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Abstract
Rödl, Ruciński, and Szemerédi determined the minimum ðk " 1Þ-degree threshold for the
existence of fractional perfect matchings in k-uniform hypergrahs, and Kühn, Osthus, and
Townsend extended this result by asymptotically determining the d-degree threshold for the
range k " 1[ d$ k=2. In this note,we prove the following exact degree threshold: let k, d
be positive integers with k$ 4 and k " 1[ d$ k=2, and let n be any integer with
n$ 2kðk " 1Þ þ 1. Then any n-vertex k-uniform hypergraph with minimum d-degree

ddðHÞ[ n"d
k"d

! "
" n"d"ðdn=ke"1Þ

k"d

# $
contains a fractional perfect matching. This lower

boundon theminimumd-degree is best possible.Wealso determine theminimumd-degree
threshold for the existence of fractional matchings of size s, where 0\s& n=k (when
k=2& d& k " 1), or with s large enough and s& n=k (when 2k=5\d\k=2).

Keywords Matching ' Fractional matching ' Perfect matching

1 Introduction

For a positive integer k, let ½k) :¼ f1; . . .; kg. For a set S, let
S
k

! "
:¼ fT + S : jT j ¼ kg. A hypergraph H consists of a vertex set V(H) and an

edge set E(H) whose members are subsets of V(H), and H is said to be k-uniform if

EðHÞ + VðHÞ
k

# $
. A k-uniform hypergraph is also called a k-graph. A matching in a

hypergraph H is a set of pairwise disjoint edges of H, and a matching in H is perfect
if the union of all edges in the matching is V(H). We use mðHÞ to denote the largest
size of a matching in H. A maximum matching in H is a matching in H of size mðHÞ.
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There has been much activity on degree thresholds for matchings of certain size
in uniform hypergraphs. Let H be a hypergraph. For S + VðHÞ, let NHðSÞ ¼ fT +
VðHÞ n S : T [ S 2 EðHÞg and let dHðSÞ :¼ jNHðSÞj. For any integer d$ 0, let

ddðHÞ ¼ min dHðSÞ : S 2 VðHÞ
d

# $n o
, which is the minimum d-degree of H. Note that

d0ðHÞ ¼ eðHÞ, the number of edges in H. For integers n, k, d, s satisfying
0& d& k " 1 and 0\s& n=k, let ms

dðk; nÞ denote the minimum integer m such that
every k-graph H on n vertices with ddðHÞ$m has a matching of size s.

Rödl, Rucinśki, and Szemerédi [8] determined mn=k
k"1ðk; nÞ for all integers k$ 3

and n 2 kZ sufficiently large. Given positive integers k, d with k$ 4 and

k " 2$ d$ k=2, Treglown and Zhao [9, 10] showed that mn=k
d ðk; nÞ, 1

2
n"d
k"d

! "
.

One approach to finding a large matching in a k-graph is to first find a large
fractional matching in the k-graph, and then convert that fractional matching to a
matching. This approach has been used quite often, for example, in [1, 3, 6]. A
fractional matching in a k-graph H is a function f : EðHÞ ! ½0; 1) such that, for each
v 2 VðHÞ,

P
fe2EðHÞ:v2eg f ðeÞ& 1. The size of f is

P
e2EðHÞ f ðeÞ, and f is a fractional

perfect matching if it has size |V(H)|/k. We use m0ðHÞ to denote the maximum size of
a fractional matching in H. For integers n, k, d and positive rational number s
satisfying 0& d& k " 1 and s& n=k, let f sd ðk; nÞ denote the minimum integer m such
that every k-graph H on n vertices with ddðHÞ$m has a fractional matching of size
s.

Alon et al. [1] provided a connection between the parameters ms
dðk; nÞ and

f sdðk; nÞ. Let k, d be integers such that 1& d& k " 1 and let n be a sufficiently large

integer. If there exists c- [ 0 such that f n=kd ðk; nÞ, c- n"d
k"d

! "
, then

mn=k
d ðk; nÞ, maxfc-; 1=2g n"d

k"d

! "
. [For integer-valued functions h1ðnÞ; h2ðnÞ, we

write h1ðnÞ, h2ðnÞ if limn!1 h1ðnÞ=h2ðnÞ ¼ 1]. In the same paper, they show a
way to convert a large fractional matching to a matching using an absorbing
technique and a two-round randomization technique; while Kühn, Osthus, and
Townsend [6] used the weak regularity lemma for hypergraphs to show

man
d ,ð1" ð1" aÞk"dÞ n"d

k"d

! "
, where 0& a\minfðk " dÞ=2; ð1" eÞn=kg and e[ 0

is a constant.

Rödl, Ruciński, and Szemerédi [7] proved that f n=kk"1ðk; nÞ ¼ dn=ke, which is much

smaller than mn=k
k"1ðk; nÞ when n 2 kZ (which is approximately n/2). Kühn, Osthus,

and Townsend [6] determined f sd ðk; nÞ asymptotically when s& n=ð2ðk " 2ÞÞ or
d$ k=2.

Alon et al. [1] conjectured that for all 1& d& k " 1, f n=kd ðk; nÞ, ð1" ð1"
1=kÞk"dÞ n"d

k"d

! "
, and proved it for k$ 3 and k " 4& d& k " 1. In this note, we

determine the exact value of f n=kd ðk; nÞ for certain ranges of d, using a result of
Frankl [4] and a result of Frankl and Kupavskii [5]. This is a special case of the
following result.

Theorem 1.1 Let n, k, d be three positive integers such that 2k=5& d& k " 1, and
let s be a rational number such that 0\s& n=k. If
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(i) k=2& d& k " 1 and n$ 2kðk " 1Þ þ 1, or
(ii) 2k=5\d\k=2 and n$ maxfð5ðk " dÞ " 2Þs0=3þ d; kð7k " 9Þ=5þ 1g,

where s0 is a sufficiently large constant.

then f sdðk; nÞ ¼
n"d
k"d

! "
" n"d"ðdse"1Þ

k"d

# $
þ 1.

In Sect. 2, we prove a technical result, Lemma 2.5, about fractional matchings. In
Sect. 3, we give a short proof of Theorem 1.1 by applying Lemma 2.5, a result of
Frankl (Lemma 2.2), and a result of Frankl and Kupavskii (Lemma 2.4). We will
also discuss other related work on asymptotic and exact bounds for f sd ðk; nÞ in Sect.
4.

2 Fractional Matchings

One of the ideas in our proof is to use the strong duality between the size of a largest
fractional matching in a hypergraph and the size of a smallest fractional vertex
cover of that hypergraph. This idea has been already explored before, e.g., see [1, 6].
Let H be a hypergraph. A fractional vertex cover of H is a function
x : VðHÞ ! ½0; 1), such that for each e 2 EðHÞ we have

P
fv : v2eg xðvÞ$ 1. The

size of x is
P

v2VðHÞ xðvÞ. We use lðHÞ to denote the minimum size of a fractional

vertex cover in H. Note that m0ðHÞ ¼ lðHÞ for any hypergraph H, as they are
optimal solutions of two dual linear programs. In our proof of Theorem 1.1, we will
use this fact to transform the fractional matching problem on H to one on another
hypergraph H0.

First, observe that n"d
k"d

! "
" n"d"ðdse"1Þ

k"d

# $
þ 1 is a lower bound for f sdðk; nÞ. For

convenience, we state it below as a lemma. The construction involved in the proof is
standard, e.g., see equations (3) and (4) in [1].

Lemma 2.1 Let k, d be integers such that k$ 2 and 0& d& k " 1. Then, for any
integer n with n$ k and any rational number s with 0\s& n=k,

f sdðk; nÞ$
n"d
k"d

! "
" n"d"ðdse"1Þ

k"d

# $
þ 1.

Proof Let Hkðn; sÞ be the k-graph with vertex set [n] and edge set consisting of all
k-element subsets of [n] which have non-empty intersection with the subset
½dse" 1).

First, suppose 0\s& 1. Then, by definition, Hkðn; sÞ has no edge and, thus, has
no fractional matching of any positive size. Therefore, in this case,

f sdðk; nÞ$ 1 ¼ n"d
k"d

! "
" n"d"ðdse"1Þ

k"d

# $
þ 1.

Hence, we may assume s[ 1. Then

ddðHkðn; sÞÞ ¼
n" d

k " d

% &
" n" d " ðdse" 1Þ

k " d

% &
:

Let x : ½n) ! ½0; 1) such that xðxÞ ¼ 1 for all x 2 ½dse" 1) and xðxÞ ¼ 0 for all
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x 2 ½n) n ½dse" 1). Clearly, x is a fractional vertex cover of Hkðn; sÞ. So
m0ðHkðn; sÞÞ ¼ lðHkðn; sÞÞ& dse" 1, and the assertion of the lemma holds. h

We also need two results concerning a famous conjecture of Erd}os [2] on the
matching number of a k-graph; both have a requirement on the number of vertices.
The first result is due to Frankl (Theorem 1.1 in [4]).

Lemma 2.2 (Frankl) Let k, s be integers with k$ 2 and s$ 1. Then, for any integer

n with n$ð2k " 1Þsþ k, ms
0ðk; nÞ ¼

n
k

! "
" n"sþ1

k

! "
þ 1.

The second result is a small variation of the following result of Frankl and
Kupavskii (Theorem 1 in [5]).

Lemma 2.3 (Frankl and Kupavskii) Let k be an integer with k$ 2. There exists an
absolute constant s0 $ 1 such that, for any integer s$ s0 and any integer

n$ð5k=3" 2=3Þs, ms
0ðk; nÞ ¼

n
k

! "
" n"sþ1

k

! "
þ 1.

Lemma 2.4 (Frankl and Kupavskii) Let k be an integer with k$ 2. There exists an
absolute constant s0 $ 1 such that, for any integer s$ 1 and any integer

n$ð5k=3" 2=3Þmaxfs; s0g, ms
0ðk; nÞ ¼

n
k

! "
" n"sþ1

k

! "
þ 1.

Proof If s$ s0 then the assertion follows from Lemma 2.3. Now s\s0. Since
n$ð5k=3" 2=3Þmaxfs; s0g, nþ ðs0 " sÞ$ n$ð5k=3" 2=3Þs0. Thus by Lemma

2.3, ms0
0 ðk; nþ ðs0 " sÞÞ ¼ nþs0"s

k

! "
" nþðs0"sÞ"s0þ1

k

# $
þ 1.

Now let H be an arbitrary k-graph with n vertices and eðHÞ$ n
k

! "
" n"sþ1

k

! "
þ 1.

Let Q be a set of s0 " s vertices such that Q \ VðHÞ ¼ ;. Let H0 be the k-graph with
vertex set VðHÞ [ Q and edge set

EðH0Þ ¼ EðHÞ [ fe 2 Q [ VðHÞ
k

% &
: e \ Q 6¼ ;g:

Then eðH0Þ$ nþs0"s
k

! "
" nþðs0"sÞ"s0þ1

k

# $
þ 1. Since ms0

0 ðk; nþ ðs0 " sÞÞ ¼ nþs0"s
k

! "

" nþðs0"sÞ"s0þ1
k

# $
þ 1, H0 contains a matching M0 of size s0. Then M ¼ fe 2 M0 :

e \ Q ¼ ;g is a matching of size s in H. Thus ms
0ðk; nÞ ¼

n
k

! "
" n"sþ1

k

! "
þ 1. h

We now state and prove the main result of this section, which essentially says
that f sd ðk; nÞ& f s0 ðk " d; n" dÞ. Our proof follows the method used by Alon et al. in
[1]. Recall that for a hypergraph H and S + VðHÞ, NHðSÞ ¼ fT + VðHÞn
S : S [ T 2 EðHÞg. We also view NHðSÞ as a hypergraph with vertex set VðHÞ n S
and edge set NHðSÞ.

Lemma 2.5 Let k, d be integers with k$ 2 and 1& d& k " 1, and let n be a
positive integer and s be a rational constant with 0\s& n=k. Let H be a k-graph on
n vertices such that, for every set S + VðHÞ with jSj ¼ d, the ðk " dÞ-graph NHðSÞ
has a fractional matching of size at least s. Then H has a fractional matching of size
at least s.

123

80 Page 4 of 8 Graphs and Combinatorics (2022) 38:80



Proof Let x be a fractional vertex cover of H with size lðHÞ, and write VðHÞ ¼
fv1; . . .; vng such that

(1) xðv1Þ$xðv2Þ$ ' ' ' $xðvnÞ:

Let Hx be the k-graph with vertex set V(H) and edge set

EðHxÞ ¼ e : e 2 VðHÞ
k

% &
and

X

v2e
xðvÞ$ 1

( )

:

Then x is also a fractional vertex cover of Hx; so lðHxÞ& lðHÞ. Since every edge
of H is also an edge of Hx, we have m0ðHxÞ$ m0ðHÞ. Hence,
m0ðHxÞ ¼ lðHxÞ& lðHÞ ¼ m0ðHÞ& m0ðHxÞ. Thus, we have

(2) m0ðHÞ ¼ m0ðHxÞ:

Let S ¼ fvn"dþ1; . . .; vng. Then, jSj ¼ d. Let w0 :¼ 1
d

P
v2S xðvÞ, and define x0 :

VðHxÞ ! ½0; 1) such that

x0ðvÞ ¼ xðvÞ; if v 2 VðHxÞ n S;
w0; if v 2 S:

'

We may assume that w0\1=k. For, otherwise, m0ðHÞ ¼ lðHÞ ¼
P

v2VðHÞ xðvÞ
$ nx0 $ n=k$ s; so the assertion of the lemma holds.

Let x00 : VðHÞ ! Rþ [ f0g be a function such that

x00ðvÞ ¼ x0ðvÞ " w0

1" kw0
for all v 2 VðHÞ:

Then x00ðvÞ ¼ 0 for v 2 S. Note that NHxðSÞ is a ðk " dÞ-graph with vertex set
VðHxÞ n S (which has n" d vertices). For any edge e 2 NHxðSÞ, since x is also a
vertex cover of Hx and e [ S 2 EðHxÞ, we have

P
v2e[S

xðvÞ$ 1. Recall that xðvÞ ¼

x0ðvÞ for any v 2 VðHÞ " S and x0ðxÞ ¼ 0 for any x 2 S. So we have

X

v2e
x00ðvÞ ¼

X

v2e

x0ðvÞ " w0

1" kw0

¼
P

v2e x
0ðvÞ " kw0

1" kw0

¼

P
v2e[S

xðvÞ
% &

" kw0

1" kw0
$ 1:

Thus, the function x00 restricted to VðHxÞ n S is a fractional vertex cover of NHxðSÞ.
Then by hypothesis and Strong Duality Theorem, we have
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X

v2VðHxÞnS
x00ðvÞ$ lðNHxðSÞÞ ¼ m0ðNHxðSÞÞ$ s:

Recall that x is a minimum vertex cover of Hx. Note that m0ðHxÞ& n=k; so

kx0

X

v2VðHxÞ
xðvÞ& kx0ðn=kÞ ¼ nx0:

Hence, we have

s&
X

v2VðHxÞnS
x00ðvÞ ¼

X

v2VðHxÞ
x00ðvÞ ¼

P
v2VðHxÞ xðvÞ " nw0

1" kw0

&
X

v2VðHxÞ
xðvÞ ¼ m0ðHxÞ:

Thus by (2), H has a fractional matching of size at least s. h

3 Proof of Theorem 1.1.

First, we give a proof of Theorem 1.1. Let k, d be integers with k$ 3 and
2k=5\d& k " 1. If d$ k=2 let s0 ¼ 1, and if 2k=5\d& k=2 let s0 $ 1 be given as
in Lemma 2.4. Recall that Rödl, Ruciński, and Szemerédi (see Corollary 3.1 in [7])

proved that f n=kk"1ðk; nÞ ¼ dn=ke. So we may assume that k " d$ 2. By Lemma 2.5,
f sdðk; nÞ& f s0 ðk " d; n" dÞ:

Since d\k, dse&ðnþ k " 1Þ=k\ðn" dÞ=ðk " dÞ; so

f sd ðk; nÞ& f s0ðk " d; n" dÞ&mdse
0 ðk " d; n" dÞ:

Therefore, in view of Lemma 2.1, it suffices to show that mdse
0 ðk " d; n"

dÞ& n"d
k"d

! "
" ðn"dÞ"dseþ1

k"d

# $
þ 1 for all s with 1& s& n=k (in which case

dse&ðn" dÞ=ðk " dÞ).
We apply Lemma 2.2 (when d$ k=2) and Lemma 2.4 (when 2k=5\d\k=2) on

a ðk " dÞ-graph of order n" d. Thus, we need to verify that, for every s with
0\s& n=k, f ðdÞ :¼ ðn" dÞ " ½ð2ðk " dÞ " 1Þdseþ ðk " dÞ) $ 0 when d$ k=2, and
gðdÞ :¼ ðn" dÞ " ð5ðk " dÞ=3" 2=3Þmaxfdse; s0g$ 0 when 2k=5\d\k=2. Note
that the first derivatives f 0ðdÞ ¼ 2dse[ 0 and g0ðdÞ ¼ 5maxfdse; s0g=3" 1[ 0
when s[ 0.

Suppose d$ k=2 and n$ 2kðk " 1Þ þ 1. Then

f ðdÞ$ f ðk=2Þ ¼ n" k " ðk " 1Þdse$ n" k " ðk " 1Þðnþ k " 1Þ=k$ 0:

as s& n=k and n$ 2kðk " 1Þ þ 1.
Now suppose 2k=5\d\k=2 and n$ maxfkð7k " 9Þ=5þ 1; ð5ðk " dÞ

"2Þs0=3þ dg. We have d$ð2k þ 1Þ=5. Hence,
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gðdÞ$ gðð2k þ 1Þ=5Þ ¼ n" ð2k þ 1Þ=5" ðk " 1Þdse$ n" ð2k þ 1Þ=5
" ðk " 1Þðnþ k " 1Þ=k$ 0

as n$ kð7k " 9Þ=5þ 1. On the other hand, gðdÞ$ ðn" dÞ " ð5ðk " dÞ=3"
2=3Þs0 $ 0 as n$ð5ðk " dÞ " 2Þs0=3þ dg. So gðdÞ$ 0. h

4 Concluding Remarks

Rödl, Ruciński, and Szemerédi [7] determined f sk"1ðk; nÞ for 0\s& n=k. For the
entire range 1& d& k " 2, Kühn, Osthus, and Townsend [6] proved the following
asymptotic result.

Theorem 4.1 (Kuhn, Osthus, and Townsend) Let k, d be integers with k$ 3 and
1& d& k " 2, and let 0& a& minf1=ð2ðk " dÞÞ; 1=kg. Then, for positive integers
n,

f and ðk; nÞ, 1" ð1" aÞk"d
# $ n" d

k " d

% &
:

Thus, f sd ðk; nÞ is asymptotically determined when 1& d& k " 2 and
s& n=ð2ðk " dÞÞ, and when d$ k=2 and s 2 ð0; n=k). Theorem 1.1 determines
f sdðk; nÞ exactly when d[ 2k=5 and n, s large enough.

For matchings, Kühn, Osthus, and Townsend [6] proposed the following
conjecture.

Conjecture 4.2 (Kühn, Osthus, and Townsend) For all e[ 0 and all integers
n, k, d, s with 1& d& k " 1 and 1& s&ð1" eÞn=k,

ms
dðk; nÞ, 1" ð1" s=nÞk"d

# $ n" d

k " d

% &
:

Kühn, Osthus, and Townsend [6] proved that Conjecture 4.2 holds for
k=2& d& k " 1. Han [3] showed that this conjecture holds for 0:42k\d\k=2.

Alon et al. [1] showed for any two constants a; a0 with 0\a01=r . a\1=k, where r
is a sufficiently large integer, there exists n0 such that for all n$ n0,

mð1"aÞn=k
d ðk; nÞ& f ð1=k"aþa0Þn

d ðk; nÞ. By Lemma 2.1, we have n"d
k"d

! "
"

n"d"ðn=k"anÞ
k"d

# $
&mð1=k"aÞn

d ðk; nÞ. Recall that Alon et al. [1] proved mn=k
d ðk; nÞ,

maxfc-; 1=2g n"d
k"d

! "
, where f n=kd ðk; nÞ, c- n"d

k"d

! "
. Note that for k$ 3 and 2k=5&

d& k " 1, 1" ð1" 1=kÞk"d\1=2. As a consequence of Theorem 1.1 and another
result [1] (see Theorem 1.1), we can derive the following result.

Corollary 4.3 Let k, d be integers such that k$ 2 and d[ 2k=5. For any constant a
with 0\a\1=k, there exists n0 such that for any n$ n0,
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mð1=k"aÞn
d ðk; nÞ, n" d

k " d

% &
1" ð1" 1=k þ aÞk"d

# $
;

and

mn=k
d ðk; nÞ, 1

2

n" d

k " d

% &
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