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Aharoni and Howard conjectured that, for positive integers 
n, k, t with n ≥ kt, if F1, . . . , Ft ⊆

([n]
k

)
such that |Fi| >

max
{(n

k

)
−

(n−t+1
k

)
,
(kt−1

k

)}
for i ∈ [t] then there exist ei ∈ Fi

for i ∈ [t] such that e1, . . . , et are pairwise disjoint. Huang, 
Loh, and Sudakov proved this conjecture for t < n/(3k2). In 
this paper, we show that this conjecture holds for t < n/(2k)
and t sufficiently large.

© 2022 Published by Elsevier Inc.

1. Introduction

For a positive integer n, let [n] denote the set {1, . . . , n}. For a nonnegative integer k
and set S with at least k elements, let 

(S
k

)
= {e ⊆ S : |e| = k}. Let k ≥ 2 be an integer. 
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A k-uniform hypergraph or k-graph is a pair H = (V, E), where V = V (H) is a finite set 
of vertices and E = E(H) ⊆

(V
k

)
is the set of edges. We use e(H) to denote the number 

of edges in H. For any S ⊆ V (H), let H[S] denote the subgraph of H with V (H[S]) = S

and E(H[S]) = {e ∈ E(H) : e ⊆ S}, and let H − S := H[V (H) \ S].
A matching in a hypergraph H is a subset of E(H) consisting of pairwise disjoint 

edges. The maximal size of a matching in a hypergraph H is denoted by ν(H). A classical 
problem in extremal set theory is to determine max e(H) with ν(H) fixed. Erdős [6] in 
1965 made the following conjecture: For positive integers k, n, t with n ≥ kt, every k-
graph H on n vertices with ν(H) < t satisfies e(H) ≤ max

{(n
k

)
−

(n−t+1
k

)
,
(kt−1

k

)}
. 

This bound is tight for the complete k-graph on kt − 1 vertices and for the k-graph on 
n vertices in which every edge intersects a fixed set of t − 1 vertices. There have been 
recent activities on this conjecture, see [2,3,7–9,12,18]. In particular, Frankl [8] proved 
that if n ≥ (2t − 1)k − (t − 1) and ν(H) < t then e(H) ≤

(n
k

)
−

(n−t+1
k

)
, with further 

improvement by Frankl and Kupavskii [10].
There are also attempts to extend the above conjecture of Erdős to a family of hy-

pergraphs. Let F = {F1, . . . , Ft} be a family of hypergraphs. A set of pairwise disjoint 
edges, one from each Fi, is called a rainbow matching for F . In this case, we also say 
that F or {F1, . . . , Ft} admits a rainbow matching. Aharoni and Howard [1] made the 
following conjecture, also see Huang, Loh, and Sudakov [12].

Conjecture 1.1. Let F = {F1, . . . , Ft} be a family of subsets of 
([n]

k

)
. If

e(Fi) > max
{(

n

k

)
−

(
n− t + 1

k

)
,

(
kt− 1

k

)}

for all 1 ≤ i ≤ t, then F admits a rainbow matching.

Huang, Loh, and Sudakov [12] proved that Conjecture 1.1 holds for n > 3k2t.

Theorem 1.2 (Huang, Loh, and Sudakov). Let n, k, t be three positive integers such that 
n > 3k2t. Let F = {F1, . . . , Ft} be a family of subsets of 

([n]
k

)
. If

e(Fi) >
(
n

k

)
−
(
n− t + 1

k

)

for all 1 ≤ i ≤ t, then F admits a rainbow matching.

Recently, Frankl and Kupavskii [11] proved that Conjecture 1.1 holds when n ≥
12kt log(e2t), providing an almost linear bound. In this paper, we show in Theorem 1.3
that Conjecture 1.1 holds when n > 2kt and t is sufficiently large. More recently, Keevash, 
Lifshitz, Long and Minzer [15] independently proved a more general version of Theo-
rem 1.3 with n = Ω(kt) using sharp threshold techniques developed in [14].
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Theorem 1.3. For a given integer k ≥ 3, there exists t0 = t0(k) such that the following 
holds. Let t > t0 and n > 2kt be two positive integers, and F = {F1, . . . , Ft} be a family 
of subsets of 

([n]
k

)
. If

e(Fi) >
(
n

k

)
−

(
n− t + 1

k

)

for all 1 ≤ i ≤ t, then F admits a rainbow matching.

Note that the lower bound on e(Fi) is best possible. Indeed, for i ∈ [t] let Fi be 
the k-graph on [n] consisting of all edges intersecting [t − 1]. Then for i ∈ [t], e(Fi) =(n
k

)
−

(n−t+1
k

)
and ν(Fi) = t − 1. Hence, {F1, . . . , Ft} does not admit any rainbow 

matching.
This example naturally corresponds to a special class of (k+1)-graphs Ft(k, n). This is 

defined in Section 2, where we reduce the problem for finding one such rainbow matching 
to a problem about finding “near” perfect matchings in a larger class of (k + 1)-graphs, 
denoted by F t(k, n). This will allow us to apply various techniques used previously to 
find large matchings in uniform hypergraphs.

We show in Section 3 that Theorem 1.3 holds when F t(k, n) is close to Ft(k, n), in the 
sense that most edges of Ft(k, n) are also edges of F t(k, n). To deal with the case F t(k, n)
is not close to Ft(k, n), we follow the approach in [5] and [20]. First, we find a small 
absorbing matching M1 in F t(k, n) which is done in Section 4. (However, the existence 
of this absorbing matching does not require that F t(k, n) be not close to Ft(k, n).) Then 
we take random samples of subgraphs of F t(k, n) − V (M1) so that they satisfy various 
properties, in particular they all have fractional perfect matchings, see Section 5. In 
Section 6, we use fractional perfect matchings in those random samples to perform a 
second round of randomization to find a spanning subgraph H ′ of F t(k, n) − V (M1). 
We then apply a result of Pippenger to find a matching in H ′ covering all but a small 
constant fraction of the vertices, and use the matching M1 to find the desired matching 
in F t(k, n) covering all but fewer than k vertices.

2. Notation and reduction

To prove Theorem 1.3, we convert this rainbow matching problem on k-graphs to a 
matching problem for a special class of (k + 1)-graphs. Let Q, V be two disjoint sets. A 
(k + 1)-graph H with vertex Q ∪ V is called (1, k)-partite with partition classes Q, V if, 
for each edge e ∈ E(H), |e ∩ Q| = 1 and |e ∩ V | = k. A (1, k)-partite (k + 1)-graph H
with partition classes Q, V is balanced if |V | = k|Q|. We say that S ⊆ V (H) is balanced
if |S ∩ V | = k|S ∩Q|.

Let F1, . . . , Ft be a family of subsets of 
([n]

k

)
and X := {x1, . . . , xt} be a set of t

vertices. We use F t(k, n) to denote the (1, k)-partite (k+1)-graph with partition classes 
X, [n] and edge set
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E(F t(k, n)) =
t⋃

i=1
{{xi} ∪ e : e ∈ Fi}.

If F1 = · · · = Ft = Hk(t, n), where Hk(t, n) denotes the k-graph with vertex set [n] and 
edge set 

([n]
k

)
\
([n]\[t]

k

)
, then we denote F t(k, n) by Ft(k, n).

Observation 1. {F1, . . . , Ft} admits a rainbow matching if, and only if, F t(k, n) has a 
matching of size t.

Hence, to prove Theorem 1.3, it suffices to show that F t(k, n) has a matching of size 
t. For convenience, we further reduce this problem to a near perfect matching problem. 
Write n − kt = km + r, where 0 ≤ r ≤ k − 1. Let F1, . . . , Ft ⊆

([n]
k

)
, and let Fi =

([n]
k

)

for i = t + 1, . . . , t + m. Let Q = {x1, . . . , xm+t} and let Ht(k, n) be the (1, k)-partite 
(k + 1)-graph with partition classes Q, [n] and edge set

E(Ht(k, n)) =
m+t⋃

i=1
{{xi} ∪ e : e ∈ Fi}.

When F1 = · · · = Ft = Hk(t, n), we denote Ht(k, n) by Ht(k, n). Note that ν(Ht(k, n)) =
m + t = (n − r)/k, i.e., Ht(k, n) has a matching covering all but less than k vertices (and 
such a matching is said to be near perfect).

Lemma 2.1. F t(k, n) has a matching of size t if, and only if, Ht(k, n) has a matching of 
size m + t = (n/k).

Proof. First, suppose that F t(k, n) has a matching M1 of size t. Since n −kt = km +r ≥
km, [n] \ V (M1) contains m pairwise disjoint k-sets, say e1, . . . , em. Let M2 = {ei ∪
{xi+t} : i ∈ [m]}. Then M1 ∪M2 is a matching of size m + t in Ht(k, n).

Now assume that Ht(k, n) has a matching M of size m + t. Note that each edge in 
M contains exactly one vertex in {x1, . . . , xm+t}. Thus, the t edges in M intersecting 
{x1, . . . , xt} form a matching in F t(k, n) of size t. !

For the proof of Theorem 1.3, we need additional concepts and notation. Given two hy-
pergraphs H1, H2 with V (H1) = V (H2), let c(H1, H2) be the minimum of |E(H1)\E(H ′)|
taken over all isomorphic copies H ′ of H2 with V (H ′) = V (H2). For a real number ε > 0, 
we say that H2 is ε-close to H1 if V (H1) = V (H2) and c(H1, H2) ≤ ε|E(H1)|. The fol-
lowing is obvious.

Observation 2. If F t(k, n) is ε-close to Ft(k, n), then Ht(k, n) is ε-close to Ht(k, n).

As mentioned in Section 1, our proof of Theorem 1.3 will be divided into two parts, 
according to whether or not F t(k, n) is ε-close to Ft(n, k). If F t(k, n) is close to Ft(n, k), 
we will apply greedy argument to construct a matching of size t. If F t(k, n) is not close 
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to Ft(n, k), then Ht(k, n) is not close to Ht(n, k), and we will show that Ht(k, n) has a 
spanning subgraph with properties that enable us to find a large matching M2 and to 
use absorbing matching M1 to enlarge M2 to a near perfect matching.

3. The extremal case: Ft(k, n) is ε-close to Ft(k, n)

We say that a claim holds when 0 < a * b if there exists a function f : (0, 1) → (0, 1)
such that the claim holds whenever 0 < a < f(b). We will not specify this implicit 
function f .

In this section, we prove Theorem 1.3 for the case when F t(k, n) is ε-close to the 
extremal configuration Ft(k, n) where 0 < ε * ζ < 1 and ε * 1

k . Note that ζ will 
be determined when we consider the non-extremal case where F t(k, n) is not ε-close to 
Ft(k, n).

Let H be a (k + 1)-graph and v ∈ V (H). We define the neighborhood NH(v) of v in 
H to be the set {S ∈

(V (H)
k

)
: S ∪ {v} ∈ E(H)}. Let H be a (k + 1)-graph with the 

same vertex set as Ft(k, n). Given real number α with 0 < α < 1, a vertex v in H is 
called α-good with respect to Ft(k, n) if

∣∣NFt(k,n)(v) \NH(v)
∣∣ ≤ αnk

and, otherwise, v is called α-bad. Clearly, if H is ε-close to Ft(k, n), then the number of 
α-bad vertices in H is at most (k + 1)εn/α.

Lemma 3.1. Let ζ, α be real numbers and n, k, t be positive integers such that 0 < α *
ζ < 1, α * 1/k, n ≥ 24k3 and n/(6k2) ≤ t < (1 − ζ)n/k. Let H be a (1, k)-partite 
(k + 1)-graph with V (H) = V (Ft(k, n)). If every vertex of H is α-good with respect to 
Ft(k, n), then H has a matching of size t.

Proof. Let X := {x1, x2, ..., xt}, W := [t], and U := [n] \ [t], such that X, [n] are the 
partition classes of H. Let M be a maximum matching in H such that |e ∩X| = |e ∩W | = 1
for all e ∈ E(H). Let X ′ = X \ V (M), W ′ = W \ V (M), and U ′ = U \ V (M).

We claim that |M | ≥ n/(12k2). For, otherwise, assume |M | < n/(12k2). Consider any 
vertex x ∈ X ′. Since x is α-good, we have

∣∣∣∣

(
W ×

(
U

k − 1

))
\NH(x)

∣∣∣∣ ≤ αnk.

Note that, since n/6k2 ≤ t < (1 − ζ)n/k and α < ζk−1(6k22k(k − 1)!)−1,

∣∣∣∣W
′ ×

(
U ′

k − 1

)∣∣∣∣ = (|W |− |M |)
(
n− kt

k − 1

)
>

n

12k2

(
ζn

k − 1

)
>

n

12k2
(ζn/2)k−1

(k − 1)! > αnk.
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Thus there exists f ∈ NH(x) ∩
(
W ′ ×

( U ′

k−1
))

. Now M ′ = M ∪ {{x} ∪ f} is a matching 
of size |M | + 1 in H, and |f ∩X| = |f ∩W | = 1 for all f ∈ M ′. Hence, M ′ contradicts 
the choice of M , completing the proof of Claim.

Let S = {u1, . . . , uk+1} ⊆ V (H) \ V (M), where u1 ∈ X ′, uk+1 ∈ W ′ and ui ∈
U ′ for i ∈ [k] \ {1}. Let {e1, . . . , ek} be an arbitrary k-subset of M , and let ei :=
{vi,1, vi,2, . . . , vi,k+1} with vi,1 ∈ X, vi,k+1 ∈ W , and vi,j ∈ U for i ∈ [k] and j ∈ [k] \{1}. 
For j ∈ [k + 1], let fj := {uj , v1,j+1, v2,j+2, . . ., vk,j+k} with addition in the subscripts 
modulo k + 1 (except we write k + 1 instead of 0). Note that f1, . . . , fk+1 are pairwise 
disjoint.

If fj ∈ E(H) for all j ∈ [k + 1] then M ′ := (M ∪ {f1, . . . , fk+1}) \ {e1, . . . , ek} is a 
matching in H such that |M ′| = |M | +1 > |M | and |f ∩X| = |f ∩W | = 1 for all f ∈ M ′, 
contradicting the choice of M . Hence, fj /∈ E(H) for some j ∈ [k + 1].

Note that there are 
(|M |

k

)
k! choices of (e1, . . . , ek) ⊆ Mk and that for any two different 

such choices the corresponding f ′
js are distinct. Hence,

|{e ∈ E(Ft(k, n)) \ E(H) : |e ∩ {ui : i ∈ [k + 1]}| = 1}|
≥ |M |(|M |− 1) · · · (|M |− k + 1)
>

(
n/(12k2) − k

)k

>
(
n/(24k2)

)k (since n ≥ 24k3)
> (k + 1)αnk (since α < ((k + 1)24kk2k))−1.

This implies that there exists i ∈ [k + 1] such that |NFt(k,n)(ui) \ NH(ui)| > αnk, 
contradicting the fact that all ui are α-good with respect to Ft(k, n) !

We can now prove Theorem 1.3 when F t(k, n) is ε-close to Ft(k, n).

Lemma 3.2. Let k ≥ 3, t ≥ 1 be integers, and let ε, ζ be real numbers such that 0 < ε *
ζ < 1 and ε * 1/k, 48k2 ≤ t < (1 − ζ)(1 − k(k + 1)√ε)n/k. Let (F1, . . . , Ft) be a family 
of subsets of 

([n]
k

)
such that e(Fi) >

(n
k

)
−
(n−t+1

k

)
for i ∈ [t], and let F t(k, n) denote the 

corresponding (1, k)-partite (k + 1)-graph. Suppose F t(k, n) is ε-close to Ft(k, n). Then 
F t(k, n) has a matching of size t.

Proof. We may assume n ≤ 3k2t as otherwise the assertion follows from Theorem 1.2. Let 
B denote the set of √ε-bad vertices in F t(k, n). Since F t(k, n) is ε-close to Ft(k, n), |B| ≤
(k + 1)√εn. Let X, [n] be the partition classes of Ft(k, n), and let X := {x1, x2, ..., xt}, 
W := [t], and U := [n] \ [t]. Note that each edge of Ft(k, n) intersects W .

Let b := max{|B∩X|, |B∩W |}; so b ≤ (k+1)√εn. We choose X1 ⊆ X, W1 ⊆ W such 
that B ∩X ⊆ X1, B ∩W ⊆ W1, and |X1| = |W1| = b. Let F1 = F t(k, n)[X1 ∪W1 ∪ U ]. 
For every x ∈ X1, we have

|NF1(x)| ≥ |NF (x)|−
((

n

k

)
−
(
n− (t− b)

k

))
>

(
n− (t− b)

k

)
−

(
n− (t− 1)

k

)
.



H. Lu et al. / Journal of Combinatorial Theory, Series A 195 (2023) 105700 7

Since n − (t − b) > n/2 ≥ 3k2(k + 1)√εn > 3k2b, it follows from Theorem 1.2 that the 
family {NF1(x) : x ∈ X1} admits a rainbow matching. Thus, by Observation 1, F1 has 
a matching, say M , of size b. Clearly, M covers B ∩X.

Let F2 := F t(k, n)[(X\X1) ∪([n] \(V (M) ∪B)], and let a := |B\V (M)|. By the choice 
of W1 and X1, we have B∩(W \W1) = ∅. Note that F2 may be viewed as the (1, k)-partite 
(k + 1)-graph F2 = Ft−b(k, n − kb − a), with partition classes X \X1, [n] \ (V (M) ∪B), 
corresponding to the family (Fi[(X \ X1) ∪ ([n] \ (V (M) ∪ B)] : i ∈ X \ X1). Put 
n′ = n − kb − a and t′ = t − b. We wish to apply Lemma 3.1 to F2.

Note that n′ = n − kb − a ≥ n − k|B| ≥ n − k(k + 1)√εn ≥ n/2 ≥ 24k3. Moreover, 
since b ≤ (k + 1)√εn ≤ n/(6k2) ≤ t/2, we have n′/(6k2) ≤ n/(6k2) ≤ t/2 < t − b = t′. 
Also, t′ ≤ t < (1 −ζ)(n −k(k+1)√εn)/k ≤ (1 −ζ)(n −k|B|)/k ≤ (1 −ζ)(n −kb −a)/k =
(1 − ζ)n′/k.

For every x ∈ V (F2), since x is √ε-good with respect to Ft(k, n),

|NFt′ (k,n′)(x) \NF2(x)| ≤ |NFt(k,n)(x) \NF (x)|
≤

√
εnk

< 2k
√
ε(n− kb− a)k (since kb + a ≤ (k + 1)2

√
εn < n/2)

= 2k
√
ε(n′)k.

Thus every vertex x of F2 is 2k√ε-good with respect to Ft′(k, n′). By Lemma 3.1, F2
has a matching M ′ of size t′ = t − b. Hence M ∪M ′ is a matching in F of size t. !

4. Absorbing lemma

The purpose of this section is to prove the existence of a small matching M in Ht(k, n)
(defined before Observation 2) such that for any small balanced set S, Ht(k, n)[V (M) ∪S]
has a perfect matching. We need to use Chernoff bounds here and in the next section. 
Let Bi(n, p) denote a binomial random variable with parameters n and p. The following 
well-known concentration inequalities, i.e. Chernoff bounds, can be found in Appendix 
A in [4], or Theorem 2.8, inequalities (2.9) and (2.11) in [13].

Lemma 4.1 (Chernoff inequality for small deviation). If X =
∑n

i=1 Xi, each random 
variable Xi has Bernoulli distribution with expectation pi, and α ≤ 3/2, then

P (|X − EX| ≥ αEX) ≤ 2e−α2
3 EX .

In particular, when X ∼ Bi(n, p) and λ < 3
2np, then

P (|X − np| ≥ λ) ≤ e−Ω(λ2/(np)).

We can now prove an absorbing lemma for H = Ht(k, n).
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Lemma 4.2. Let k ≥ 3 be an integer, ζ > 0 be a real number, and t ≥ t1(k, ζ) be a 
sufficiently large integer. Let H be a (1, k)-partite (k + 1)-graph with partition classes 
{x1, . . . , x#n/k$}, [n] such that dH(xi) >

(n
k

)
−

(n−t+1
k

)
for i ∈ [t] and dH(xi) =

(n
k

)
for 

i = t +1, . . . , (n/k). Suppose n/3k2 ≤ t ≤ (1 −ζ)n/k. Then for any c with 0 < c * ζ < 1, 
c * 1

k , there exists a matching M in H such that |M | ≤ 2kcn and, for any balanced 
subset S ⊆ V (H) with |S| ≤ (k + 1)c1.5n/2, H[V (M) ∪ S] has a perfect matching.

Proof. For balanced R ∈
(V (H)

k+1
)

and balanced Q ∈
( V (H)
k(k+1)

)
, we say that Q is R-absorbing

if ν(H[Q ∪R]) = k + 1 and Q is the vertex set of a matching in H. Let L(R) denote the 
collection of all R-absorbing sets in H.

Claim 1. For each balanced (k+ 1)-set R ⊆ V (H), the number of R-absorbing sets in 
H is at least ζk

(n
k

)k+1(6k22kk2!)−1.

Let R = {x, u1, . . . , uk} be fixed with x ∈ X and ui ∈ [n] for i ∈ [k]. Note that the 
number of edges in H containing x and intersecting {u1, . . . , uk} is at most k

( n
k−2

)
, and 

dH(x) >
(n
k

)
−

(n−t+1
k

)
. So the number of edges {x, v1, . . . , vk} in H such that vi ∈ [n]

for i ∈ [k] and {v1, . . . , vk} ∩ {u1, . . . , uk} = ∅ is at least
(
n

k

)
−
(
n− t + 1

k

)
− k

(
n

k − 2

)
≥ 1

6k2

(
n

k

)
,

since 3k2t ≥ n ≥ kt.
Fix a choice of an edge {x, v1, . . . , vk} in H such that vi ∈ [n] for i ∈ [k] and 

{v1, . . . , vk} ∩{u1, . . . , uk} = ∅, and let W0 = {v1, . . . , vk}. For each j ∈ [k] and each pair 
uj , vj , we choose a k-set Uj such that Uj is disjoint from Wj−1 ∪R and both Uj ∪ {uj}
and Uj ∪ {vj} are edges in H, and let Wj := Uj ∪Wj−1. Thus, if Wk is defined then Wk

is an absorbing k(k + 1)-set for R.
Note that in each step j ∈ [k] there are k + 1 + jk vertices in Wj−1 ∪ R. Thus, the 

number of edges in H containing uj (respectively, vj) and at least one other vertex in 
Wj−1 ∪ R is at most (k + 1 + jk)

( n
k−2

)
(n/k) < (k + 1)n

( n
k−2

)
. Note that by definition 

of xt+1, xt+2, ..., x#n/k$, there are at least 
(n−2
k−1

)
((n/k) − t) ≥

(n−2
k−1

)
ζn/k sets Uj such 

that both Uj ∪ {uj} and Uj ∪ {vj} are edges in H for large n. Hence, for each j ∈ [k], 
there are at least 

(n−2
k−1

)
ζn/k − (k + 1)n

( n
k−2

)
≥ ζn

(n−1
k−1

)
/(2k) such choices for Uj (as n

is sufficiently large). Thus, in total we obtain 1
6k2

(n
k

)
(ζn

(n−1
k−1

)
/(2k))k absorbing, ordered 

k(k + 1)-sets for R, with multiplicity at most (k2)!; so

L(R) ≥
1

6k2

(n
k

)
(ζn

(n−1
k−1

)
/(2k))k

(k2)! ≥
ζk

(n
k

)k+1

6k22k(k2)! .

This completes the proof of Claim 1.
Now, let c be a fixed constant with 0 < c < ζ2k(12k22k(k!)k)−2, and choose a family G

of balanced k(k+1)-sets by selecting each of the 
(#n/k$

k

)( n
k2

)
balanced sets of size k(k+1)

with probability
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p := cn
(#n/k$

k

)( n
k2

) .

It follows from Lemma 4.1 that, with probability 1 − o(1), the family G satisfies the 
following properties:

|G| ≤ 2cn (1)

and

|L(R) ∩ G| ≥ p|L(R)|/2 ≥ cζkn

12k22k(k!)k ≥ c1.5n (2)

for all balanced (k + 1)-sets R. Furthermore, we can bound the expected number of 
intersecting pairs of k(k + 1)-sets from above by

(
(n/k)
k

)(
n

k2

)
k(k + 1)

((
(n/k) − 1
k − 1

)(
n

k2

)
+
(
(n/k)
k

)(
n− 1
k2 − 1

))
p2 ≤ c1.9n.

Thus, using Markov’s inequality, we derive that with probability at least 1/2

G contains at most c1.9n intersecting pairs of k(k + 1)-sets. (3)

Hence, there exists a family G satisfying (1), (2) and (3). Delete one k(k+1)-set from 
each intersecting pair in such a family G. Further removing all non-absorbing k(k+1)-sets, 
we obtain a subfamily G′ consisting of pairwise disjoint balanced, absorbing k(k+1)-sets, 
which satisfies

|L(R) ∩ G′| ≥ 1
2c

1.5n,

for all balanced (k + 1)-sets R.
Since G′ consists only of absorbing k(k+1)-sets, H[V (G′)] has a perfect matching M , 

of size at most 2kcn by (1). For a balanced set S ⊆ V (H) of size |S| ≤ (k + 1)c1.5n/2, S
can be partitioned into at most c1.5n/2 balanced (k+1)-sets. For each balanced (k+1)-set 
R, since |L(R) ∩G′| ≥ 1

2c
1.5n, we can successively choose a distinct absorbing k(k+1)-set 

for R in G′. Hence, H[V (M) ∪ S] has a perfect matching. !

5. Fractional perfect matchings

When F t(k, n) is not ε-close to Ft(k, n), we use fractional perfect matchings in random 
subgraphs of Ht(k, n).

Let H be a hypergraph. A fractional matching in H is a function h : E(H) → [0, 1]
such that 

∑
e%x h(e) ≤ 1 for all x ∈ V (H). Let νf (H) := maxh

∑
e∈E(H) h(e), where 
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maximum is taken over all fractional matchings h of H. A fractional matching in a 
k-uniform hypergraph with n vertices is perfect if its size is n/k.

First, we need a concept of dense graphs used in the hypergraph container result of 
Balogh, Morris, and Samotij [5] and independently Sexton and Thomassen [20]. Let H
be a hypergraph, λ > 0 be a real number, and A be a family of subsets of V (H). We say 
that H is (A, λ)-dense if e(H[A]) ≥ λe(H) for every A ∈ A.

Lemma 5.1. Let n, k, t be positive integers and ε be a constant such that n ≤ 3k2t, 
0 < ε * 1, and n ≥ 40k2/ε. Let a0 = ε/(8k), a1 = ε/(24k2), a2 = ε/(8k2), and a3 <

ε/(2k ·k! ·30k). Let H be a (1, k)-partite (k+1)-graph with vertex partition classes X, [n]
and with |X| = t. Suppose dH(x) ≥

(n
k

)
−

(n−t+1
k

)
− a3nk for any x ∈ X. If H is 

not ε-close to Ft(k, n), then H is (A, a0)-dense, where A = {A ⊆ V (H) : |A ∩ X| ≥
(t/n − a1)n, |A ∩ [n]| ≥ (1 − t/n − a2)n}.

Proof. We prove this by way of contradiction. Suppose that there exists A ⊆ V (H)
such that |A ∩ X| ≥ (t/n − a1)n, |A ∩ [n]| ≥ (1 − t/n − a2)n, and e(H[A]) ≤ a0e(H). 
Without loss of generality, we may choose A such that |A ∩ X| = (t/n − a1)n and 
|A ∩ [n]| = (1 − t/n − a2)n. Let U ⊆ [n] such that A ∩ [n] ⊆ U and |U | = n − t. Let 
A1 = A ∩X, A2 = X \A, B1 = A ∩ [n], and B2 = U \A.

Let H0 denote the isomorphic copy of H by naming vertices such that X = {x1, ..., xt}
and U = [n] \ [t]. We derive a contradiction by showing that |E(Ft(k, n)) \ E(H0)| <
εe(Ft(k, n)). Note that, since n ≤ 3k2t,

e(Ft(k, n)) = t

((
n

k

)
−

(
n− t

k

))
≥ t

((
n

k

)
−

(
n− n/3k2

k

))
≥ t

(
n

k

)
/(3k).

Moreover,

e(Ft(k, n)) ≥ t

(
n

k

)
/(3k) = tn

3k2

(
n− 1
k − 1

)
,

and since n > 2k,

e(Ft(k, n)) ≥ t

(
n

k

)
/(3k) > tnk

2k · k! · 3k .

Consider x ∈ A1. Let EH0(B1, x) denote the set of edges of H0 contained entirely in 
B1 ∪ {x} in H0. The number of edges in H0 containing x that also exist in Ft(k, n) is 
the number of edges in H0 containing x and intersecting [t]. Hence,

|{e : x ∈ e, e ∈ E(H0), e ∩ [t] 0= ∅}|

≥ dH0(x) − |{e : x ∈ e, e ∈ E(H0 − [t]), e ∩B2 0= ∅}|− |EH0(B1, x)|

≥
((

n

k

)
−
(
n− t + 1

k

)
− a3n

k

)
− a2n

(
n− t

k − 1

)
− |EH0(B1, x)|.
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Then we have
∑

x∈A1

|{e : x ∈ e, e ∈ E(Ft(k, n)) \ E(H0)}|

≤
∑

x∈A1

((
n

k

)
−
(
n− t

k

)
− |{e : x ∈ e, e ∈ E(H0), e ∩ [t] 0= ∅}|

)

≤
∑

x∈A1

[((
n

k

)
−

(
n− t

k

))

−
((

n

k

)
−

(
n− t + 1

k

)
− a3n

k − a2n

(
n− t

k − 1

)
−EH0(B1, x)

)]

≤
∑

x∈A1

[(
n− t + 1

k

)
−

(
n− t

k

)
+ a3n

k + a2n

(
n− t

k − 1

)
+ EH0(B1, x)

]

= |A1|
(
n− t

k − 1

)
+ a3tn

k + a2tn

(
n− t

k − 1

)
+

∑

x∈A1

EH0(B1, x)

≤ (3k2/n) · e(Ft(k, n)) + (2k · k! · 3ka3) · e(Ft(k, n)) + (3k2a2) · e(Ft(k, n)) + e(H0[A])
< a0e(H0) +

(
3k2/n + 2k · k! · 3ka3 + 3k2a2

)
· e(Ft(k, n))

Moreover, we have
∑

x∈A2

|{e : x ∈ e, e ∈ E(Ft(k, n)) \ E(H0)}|

≤ |A2|
((

n

k

)
−
(
n− t

k

))

≤ (a1n/t) · e(Ft(k, n))
≤ (3k2a1) · e(Ft(k, n))

Therefore, we have

|E(Ft(k, n)) \ E(H0)|
=

∑

x∈A1

|{e : x ∈ e, e ∈ E(Ft(k, n)) \ E(H0)}|

+
∑

x∈A2

|{e : x ∈ e, e ∈ E(Ft(k, n)) \ E(H0)}|

< a0e(H0) +
(
3k2/n + 2k · k! · 3ka3 + 3k2a2

)
· e(Ft(k, n)) + 3k2a1 · e(Ft(k, n))

≤ a0t

(
n

k

)
+
(
3k2/n + 2k · k! · 3ka3 + 3k2a2 + 3k2a1

)
· e(Ft(k, n))

≤
(
3ka0 + 3k2/n + 2k · k! · 3ka3 + 3k2a2 + 3k2a1

)
· e(Ft(k, n))
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≤ ε · e(Ft(k, n)),

a contradiction since H is not ε-close to Ft(k, n). !

We also need a result of Lu, Yu, and Yuan [16], which is a stability result on matchings 
in “stable” graphs. For subsets e = {u1, ..., uk}, f = {v1, ..., vk} ⊆ [n] with ui < ui+1 and 
vi < vi+1 for i ∈ [k − 1], we write e ≤ f if ui ≤ vi for all i ∈ [k]. A hypergraph H with 
V (H) = [n] and E(H) ⊆

([n]
k

)
is said to be stable with respect to the ordering of vertices 

if for e, f ∈
([n]

k

)
with e ≤ f , e ∈ E(H) implies f ∈ E(H). The following is Lemma 4.2 

in [16].

Lemma 5.2 (Lu, Yu, and Yuan). Let k be a positive integer and let b and η be constants, 
such that 0 < b < 1/(2k) and 0 < η ≤ (1 + 18(k− 1)!/b)−2. Let n, m be positive integers 
such that n is sufficiently large and bn ≤ m ≤ n/(2k). Let H be a k-graph with vertex 
set [n]. Suppose H is stable and e(H) >

(n
k

)
−

(n−m
k

)
− ηnk. If H is not √η-close to 

Hk(m, n), then ν(H) > m.

We now state and prove the main result of this section.

Lemma 5.3. Let n, k, t be positive integers such that n ≡ 0 (mod k) and let c′, c, ε be 
constants such that 0 ≤ c′ * c * ε * 1/k. Suppose that t is sufficiently large and 
n/(3k2) ≤ t ≤ (1

2 − c′)n/k. Let H be a balanced (1, k)-partite (k+1)-graph with partition 
classes X, [n], and let X ′ ⊆ X with |X ′| = t. Suppose dH(x) ≥

(n
k

)
−
(n−t+1

k

)
−
√
cnk for 

x ∈ X ′, and dH(x) =
(n
k

)
for x ∈ X \X ′, and assume that for any independent set S in 

H, |S ∩X| ≤ (t/n − ε)n or |S ∩ [n]| ≤ (1 − t/n − ε)n. Then H has a fractional perfect 
matching.

Proof. We use linear programming duality between vertex cover and matchings. Let 
ω : V (H) → [0, 1] such that 

∑
v∈e ω(v) ≥ 1 for all e ∈ E(H), and, subject to this, 

ω(H) :=
∑

v∈V (H) ω(v) is minimum. (Thus, ω is a minimum fractional vertex cover 
of H.) Without loss of generality, we may assume that ω(x1) ≤ · · · ≤ ω(xn/k), where 
X = {x1, . . . , xk}, and ω(1) ≤ ω(2) · · · ≤ ω(n). Let CL(H) be a graph with vertex set 
V (H) and edge set

E(CL(H)) =
{
e ∈

(
V (H)
k + 1

)
: |e ∩X| = 1 and

∑

x∈e

ω(x) ≥ 1
}
.

Note that H is a subgraph of CL(H) and ω is also a vertex cover of CL(H). Thus ω is 
also a minimum vertex cover of CL(H).

By Linear Programming Duality Theory, we have νf (H) = w(H) = w(CL(H)) =
νf (CL(H)). Thus it suffices to show that CL(H) has a fractional perfect matching. 
Indeed, we will prove that ν(CL(H)) = n/k, i.e., CL(H) has a perfect matching.
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By the definition of E(CL(H)) and since ω(x1) ≤ · · · ≤ ω(xn), we have

NCL(H)(x1) ⊆ NCL(H)(x2) ⊆ · · · ⊆ NCL(H)(xn/k). (4)

Hence, NCL(H)(xi) =
([n]

k

)
for i ∈ [n/k] \ [t]. It is also easy to see that NCL(H)(xi) is 

stable for all i ∈ [n/k].
Let t′ = t − c′n/k. One can see that t′ ≤ n/(2k). Let η be a constant satisfying 

c1/4 * η ≤ min{(1 + 54k2(k − 1)!)−1, ε(k(k + 1))−2}. We distinguish two cases.
Case 1. NH(x1) is not η-close to Hk(t, n).
Let M be a matching of size c′n/k in NCL(H)(x1) (Note one can find it greedily). 

Write N = NH(x1) − {e ∈ NH(x1) | e ∩ V (M) 0= ∅}. We observe that

e(N ) ≥ dH(x1) − c′nk ≥
(
n

k

)
−
(
n− t + 1

k

)
− 2

√
cnk

=
(
n

k

)
−

(
n− t

k

)
−

(
n− t

k − 1

)
− 2

√
cnk.

By Lemma 5.2 with m = t′ and b = 1/(3k2), N has a matching M′ of size t′. So 
M1 := M ∪ M′ is a matching of size t in NH(x1). Let M1 = {e1, . . . , et}. By (4), 
M1 ⊆ NCL(H)(xi) for i ∈ [n/k]. Thus M2 = {ei ∪ {xi} : i ∈ [t]} is a matching in 
CL(H).

Partition [n] \ V (M2) into n/k − t pairwise disjoint k-sets, say f1, . . . , fn/k−t. Then 
by (4), M ′

2 = {fi ∪ {xi+t} : i ∈ [n/k − t]} is a matching in CL(H) \ V (M2). Hence 
M2 ∪M ′

2 is a perfect matching in CL(H).
Case 2. NH(x1) is η-close to Hk(t, n).
Then by (4) NCL(H)(xi) is η-close to Hk(t, n) for all i ∈ [t]. Without loss of generality, 

we may assume the set [t] in V (CL(H)) corresponds to the set [t] in V (Hk(t, n)).
Let B denote the set of √η-bad vertices in V (CL(H)) with respect to Ht(k, n) and 

let b = |B|. Since NCL(H)(xi) is η-close to Hk(t, n) for all i ∈ [t], we have B ⊆ [n]
and b ≤ (k + 1)√ηn. Consider H ′ = CL(H) − ({xt+1, . . . , xn/k} ∪ [t]). Note that kb ≤
k(k + 1)√ηn < εn; so b < εn/k.

Since by assumption for any independent set S in H ′, |S ∩ X| ≤ (t/n − ε)n or 
|S ∩ [n]| ≤ (1 − t/n − ε)n, we can greedily find pairwise disjoint edges f1, . . . , fb in H ′

such that xt−i+1 ∈ fi in H ′. Write M21 = {f1, . . . , fb}.
Let n′ = |[n] \ (V (M21) ∪ B)|. Since V (M21) ∩ [t] = ∅, we may assume [t −

b] ⊆ [t] \ B. So there is a natural correspondence between V (Hk(t − b, n′)) and 
V (NCL(H)−(V (M21)∪B)({xi})), i.e. [t − b] in V (Hk(t − b, n′)) corresponds to [t − b] in 
V (NCL(H)−(V (M21)∪B)({xi})).

Let H ′′ = CL(H) − ({xt+1, . . . , xn/k} ∪ V (M21) ∪ B). Note that for each vertex 
v ∈ [n] \ (V (M21) ∪B), we have
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|NFt−b(k,n′)(v) \NH′′({v})|
≤(t− b) · |NHk(t,n)(v) \NCL(H)({v, x1})|
<(n/(2k)) ·√ηnk−1

<η1/3(n′)k.

Thus, all vertices in V (H ′′) are η1/3-good with respect to Ft−b(k, n′). Hence by 
Lemma 3.1, H ′′ has a matching M22 of size t − b.

Partition [n] \ V (M21 ∪ M22) into n/k − t disjoint k-sets, say g1, . . . , gn/k−t. Let 
M23 = {gi ∪ {xi+t} : i ∈ [n/k] \ [t]}. Then M21 ∪M22 ∪M23 is a perfect matching in 
CL(H). !

6. Random rounding

In this section, we complete the proof of Theorem 1.3. For convenience, we do not 
round certain numbers to integers as this does not affect calculations.

First, we need another result of Lu, Yu, and Yuan [17] on the independence number of 
a subgraph of a k-graph induced by a random subset of vertices, which is a generalization 
of Lemma 4.3 in [17] where it was shown for (1, 3)-partite graphs. The same proof for 
Lemma 4.3 in [17] works here as well, except we use Lemma 5.1 in place of Lemma 4.1 
in [17].

Lemma 6.1 (Lu, Yu, and Yuan). Let l, ε′, α1, α2 be positive reals, let α > 0 with α *
min{α1, α2}, let k, n be positive integers, and let H be a (1, k)-partite (k+ 1)-graph with 
partition classes Q, P such that |Q| = t, |P | = n, n/(3k2) ≤ t ≤ n/k, e(H) ≥ lnk+1, 
and e(H[F ]) ≥ ε′e(H) for all F ⊆ V (H) with |F ∩ P | ≥ α1n and |F ∩ Q| ≥ α2n. Let 
R ⊆ V (H) be obtained by taking each vertex of H uniformly at random with probability 
n−0.9. Then, with probability at least 1 −nO(1)e−Ω(n0.1), every independent set J in H[R]
satisfies |J ∩ P | ≤ (α1 + α + o(1))n0.1 or |J ∩Q| ≤ (α2 + α + o(1))n0.1.

Next, we also need Janson’s inequality to provide an exponential upper bound for the 
lower tail of a sum of dependent zero-one random variable. (See Theorem 8.7.2 in [4])

Lemma 6.2 (Janson). Let Γ be a finite set and pi ∈ [0, 1] be a real for i ∈ Γ. Let Γp be a 
random subset of Γ such that the elements are chosen independently with P [i ∈ Γp] = pi
for i ∈ Γ. Let S be a family of subsets of Γ. For every A ∈ S, let IA = 1 if A ⊆ Γp

and 0 otherwise. Define X =
∑

A∈S IA, λ = E[X], ∆ = 1
2
∑

A(=B

∑
A∩B (=∅ E[IAIB ] and 

∆̄ = λ + 2∆. Then, for 0 ≤ t ≤ λ, we have

P [X ≤ λ− t] ≤ exp(− t2

2∆̄
).

Now, we use Chernoff bound and Janson’s inequality to prove a result on several 
properties of certain random subgraphs.
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Lemma 6.3. Let n, k be integers such that k ≥ 3 and n is sufficiently large, let H be a 
(1, k)-partite (k + 1)-graph with partition classes A, B and k|A| = |B| = n, let A1, A2 be 
a partition of A with |A1| ≥ n/(3k2) and |A2| ≥ n/(3k2), and let A3 ⊆ A and A4 ⊆ B

with |Ai| = n0.99 for i = 3, 4. Take n1.1 independent copies of R and denote them by Ri, 
1 ≤ i ≤ n1.1, where R is chosen from V (H) by taking each vertex uniformly at random 
with probability n−0.9 and then deleting O(n0.06) vertices arbitrarily so that |R| ∈ (k+1)Z
and k|R ∩ A| = |R ∩ B|. For each S ⊆ V (H), let YS := |{i : S ⊆ Ri}|. Then, with 
probability at least 1 − o(1), all of the following statements hold:

(i) Y{v} = (1 ± n−0.01)n0.2 for all v ∈ V (H).
(ii) Y{u,v} ≤ 2 for all {u, v} ⊆ V (H).

(iii) Ye ≤ 1 for all e ∈ E(H).
(iv) For all i = 1, . . . , n1.1, we have |Ri ∩ A| = (1/k ± o(n−0.04))n0.1 and |Ri ∩ B| =

(1 ± o(n−0.04))n0.1,
(v) Suppose n/k3 ≤ m ≤ n/k and ρ is a constant with 0 < ρ < 1 such that dH(v) ≥(n

k

)
−
(n−m

k

)
− ρnk for all v ∈ A. Then for 1 ≤ i ≤ n1.1 and v ∈ Ri ∩A, we have

dRi(v) >
(
|Ri ∩B|

k

)
−

(
|Ri ∩B|−mn−0.9

k

)
− 3ρ|Ri ∩B|k,

(vi) |Ri ∩Aj | = |Aj |n−0.9 ± n0.06 for 1 ≤ i ≤ n1.1 and j ∈ [4].

Proof. For 1 ≤ i ≤ n1.1 and j ∈ [4], E[|Ri ∩ A|] = n0.1/k, E[|Ri ∩ B|] = n0.1 and 
E[|Ri ∩ Aj |] = n−0.9|Aj |. Recall the assumptions |A1| ≥ n/(3k2), |A2| ≥ n/(3k2), and 
|A3| = |A4| = n0.99. By Lemma 4.1, we have

P
(∣∣|Ri ∩A|− n0.1/k

∣∣ ≥ n0.06) ≤ e−Ω(n0.02),
P
(∣∣|Ri ∩B|− n0.1∣∣ ≥ n0.06) ≤ e−Ω(n0.02), and

P
(∣∣|Ri ∩Aj |− |Aj |n−0.9∣∣ ≥ n0.06) ≤ e−Ω(n0.02).

Hence, with probability at least 1 −O(n1.1)e−Ω(n0.02), (iv) and (vi) hold.
For every v ∈ V (H), E[Y{v}] = n1.1 · n−0.9 = n0.2. By Lemma 4.1,

P
(∣∣|Y{v}|− n0.2∣∣ ≥ n0.19) ≤ e−Ω(n0.18)

Hence, with probability at least 1 −O(n)e−Ω(n0.18), (i) holds.
Let Zp,q =

∣∣∣S ∈
(V (H)

p

)
: YS ≥ q

∣∣∣. Then

E [Zp,q] ≤
(
n + n/k

p

)(
n1.1

q

)
(n−0.9)pq ≤ 2p+1np+1.1q−0.9pq.

So E[Z2,3] ≤ 8n−0.1 and E[Zk,2] ≤ 2k+1n2.2−0.8k ≤ 2k+1n−0.2 for k ≥ 3. Hence by 
Markov’s inequality, (ii) and (iii) hold with probability at least 1 − o(1).
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Finally, we show (v). For all v ∈ A, since dH(v) ≥
(n
k

)
−
(n−m

k

)
− ρnk, we see that, for 

1 ≤ i ≤ n1.1 and v ∈ Ri ∩A,

E [dRi(v)] >
(
n

k

)
n−0.9k −

(
n−m

k

)
n−0.9k − ρnkn−0.9k

>

(
n0.1

k

)
−
(
n0.1 −mn−0.9

k

)
− ρn0.1k.

By (iv), with probability at least 1 − O(n1.1)e−Ω(n0.02), for all i = 1, . . . , n1.1, we have 
|Ri ∩B| = (1 + o(n−0.04))n0.1. Thus for all v ∈ A ∩Ri,

E [dRi(v)] >
(
|Ri ∩B|

k

)
−

(
|Ri ∩B|−mn−0.9

k

)
− 2ρ|Ri ∩B|k.

We wish to apply Lemma 6.2 with Γ = B, Γp = Ri, and S ⊆
(B
k

)
. We define

∆ = 1
2

∑

b1,b2⊆B,b1 (=b2,b1∩b2 (=∅

E[Ib1Ib2 ] ≤
1
2 |Ri ∩B|2k−1.

By Lemma 6.2,

P

(
dRi(v) ≤

(
|Ri ∩B|

k

)
−
(
|Ri ∩B|−mn−0.9

k

)
− 3ρ|Ri ∩B|k

)

≤P
(
dRi(v) ≤ E[dRi(v)] − ρ|Ri ∩B|k

)

≤ exp
(
− ρ2|Ri ∩B|2k

2
(|Ri∩B|

k

)
+ 2|Ri ∩B|2k−1

)

≤ exp(−Ω(n0.1)).

Therefore, with probability at least 1 −O(n1.1)e−Ω(n0.1), (v) holds.
By applying union bound, (i) – (vi) all hold with probability 1 − o(1). !

Now we use random subgraphs and fractional matchings to perform a second round of 
randomization to find a sparse subgraph in a hypergraph that is not ε-close to Ht(k, n).

Lemma 6.4. Let k ≥ 3 be an integer, 0 < c * ρ * ε * 1 be reals, n ∈ kZ sufficiently 
large, and let t be an integer with n/(3k2) ≤ t ≤ (1

2 − c)n/k. Let H is a (1, k)-partite 
(k + 1)-graph with partition classes A, B such that k|A| = |B| = n. Let A1 and A2
be a partition of A such that |A1| = t and |A2| = n/k − t. Suppose that dH(x) >(n
k

)
−

(n−t+1
k

)
− ρnk for all x ∈ A1 and dH(x) =

(n
k

)
for all x ∈ A2. If H is not ε-

close to Ht(k, n), then there exists a spanning subgraph H ′ of H such that the following 
conditions hold:
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(1) For all x ∈ V (H ′), with at most n0.99 exceptions, dH′(x) = (1 ± n−0.01)n0.2.
(2) For all x ∈ V (H ′), dH′(x) < 2n0.2.
(3) For any two distinct x, y ∈ V (H ′), dH′({x, y}) < n0.19.

Proof. Let A3 ⊆ A and A4 ⊆ B with |Ai| = n0.99 for i = 3, 4. Let R1, . . . , Rn1.1 be 
defined as in Lemma 6.3. By Lemma 6.3 (iv), we have, with probability 1 − o(1), for all 
i = 1, . . . , n1.1,

|Ri ∩A| = (1/k + o(n−0.04))n0.1 and |Ri ∩B| = (1 + o(n−0.04))n0.1.

By Lemma 6.3 (vi), with probability 1 − o(1), we have

|Ri ∩A1| = (t/n + o(n−0.04))n0.1 and |Ri ∩A2| = (1/k − t/n + o(n−0.04))n0.1.

By Lemma 6.3 (v), with probability 1 − o(1), we have for 1 ≤ i ≤ n1.1 and x ∈ A ∩Ri,

dRi(x) >
(
|Ri ∩B|

k

)
−

(
|Ri ∩B|− (t− 1)n−0.9

k

)
− 3ρ|Ri ∩B|k;

By (iv) and (vi) of Lemma 6.3, we may choose Ii ⊆ Ri ∩ (A3 ∪A4) such that Ri \ Ii
is balanced and |R′

i| = (1 − o(1))|Ri|, where R′
i = Ri \ Ii for i = 1, . . . , n1.1. Let H1 =

H[A1 ∪B]. Then, since t ≥ n/(3k2), e(H1) ≥ nk+1/(6k2 · k!).
Since H is not ε-close to Ht(k, n), H1 is not ε-close to Ft(k, n) (by Observation 2 in 

Section 2). Let a0 = ε/(8k), a1 = ε/(24k2), a2 = ε/(8k2), and a3 < ε(2k · k! · 30k)−1. By 
applying Lemma 5.1 to H1, a0, a1, a2, a3, we see that H1 is (F , a0)-dense, where

F = {U ⊆ V (H) : |U ∩A1| ≥ (t/n− a1)n, |U ∩B| ≥ (1 − t/n− a2)n}.

Now we apply Lemma 6.1 to H1 with l = (3k3k!)−1, α1 = t/n −a1, α2 = 1 − t/n −a2, 
and ε′ = a0. Therefore, with probability at least 1 −nO(1)e−Ω(n0.1), for any independent 
set S of R′

i, |S∩R′
i∩A1| ≤ (t/n −a1+o(1))n0.1 or |S∩R′

i∩B| ≤ (1 −t/n −a2+o(1))n0.1. 
By definition, for x ∈ R′

i ∩A2, dR′
i
(x) =

(|R′
i|

k

)
.

By applying Lemma 5.3 to each H[R′
i], we see that each H[R′

i] contains a fractional 
perfect matching ωi. Let H∗ = ∪n1.1

i=1 R
′
i. We select a generalized binomial subgraph H ′

of H∗ by letting V (H ′) = V (H) and independently choosing edge e from E(H∗), with 
probability ωie(e) if e ⊆ R′

ie . (By Lemma 6.3 (iii), for each e ∈ E(H∗), ie is uniquely 
defined.)

Note that since wi is a fractional perfect matching of H[R′
i] for 1 ≤ i ≤ n1.1, ∑

e%v wi(e) = 1 for v ∈ R′
i. By Lemma 6.3 (i) and by Lemma 4.1, with probability 

1 −o(1), dH′(v) = (1 ±n−0.01)n0.2 for each vertex v ∈ V (H) −(∪n1.1
i=1 Ii) ⊆ V (H) −(A3∪A4)

and dH′(v) ≤ (1 ± n−0.01)n0.2 < 2n0.2 for each vertex v ∈ ∪n1.1
i=1 Ii. By Lemma 6.3 (ii), 

with probability 1 − o(1), dH′({x, y}) < n0.19 for any {x, y} ∈
(V (H)

2
)
. Therefore, there 

exists a hypergraph H ′ as desired. !
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To prove Theorem 1.3, we also need the following result which was attributed to 
Pippenger [19] (see Theorem 4.7.1 in [4]). An edge cover in a hypergraph H is a set of 
edges whose union is V (H).

Theorem 6.5 (Pippenger). For every integer k ≥ 2 and real r ≥ 1 and a > 0, there are 
γ = γ(k, r, a) > 0 and d0 = d0(k, r, a) such that for every n and D ≥ d0 the following 
holds: Every k-uniform hypergraph H = (V, E) on a set V of n vertices in which all 
vertices have positive degrees and which satisfies the following conditions:

(1) For all vertices x ∈ V but at most γn of them, dH(x) = (1 ± γ)D;
(2) For all x ∈ V , dH(x) < rD;
(3) For any two distinct x, y ∈ V , dH({x, y}) < γD;

contains an edge cover of at most (1 + a)(n/k) edges.

Proof of Theorem 1.3. By Theorem 1.2, we may assume that 2kt < n ≤ 3k2t. Let 
0 < ε * 1

k < 1 be sufficiently small and t > t0(k) be sufficiently large. By Observation 1, 
it suffices to show F t(k, n) has a matching of size t. Applying Lemma 3.2 to F t(k, n)
with ζ = 1/3, we may assume that F t(k, n) is not ε-close to Ft(k, n). That is, Ht(k, n)
is not ε-close to Ht(k, n) by Observation 2.

Now we apply Lemma 4.2 to Ht(k, n) with ζ = 1/3. Thus there exists some constant 
0 < c * ε such that n −kcn ≥ 2kt and Ht(k, n) contains an absorbing matching M1 with 
m1 := |M1| ≤ cn and for any balanced subset S of vertices with |S| ≤ (k+ 1)c1.5n/(4k), 
Ht(k, n)[V (M1) ∪ S] has a perfect matching. Let H := Ht(k, n) − V (M1) and n1 :=
n − km1.

Next, we see that H is not (ε/2)-close to Ht(k, n − km1). For, suppose otherwise. 
Then

|E(Ht(k, n)) \ E(Ht(k, n))|
≤ |E(Ht(k, n− km1)) − E(H)| + |e ∈ E(Ht(k, n)) : e ∩ V (M1) 0= ∅|

≤ (ε/2)|E(Ht(k, n− km1))| + (k + 1)cn · nk

≤ ε|E(Ht(k, n))|.

This is a contradiction as Ht(k, n) is not ε-close to Ht(k, n).
Since n1 ≥ n − kcn ≥ 2kt, by Lemma 6.4 H has a spanning subgraph H1 such that

(1) For all vertices x ∈ V (H1) but at most n0.99
1 of them, dH1(x) = (1 ± n−0.01

1 )n0.2
1 ;

(2) For all x ∈ V (H1), dH1(x) < 2n0.2
1 ;

(3) For any two distinct x, y ∈ V (H1), dH1({x, y}) < n0.19
1 .

Hence by applying Lemma 6.5 to H1 with 0 < a * c1.5, H1 contains an edge cover 
of at most (1 + a)((n1/k + n1)/(k + 1)) edges. Thus, at most a(n1/k + n1) vertices 
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are each covered by more than one edge in the cover. Hence, after removing at most 
a(n1/k + n1) edges from the edge cover, we obtain a matching M2 covering all but at 
most (k + 1)a(n1/k + n1) ≤ 3kan1 ≤ 3kan vertices.

Now we may choose a balanced subset S of V (H) \V (M2) such that |V (H) \(V (M2) ∪
S)| ≤ k. Since |S| ≤ 3kan ≤ (k + 1)c1.5n, Ht(k, n)[V (M1) ∪ S] has a perfect matching, 
say M3. Thus, M2 ∪M3 is matching of Ht(k, n) covering all but at most k vertices, and, 
hence, has size (n/k). Therefore, by Lemma 2.1, F t(k, n) has a matching of size t. !
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