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Abstract

R&dl, Ruciniski, and Szemerédi determined the minimum (k — 1)-degree threshold for the
existence of fractional perfect matchings in k-uniform hypergrahs, and Kiihn, Osthus, and
Townsend extended this result by asymptotically determining the d-degree threshold for the
range k — 1 > d > k /2. In this note, we prove the following exact degree threshold: letk, d
be positive integers with k >4 and k — 1 > d>k/2, and let n be any integer with
n>2k(k — 1)+ 1. Then any n-vertex k-uniform hypergraph with minimum d-degree
Sa(H) > (49 — (”_d_,({[fgk]_lv contains a fractional perfect matching. This lower
bound on the minimum d-degree is best possible. We also determine the minimum d-degree
threshold for the existence of fractional matchings of size s, where 0 <s <n/k (when
k/2 <d <k — 1), or with s large enough and s < n/k (when 2k /5 <d <k/2).
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1 Introduction

For a positive integer &, let [k]:={1,...,k}. For a set S, let
(}) :=={T C S:|T| =k}. A hypergraph H consists of a vertex set V(H) and an
edge set E(H) whose members are subsets of V(H), and H is said to be k-uniform if
E(H) C (V(kH )>. A k-uniform hypergraph is also called a k-graph. A matching in a

hypergraph H is a set of pairwise disjoint edges of H, and a matching in H is perfect
if the union of all edges in the matching is V(H). We use v(H) to denote the largest
size of a matching in H. A maximum matching in H is a matching in H of size v(H).
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There has been much activity on degree thresholds for matchings of certain size
in uniform hypergraphs. Let H be a hypergraph. For S C V(H), let Ny (S) = {T C
V(H)\S : TUS €< E(H)} and let dy(S) := |Ng(S)|. For any integer d >0, let
04(H) = min{dH(S) :Se (V(f)> }, which is the minimum d-degree of H. Note that
0o(H) = e(H), the number of edges in H. For integers n, k, d, s satisfying
0<d<k—1and 0<s<n/k, let m(k,n) denote the minimum integer m such that
every k-graph H on n vertices with d,(H) > m has a matching of size s.

Rodl, Rucinski, and Szemerédi [8] determined mZ{ kl (k,n) for all integers k >3
and n € kZ sufficiently large. Given positive integers k, d with k>4 and

k—2>d>k/2, Treglown and Zhao [9, 10] showed that mz/k(k n)~ L (9.

One approach to finding a large matching in a k-graph is to first find a large
fractional matching in the k-graph, and then convert that fractional matching to a
matching. This approach has been used quite often, for example, in [1, 3, 6]. A
fractional matching in a k-graph H is a function f : E(H) — [0, 1] such that, for each
v € V(H), X teepmyveey f(€) < 1. The size of fis 3~ gy f(e), and fis a fractional
perfect matching if it has size |V(H)|/k. We use v'(H) to denote the maximum size of
a fractional matching in H. For integers n, k, d and positive rational number s
satisfying 0 <d <k — 1 and s <n/k, let f;(k, n) denote the minimum integer m such
that every k-graph H on n vertices with d;(H) > m has a fractional matching of size
S.

Alon et al. [1] provided a connection between the parameters m(k,n) and
f3(k,n). Let k, d be integers such that 1 <d <k — 1 and let n be a sufficiently large

integer. If there exists ¢* >0 such that f*(k,n)~c* (1=4), then

"/k(k n) ~ max{c*,1/2}(}~ ) [For integer-valued functlons hi(n),hy(n), we
write hy(n) ~hy(n) if lim,_ 7 (n)/ha(n) = 1]. In the same paper, they show a
way to convert a large fractional matching to a matching using an absorbing
technique and a two-round randomization technique; while Kiihn, Osthus, and
Townsend [6] used the weak regularity lemma for hypergraphs to show

@ (1 (1—a) ") (129, where 0 <a< min{(k —d)/2, (1 — &)n/k} and & > 0
is a constant.

Radl, Rucmskl and Szemerédi [7] proved that f"/ k( n) = [n/k], which is much

smaller than m (k n) when n € kZ (which is approximately n/2). Kiihn, Osthus,
and Townsend [6] determined fj(k,n) asymptotically when s<n/(2(k —2)) o
d>k/2.

Alon et al. [1] conjectured that for all 1 <d<k— I, f"/k( n)~1-(1-

1/k)E4) (2721), and proved it for k>3 and k —4<d <k — 1. In this note, we

determine the exact value of "/ (k,n) for certain ranges of d, using a result of
Frankl [4] and a result of Frankl and Kupavskii [5]. This is a special case of the
following result.

Theorem 1.1 Let n, k, d be three positive integers such that 2k/5 <d <k — 1, and
let s be a rational number such that 0<s<n/k. If
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1) k/2<d<k—1andn>2k(k—1)+1, or
(i) 2k/5<d<k/2 and n> max{(5(k—d)—2)so/3+d,k(Tk—9)/5+ 1},
where s is a sufficiently large constant.

then f(k,n) = (179) — ("_di(jy_l)) 1

In Sect. 2, we prove a technical result, Lemma 2.5, about fractional matchings. In
Sect. 3, we give a short proof of Theorem 1.1 by applying Lemma 2.5, a result of
Frankl (Lemma 2.2), and a result of Frankl and Kupavskii (Lemma 2.4). We will
also discuss other related work on asymptotic and exact bounds for f;(k, n) in Sect.
4.

2 Fractional Matchings

One of the ideas in our proof is to use the strong duality between the size of a largest
fractional matching in a hypergraph and the size of a smallest fractional vertex
cover of that hypergraph. This idea has been already explored before, e.g., see [1, 6].
Let H be a hypergraph. A fractional vertex cover of H 1is a function
w: V(H) — [0, 1], such that for each e € E(H) we have ), ., o(v) > 1. The
size of w is 3y ) @(v). We use u(H) to denote the minimum size of a fractional
vertex cover in H. Note that v'(H) = u(H) for any hypergraph H, as they are
optimal solutions of two dual linear programs. In our proof of Theorem 1.1, we will
use this fact to transform the fractional matching problem on H to one on another
hypergraph H'.

First, observe that (} 4) — ("*d;gjﬁ)) + 1 is a lower bound for f(k,n). For
convenience, we state it below as a lemma. The construction involved in the proof is
standard, e.g., see equations (3) and (4) in [1].

Lemma 2.1 Let k, d be integers such that k >?2 and 0 <d <k — 1. Then, for any
integer n  with n>k and any vrational number s with 0<s<n/k,

filkm) = () = (" 050) +1.

Proof Let Hi(n,s) be the k-graph with vertex set [n] and edge set consisting of all
k-element subsets of [n] which have non-empty intersection with the subset

5] - 1.
First, suppose 0 <s < 1. Then, by definition, Hy(n,s) has no edge and, thus, has
no fractional matching of any positive size. Therefore, in this case,

fitem =1 = (7 = (50) 1
Hence, we may assume s > 1. Then

Sa(Hi(n, s)) = (Z_Z> - (ndk—((j ! D)’

Let w : [n] — [0, 1] such that w(x) =1 for all x € [[s] — 1] and w(x) =0 for all
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x € [n]\[[s] —1]. Clearly, o is a fractional vertex cover of Hi(n,s). So
V'(Hy(n,s)) = w(Hi(n,s)) <[s] — 1, and the assertion of the lemma holds. O

We also need two results concerning a famous conjecture of Erdds [2] on the
matching number of a k-graph; both have a requirement on the number of vertices.
The first result is due to Frankl (Theorem 1.1 in [4]).

Lemma 2.2 (Frankl) Let k, s be integers with k > 2 and s > 1. Then, for any integer
nwith n> (2k — 1)s +k, mj(k,n) = (}) — ("3 + L

The second result is a small variation of the following result of Frankl and
Kupavskii (Theorem 1 in [5]).

Lemma 2.3 (Frankl and Kupavskii) Let k be an integer with k > 2. There exists an
absolute constant so>1 such that, for any integer s>sy and any integer

n>(5k/3 —2/3)s, m(k,n) = (1) — (") + L.

Lemma 2.4 (Frankl and Kupavskii) Let k be an integer with k > 2. There exists an
absolute constant sy>1 such that, for any integer s>1 and any integer

n>(5k/3 —2/3) max{s,so}, my(k,n) = (;) — (") + 1.

Proof 1If s> sy then the assertion follows from Lemma 2.3. Now s<sj. Since
n>(5k/3 —2/3)max{s,so}, n+ (so —s)>n>(5k/3 —2/3)so. Thus by Lemma

23, m(kn + (50— ) = (7797%) = (7o) 1,

Now let H be an arbitrary k-graph with n vertices and e(H) > (Z) — ("’z“) + 1.
Let Q be a set of so — s vertices such that Q N V(H) = 0. Let H' be the k-graph with
vertex set V(H) U Q and edge set

QUV(H)

E(H')=EH)U{e e ( .

) N0 £0}.

Then e(H') > (""9") — ("HSO*,?*S”“) + 1. Since my (k,n+ (so —s5)) = ("79)

— (”H‘Y"_‘,?_‘V"“) + 1, H' contains a matching M’ of size so. Then M = {e € M’ :

eN Q= 0} is a matching of size s in H. Thus my(k,n) = ({) — (""" +1. O

We now state and prove the main result of this section, which essentially says
that f5(k,n) <f3(k — d,n — d). Our proof follows the method used by Alon et al. in
[1]. Recall that for a hypergraph H and S C V(H), Ng(S)={T C V(H)\
S:SUT € E(H)}. We also view Ny (S) as a hypergraph with vertex set V(H) \ S
and edge set Ny(S).

Lemma 2.5 Let k, d be integers with k>2 and 1<d<k—1, and let n be a
positive integer and s be a rational constant with 0<s <n/k. Let H be a k-graph on
n vertices such that, for every set S C V(H) with |S| = d, the (k — d)-graph Ng(S)
has a fractional matching of size at least s. Then H has a fractional matching of size
at least s.
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Proof Let w be a fractional vertex cover of H with size u(H), and write V(H) =
{vi,...,v,} such that

(1) o) >o)> - >o(v,),

Let H,, be the k-graph with vertex set V(H) and edge set

E(H,) = {e L ec (VS(H)) and Y o(v) > 1}.

Then o is also a fractional vertex cover of H,; so u(H,) < u(H). Since every edge
of H is also an edge of H,, we have V(H,)>V(H). Hence,
V(Hy) = u(Hy) <u(H) =v(H)<V(H,). Thus, we have

2) V(H) =V (H,).

Let S = {Vi_ar1:---,va}. Then, |S| =d. Let wo:=1> ¢o(v), and define o' :
V(H,) — [0, 1] such that

oy o), ifveV(H,)\S,
cu(v)—{WO’ if ves.

We may assume that wo<1/k. For, otherwise, v'(H) = u(H) = >, ey @(v)

>nwo >n/k>s; so the assertion of the lemma holds.
Let " : V(H) — R* U {0} be a function such that

w// (v) —

Then o”(v) =0 for v € S. Note that Ny, (S) is a (k — d)-graph with vertex set
V(Hy) \ S (which has n — d vertices). For any edge e € Ny, (S), since o is also a

vertex cover of H, and e U S € E(H,,), we have Y. w(v) > 1. Recall that o(v) =
veeUS

' (v) for any v € V(H) — S and '(x) = 0 for any x € S. So we have

Z G)N(V) — Z wl(v_) k_W:’)VO

@' (v) —wy

- for allv e V(H).

vee vee
_ ZVGE wl(v) - kWO
- 1 — kwy
( > w(v)) — kwo
_ veEeUS >1.
1 — kwy -

Thus, the function " restricted to V(H,,) \ S is a fractional vertex cover of Ny, ().
Then by hypothesis and Strong Duality Theorem, we have
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S 02kl (5) = VN (9) 2
veV(Hy)\

Recall that  is a minimum vertex cover of H,,. Note that v'(H,,) <n/k; so

kg Z o(v) <kwo(n/k) = nwy.

vEV(H,)

Hence, we have

vev(H,A,) o(v) — nwy

< 3 o of
V(Ho) veV(H,) 1 —kwo
Z V(Ho).
V(H,)
Thus by (2), H has a fractional matching of size at least s. O

3 Proof of Theorem 1.1.

First, we give a proof of Theorem 1.1. Let k, d be integers with k>3 and
2k/5<d<k—1.Ifd>k/2let sy =1, and if 2k/5<d <k/2 let 5o > 1 be given as
in Lemma 2.4. Recall that Rodl, Ruciniski, and Szemerédi (see Corollary 3.1 in [7])
proved that f"/k( n) = [n/k]. So we may assume that k —d >2. By Lemma 2.5,

fik,n) <f§(k—d,n—d).
Since d<k, [s]|<(n+k—1)/k<(n—d)/(k—d); so

Lln) <fik—d,n—d)<m'(k—d,n—d).

Therefore, in view of Lemma 2.1, it suffices to show that mgw(k d,n—

d)< (Z:j) - (<”_d,2:£ﬂ+') +1 for all s with 1<s<n/k (in which case
151 < (n — d)/(k — d)).

We apply Lemma 2.2 (when d > k/2) and Lemma 2.4 (when 2k/5<d <k/2) on
a (k — d)-graph of order n — d. Thus, we need to verify that, for every s with
0<s<n/k f(d) == (n —d) — [(2(k — d) — 1)[s] + (k — d)] >0 when d > k/2, and
g(d):=(n—-d)— (5(k—d)/3 —2/3)max{]s],s0} >0 when 2k/5 <d <k/2. Note
that the first derivatives f'(d) =2[s| > 0 and g'(d) = S5max{[s],s0}/3—1>0
when s > 0.

Suppose d > k/2 and n > 2k(k — 1) 4+ 1. Then

F)>fkf2) =n—k—(k—1)[s]>n—k—(k—1)(n+k—1)/k>0.

as s<n/k and n>2k(k— 1)+ 1.
Now suppose 2k/5<d<k/2 and n> max{k(7k—9)/5+1,(5(k—d)
—2)s9/3 4+ d}. We have d > (2k + 1) /5. Hence,
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g(d) > g((2k + 1)/5) = n — 2k +1)/5 — (k= 1)[s] =n — (2K + 1)/5
— (k=D (n+k—1)/k>0

as n>k(7k—9)/5+ 1. On the other hand, g(d)>(n—d)— (5(k—d)/3—
2/3)s0>0as n> (5(k — d) — 2)so/3 +d}. So g(d) >0. O

4 Concluding Remarks

Rodl, Rucinski, and Szemerédi [7] determined f;_,(k,n) for 0<s<n/k. For the
entire range 1 <d <k — 2, Kiihn, Osthus, and Townsend [6] proved the following
asymptotic result.

Theorem 4.1 (Kuhn, Osthus, and Townsend) Let k, d be integers with k>3 and
1<d<k-—2,and let 0<a< min{1/(2(k — d)), 1/k}. Then, for positive integers

P~ (1-0-at0)(129)

Thus, fj(k,n) is asymptotically determined when 1<d<k-—2 and
s<n/(2(k—d)), and when d>k/2 and s € (0,n/k]. Theorem 1.1 determines
f3(k,n) exactly when d > 2k/5 and n, s large enough.

For matchings, Kiihn, Osthus, and Townsend [6] proposed the following
conjecture.

Conjecture 4.2 (Kuihn, Osthus, and Townsend) For all ¢ > 0 and all integers
nok,d, swithl1<d<k—1and 1<s<(l—¢)n/k,

(e, ) ~ (1 —(1— S/n)k_d) (Z B Z).

Kiihn, Osthus, and Townsend [6] proved that Conjecture 4.2 holds for
k/2<d<k— 1. Han [3] showed that this conjecture holds for 0.42k <d <k/2.

Alon et al. [1] showed for any two constants o, o with 0 <d'"r < a<l1 /k, where r

is a sufficiently large integer, there exists ny such that for all n> ny,
mgil_“)n/k(k, n) Sfél/k_aﬂ/)n(k, n). By Lemma 2.1, we have (Z:fl)—
(”_d_(f/;_“”)) §m(dl/k_°()"(k, n). Recall that Alon et al. [1] proved mZ/k(k7 n) ~

k
max{c*,1/2}({"4), where L%k n) ~ c* (:=%). Note that for k>3 and 2k/5<

d<k—1,1—(1=1/k)*?<1/2. As a consequence of Theorem 1.1 and another
result [1] (see Theorem 1.1), we can derive the following result.

Corollary 4.3 Let k, d be integers such that k >2 and d > 2k /5. For any constant o
with 0 <o <1/k, there exists ny such that for any n > ny,
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ml(il/kfot)n(k’n) - <Z : Z) (1 — (1= 1/k+ a)k7d>,

and
n/kk Nl n—d
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