
well as the relation |rf(a)| < r.... This establishes the bias
upper bound (62a).

2) Proof of the Variance Bound (62b): Now we move on
to the variance of the Chebyshev estimator Vc. Thanks to the
independence brought by the Poisson model, we have

Var(Vc) = Var (3 m(@)7(a)gz(n(a))))
ac(k]

- Z w2 (a)Var (F(a)gr(n(a))) -

ac[k]

(64)

Applying the law of total variance yields the decomposition

Var (7(a)gr(n(a)))
= yar (E[r(a)gr(n(a)) | "(ﬂ)]l
+3E [Var (7(a)gr(n(a)) | n(a))l.

=itz

(65)

Suppose for the moment that the two terms «; and as obey
(whose proof are deferred to Appendix E-B)

1
a1 <12, {2 e (@) 4 5cologk- k““ﬁ} , and (66a)

1 5
an et Jop ey logk - k*° +2min{1,——%3%.
Fh 2 nmp(a)
(66b)
Then combing the preceding bounds together yields

Var(f/}c)g 2. Z x?(a){? o TEEIE) %calogk = e
as k]
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+2mjn{1, %@}}
. 5 rf(a.){%co log k-k*<° 4 4 min {1, %@}}

ac[k]

where the last inequality follows from the elementary bound
e7m™(@) < min {1, o . Repeating the analysis of the
plug-in estimator, we find that

5
2 Wgamin{l,—}<cﬂ:‘lfr;7r :
max EEI t( ) ‘ﬂ,ﬂb(a) Sy ( t b)

for some constant ¢ > 0. This bound combined with the
assumption Y, 7Z(a) < k=7 implies another positive con-
stant ¢/ > 0 such that

Var(Ve) < {R% (me; mp) + cor>,_logk - k*°~ 7},

which finishes the proof of the variance upper bound (62b).

V. DISCUSSION

In this paper, we have studied the off-policy evaluation
problem for multi-armed bandits with bounded rewards in
three different settings. First, when the behavior policy is
known, we showed that the Switch estimator, which interpo-
lates between the plug-in and importance sampling estimator,
is minimax optimal. Second, when the behavior policy is
unknown, we analyzed performance in terms of a competitive
ratio, and showed that the plug-in estimator is near-optimal.
Third, we took some initial steps into the intermediate regime,
when partial knowledge of the behavior policy is given in the
form of the minimum probability over all actions. We showed
that the plug-in approach, while optimal in some regimes,
can be sub-optimal, and we developed an estimator based on
Chebyshev polynomials that is provably optimal for a large
family of target distributions.

This paper focused purely on multi-armed bandits, and
extending non-asymptotic analysis of this type to contextual
bandits and Markov decision processes is certainly of interest.
In addition to such extensions, our study leaves a few inter-
esting technical questions to answer. Let us single out three
of them to conclude.

A. Extension to Other Reward Distributions

Our focus throughout the paper has been on the family (1)
of reward distributions with bounded support. In practice,
one might encounter distributions with possibly unbounded
support but controlled moments (e.g., sub-Gaussian and sub-
exponential distributions), or bounds on variance or other
moments. In these more general settings, it is not a priori
clear that a linear® procedure, such as the Switch estimator,
need be optimal. However, we believe that the underlying idea
of truncating the likelihood ratio should be useful in general.
From a technical perspective, the set of bounded reward
distributions is convex, which allows us demonstrate that
Bernoulli rewards are the hardest instances within this family;

2To be clear, the Switch estimator is linear with respect to the observed
rewards.
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see the proof of the lower bound in Theorem 1. If we move
beyond bounded rewards, the set of reward distributions can
be non-convex in general, which introduces new challenges.

B. Known and Unknown m, Cases

Our current characterization of the gap between these two
cases relies on the support size of the target policy, which
allows us to demonstrate the near-optimality of the plug-in
estimator in the unknown m, case. However, the support size
is a discontinuous function of the target distribution, which
makes it sensitive to small perturbations. Is it possible to
characterize the gap using a smooth function of the target
distribution? Examining the proof of the lower bound for the
competitive ratio, the quantity 1/ {Zaeik} 72(a)) appears to be
a plausible “soft™ alternative to the support size. It remains to
be seen whether the plug-in estimator satisfies an upper bound
in terms of this alternative quantity.

C. Adaptivity to the Minimum Exploration Probability

The Chebyshev estimator proposed in this paper requires
the knowledge of the minimum exploration probability
min, ¢[x) Tb(a). In practice, this minimum probability may not
be known. A natural question, then, is whether it is possible
devise an estimator that adapts to this minimum probability—
that is, exhibits the same optimal behavior without knowing
the minimum probability in advance. If not, what is the price
for adaptivity?

APPENDIX A
PROOF OF LEMMA 1
We note that the proof of this result follows that of Lemma 1
in the paper [27]; we include the details here for completeness.
The minimax risk Rp(m, (1 — 8)n,v) can be rewritten as

Re(m, (1 -3

= inf sup
{Vm} mEN(v),fEF

)n,v)

Ener[(Ver — Vi(m))?,

where {ﬁm}mzﬂ denotes a family of estimators corresponding
to the sample size m, and n’ ~ Poi((1 — 8)n). Using the
Bayes risk as a lower bound of the minimax risk, we have

Re(m, (1~ B)n,v) > sup inf Exes[(Var —Vy(m))?],
Q {Vm}

where () is a prior on the parameter space II(v) x F. Note
that for any sequence of estimators {V,,}.

Enarl(Var — Vi(m))?]
=" Enor[(Vin — Vi(m))? | 0 = m|P[n’ = m]

m=>0

> 3" Enprl(Vin — Vi(m))’IP[n’ = m].

m=0

Taking the infimum on both sides yields
{i{;ﬁ} Enyor[(Var — V(m))’]

> 3" infBrys[(Vin — V() JPf’ = m]

m=0"™
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Observe that for any fixed prior (2, the mapping m ~
infy Ernes((Vm — Vy(m:))?] is decreasing in m, and hence
inf Enpr[(Vo —Vy(m))’]

m

> Y infEngr[(Va — Vi (m))*IP[n' = m]

m=0""

= igﬂ&‘w[(?ﬂ — Vi(m))?]P(n’ < n)
> igmw[(ff; — Vi(m))?](1 — exp(—nf?/2)).

Taking the supremum over all possible priors on both sides
and invoking the minimax theorem (cf. Theorem 46.5 in the
book [37]) conclude the proof.

APPENDIX B
AUXILIARY RESULTS UNDERLYING PROPOSITION 2

In this section, we prove various auxiliary results that
underlie the proof of Proposition 2, including Lemma 2, used
in the proof itself, as well as Lemma 7, which is used to prove
Lemma 2.

A. Proof of Lemma 2

To begin with, we make a few simple observations regard-
ing the optimization problem (37) and the desired equiva-
lence (35).

« First, for any action 7:(a) = 0, one must have v*(a) = 0.
At the same time, m:(a) = 0 implies p(a) = 0. Therefore
on both sides of the equation (35), the contributions from
actions a with m:(a) = 0 are zero. Consequently, without
loss of generality, we assume that m¢(a) > 0 for all
a € [k].

« Second, if mp(a) = 0 for some a < [k], then one must
have v*(a) = mt(a) > 0, which further implies a € S*.
As a result, the action a contributes m(a) to both sides
of the equation (35). Consequently, we assume without
loss of generality that my(a) > 0 for all a € [k].

« Last but not least, it is straightforward to check that
0<v* <

In what follows, we separate the proof into three cases: (1)
v* = m, (2) v* = 0, and (3) 0 # v* # w:. The desired
equivalence (35) is easy to obtain for the first two cases, while
it requires more effort for the last one.

Let us start with the easy cases.

1) Case I: If v* = m, then S* = [k], and

[m(a) — v(a)]?

min Z Ty Z |v(a)|
vezt \|8n aclk] m(a) ae k]
=23 @)l =3
a€ [k]
At the same time, the right hand side of (35) reads
* ags+ ™b\@)p~\a *

This establishes the claim for the case when v* = ;.
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2) Case 2: If v* = 0, then S* = (), and hence

+3 Y Iol@)

aE[k

: [m(a) — v(a)]?
veRk 8n Z  m(a)

aclk]

[m(a)]?

mp(a)

1
:_nz[

On the other hand, S* = () implies

\/ 2ags+ ™(a)p*(a)

m(S*) +

which matches desired the equivalence (35).

3) Case 3: In the end, we focus on the more challenging
case when 0 # v* # . In view of the optimality condition
of the optimization problem (37), we know that

_v(a) [m(a)—v*(a) ac S*
[p(a.) m;(a)} =2n Z . for a € S*;
(67a)
(p@)y <20y Ea)-20 s ¢ S*.
aclk] mb(a)
(67b)
To simplify the notation hereafter, we denote
re Y E@-vE@P
aES* (a)
[(a) — v*(a)] 2
Ty = =Y m(a)p(a).
a%* 7{},(&) a%S:‘

A few immediate consequences of the optimality condition is
summarized in the following claim, whose proof is deferred
to the end of this section.

Lemma 7: Suppose that 0 # v* # m; is the minimizer of
the optimization problem (37). Then the following conclusions
hold:

1) There exists some quantity ¢ € (0,1) such that
m(S*) = (1 - €)/(2n).

2) We have the relation T = ETg

3) The convex program (37) has optimal value wt(S*) +

Tzé.

See Appendlx B-B for the proof of this claim.

We now use Lemma 7 to establish the equivalence (35)
for the third case 0 #* v* # . Part (c) of Lemma 7
guarantees that then the desired equivalence (35) holds for
any ¢ € [1/2,1). Therefore, the remainder of our analysis
is devoted to the case when € < (0,1/2), meaning that
= < m(S*) < &.

Without loss of generality, we assume that the actions are
ordered accordirlg to their likelihood ratios—that is, p(1) <

p(2) < --- < p(k). In view of the optimality condition (67)
and the restriction 0 < -~ < mp(S*) < == < 1, the subset
(5*)¢ must be of the form i 1 S for some ¢ € [k — 1],
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and hence S* = {t+ 1,...,k}. In words, the support set
S* contains the actions with larger likelihood ratios p(a); see
the optimality condition (67). By applying the first optimality
condition (67a), we find that

u*(t + 1)
mp(t +1)

where the first relation follows from observation that 0 <
u*(t + 1) < m(t + 1) and the last equality arises from
Lemma 7(b). In addition, note that

* i Ti\a s
m(S*) _ Da=tr17(a) > e(t+1) =p(t+1).

m(5*) Zzzt—i-l my(a)  m(t+1)

Combining the previous two bounds yields

m(S*)

s [2nT;
> p(t+1) > :

This inequality, together with the assumption that 7, (S5*) =
1/(4n), guarantees that

In T2 T2
o T ey (N g G (el el
m(S*) > = 27 (5*) > oV

Here the assumption that £ € (0, 1/2) is repeatedly used. This
together with Lemma 7(c) leads to the conclusion that

1 [m(a) —v*(a)? .
oy e R L LY )

™ acik] (a) 2

T T.
= —ﬂt(s*)ﬂ/s £ x m(8*) < m(S*) +4/ n’*

As a result, in the case when ¢ < (0,1/2), the target
equivalence (35) follows.

2ﬂT2

Alt+1) > [p(t 1) —on(Ty + To)=

B. Proof of Lemma 7

Summing the first optimality condition (67a) over actions
in S* yields

* a 2
Ti= 3 m(a) [plo) - 2 2]
acsS*
— onmy(sh) S @ v @F_, o
nmp(S™) Z e =2nmy(S™) (11 + 13),

ac[k]
(68)

which implies (S*)¢ # (. To see this, assume for the moment
that (S*)¢ = 0 and hence S* = [k], T2 = 0. The relation
above then reduces to

Tl = QRTl "

which requires 77 = 0 and hence v* = m. This contradicts
the assumption that v* # ;. Since (5*)¢ is non-empty and
p(a) > 0, one must have 75 > 0. In addition, since v* #
0, S* is nonempty (mp(S*) > 0), which together with the
identity (68) reveals that

T; > 2nmy(S™)T1.
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This readily gives the first claim that
m(S*) =(1-e)5;

for some ¢ € (0, 1). With this representation in place, we can
also deduce from the equation (68) that
mp(S* 1—¢
2n — (5%)
which is the second claim. Regarding the last claim, applying
the first optimality condition (67a) ensures that for a € S*,
we have

TQ:

v*(a) = m(a) — mp(a)v/2n(T1 + 13).

As a result, the minimum value obeys

m(a) — v*(a)]?
SLZ—{ (@) (@)] —l—%zw*(a”

24 aglk] m(a) aclk]
[1 1 .
=W eVt t 5 > v*(a)

acS*

= \/% T+ T2+ % (7&(5*) —mp(5*)v2n(Th +T2))
= %7&(5*) + \/g\/ﬂ + T3 (1 —2nmp(S™)) .

Use the first two claims 73 +75 = T3>/ and 1 —2nm,(S*) =«
to finish the proof.

APPENDIX C
PROOF OF LEMMA 3

In this appendix, we derive the dual formulation of the pri-
mal problem (39). First, note that we may assume without loss
of generality that mp(a) > 0. Indeed, if mp(a) = O for some
action a, then the optimal primal variable d(a) in the primal
problem (39) should be set to 1/2, while the optimal dual
variable v(a) should be 7:(a) in the dual formulation (40).
Both contribute %ﬂt(a) to the objective values. For a scalar
A > 0 and vector v > 0, the Lagrangian of the primal
problem (39) is given by

L(6,\v) == ) m(a)é(a)

aclk]
(X m@s@ - )+ Y v - )
ac(k] aclk]
3+ T (@@ +u(o) ~m(@)ite) — 3o(a)}
5 aclk]
We now compute the dual function g(A,v) =

infgepr £(d, A, v), and find that
[ ]2
na) o) %1 E :-‘JE[k] 'U'(a)u

A 4l
T Bn 4x Zaé[k] mp(a)

e if A>0,
: _% if A=0 and v = ¢, and
—00, otherwise.

The value in the first case follows by choosing the optimal
5*(0) - me(a)—v(a)
2Amp(a) -
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Since the primal problem (39) satisfies Slater’s condition,
strong duality holds and hence

~ Y m(@)8*(@) = max_o(\v)
aclk] -
1 [mi(a) —v(a)]* 1
= max4 — |=— = e = 1»‘(0:)
v>0 8n a;[k] ﬂ'b(a) 2 aez[k]
. 1 [me(a) —v(a)]® 1
— —min e ik S A i L BER  i v(a)
v>0 | \| 8n aez[k] mb(a) - aezlk}

The constrained optimization problem on the right hand side
is equivalent to the unconstrained one (40), which completes
the proof.

APPENDIX D
PROOF OF AUXILIARY LEMMAS FOR THEOREM 3

In this section, we collect the proofs of various auxiliary
lemmas used in the proof of Theorem 3.

A. Proof of Lemma 4

For each positive integer £, let V, be the optimal estimator
under the multinomial sampling model based on £ samples,
one that achieves the minimax risk R (7, £,v/(1 +¢€)). Now
we define a near-optimal estimator in the Poisson sampling
model. Let T be the total number of rewards observed in the
Poissonized model; by construction, the random variable T’
follows a Poi(n Y_%_, my(a)) distribution.

Now consider the estimator 1i}-f"T—that is, the minimax opti-
mal estimator based on 7" samples. This choice yields an upper
bound on the Poissonized risk, namely

RE’ (th n, U:EJ

< sup
ﬂhEG(U,E),IGI

Eﬂh@f [(?T = Z ﬂ't(ﬂ)'rf(a))z] .

ac[k]

Further note that for any behavior policy mp, € ©(v,¢),
the distribution 7, = mp/||mp||1 satisfies the lower bound
7 = /(1 + €). In addition, conditional on the realization of
T, the Poisson model is equivalent to the original multinomial
model with a discrete distribution 7. Combining these two
facts together guarantees that, for any m, € ©(v, <), we have
the decomposition

Enor|(Fr— Y m(a)rs(@)?]

ac[k]

M

k
Eror|(Fr — Y m(a)rs(a)? | T=¢]- BT =0)
a=1

i~
Il
=}

[]s I

Eror|(Ve— Y mla)rs(@)? T =¢] - BT =)

ac[k]

R, (wt,e, ﬁ) P(T = 0),

IA
T
=
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where the last line uses the fact that ﬁ} is minimax optimal.
Since the function £ — Ry (n’t,f
we can write

Enorl(Vr — 3 m(a)r(a)?]

ac(k]
< Ry (7,0, 1% ) P(T < )+ Ria (. 3, 7%

(2)
<2 BT < 3)+ R (m 3 1)
(11)

2 2 -e_3“/72+R§,( n L)j

= "max Tty 55 1te

v i . :
STt 1S non-increasing,

riu, whereas step (ii) follows from a standard tail bound for
Poisson random variables; see e.g., Lemma 5 of the paper [38].

where step (i) follows from the inequality Ry, ('rrt, 0, ﬁ) <

B. Proof of Lemma 5

Lemmas 8 and 9 guarantee the existence of random vari-
ables U and U’ supported on the interval [ 7% alog <> 1] such that

410gk 4
B3 -Eig1 > 05 o _p [ s
> 410gk - exp(—96+/nrlogn)
nv

E[U7] = E[(U")] for all j=0,1,..., [48logk]—

Here we used the fact that (1 — )™ > e 2% for £ € [0, 2l

Define the shlfted random variables V' := U — 8]og + and
V" := U’ — giog%- With these definitions, it is straightforward
to check that V' and V"’ take values in the interval [g25, 1]
and they satisfy the bounds

1
—
-exp(—96y/nvlogk), and (69)
= E[(V')],for any j =0,1,...,[48logk] — 1.

> 4logk

E[V]

Finally, we construct the desired random variables X, X’
via changes of variables on V,V’. More specifically, the
probability density functions of X, X' are given by

Px(dz) == (1 —E [MD bo(dz)

|4
¥ nv/(8logk) and
E

Py (d),

Px/(dz) := (1 _E [MD bo(dz)

V!
. nv/(leogk)Rﬂ(dI}.

This is a valid construction since V.V’ > nv/(8logk).
In addition, we see that X, X’ € [0,1], and for any j =

., [48log k],
1
3] — -1
]E[X]—/rw T 81 k - Py (dz)
Blogk
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nwE[VI—1 nvE[(V')i—1 G
_ BV BV e
8logk 8logk
where we have used the fact that E[VJ] = E[(V’)/] for all
j=0,1,...,[48logk] — 1. The above formula also tell us
that E[X] = E[X'] = siogx " P(V > 0) =
Furthermore, we have

E X _[1 1 nv
X—i—SIng ny I+8{:"g’k8]ogk

Blogk

ny
Blogk"

- Py(dz)

_ Y g 1
8logk |V + giogx g
Together with equation (69), this relation implies that

X X! 1
E = 1 —— | = 7 exp(—96+/nvlog k),
IX+810gk] lx +8[ng] P

which concludes the proof.

APPENDIX E
AUXILIARY RESULTS UNDERLYING THEOREM 6

In this section, we collect the proofs of some useful results
for establishing Theorem 6.

A. Proof of Lemma 6
In order to simplify notation, let us introduce the shorthand
bt

T

alogk” (70)
n
We split the proof into two cases, depending on whether
mb(a) € [£, 7], or mp(a) > .
1) Case I: mp(a) € [£,7]: When my(a) € [£, 7], we have
1Qr(22@=r=t)| < 1, and hence

1 | 1
e (=9 "Qu(-
which implies that |e_"“(°)PL(1rb(a))| < o= __l__g)|

2) Case 2: mp(a) > r: When mp(a) > T, we know that

| P (mb(a))| < 1+5) B

e—nms(a) pL(,-rb(a))| < max e™7|Py ()]

(1]
= exp (—nry(1—48)/2) Qr(y) exp(—nr(1+4)/2)

2
= (5

Lemma 4 from Wu et al. [27] guarantees that if 3 = O(L),
then

L
-8 _ 1/ at+va i
:;[; {e 'J'QL(?I)} = ( \/W ( +0L(1])) , asL—oo,

where o := L /3. We apply this identity with the choices

B=nr(1—-46)/2<cilogk, a=2)\:=2

c1(1 —4)’
thereby obtaining the inequality
|e—“h‘°’PL(=n,(a})\
2+ VA +1 AT exp(—nr(l +8)/2)
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=3 (- (1+o(D) +os(1))) —
== = k 5 T £ =meex =
1+ 1/ (4AZ)+1/(2A) ‘QL (_;__.4%”
By a suitable choice of the universal constants (cp, ¢1)—in
particular, by taking ¢y < ¢;— we can make A as small as

we please. This freedom allows us to guarantee that for all
mp(a) = r, we have

(+ox()+os(D) _ 2
e (=) Jen (532)]
as long as k and ¢; are both sufficiently large.

a) Putting pieces together: By combining the previous
two cases together, we find that for any mp(a) > £, we have
e~"m(a) p, (mb (‘1))‘ < )

L
2 2vé

S

o (E)\ i
In this argument, the final inequality exploits a basic fact about
Chebyshev polynomials, namely that

—L
2V
1+

1+46 1
o il i il [ A
Qe ( = 5) = (
To conclude, we make note of the elementary inequalities
(1 — z)l' < exp(—zL) for = € (0,1), and Nv} > V6.
Substituting these bounds yields the claimed result—viz.

1) st (149)

&= Py (my(@)| <

=@ Py (my(a))| <4 exp (

B. Proof of the Bounds (66)
We prove each of the two bounds (66a) and (66b) in turn.
b) Proof of the inequality (66a): When it comes to a;,
given that gr.(0) = 0, one has

E [F(a)gr(n(a)) | n(a)] = r¢(a)gL(n(a)),

and hence

a1 = Var (ry(a)gz(n(a)) < 12, Var (g (n(a)))
=r12_Var(gr(n(a)) — 1).
Here, the inequality arises from the fact that |r;(a)| < T,
and the last identity uses the translation invariance of the
variance. Splitting gz (n(a)) —1 into (gr(n(a)) —1)1{n(a) <
L} and (gr(n(a))—1)1{n(a) > L} and using the elementary
inequality Var(X +Y) < 2Var(X )+ 2Var(Y'), we can obtain
f,;:.:x < 2Var ({gr(n(a)) — 1} 1{n(a) < L})
+ 2Var ({gz(n(a)) — 1} 1{n(a) > L})
= 2Var ({gz(n(a)) — 1} L{n(a) < L})
< 2E ({gz(n(a)) — 1}* 1{n(a) < L}).

Here, the equality is due to the fact that gr(n(a)) = 1 for
n(a) > L. Substitute in the definition of gr.(n(a)) to see that

St e Z —n.m,(a) [ﬂﬂb(a}] (a j|/an2

j=0

max

5337

L

B . Tb(a)

e B B 1
j=0

It has been shown in equation (47) in Section 6.1 in the

paper [27] that for j =1,2,...L,

1.4, . 2 23 1.4 205
R WOt G ) et § J Co
w1 <3G ew (@ +an L)) < 2épRe, @
where h(A) == —AlogA — (1 — A)log(1 — A) denotes the
binary entropy function. The last inequality holds true since
j <L =¢plogk and h(A) < 1. Combine the previous two
bounds (71) and (72) together to see

T’:: <2 emm@ [ 42 +Z 2 ,[ﬂb(a}]

j=1

L
lz 16mp(a) i, 4¢, .
4 ( nr2 -y
Jj=1

<92 e "(a)

L
i 16Lmp(a) . ;
~ o—nms(a) JjAco
e Y (g,

< 9 ¢—nm(a)
SZe +2

where the last line follows from the elementary inequality
j! < 77 and the fact that j < L. To further upper bound a;,
we consider two separate cases. First, when 16Lmp(a) < nr2,
one clearly has

L
_ 16Lmp(a) . 4,
nmy(a) jpAdeo o I pAco
3 3221( 9 Yk L™,

On the other hand, when 16Lp(a) > nr?, we have

L
e—ﬂﬂ'h(ﬂ) Z( 16L7rb(a) )jk%

o nr?
L
< Lkalcge—n';rh(a) (IGL%(Q))
b nr2
— L exp (_m(a) e (w))
cilogk
< Lk

aslong as ¢2 > 32¢2. In sum, using the definition L = ¢ logk,
we arrive at the conclusion that

1
a; < 'rfm {2 S ECO logk - k4c0} .

c) Proof of the inequality (66b): Our next step is to upper
bound the second term a;. We begin by observing that

Var ((a)gr(n(a)) | n(a)) = g7(n(a)) (( ))11{ (a) > 0},
which further implies

2
ag < rfn“]E [791’(?({;)) 1{n(a) > {]}]

2 QL( (a))
]E[ @) ]1{0(n(a)<L}]

+r2 IE[ ]1{n(a)>L}]

(a)
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Here the last identity uses the fact that gr(n(a)) = 1 for Lemma 8: Fix any r > £ > 0 and any positive integer L.
n(a) > L. Using the inequality (z +v)? < 2z2+2y?, we can Denoting é := £/r, we have

decompose the first term into

Bn@) o0
[ %8 110 <nia) < 1}
<2E [%1{0 <n(a) < L}]

+2E _ ——1{0 < n(a) < L}]

( )

which results in

5 £aE _%1{0 <n(a) < L}]

+2E [@ 1{n(a) > 0}] ;

Note however the first term has been controlled in the analysis
of aq:

lox(n@) =12 (.
2]15:[ g H0< (}gL}]

< 2E [[gr(n(a)) — 1]*1{0 < n(a) < L}]
< 2E [[gz(n(a)) — 1]*1{n(a) < L}]

1
<2 e "m(@) 4 ECO logk - k*°.

Regarding the second term, Lemma 1 of the paper [10] tells
E|—1{n(a) > 0}] < min {1 (73)

us that?
5
( ) " nmp(a) } '

Combining the preceding bounds yields the stated conclu-
sion (66b).

APPENDIX F
SOME AUXILIARY RESULTS

This section gathers some known auxiliary results that are
used in our analysis.

A. Best Polynomial Approximation

Given an interval I := [£, 7] with £ > 0, a positive integer
L > 0 and a continuous function ¢ on I, let

Z atI . QS(I)

denote the best uniform approximation error of ¢ on I by
degree-L polynomials.

In particular, for the function ¢(z) = 1/z, the following
lemma, proved in Section 2.11.1 of the book [34], provides a
precise characterization of Er (1/x; [£, ]).

Er(¢;I) := inf sup

{a:} zer1

3Though Lemma 1 of the paper [10] deals with the case when n(a) is a
binomial random variable, the same proof works for the case with Poisson
random variables since the multiplicative Chernoff bound used therein also
holds for the Poisson case.

2B (L

[r]) = (1+€f) (1

L+1
2V
1+ V6
In fact, the problem of best polynomial approximation is
closely related to the problem of moment matching, as shown
in the following lemma (cf. Appendix E of the paper [22]).
Lemma 9: The following identity holds:

2EL(¢; 1) =max Exop, [¢(X)] — Exrp,[o(X)]
subjectto Ex~y, [XI] =Exu, [XI]a
TS | T D

where the maximum is taken over pairs of distributions pp, f1
supported on the interval I.

B. Minimax Lower Bound via Le Cam’s Method

Here we state a version of Le Cam’s method for lower
bounds based on mixture distributions. Consider a class of
distributions {Ps | # € ©}, and a target function T°(8) of the
parameter f. Let Z be a random vector drawn according to
some distribution Py, and T(Z) be an arbitrary estimator of
the target T'(@) based on the data Z.

Let =p,=; be two priors on the parameter space ©. Cor-
respondingly, let F; denote the marginal distribution of the
observation Z under the prior Z;, for i = 0, 1. We then have:

Lemma 10: Suppose that there exist some quantities £ €
R,s5> 0,0 < Sy, /1 < 1 such that

Z0(8:T(6) <& —s) > 1 fo;
Z10:T@O)>&+s)>1—- P
If TV(Fl,F(}) <wv <1, then
inf sup By (17(2) ~T(0)] > ) > L 20— PL
T 6co 2
C. Divergence Between Mixtures of Poisson Distributions

Given a nonnegative random variable X, denote by
E[Poi(X)] the Poisson mixture with respect to the variable
X. We then have the following bound, proved as Lemma 3 in
the paper [22], on the TV distance between two such Poisson
mixtures.

Lemma 11: Let X, X’ be random variables supported on

[0,b] such that E[X7] = E[(X’)] for j = 1,2,...,L for
some L > 2 eb. Then the TV distance is bounded as
TV (E[Poi(X)], E[Poi(X")]) < (ZEI’) (74)
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