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1. Introduction

For a positive integer n, let [n] denote the set {1,...,n}. For a nonnegative integer k
and set S with at least k elements, let (‘Z) ={eCS : |e|] =k}. Let k > 2 be an integer.
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A k-uniform hypergraph or k-graph is a pair H = (V, E), where V = V(H) is a finite set
of vertices and E = E(H) C () is the set of edges. We use e(H) to denote the number
of edges in H. For any S C V(H), let H[S] denote the subgraph of H with V(HI[S]) =S
and E(H[S])={e€ E(H):eC S},and let H—S:= H[V(H)\ S|.

A matching in a hypergraph H is a subset of E(H) cousisting of pairwise disjoint
edges. The maximal size of a matching in a hypergraph H is denoted by v(H). A classical
problem in extremal set theory is to determine max e(H) with v(H) fixed. Erdés [6] in
1965 made the following conjecture: For positive integers k,n,t with n > kt, every k-
graph H on n vertices with v(H) < t satisfies e(H) < max{(ﬁ) — (", (ktk_l)}
This bound is tight for the complete k-graph on kt — 1 vertices and for the k-graph on
n vertices in which every edge intersects a fixed set of ¢ — 1 vertices. There have been
recent activities on this conjecture, see [2,3,7-9,12,18]. In particular, Frankl [8] proved
that if n > (2t — 1)k — (t — 1) and v(H) < t then e(H) < (}) — ("7/™"), with further
improvement by Frankl and Kupavskii [10].

There are also attempts to extend the above conjecture of Erdds to a family of hy-
pergraphs. Let F = {F},..., F;} be a family of hypergraphs. A set of pairwise disjoint
edges, one from each Fj, is called a rainbow matching for F. In this case, we also say
that F or {Fi,..., Fi} admits a rainbow matching. Aharoni and Howard [1] made the

following conjecture, also see Huang, Loh, and Sudakov [12].

Conjecture 1.1. Let F = {F},..., F;} be a family of subsets of ([Z])- If

e () (L) (1)

forall 1 <i <t, then F admits a rainbow matching.
Huang, Loh, and Sudakov [12] proved that Conjecture 1.1 holds for n > 3k>t.

Theorem 1.2 (Huang, Loh, and Sudakov). Let n,k,t be three positive integers such that
n > 3kt. Let F = {F1,...,Fi} be a family of subsets of ([Z]). If

= () (1)

for all 1 <1i <t, then F admits a rainbow matching.

Recently, Frankl and Kupavskii [11] proved that Conjecture 1.1 holds when n >
12kt log(e?t), providing an almost linear bound. In this paper, we show in Theorem 1.3
that Conjecture 1.1 holds when n > 2kt and t is sufficiently large. More recently, Keevash,
Lifshitz, Long and Minzer [15] independently proved a more general version of Theo-
rem 1.3 with n = Q(kt) using sharp threshold techniques developed in [14].
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Theorem 1.3. For a given integer k > 3, there exists tg = to(k) such that the following
holds. Let t >ty and n > 2kt be two positive integers, and F = {F1y,..., Fi} be a family

of subsets of ([Z]). If
> () ="

forall 1 <1¢ <t, then F admits a rainbow matching.

Note that the lower bound on e(F;) is best possible. Indeed, for i € [t] let F; be
the k-graph on [n] consisting of all edges intersecting [t — 1]. Then for i € [t], e(F;) =
(%) = (") and v(F;) = t — 1. Hence, {F},...,F;} does not admit any rainbow
matching.

This example naturally corresponds to a special class of (k+1)-graphs F;(k, n). This is
defined in Section 2, where we reduce the problem for finding one such rainbow matching
to a problem about finding “near” perfect matchings in a larger class of (k + 1)-graphs,
denoted by Ft(k,n). This will allow us to apply various techniques used previously to
find large matchings in uniform hypergraphs.

We show in Section 3 that Theorem 1.3 holds when F*(k,n) is close to F;(k,n), in the
sense that most edges of F;(k,n) are also edges of F*(k,n). To deal with the case F*(k,n)
is not close to Fi(k,n), we follow the approach in [5] and [20]. First, we find a small
absorbing matching M in F'(k,n) which is done in Section 4. (However, the existence
of this absorbing matching does not require that F*(k,n) be not close to F;(k,n).) Then
we take random samples of subgraphs of F(k,n) — V(M) so that they satisfy various
properties, in particular they all have fractional perfect matchings, see Section 5. In
Section 6, we use fractional perfect matchings in those random samples to perform a
second round of randomization to find a spanning subgraph H’ of F'(k,n) — V(M).
We then apply a result of Pippenger to find a matching in H’ covering all but a small
constant fraction of the vertices, and use the matching M; to find the desired matching
in F*(k,n) covering all but fewer than k vertices.

2. Notation and reduction

To prove Theorem 1.3, we convert this rainbow matching problem on k-graphs to a
matching problem for a special class of (k + 1)-graphs. Let Q,V be two disjoint sets. A
(k4 1)-graph H with vertex Q UV is called (1, k)-partite with partition classes Q,V if,
for each edge e € E(H), [eNQ| =1 and |enV| = k. A (1, k)-partite (k + 1)-graph H
with partition classes @,V is balanced if |V| = k|Q|. We say that S C V(H) is balanced
if|SNV|=klSNQ)|.

Let FY,...,F; be a family of subsets of ([Z]) and X := {x1,...,2;} be a set of ¢
vertices. We use F*(k,n) to denote the (1, k)-partite (k + 1)-graph with partition classes
X, [n] and edge set
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E(F*(k,n)) U{{xi}Ue :e€ Fi}

If i =-.-=F, = Hi(t,n), where Hi(t,n) denotes the k-graph with vertex set [n] and
edge set ([Z]) \ ([7L],>[ ]), then we denote F!(k,n) by Fi(k,n).

Observation 1. {F},..., F;} admits a rainbow matching if, and only if, F*(k,n) has a
matching of size ¢.

Hence, to prove Theorem 1.3, it suffices to show that F(k,n) has a matching of size
t. For convenience, we further reduce this problem to a near perfect matching problem.
Write n — kt = km +r, where 0 <r < k — 1. Let F},...,F; C ([ ]) and let F; = ([Z])
fori=t+1,....,t +m. Let Q = {x1,...,Tms¢} and let H'(k,n) be the (1, k)-partite
(k + 1)-graph with partition classes @, [n] and edge set

m—+t

E(H'(k,n)) U{{xz}Ue : e € Fi}.

When Fy = -+ = F, = Hg(t,n), we denote H*(k,n) by H;(k,n). Note that v(H;(k,n)) =
m+t = (n—r)/k,ie., Hi(k,n) has a matching covering all but less than k vertices (and
such a matching is said to be near perfect).

Lemma 2.1. Fi(k,n) has a matching of size t if, and only if, H!(k,n) has a matching of
sizem+t=|n/k].

Proof. First, suppose that F*(k,n) has a matching M; of size t. Since n—kt = km+r >
km, [n] \ V(My) contains m pairwise disjoint k-sets, say ei,...,en. Let My = {e; U
{zixe} ¢ i € [m]}. Then My U M, is a matching of size m + t in H'(k,n).

Now assume that H!(k,n) has a matching M of size m + t. Note that each edge in
M contains exactly one vertex in {z1,...,Zm4¢}. Thus, the ¢t edges in M intersecting
{z1,...,2¢} form a matching in F'(k,n) of size t. O

For the proof of Theorem 1.3, we need additional concepts and notation. Given two hy-
pergraphs Hy, Hy with V(H;) = V(Hz), let ¢(Hy, Hz) be the minimum of |E(H,)\E(H")|
taken over all isomorphic copies H' of Hy with V(H') = V(Hz). For a real number ¢ > 0,
we say that Hy is e-close to Hy if V(Hy) = V(Hs) and c¢(Hy, H) < €|E(H;)|. The fol-
lowing is obvious.

Observation 2. If F'(k,n) is e-close to Fy(k,n), then H!(k,n) is e-close to H(k,n).

As mentioned in Section 1, our proof of Theorem 1.3 will be divided into two parts,
according to whether or not F*(k,n) is e-close to Fy(n, k). If Ft(k,n) is close to F¢(n, k),
we will apply greedy argument to construct a matching of size t. If F*(k,n) is not close
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to Fi(n, k), then H'(k,n) is not close to H¢(n, k), and we will show that H'(k,n) has a
spanning subgraph with properties that enable us to find a large matching M5 and to
use absorbing matching M7 to enlarge Ms to a near perfect matching.

3. The extremal case: F*(k,n) is e-close to Fi(k, n)

We say that a claim holds when 0 < a < b if there exists a function f : (0,1) — (0,1)
such that the claim holds whenever 0 < a < f(b). We will not specify this implicit
function f.

In this section, we prove Theorem 1.3 for the case when F!(k,n) is e-close to the
extremal configuration JF;(k,n) where 0 < ¢ < ¢ < 1 and ¢ < +. Note that ¢ will

k
be determined when we consider the non-extremal case where F*(k,n) is not e-close to

Fi(k,n).

Let H be a (k+ 1)-graph and v € V(H). We define the neighborhood Ny (v) of v in
H to be the set {S € (V(kH)) : SU{v} € E(H)}. Let H be a (k + 1)-graph with the
same vertex set as Fy(k,n). Given real number a with 0 < a < 1, a vertex v in H is
called a-good with respect to Fi(k,n) if

|NF, (k) (0) \ N (v)] < an®

and, otherwise, v is called a-bad. Clearly, if H is e-close to Fi(k,n), then the number of
a-bad vertices in H is at most (k + 1)en/a.

Lemma 3.1. Let (,a be real numbers and n,k,t be positive integers such that 0 < a K
(<1, a< 1/k, n>24k3 and n/(6k*) < t < (1 — {)n/k. Let H be a (1,k)-partite
(k + 1)-graph with V(H) = V(Fy(k,n)). If every vertex of H is a-good with respect to
Fi(k,n), then H has a matching of size t.

Proof. Let X := {z1,29,...,2¢}, W := [t], and U := [n] \ [t], such that X, [n] are the
partition classes of H. Let M be a maximum matching in H such that [eNX| = [enW] =1
for all e € E(H). Let X' = X \ V(M), W' = W\ V(M), and U’ = U \ V(M).

We claim that |M| > n/(12k?). For, otherwise, assume |M| < n/(12k?). Consider any
vertex € X’. Since z is a-good, we have

(<)) e

Note that, since n/6k* <t < (1 — {)n/k and o < ¢F~1(6k22%(k — 1))~ 1,

’W’ X (k(ill)‘ = (W] - IM)<7;€__k1t> > %k:?(kg—nJ > %k?% > an”.

< an®.
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Thus there exists f € Ng(z) N (W’ X (klfl)). Now M’ = M U {{z} U f} is a matching
of size [M|+1in H, and |fNX|=|fNW|=1for all f € M'. Hence, M’ contradicts
the choice of M, completing the proof of Claim.

Let S = {u1,...,up+1} C V(H)\ V(M), where u3 € X', upy1 € W' and u; €
U’ for i € [k]\ {1}. Let {e1,...,ex} be an arbitrary k-subset of M, and let e; :=
{Ui,17vi,27 . ,Ui7k+1} with Vi1 € X, Vik+1 € W, and Vi € U fori e [k] andj S [kﬁ]\{l}
For j € [k+ 1], let f; := {u;,v1 j41,v2,j+2,. ., Vg j+k} With addition in the subscripts
modulo k 4+ 1 (except we write k + 1 instead of 0). Note that fi,..., fx+1 are pairwise
disjoint.

If f € E(H) for all j € [k+ 1] then M' := (M U{f1,..., fex1}) \ {e1,...,ex} is a
matching in H such that |M'| = |M|+1> |M|and |fNX]|=|fNnW|=1forall f € M,
contradicting the choice of M. Hence, f; ¢ E(H) for some j € [k + 1].

Note that there are (Mg‘)k‘! choices of (e, ...,e,) € M* and that for any two different
such choices the corresponding f]/b are distinct. Hence,

l{e € E(F(k,n)) \ E(H) : len{u; s i € [k+ 1]} =1}
> [M|(|M]=1)--- (|M] =k +1)
> (n/(12k) — k)"
> (71/(24162))’C (since n > 24k)
> (k+1)an®  (since a < ((k + 1)24%k%%)) =1,

This implies that there exists i € [k 4 1] such that |[Ng,(n)(us) \ Nu(u;)| > ank,
contradicting the fact that all u; are a-good with respect to Fy(k,n) O

We can now prove Theorem 1.3 when F*(k,n) is e-close to Fi(k,n).

Lemma 3.2. Let k > 3, t > 1 be integers, and let €, be real numbers such that 0 < ¢ K
(<lande < 1/k, 48k* <t < (1—C)(1 —k(k+1)\/e)n/k. Let (F1,...,F}) be a family
of subsets of ([2]) such that e(F;) > (}) — ("_,iﬂ) fori € [t], and let F'(k,n) denote the
corresponding (1, k)-partite (k + 1)-graph. Suppose Ft(k,n) is e-close to Fy(k,n). Then

Ft(k,n) has a matching of size t.

Proof. We may assume n < 3k?t as otherwise the assertion follows from Theorem 1.2. Let
B denote the set of \/z-bad vertices in F*(k,n). Since F*(k, n) is e-close to F;(k,n), |B| <
(k + 1)v/en. Let X, [n] be the partition classes of Fi(k,n), and let X := {1, 22, ..., 2},
W :=[t], and U := [n] \ [t]. Note that each edge of F;(k,n) intersects W.

Let b := max{|BNX]|,|BNW]|}; s0 b < (k+1)y/en. We choose X; C X, W; C W such
that BN X C Xy, BAW C Wy, and |Xy| = [Wy| = b. Let Fy = F(k,n)[X, UW, UU].
For every = € X, we have

W@z v - (1) - (")) S () - (1Y),



H. Lu et al. / Journal of Combinatorial Theory, Series A 195 (2023) 105700 7

Since n — (t — b) > n/2 > 3k*(k + 1)y/en > 3k?b, it follows from Theorem 1.2 that the
family {Nz, (z) : # € X1} admits a rainbow matching. Thus, by Observation 1, 7; has
a matching, say M, of size b. Clearly, M covers BN X.

Let Fy := F'(k,n)[(X\X1)U([n]\(V(M)UB)], and let a := |B\V(M)|. By the choice
of Wy and X1, we have BN(W\W;) = ). Note that F> may be viewed as the (1, k)-partite
(k + 1)-graph F3 = F;_p(k,n — kb — a), with partition classes X \ X1, [n]\ (V(M)U B),
corresponding to the family (F;[(X \ X1) U ([n] \ (V(M)UB)] : i € X \ X1). Put
n' =n—kb—aandt =t—b We wish to apply Lemma 3.1 to F5.

Note that n’ =n —kb—a >n —k|B| > n — k(k + 1)\/en > n/2 > 24k3. Moreover,
since b < (k + 1)y/en < n/(6k?) < t/2, we have n'/(6k?) < n/(6k?) <t/2 <t—b=1t.
Also, ¢’ <t < (1-{)(n—k(k+1)\/en)/k < (1-¢)(n—k|B|)/k < (1-¢)(n—kb—a)/k =
(1= Q' k.

For every = € V(F2), since x is v/e-good with respect to F;(k,n),

IN7, (e, (€) \ N7, (@)| < INF, (1,n) (2) \ N7 (2)]
< Vent
< 28\/e(n —kb—a)* (since kb+a < (k+1)%Ven < n/2)
— 2k\/g<n/)k

Thus every vertex x of Fy is 2¥,/e-good with respect to Fy(k,n’). By Lemma 3.1, Fy
has a matching M’ of size t’ = ¢ — b. Hence M U M’ is a matching in F of size t. O

4. Absorbing lemma

The purpose of this section is to prove the existence of a small matching M in H!(k,n)
(defined before Observation 2) such that for any small balanced set S, H!(k,n)[V (M)US]
has a perfect matching. We need to use Chernoff bounds here and in the next section.
Let Bi(n,p) denote a binomial random variable with parameters n and p. The following
well-known concentration inequalities, i.e. Chernoff bounds, can be found in Appendix

A in [4], or Theorem 2.8, inequalities (2.9) and (2.11) in [13].

Lemma 4.1 (Chernoff inequality for small deviation). If X = Y. | X;, each random
variable X; has Bernoulli distribution with expectation p;, and o < 3/2, then

a2
P(|X —EX|> aEX) < 2¢~ 5 EX,
In particular, when X ~ Bi(n,p) and A < 3np, then
P(|X —np| > A) < e~/ (np))

We can now prove an absorbing lemma for H = H'(k, n).
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Lemma 4.2. Let k > 3 be an integer, ¢ > 0 be a real number, and t > t1(k,() be a
sufficiently large integer. Let H be a (1,k)-partite (k + 1)-graph with partition classes
{1, .. sk} [0] such that dg(x;) > (7) — (") fori € [t] and du(z;) = (}) for
i=t+1,...,|n/k]. Suppose n/3k* <t < (1—-{)n/k. Then for any c with0 < ¢ < ¢ < 1,
c K %, there exists a matching M in H such that |M| < 2ken and, for any balanced
subset S C V(H) with |S| < (k+ 1)c*®n/2, H[V(M) U S] has a perfect matching.
Proof. For balanced R € (‘2(51)) and balanced Q € (k‘(/k(fl))), we say that Q is R-absorbing
if v(H[QUR]) =k + 1 and Q@ is the vertex set of a matching in H. Let £(R) denote the
collection of all R-absorbing sets in H.

Claim 1. For each balanced (k + 1)-set R C V(H), the number of R-absorbing sets in
H is at least ¢*(7)" ! (6k220k20) 1.

Let R = {z,uy,...,u;} be fixed with z € X and u; € [n] for i € [k]. Note that the

number of edges in H containing = and intersecting {uq, ..., u} is at most k(kﬁz), and
dy(z) > (7) — ("7). So the number of edges {z,v1,...,v;} in H such that v; € [n]

for i € [k] and {v1,...,vk} N{u1,...,ux} =0 is at least

ny n—t+1 ok n >L n ’
k k k—2) — 6k2\k
since 3k%t > n > kt.

Fix a choice of an edge {z,v1,...,vx} in H such that v; € [n] for i € [k] and
{v1,.. ., v} N{u1,...,ux} =0, and let Wy = {vy,...,vi}. For each j € [k] and each pair
uj,vj, we choose a k-set U; such that U; is disjoint from W;_; U R and both U; U {u;}
and U; U {v;} are edges in H, and let W; := U; UW,_;. Thus, if W}, is defined then W}
is an absorbing k(k + 1)-set for R.

Note that in each step j € [k] there are k + 1 + jk vertices in W;_; U R. Thus, the
number of edges in H containing u; (respectively, v;) and at least one other vertex in
W;_1 UR is at most (k + 1+ jk)(,",) [n/k] < (k+ 1)n(,",). Note that by definition
of Zt11, %42, ..., 2|5k, there are at least (Z:f)(Ln/kJ —t) > (Z:f)(n/k sets U; such
that both U; U {u;} and U; U {v;} are edges in H for large n. Hence, for each j € [k],
there are at least (Z:f) ¢n/k — (k+n(,",) > ¢n(}~1)/(2k) such choices for U; (as n
is sufficiently large). Thus, in total we obtain 5 (7)(¢n(}~1)/(2k))* absorbing, ordered
k(k + 1)-sets for R, with multiplicity at most (k?)!; so

otz () (€ Go) /@R)* ()™
Ry > 2 ) (l(;)!l) . 6k2(2kk)(k2)!_

This completes the proof of Claim 1.

Now, let ¢ be a fixed constant with 0 < ¢ < ¢2¥(12k22%(k!)¥)~2, and choose a family G
of balanced k(k-+1)-sets by selecting each of the (1/¥)) (%) balanced sets of size k(k+1)
with probability
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(") )

It follows from Lemma 4.1 that, with probability 1 — o(1), the family G satisfies the
following properties:

pi=

IG| < 2cn (1)
and

cCkn
LR)NG| > plL(R)|/2> —2rr > 2
I£(R) (161 2 pIE(R))/2 > o 2 ¢ n )
for all balanced (k + 1)-sets R. Furthermore, we can bound the expected number of
intersecting pairs of k(k + 1)-sets from above by

(e () (L)) e

Thus, using Markov’s inequality, we derive that with probability at least 1/2
G contains at most c¢'*%n intersecting pairs of k(k 4 1)-sets. (3)

Hence, there exists a family G satisfying (1), (2) and (3). Delete one k(k + 1)-set from
each intersecting pair in such a family G. Further removing all non-absorbing k(k-+1)-sets,
we obtain a subfamily G’ consisting of pairwise disjoint balanced, absorbing k(k+1)-sets,
which satisfies

1.
IL(R)NG'| > icl'dn,

for all balanced (k + 1)-sets R.

Since G’ consists only of absorbing k(k + 1)-sets, H[V(G')] has a perfect matching M,
of size at most 2kcn by (1). For a balanced set S C V(H) of size |S| < (k+1)c*®n/2, S
can be partitioned into at most ¢!>n /2 balanced (k+1)-sets. For each balanced (k+1)-set
R, since |L(R)NG'| > Lc!5n, we can successively choose a distinct absorbing k(k+1)-set
for R in G'. Hence, H[V (M) U S] has a perfect matching. O

5. Fractional perfect matchings

When F*(k,n) is not e-close to F;(k,n), we use fractional perfect matchings in random
subgraphs of H!(k,n).

Let H be a hypergraph. A fractional matching in H is a function h : E(H) — [0,1]
such that }- .o h(e) < 1 for all z € V(H). Let vy(H) := maxy Y cp(s) h(e), where
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maximum is taken over all fractional matchings h of H. A fractional matching in a
k-uniform hypergraph with n vertices is perfect if its size is n/k.

First, we need a concept of dense graphs used in the hypergraph container result of
Balogh, Morris, and Samotij [5] and independently Sexton and Thomassen [20]. Let H
be a hypergraph, A > 0 be a real number, and A be a family of subsets of V(H). We say
that H is (A, X)-dense if e(H[A]) > Ae(H) for every A € A.

Lemma 5.1. Let n,k,t be positive integers and € be a constant such that n < 3k3t,
0<e<1,andn > 40k%/e. Let ag = €/(8k),a1 = ¢/(24k?),as = ¢/(8k?), and a3 <
e/(2%-k!-30k). Let H be a (1, k)-partite (k+1)-graph with vertex partition classes X, [n]
and with |X| = t. Suppose du(z) > (}) — ("7,?1) —agn® for any x € X. If H is
not e-close to Fy(k,n), then H is (A, ag)-dense, where A = {A C V(H) : |[AnX]| >
(t/m—a)n, |[ANn]| > (1 —t/n—az)n}.

Proof. We prove this by way of contradiction. Suppose that there exists A C V(H)
such that |[AN X| > (¢/n—a1)n, |AN[n]| > (1 —t/n — az)n, and e(H[A4]) < age(H).
Without loss of generality, we may choose A such that |[AN X| = (¢/n — a1)n and
|[ANn]| = (1 —1t/n—az)n. Let U C [n] such that AN [n] C U and |U| = n — t. Let
A1 :AOX, A2 :X\A, Bl :Aﬂ[n], and BQ :U\A

Let Hy denote the isomorphic copy of H by naming vertices such that X = {x1, ..., 2}
and U = [n] \ [t]. We derive a contradiction by showing that |E(F.(k,n)) \ E(Hp)| <
ee(Fi(k,n)). Note that, since n < 3k>t,

a1 (0)- (7)1 (()- (1) 2oy

Moreover,

e(Fk) = o) 130 = 375 (7).

and since n > 2k,

tnk

e(Fi(k,n)) > t(Z)/(?’k) > F 3k

Consider z € A;. Let Ep, (B, x) denote the set of edges of Hy contained entirely in
By U{z} in Hy. The number of edges in Hy containing x that also exist in F;(k,n) is
the number of edges in Hy containing = and intersecting [t]. Hence,

{e:x €e,e€ E(Hy),en|t] # 0}
>dp,(z) —|{e:z €e,e € E(Hy— [t]),eN By # 0} — |En, (B1, )|

() (1) o) o) v
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Then we have

Z He:xz eeec E(F(k,n))\ E(Hy)}|

r€AL

S;; ((Z) a (n,;t> —|{e:z €ee€ E(Hy),en[t] #(Z)}l)
2 G- 04)

(() (n—t+ )_agnk_m(z:f)—EHO(th))]
< > [("_t+l> <n;t)+a3n’“+a2n(: 1>+EHO(Bl, )]

x

n—t n—t
= Al'(k 1> + aztn® +a2tn(k 1) + Y En,(By,2)

r€A;

11

< (3k2/n) - e(Fi(k,n)) + (2% - k! - 3kas) - e(Fy(k,n)) + (3k%az) - e(Fi(k,n)) + e(Ho[A])

< age(Ho) + (3k%/n+ 2" - k! - 3kas + 3k2as) - e(F(k,n))
Moreover, we have

Z H{e:x €eee E(F(k,n))\ E(Hy)}|
r€As

<il((0) (")

§ (aln/t) . e(ft(kan))
< (3k%a1) - e(Fi(k,n))

Therefore, we have

|E(Fi(k,n)) \ E(Ho)
Z He:xz €e,eec E(F(k,n))\ E(Hy)}|

rE€AL

+ ) He:x€eec B(F(kn))\ E(H)}

rEA2

A

IA

a0t<2> + (3k2/n + 2° - K1 - 3ka + 3K%a + 3k%a1) - e(Fi(k,m))

IA

(Skao +3k?/n + 28 - k! 3kas + 3k2ay + 3]4:2(11) e(Fi(k,n))

ape(Hp) + (3k‘2/n + 28 . k! 3kas + 3k2a2) -e(Fi(k,n)) + 3k?a; - e(Fs(k,n))
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<e-e(F(k,n)),
a contradiction since H is not e-close to Fi(k,n). O

We also need a result of Lu, Yu, and Yuan [16], which is a stability result on matchings
in “stable” graphs. For subsets e = {uy,...,ux}, f = {v1, ..., vx} C [n] with u; < u;41 and
v; < viqq for i € [k — 1], we write e < f if u; < v; for all ¢ € [k]. A hypergraph H with
V(H)=[n]and E(H) C ([Z]) is said to be stable with respect to the ordering of vertices
iffore, f € ([Z]) with e < f, e € E(H) implies f € E(H). The following is Lemma 4.2
in [16].

Lemma 5.2 (Lu, Yu, and Yuan). Let k be a positive integer and let b and n be constants,
such that 0 < b < 1/(2k) and 0 <n < (14 18(k —1)!/b)=2. Let n,m be positive integers
such that n is sufficiently large and bn < m < n/(2k). Let H be a k-graph with vertex
set [n]. Suppose H is stable and e(H) > (}) — (") —nn®. If H is not \/n-close to
Hi(m,n), then v(H) > m.

We now state and prove the main result of this section.

Lemma 5.3. Let n, k,t be positive integers such that n = 0 (mod k) and let ¢,c,e be
constants such that 0 < ¢ < ¢ < ¢ < 1/k. Suppose that t is sufficiently large and
n/(3k*) <t < (3 —)n/k. Let H be a balanced (1,k)-partite (k+1)-graph with partition
classes X, [n], and let X' C X with |X'| =t. Suppose dy(x) > (}) — (”7,?1) —\/enF for
€X', and dy(z) = (}) for x € X \ X', and assume that for any independent set S in
H,1SNX|<({t/n—¢e)nor|SNn]| <(1—t/n—e)n. Then H has a fractional perfect
matching.

Proof. We use linear programming duality between vertex cover and matchings. Let
w: V(H) — [0,1] such that ) _ w(v) > 1 for all e € E(H), and, subject to this,
w(H) = >, evryw(v) is minimum. (Thus, w is a minimum fractional vertex cover
of H.) Without loss of generality, we may assume that w(z;) < -+ < w(2y,,;), where
X ={z1,...,2x}, and w(1l) < w(2) -+ < w(n). Let CL(H) be a graph with vertex set
V(H) and edge set

E(CL(H)) = {e € <Z(+H1)> tlenX[=1and Y w(x) > 1}.

rEe

Note that H is a subgraph of CL(H) and w is also a vertex cover of CL(H). Thus w is
also a minimum vertex cover of CL(H).

By Linear Programming Duality Theory, we have vy(H) = w(H) = w(CL(H)) =
vi(CL(H)). Thus it suffices to show that CL(H) has a fractional perfect matching.
Indeed, we will prove that v(CL(H)) = n/k, i.e., CL(H) has a perfect matching.
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By the definition of E(CL(H)) and since w(z1) < -+ < w(zy,), we have

Nery(®1) € Nepay(22) € -+ € Nopw) (@nk)- (4)

Hence, Nep (i) = ([Z]) for i € [n/k]\ [t]. It is also easy to see that Nop(m)(w;) is
stable for all i € [n/k].

Let ¢ =t — ¢n/k. One can see that ¢ < n/(2k). Let n be a constant satisfying
c/* < < min{(1 4 54k%(k — 1)!)~, e(k(k + 1)) ~2}. We distinguish two cases.

Case 1. Ny (z1) is not n-close to Hi(t,n).

Let M be a matching of size ¢'n/k in Nopg)(w1) (Note one can find it greedily).
Write N = Ny (21) — {e € Ng(z1) | e N V(M) # 0}. We observe that

e(N) > di(wy) — 'nb > <Z> - <"_IZ+ 1) —2\/enk

n n—t n—t k
(1) () - (o) -2
By Lemma 5.2 with m = ' and b = 1/(3k%), N has a matching M’ of size t'. So
My := M UM’ is a matching of size t in Ny(x1). Let M; = {e1,...,e;}. By (4),
My € Nepmy(w) for i € [n/k]. Thus My = {e; U{z;} : i € [t]} is a matching in
CL(H).
Partition [n] \ V/(Mz) into n/k — ¢ pairwise disjoint k-sets, say fi,..., fn/k—t. Then

by (4), M5 = {fi U{zipt} : i € [n/k —t]} is a matching in CL(H) \ V(M,). Hence
My U M} is a perfect matching in CL(H).

Case 2. Ny (z1) is n-close to Hy(t,n).

Then by (4) Nor(a)(w:) is n-close to Hy(t,n) for all i € [t]. Without loss of generality,
we may assume the set [t] in V(CL(H)) corresponds to the set [¢] in V (H(t,n)).

Let B denote the set of \/n-bad vertices in V(CL(H)) with respect to H(k,n) and
let b = |B|. Since Nepqy(zs) is n-close to Hy(t,n) for all i € [t], we have B C [n]
and b < (k +1)y/nn. Consider H' = CL(H) — ({%¢41,---,Tn/x} U [t]). Note that kb <
kE(k+1)/nn < en;so b < en/k.

Since by assumption for any independent set S in H', |[SN X| < (¢/n — &)n or
[SN[n]| < (1 —t/n—e)n, we can greedily find pairwise disjoint edges fi,..., fp in H’
such that z;_;41 € f; in H'. Write Moy = {f1,..., fo}-

Let n' = |[n] \ (V(Ma21) U B)|. Since V(Ms1) N [t] = 0, we may assume [t —
b] C [t] \ B. So there is a natural correspondence between V(Hy(t — b,n’)) and
V(Nera)y—(v(Mayus)({zi})), ie. [t —b] in V(Hg(t — b,n’)) corresponds to [t — b] in
V(Ner(a)y—v(Mayus) ({zi})).

Let H" = CL(H) — ({Zt41,...,%n/k} U V(Ma1) U B). Note that for each vertex
v € [n]\ (V(Ma1) U B), we have
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INF, k) () \ Naro ({0})]
<t =) - [Nay () () \ Norn ({0, 21})]
<(n/(2k)) - /"~

<,’71/3(nl)k.

Thus, all vertices in V(H") are n'/3-good with respect to F,_,(k,n'). Hence by
Lemma 3.1, H” has a matching M, of size t — b.

Partition [n] \ V(Ma; U Mas) into n/k — t disjoint k-sets, say gi,...,gn/k—s Let
Mas = {g; U{zixt} : i € [n/k]\ [t]}. Then May U Moy U Mg is a perfect matching in
CL(H). O

6. Random rounding

In this section, we complete the proof of Theorem 1.3. For convenience, we do not
round certain numbers to integers as this does not affect calculations.

First, we need another result of Lu, Yu, and Yuan [17] on the independence number of
a subgraph of a k-graph induced by a random subset of vertices, which is a generalization
of Lemma 4.3 in [17] where it was shown for (1, 3)-partite graphs. The same proof for
Lemma 4.3 in [17] works here as well, except we use Lemma 5.1 in place of Lemma 4.1
in [17].

Lemma 6.1 (Lu, Yu, and Yuan). Let l,&', a1, a0 be positive reals, let @ > 0 with a <
min{ay, as}, let k,n be positive integers, and let H be a (1,k)-partite (k+ 1)-graph with
partition classes Q, P such that |Q| = t, |P| = n, n/(3k?) <t < n/k, e(H) > In**+1,
and e(H[F]) > e'e(H) for oll F C V(H) with |FNP| > ain and |[F N Q| > asn. Let
R CV(H) be obtained by taking each vertex of H uniformly at random with probability
n~99. Then, with probability at least 1 —no(l)e’ﬂ(”o'l), every independent set J in H[R)]
satisfies |J N P| < (a1 +a+0(1))n’t or [T N Q| < (a2 + a+ o(1))n’1.

Next, we also need Janson’s inequality to provide an exponential upper bound for the
lower tail of a sum of dependent zero-one random variable. (See Theorem 8.7.2 in [4])

Lemma 6.2 (Janson). Let T be a finite set and p; € [0,1] be a real for i € T'. Let '), be a
random subset of I' such that the elements are chosen independently with P[i € T'p] = p;
for i € I'. Let S be a family of subsets of I'. For every A € S, let 4 =1 ACT),
and 0 otherwise. Define X =3, .g1a, A =E[X], A = %ZA;&B > anpzo Ealp] and
A= \+2A. Then, for 0 <t < \, we have

t2
PX<A—t < ——).
(X < ] < exp( 2A)

Now, we use Chernoff bound and Janson’s inequality to prove a result on several
properties of certain random subgraphs.
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Lemma 6.3. Let n,k be integers such that k > 3 and n is sufficiently large, let H be a
(1, k)-partite (k + 1)-graph with partition classes A, B and k|A| = |B| = n, let Ay, As be
a partition of A with |A1| > n/(3k?) and |A3| > n/(3k?), and let A3 C A and Ay C B
with |A;| = n%% fori = 3,4. Take n''! independent copies of R and denote them by R?,
1 <i<n'', where R is chosen from V(H) by taking each vertexr uniformly at random
with probability n=%° and then deleting O(n°%6) vertices arbitrarily so that |R| € (k+1)Z
and k|lRN A| = |[RN B|. For each S C V(H), let Ys := |{i : S C R'}|. Then, with
probability at least 1 — o(1), all of the following statements hold:

(i) Yoy = 1 £n 0002 for allv e V(H).
(i1) Yiuwy <2 for all {u,v} C V(H).
(#i1) Yo <1 for alle € E(H).

(iv) For alli =1,...,n'1, we have |R; N A| = (1/k + o(n=%%4))n’1 and |R, N B| =

(v) Suppose n/k*> < m < n/k and p is a constant with 0 < p < 1 such that dy(v) >
(0) = (") — pn® for allv € A. Then for 1 <i < n"' and v € R;N A, we have

R,NB R, N B| —mn=0%9
dr,;(v) > ( i ) - ( ‘k ) — 3p|R; N B,

(vi) |RiNA;| =|A;n7%9 £ 000 for 1 <i<n'! andje [4].

Proof. For 1 < i < n'! and j € [4], E[|R; N 4|] = n®Y/k, E[|R; N B|]] = n®! and
E[|R; N Aj]] = n=%°|A;|. Recall the assumptions |4;| > n/(3k?), |A2| > n/(3k?), and
|Az| = |A4] = n°9. By Lemma 4.1, we have

P (HRZ' NA|l— nO.l/k| > n0'06> < e_Q(no«O?)’
]P (HRZ | B‘ — TLO'1| 2 nO_OG) S e_Q(n0.02)’ and
P (HRi NA;|l — |Aj"fl_0'9’ > no.oa) < o~ 2n®0?)

Hence, with probability at least 1 — O(n'1)e=2("") (jv) and (vi) hold.
For every v € V(H), E[Y{,;] = n'!' - n7%9 =n%2. By Lemma 4.1,

P (||Y{v}| _ n0-2| Z n0_19) S e_Q(n().lS)

Hence, with probability at least 1 — O(n)e’ﬂ("o'ls), () holds.
Let Z,q = |S € (V) : ¥s > ¢|. Then

1.1
E[Zpq] < (n y n/k:) <n )(n_o.g)pq < gp+1,p+1.1g-0.9pq
o p q =

So E[Z23] < 8n7 %! and E[Zy 5] < 2kHIn22-08k < ok+1p=02 for k' > 3. Hence by
Markov’s inequality, (i¢) and (#i7) hold with probability at least 1 — o(1).
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Finally, we show (v). For all v € A, since dy(v) > (7) — (".™) — pn*, we see that, for
1<i<n'landveR;,NA,

E [dg, (v)] > <Z> 09k _ <n ;m) =09k _ ppky ~0.9k

n0-1 n01 _ mp—09
() () e

By (iv), with probability at least 1 — O(nl‘l)e_Q("o'oz), forall i = 1,...,n", we have
|R; N B| = (1+ o(n=%%4))n%!, Thus for all v € AN R;,

|Rl N B|> B (|Rl N B| — mn~09

E [dg,(v)] > ( L L ) — 2p|R; N B|*.

We wish to apply Lemma 6.2 with I' = B, T', = R;, and S C (¥). We define

1

1
A = 5 Z E[Ibllbz} < §‘Rz ﬂBPk_l.
b1,ba CB,by#ba,by Nba#D
By Lemma 6.2,
Ri NnB Rz N Bl — —0.9
P <dRi(v) - <| k |) - <| o ) ~ 3| mB|’“)

<P (dg,(v) < E[dg, (v)] — p|R; N B|¥)

2 . B 2k
<exp | — p°|Ri N B|
2(1%:0B 4 2|R; N B|2k—1

<exp(—Q(n°h)).

Therefore, with probability at least 1 — O(nl'l)e’ﬂ("g'l), (v) holds.
By applying union bound, (i) — (vi) all hold with probability 1 —o(1). O

Now we use random subgraphs and fractional matchings to perform a second round of
randomization to find a sparse subgraph in a hypergraph that is not e-close to H(k, n).

Lemma 6.4. Let k > 3 be an integer, 0 < ¢ < p < € < 1 be reals, n € kZ sufficiently
large, and let t be an integer with n/(3k*) < t < (1 — ¢)n/k. Let H is a (1,k)-partite
(k 4+ 1)-graph with partition classes A, B such that k|A| = |B| = n. Let A1 and A,
be a partition of A such that |A1| = t and |A2| = n/k — t. Suppose that dg(x) >
(1) = (") — pnF for all x € Ay and dy(z) = () for all x € As. If H is not e-
close to Hi(k,n), then there exists a spanning subgraph H' of H such that the following
conditions hold:
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(1) For all z € V(H'), with at most n®9% exceptions, dy:(z) = (1 £n=001)n0-2,
(2) Forallz € V(H'), dy/ (x) < 2n%2.
(3) For any two distinct x,y € V(H'), dg({z,y}) < n®19.

Proof. Let A3 C A and Ay C B with |A;| = n%% for i = 3,4. Let Ry,...,R,11 be
defined as in Lemma 6.3. By Lemma 6.3 (iv), we have, with probability 1 — o(1), for all
i=1,...,n"1,

IR N A| = (1/k 4+ o(n™%))n! and |R; N B| = (1 4 o(n~%4))n"1.
By Lemma 6.3 (vi), with probability 1 — o(1), we have
RN Ay = (t/n+o(n " ))n’ and |R; N Ay| = (1/k —t/n + o(n™°0%))n"t,

By Lemma 6.3 (v), with probability 1 — o(1), we have for 1 <i < n!*! and z € AN RY,

R;NB R,NB|—(t—1)n=9?
o) > () < (B OE ) i

By (iv) and (vi) of Lemma 6.3, we may choose I; C R; N (As U Ay) such that R; \ I;
is balanced and |R;| = (1 — o(1))|R;|, where R, = R; \ I; for i = 1,...,n*!. Let H; =
H[A; U B]. Then, since t > n/(3k?), e(Hy) > n*+1/(6k* - k!).

Since H is not e-close to Hy(k,n), Hy is not e-close to Fy(k,n) (by Observation 2 in
Section 2). Let ag = ¢/(8k), a1 = €/(24k?), az = /(8k?), and a3z < (2* - k! - 30k) L. By
applying Lemma 5.1 to Hy,ag, a1, as,as, we see that Hy is (F, ag)-dense, where

F={UCV(H):|[UNAi>({t/n—a)n, UNB|>(1—-t/n—az)n}.

Now we apply Lemma 6.1 to Hy with [ = (3k3k!)~™%, ay = t/n—ay, as = 1 —t/n—as,
and € = ag. Therefore, with probability at least 1 — no(l)e*Q("o‘l), for any independent
set S of R, [SNR.NA;| < (t/n—ai+o0(1))n%t or [SNR:NB| < (1—t/n—az+o(1))nL.
By definition, for x € R} N Ay, dg,(v) = (“Z“).

By applying Lemma 5.3 to each H[R!], we see that each H[R,

; ’] contains a fractional

perfect matching w;. Let H* = U?:l'll R;. We select a generalized binomial subgraph H’
of H* by letting V(H') = V(H) and independently choosing edge e from E(H*), with
probability w;, (e) if e € R} . (By Lemma 6.3 (i), for each e € E(H*), i. is uniquely
defined.)

Note that since w; is a fractional perfect matching of H[R!] for 1 < i < n!
Y espwile) = 1 for v € R;. By Lemma 6.3 (i) and by Lemma 4.1, with probability
1—0(1), dg (v) = (1020102 for cach vertex v € V(H)— (U, ;) C V(H)—(A3UAy)
and dg:(v) < (1 £ n %002 < 2002 for each vertex v € U™, I;. By Lemma 6.3 (ii),
with probability 1 — o(1), dg'({z,y}) < n%19 for any {z,y} € (V(zH)). Therefore, there
exists a hypergraph H' as desired. 0O

1
’
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To prove Theorem 1.3, we also need the following result which was attributed to
Pippenger [19] (see Theorem 4.7.1 in [4]). An edge cover in a hypergraph H is a set of
edges whose union is V(H).

Theorem 6.5 (Pippenger). For every integer k > 2 and real r > 1 and a > 0, there are
v =vy(k,r,a) > 0 and dy = do(k,r,a) such that for every n and D > dy the following
holds: Every k-uniform hypergraph H = (V,E) on a set V of n vertices in which all
vertices have positive degrees and which satisfies the following conditions:

(1) For all vertices x € V but at most yn of them, dy(x) = (1+£v)D;
(2) Forallz €V, dy(xz) <rD;
(3) For any two distinct z,y € V, dg({z,y}) < yD;

contains an edge cover of at most (1 + a)(n/k) edges.

Proof of Theorem 1.3. By Theorem 1.2, we may assume that 2kt < n < 3k%t. Let
0<exk % < 1 be sufficiently small and ¢ > ty(k) be sufficiently large. By Observation 1,
it suffices to show F'(k,n) has a matching of size ¢t. Applying Lemma 3.2 to Ft(k,n)
with ¢ = 1/3, we may assume that F*(k,n) is not e-close to F;(k,n). That is, H!(k,n)
is not e-close to H.(k,n) by Observation 2.

Now we apply Lemma 4.2 to H'(k,n) with ( = 1/3. Thus there exists some constant
0 < ¢ < € such that n—ken > 2kt and H!(k, n) contains an absorbing matching M; with
my = |Mj| < en and for any balanced subset S of vertices with |S| < (k+1)c!-5n/(4k),
Hi(k,n)[V(M;) U S] has a perfect matching. Let H := H!(k,n) — V(M) and ny :=
n—km;y.

Next, we see that H is not (¢/2)-close to Hi(k,n — kmq). For, suppose otherwise.
Then

|E(He(k,n)) \ E(H' (k,n))]

< |B(Ha(kn — kma)) — E(H)] + |e € B(H,(k,n) - e N V(ML) £ 0
< (e/2)|E(Hi(k,n — kma))| + (k + 1)en - n*

< | B(Hu (k).

This is a contradiction as H'(k,n) is not e-close to H(k,n).
Since ny > n — ken > 2kt, by Lemma 6.4 H has a spanning subgraph H; such that

(1) For all vertices 2 € V/(H;) but at most n9-*% of them, dg, (x) = (1 £n7%")nl?,
(2) For all x € V(Hy), dp, (z) < 2n8%;
(3) For any two distinct =,y € V(H1), dg, ({z,y}) < nd-19.

Hence by applying Lemma 6.5 to H; with 0 < a < ¢!'®, H; contains an edge cover
of at most (1 4+ a)((n1/k + n1)/(k + 1)) edges. Thus, at most a(ni/k + ny) vertices
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are each covered by more than one edge in the cover. Hence, after removing at most
a(ny/k + ny) edges from the edge cover, we obtain a matching My covering all but at
most (k+ 1)a(ni/k + ny1) < 3kany < 3kan vertices.

Now we may choose a balanced subset S of V/(H)\ V (Mz) such that |V (H)\ (V(M2)U
S)| < k. Since |S| < 3kan < (k + 1)ct®n, Hi(k,n)[V(M;) U S] has a perfect matching,
say Ms. Thus, M U M3 is matching of H®(k,n) covering all but at most k vertices, and,
hence, has size |n/k|. Therefore, by Lemma 2.1, F'(k,n) has a matching of size . O
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