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Abstract

Hakimi, Schmeichel, and Thomassen [J. Graph Theory, 1979 ] conjectured that every
4-connected planar triangulation G on n vertices has at least 2(n�2)(n�4) Hamiltonian
cycles, with equality if and only if G is a double wheel. In this paper, we show that
every 4-connected planar triangulation on n vertices has ⌦(n2) Hamiltonian cycles.
Moreover, we show that if G is a 4-connected planar triangulation on n vertices and

the distance between any two vertices of degree 4 in G is at least 3, then G has 2⌦(n1/4)

Hamiltonian cycles.

1 Introduction

A graph G is called Hamiltonian if it contains a Hamiltonian cycle, i.e., a cycle that contains
every vertex in G. A k-vertex cycle (or a k-cycle) C in a connected graph G is said to be
separating if the graph obtained from G by deleting C is not connected. A separating
3-cycle is also called a separating triangle. A graph G is k-connected if it has more than k
vertices and if it remains connected when fewer than k vertices are removed. The distance

between two vertices in a graph is the number of edges in a shortest path in the graph
connecting them. A planar triangulation is an edge-maximal plane graph with at least
three vertices, i.e., every face is bounded by a triangle. By Euler’s theorem, an n-vertex
planar triangulation has exactly 3n� 6 edges.

Whitney [20] showed in 1931 that every planar triangulation without separating trian-
gles is Hamiltonian. In 1956, Tutte [19] extended Whitney’s result by showing that every
4-connected planar graph is Hamiltonian. Thomassen [18] further strengthened Tutte’s
result in 1983 by showing that every 4-connected planar graph is Hamiltonian connected,
i.e., any two distinct vertices are connected by a Hamiltonian path. These results have
been extended to graphs on other surfaces, see e.g., [5, 15–17]. It is possible that results
there can be combined with the methods in this paper to obtain similar counting results
on Hamiltonian cycles in certain triangulations on other surfaces.
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It is a natural problem to consider the number of cycles in a graph, which also has
applications in coding theory according to [2–4]. The problem of determining the number
of Hamiltonian cycles in 4-connected planar triangulations was initated by Hakimi, Schme-
ichel, and Thomassen [10] who showed in 1979 that every 4-connected planar triangulation
on n vertices has at least n/ log2 n Hamiltonian cycles. In the same paper, they conjectured
a lower bound which is quadratic in the number of vertices and realized by the double wheel.
A double wheel is a planar triangulation obtained from a cycle by adding two vertices and
all edges from these two vertices to the vertices of the cycle.

Conjecture 1.1 (Hakimi, Schmeichel, and Thomassen [10]). If G is a 4-connected planar

triangulation on n vertices, then G has at least 2(n � 2)(n � 4) Hamiltonian cycles, with

equality if and only if G is a double wheel.

It was not until recently that Brinkmann, Sou↵riau, and Van Cleemput [7] gave the first
linear lower bound of 12

5 (n�2) for n-vertex 4-connected planar triangulations. Subsequently,
Brinkmann and Van Cleemput [8] proved linear lower bounds for 4-connected plane graphs
and plane graphs with at most one 3-cut and su�ciently many edges. Since then, there has
been more progress on this problem. Lo [13] showed that every n-vertex 4-connected planar
triangulation with O(log n) separating 4-cycles has ⌦((n/ log n)2) Hamiltonian cycles. The
first and third author [12] further showed that every n-vertex 4-connected planar triangu-
lation with O(n/ log2 n) separating 4-cycles has ⌦(n2) Hamiltonian cycles. Very recently,
Lo and Qian [14] showed that every n-vertex 4-connected planar triangulation with O(n)
separating 4-cycles has 2⌦(n) Hamiltonian cycles.

Thus Conjecture 1.1 holds for large graphs with O(n) separating 4-cycles. In this paper,
we remove the assumption on separating 4-cycles and settle Conjecture 1.1 asymptotically.

Theorem 1.2. If G is a 4-connected planar triangulation on n vertices, then G has at least

cn2
Hamiltonian cycles, where c = (12⇥ 90⇥ 541⇥ 301)�2/2.

The number of Hamiltonian cycles in a planar triangulation G can be significantly
larger if one increases the connectivity or the minimum degree of G. Alahmadi, Aldred,
and Thomassen [1] showed that every 5-connected n-vertex planar triangulation has 2⌦(n)

Hamiltonian cycles, improving the earlier bound 2⌦(n1/4) by Böhme, Harant, and Tkáč [6].
Note that the more recent result of Lo and Qian [14] is stronger, but the technique used in [1]
played an important role in [14]. The first and third author [12] weakened the assumption in
the Böhme-Harant-Tkáč result by replacing the 5-connectedness condition with “minimum
degree at least 5”. In this paper, we observe that the relative locations of degree 4 vertices
play an essential role for 4-connected planar triangulations to have exponentially many
Hamiltonian cycles.

Theorem 1.3. There exists a constant c > 0 such that for any 4-connected planar trian-

gulation G on n vertices in which the distance between any two vertices of degree 4 is at

least three, G has at least 2cn
1/4

Hamiltonian cycles.

In Section 2, we discuss an idea similar to the key idea in [1] for finding an edge set F in
a 4-connected planar triangulation G such that removing F from G still gives a 4-connected
graph. We collect several results on the number of Hamiltonian paths between two given
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vertices in planar graphs. We also cite some known results on “Tutte paths” and “Tutte
cycles” in planar graphs. Such results will be used to find a Hamiltonian cycle through
specific edges in a planar graph.

In Section 3, we prove Theorem 1.2. We first show that every n-vertex 4-connected
planar triangulation G has ⌦(n) Hamiltonian cycles through two specified edges in any
given triangle. Moreover, if G does not contain two adjacent vertices of degree 4, then
G has ⌦(n2) Hamiltonian cycles. We then use these results and apply induction on n to
complete the proof of Theorem 1.2.

In Section 4, we consider 4-connected planar triangulations G in which any two vertices
of degree 4 have distance at least three. We show that either G has a large independent set
with nice properties, or G has many separating 4-cycles with pairwise disjoint interiors, or
G has many “nested” separating 4-cycles. In all cases, we can find the desired number of
Hamiltonian cycles in G.

We conclude this section with some terminology and notation. For any positive integer
k, let [k] = {1, 2, . . . , k}.

Let G and H be graphs. We use G[H and G\H to denote the union and intersection
of G and H, respectively. For any S ✓ V (G), we use G[S] to denote the subgraph of G
induced by S, and let G � S = G[V (G)\S]. A set S ✓ V (G) is a cut in G if G � S has
more components than G, and if |S| = k then S is a cut of size k or k-cut for short. For
a subgraph T of G, we often write G � T for G � V (T ) and write G[T ] for G[V (T )]. A
path (respectively, cycle) is often represented as a sequence (respectively, cyclic sequence)
of vertices, with consecutive vertices being adjacent. Given a path P and distinct vertices
x, y 2 V (P ), we use xPy to denote the subpath of P between x and y.

Let G be a graph. For v 2 V (G), we use NG(v) (respectively, NG[v]) to denote the
neighborhood (respectively, closed neighborhood) of v, and use dG(v) to denote |NG(v)|.
For distinct vertices u, v of G, we use dG(u, v) to denote the distance between u and v, and
if u and v are adjacent in G, we use uv to denote the edge of G between u and v. (If there
is no confusion we omit the reference to G.) If H is a subgraph of G, we write H ✓ G.
For any set R consisting of vertices of G and 2-element subsets of V (G), we use H + R
(respectively, H �R) to denote the graph with vertex set V (H)[ (R\V (G)) (respectively,
V (H)\(R \ V (G))) and edge set E(H) [ (R\V (G)) (respectively, E(H)\(R\V (G))). If
R = {{x, y}} (respectively, R = {v}), we write H + xy (respectively, H + v) instead of
H +R, and write H � xy (respectively, H � v) instead of H �R.

Let G be a plane graph. Two elements of V (G)[E(G) are cofacial if they are incident
with a common face of G. The outer walk of G consists of vertices and edges of G incident
with the infinite face of G. If the outer walk is a cycle in G, we call it outer cycle instead.
If all vertices of G are incident with its infinite face, then we say that G is an outer planar

graph. For a cycle C in G, we use C to denote the subgraph of G consisting of all vertices
and edges of G contained in the closed disc in the plane bounded by C. The interior of C
is then defined as the subgraph C � C. For any distinct vertices u, v 2 V (C), we use uCv
to denote the subpath of C from u to v in clockwise order.
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2 Preliminaries

In this section, we state and prove a number of lemmas needed for the proofs of Theorems 1.2
and 1.3.

A near triangulation is a plane graph in which all faces except possibly its infinite
face are bounded by triangles. The first and third author [12] considered the number of
Hamiltonian paths between two given vertices in the outer cycle of a near triangulation.

Lemma 2.1 (Liu and Yu [12]). Let G be a near triangulation with outer cycle C := uvwxu
and assume that G 6= C + vx and G has no separating triangles. Then one of the following

holds:

(i) G� {v, x} has at least two Hamiltonian paths between u and w.

(ii) G� {v, x} is a path between u and w and, hence, G� {v, x} is outer planar.

Lemma 2.2 (Liu and Yu [12]). Let G be a near triangulation with outer cycle C := uvwxu
and assume that G has no separating triangles. Then one of the following holds:

(i) G� {w, x} has at least two Hamiltonian paths between u and v.

(ii) G� {w, x} is an outer planar near triangulation.

We need an observation about degree 4 vertices and the number of Hamiltonian paths
in a near triangulation.

Lemma 2.3. Let G be a near triangulation with outer cycle C := uvwxu and assume that

|V (G)| � 6 and G has no separating triangles. Suppose there exist distinct a, b 2 V (C)
such that G � (V (C)\{a, b}) has at most one Hamiltonian path between a and b. Then G
has two adjacent vertices of degree 4 that are contained in V (G)\V (C).

Proof. By symmetry, we only need to consider two cases: {a, b} = {u,w} or {a, b} = {u, v}.
If {a, b} = {u,w} and G � (V (C)\{a, b}) = G � {v, x} has at most one Hamiltonian path
between u and w, then by Lemma 2.1, G�{v, x} is a path. Hence, by planarity, all vertices
in V (G)\V (C) have degree 4 in G; so the assertion holds as |V (G)\V (C)| � 2.

Now suppose {a, b} = {u, v} and there exists at most one Hamiltonian path between
u and v in G � (V (C)\{a, b}) = G � {w, x}. Then by Lemma 2.2, G � {w, x} is an outer
planar near triangulation. Let D = u1u2 . . . utu1 denote the outer cycle of G� {w, x} such
that u1 = u and ut = v. Note that t � 4 and that ui is adjacent to w or x for every i 2 [t].
Let us, where s 2 [t], be the common neighbor of w and x in V (D). (The existence of us
is guaranteed by the fact that G is a near triangulation with outer cycle uvwxu.) Since G
has no separating triangles, 2  s  t�1 and every edge of (G�{w, x})�E(D) is incident
with both paths u1 . . . us�1 and us+1 . . . ut. It follows that dG(us) = 4. Moreover, s � 3
and dG(us�1) = 4, or s  t � 2 and dG(us+1) = 4, as |V (G)\V (C)| � 2 and G is a near
triangulation. This completes the proof of the lemma.

By Lemma 2.3, it is natural to expect that 4-connected planar triangulations without
too many vertices of degree 4 should have many Hamiltonian cycles. We now prove a
technical lemma, which will be used in the proof of Lemma 4.2 to produce two Hamiltonian
paths in a near triangulation.
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Lemma 2.4. Let G be a near triangulation with outer cycle C, and let x1, w1, w2, x2 2 V (C)
be distinct and occur on C in clockwise order such that x1x2, w1w2 2 E(C) and each edge

of G � E(C) is incident with both x1Cw1 and w2Cx2. Let NG(x1) \ NG(x2) = {r} and

NG(w1)\NG(w2) = {y}, and assume r /2 {y, w1, w2} and y /2 {r, x1, x2}. Suppose any two

degree 3 vertices of G contained in V (G)\{x1, x2, w1, w2} have distance at least three in G.

Then G� {x1, x2, w1, w2} has a Hamiltonian path between r and y.

Proof. Note that |V (G)| � 6 as r /2 {y, w1, w2} and y /2 {r, x1, x2}. We apply induction on
|V (G)|. Without loss of generality, we may assume r 2 V (x1Cw1). Then dG(x1) = 2.

Suppose |V (G)| = 6. If ry 2 E(G) then we are done. So assume ry /2 E(G). Then
y 2 V (w2Cx2), x2w1 2 E(G), and dG(r) = dG(y) = 3. This gives a contradiction since
dG(r, y) = 2.

Now assume |V (G)| > 6. We have two cases: y 2 V (x1Cw1) or y 2 V (w2Cx2).

Case 1. y 2 V (x1Cw1). Then dG(w1) = 2.
Consider G1 = G � w1. Let y0 denote the unique vertex in NG1(y) \ NG1(w2). If

y0 /2 {r, x2} then, by induction, G1 � {x1, x2, y, w2} has a Hamiltonian path H1 between
r and y0; so H1 + y0y gives a Hamiltonian path between r and y in G � {x1, x2, w1, w2}.
Hence, we may assume y0 2 {r, x2}.

If y0 = r then ry, rw2 2 E(G) and dG(y) = 3. Since |V (G)| � 7, |V (w2Cx2)| � 3. Now,
y and a degree 3 vertex of G contained in V (w2Cx2)\{x2, w2} are distance 2 apart in G, a
contradiction. So y0 = x2. Then x2y, x2w2 2 E(G). Hence, since each edge of G�E(C) is
incident with both x1Cw1 and x2Cw2, V (rCy) ✓ NG(x2), and all vertices in V (rCy � y)
have degree 3 in G. Since |V (G)| � 7 and x2w2 2 E(G), rCy � y contains two adjacent
vertices of degree 3 in G, a contradiction.

Case 2. y 2 V (w2Cx2). Then dG(w2) = 2.
Consider G2 = G� w2. Let y0 denote the unique vertex in NG2(y) \NG2(w1). Similar

to Case 1, if y0 /2 {r, x2} then, by induction, G2 � {x1, x2, y, w1} has a Hamiltonian path
H2 between r and y0. Hence, H2 + y0y is a Hamiltonian path between r and y in G �
{x1, x2, w1, w2}.

If y0 = r, then let x02 be the neighbor of x2 on w2Cx2; now rx02 [ yCx02 is a Hamiltonian
path between r and y in G� {x1, x2, w1, w2}. If y0 = x2, then x2w1, x2y 2 E(G). It follows
that dG(r) = dG(y) = 3, which gives a contradiction since dG(r, y) = 2.

Next, we discuss results related to the counting idea from [1]. Let S be an independent
set in a 4-connected planar triangulation G and F ✓ E(G) consist of |S| edges incident
with S. Alahmadi et al. [1] observed that G � F is not 4-connected only if some vertex
in S is contained in a separating 4-cycle, or some vertex in S is adjacent to three vertices
in a separating 4-cycle, or two vertices in S are contained in a separating 5-cycle, or three
vertices in S occur in some diamond-6-cycle. A diamond-6-cycle is a graph isomorphic to
the graph shown on the left in Figure 1, in which the vertices of degree 3 are called crucial

vertices. (A diamond-4-cycle is a graph isomorphic to the graph shown on the right in
Figure 1, where the two degree 3 vertices not adjacent to the degree 2 vertex are its crucial
vertices.) We say that S saturates a 4-cycle or 5-cycle C in G if |S \ V (C)| = 2, and S
saturates a diamond-6-cycle D in G if S contains three crucial vertices of D.
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Figure 1: diamond-6-cycle (left); diamond-4-cycle (right); solid vertices represent the crucial
vertices.

For a 5-connected planar triangulation G, Alahmadi et al. [1] showed that there exists
an independent set S consisting of ⌦(n) vertices of degree at most 6 in G, such that
G � F is 4-connected for each set F consisting of |S| edges of G that are incident with
S. Then it follows from a simple calculation that G has 2⌦(n) Hamiltonian cycles. Such
large independent sets need not exist in 4-connected planar triangulations because of the
existence of vertices of degree 4 or separating 4-cycles.

Next, we prove two lemmas that will help us deal with vertices of degree 4 and separating
4-cycles. Let G be a plane graph. Suppose u is a vertex of degree at most 6 in G. Define
the link of u in G, denoted by Au, as

Au =

(
E(G[N(u)]), if d(u) = 4,

{e 2 E(G) : e is incident with u and G� e is 4-connected}, if d(u) 2 {5, 6}.

Lemma 2.5. Let G be a 4-connected planar triangulation. Suppose S is an independent

set of vertices of degree at most 6 in G such that, for any u 2 S with d(u) 2 {5, 6}, no

degree 4 neighbors of u are adjacent in G. Then the following statements hold:

(i) For u 2 S with d(u) 2 {5, 6}, {v 2 N(u) : uv /2 Au} is independent in G and, hence,

|Au| � dd(u)/2e.

(ii) If S saturates no 4-cycle in G, then, for any distinct u1, u2 2 S, E(G[N [u1]]) \
E(G[N [u2]]) = ;.

Proof. Suppose u 2 S and d(u) 2 {5, 6}, and suppose there exist two edges e1 = uv1, e2 =
uv2 2 E(G)\Au with v1v2 2 E(G). Let v0, v3 2 N(u)\{v1, v2} be the neighbors of v1, v2
in G[N(u)], respectively. Since G � e1 is not 4-connected, there exists a vertex z 2 V (G)
such that {z, v0, v2} is a 3-cut in G � e1. Since G is a planar triangulation, we have
zv0, zv2 2 E(G). Since G � e2 is not 4-connected, we see from planarity that {z, v1, v3} is
a 3-cut in G � e2. Thus, zv1, zv3 2 E(G) as G is a planar triangulation. Since G has no
separating triangles, we have d(v1) = d(v2) = 4, a contradiction. Thus, (i) holds.

For (ii), suppose S saturates no 4-cycle in G, and let u1, u2 2 S be distinct. Suppose
there exists e 2 E(G[N [u1]]) \ E(G[N [u2]]). Since S is an independent set, it follows
that u1, u2, and the two vertices incident with e form a 4-cycle in G, contradicting the
assumption that S saturates no 4-cycle in G. Hence E(G[N [u1]]) \ E(G[N [u2]]) = ;.

The following lemma is derived by using an idea similar to one in [1].
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Lemma 2.6. Let G be a 4-connected planar triangulation and S be an independent set of

vertices of degree at most 6 in G. Suppose that Au 6= ; for all u 2 S, that S saturates no

4-cycle, or 5-cycle, or diamond-6-cycle in G, and that no degree 4 vertex of G in S has a

neighbor of degree 4 in G. Let F ✓
S

u2S Au with |F \Au|  1 for all u 2 S. Then G� F
is 4-connected.

Proof. Suppose there exists some F ✓
S

u2S Au such that |F \ Au|  1 for all u 2 S, and
G� F is not 4-connected. Let K be a minimum cut of G� F ; so |K|  3. Let G1, G2 be
subgraphs of G � F such that G � F = G1 [ G2, V (G1 \ G2) = K,E(G1 \ G2) = ;, and
V (Gi) 6= K for i = 1, 2. Let F 0 be the set of the edges of G between G1 �K and G2 �K.
Then F 0 ✓ F and F 0 6= ; (as G�K is connected).

Observation 1. Since G is a 4-connected planar triangulation, for each e 2 F 0
, the two

vertices incident with e have exactly two common neighbors, which must be contained in K.

Observation 2. For any two edges e1, e2 2 F 0
, there do not exist distinct vertices u, v 2 K

such that all vertices incident with e1 or e2 are contained in NG(u)\NG(v). For, otherwise,
G[NG[u] [ NG[v]] contains a 4-cycle with two vertices in S, contradicting the assumption

that S saturates no 4-cycle in G.

By Observation 1, |K| � 2. By Observations 1 and 2, |F 0| 
�|K|

2

�
. Hence, 1  |F 0|  3.

Moreover, |K| = 3 as, otherwise, |K| = 2 and |F 0| 
�2
2

�
= 1, contradicting the assumption

that G is 4-connected. By the definition of Au, if e 2 Au \ F 0 and dG(u) = 4, then u 2 K;
if e 2 Au \ F 0 and dG(u) 2 {5, 6}, then e is incident with u and u /2 K.

Suppose |F 0| = 1 and let e 2 F 0 with e 2 Au for some u 2 S. If dG(u) = 5 or 6, then u is
incident with e and G�e is 4-connected by the definition of Au, contradicting the fact that
K is a 3-cut of G�F 0 = G�e. Thus dG(u) = 4 and u 2 K. Let e = w1w2 and K = {u, v, w}
such that w1 2 V (G1)\V (G2), w2 2 V (G2)\V (G1), and NG(w1)\NG(w2) = {u, v}. Again
since G is a planar triangulation and K is a 3-cut in G� e, we have wu,wv 2 E(G). Hence
C1 = uw1vwu and C2 = uw2vwu are 4-cycles in G. Let x 2 NG(u)\{w,w1, w2}. Then
G[NG(u)] = xw2w1wx or G[NG(u)] = xw1w2wx. In the former case, V (G1)\K = {w1} as,
otherwise, {w1, w, v} would be a 3-cut in G; so w1 and u are two adjacent vertices of degree
4 in G, a contradiction. In the latter case, V (G2)\K = {w2} as, otherwise, {w2, w, v} would
be a 3-cut in G; so w2 and u are two adjacent vertices of degree 4 in G, a contradiction.

If |F 0| = 2 and let F 0 = {e1, e2}, then by Observations 1 and 2, each vertex in K is
adjacent to both vertices incident with some edge in F 0, and exactly one vertex of K is
adjacent to all vertices incident with e1 or e2. Hence, some 5-cycle in the subgraph of G
induced by K and the vertices incident with F 0 contains two vertices from S, contradicting
the assumption that S saturates no 5-cycle in G.

Hence, |F 0| = 3, and let e1, e2, e3 2 F 0 where ei 2 Aui and ui 2 S for i = 1, 2, 3. Since S
is independent and saturates no 4-cycle or 5-cycle, F 0 is a matching in G. If two vertices in
{u1, u2, u3} have degree 4 in G, then these two vertices are contained in K and in a 4-cycle
in G, a contradiction. If exactly one vertex in {u1, u2, u3}, say u1, has degree 4 in G, then
u1 2 K and u1 must be adjacent to a vertex in {u2, u3}, contradicting the assumption that
S is independent. So u1, u2, and u3 all have degree 5 or 6 in G. But then by Observations
1 and 2, we see that the subgraph of G induced by K and the vertices of G incident with
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F 0 contains a diamond-6-cycle in which u1, u2, u3 are three crucial vertices, contradicting
the assumption that S saturates no diamond-6-cycle.

We also need the following two lemmas from Lo [13] and Alahmadi et al. [1], that will
help us to find an independent set saturating no 4-cycle, or 5-cycle, or diamond-6-cycle.

Lemma 2.7 (Lo [13]). Let G be a 4-connected planar triangulation and let S be an in-

dependent set of vertices of degree at most 6 in G, such that S saturates no 4-cycle in G.

Then there exists a subset S0 ✓ S of size at least |S|/541 such that S0
saturates no 5-cycle

in G.

Lemma 2.8 (Alahmadi, Aldred, and Thomassen [1]; Lo [13]). Let G be a 4-connected
planar triangulation and let S be an independent set of vertices of degree at most 6 in G,

such that S saturates no 4-cycle in G. Then there exists a subset S0 ✓ S of size at least

|S|/301 such that S0
saturates no diamond-6-cycle in G.

We need another result from Lo [13], which shows that any 4-connected planar trian-
gulation either has a large independent set saturating no 4-cycle, or contains two vertices
with many common neighbors.

Lemma 2.9 (Lo [13]). Let G be a 4-connected planar triangulation. Let S be an independent

set of vertices of degree at most 6 in G, and S0
be a maximal subset of S such that S0

saturates no 4-cycle in G. Then there exist distinct vertices v, x 2 V (G) such that |(N(v)\
N(x)) \ S| � |S|/(9|S0|).

The following result can be easily deduced from the previous three lemmas.

Lemma 2.10. Let G be a 4-connected planar triangulation on n vertices. Let I be an

independent set of vertices of degree at most 6 in G. For any positive integer t, one of the

following statements holds:

(i) There exist distinct vertices v, x 2 V (G) such that |N(v) \N(x) \ I| � t.

(ii) There is a subset S ✓ I, such that |S| > |I|/(t ⇥ 9 ⇥ 541 ⇥ 301) and S saturates no

4-cycle, or 5-cycle, or diamond-6-cycle in G.

Proof. Let S1 be a maximal subset of I such that S1 saturates no 4-cycle in G. If |S1| 
|I|/(t⇥9), then by Lemma 2.9 there are distinct vertices v, x in G such that |N(v)\N(x)\
I| � |I|/(9|S1|) � |I|/(9|I|/(t⇥ 9)) = t; so (i) holds.

Now suppose |S1| > |I|/(t⇥ 9). By Lemmas 2.7 and 2.8, there exists S ✓ S1 such that
S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G, and

|S| � |S1|/(541⇥ 301) > |I|/(t⇥ 9⇥ 541⇥ 301);

thus (ii) holds.

We conclude this section by stating two results on Tutte paths and Tutte cycles. Let
G be a graph and H ✓ G. An H-bridge of G is a subgraph of G induced by either an
edge in E(G)\E(H) with both incident vertices in V (H), or all edges in G � H with at
least one incident vertex in a single component of G � H. For an H-bridge B of G, the
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vertices in V (B \H) are the attachments of B on H. A path (or cycle) P in a graph G is
called a Tutte path (or Tutte cycle) if every P -bridge of G has at most three attachments
on P . If, in addition, every P -bridge of G containing an edge of some subgraph C of G has
at most two attachments on P , then P is called a C-Tutte path (or C-Tutte cycle) in G.
Thomassen [18] proved the following result on Tutte paths in 2-connected planar graphs.

Lemma 2.11 (Thomassen [18]). Let G be a 2-connected plane graph and C be its outer

cycle, and let x 2 V (C), y 2 V (G)\{x}, and e 2 E(C). Then G has a C-Tutte path P
between x and y such that e 2 E(P ).

Note that Lemma 2.11 implies that every 4-connected planar graph is Hamiltonian
connected and has a Hamiltonian cycle through two given edges that are cofacial.

A circuit graph is an ordered pair (G,C) consisting of a 2-connected plane graph G and
a facial cycle C of G such that, for any 2-cut U of G, each component of G � U contains
a vertex of C. Jackson and Yu [11] showed that every circuit graph (G,C) has a C-Tutte
cycle through a given edge of C and two other vertices.

Lemma 2.12 (Jackson and Yu [11]). Let (G,C) be a circuit graph, and let r, z be vertices of

G and e 2 E(C). Then G contains a C-Tutte cycle H such that e 2 E(H) and r, z 2 V (H).

3 Quadratic bound

We start with a technical lemma for finding distinct Hamiltonian cycles. Recall the link
Au for a vertex u of degree at most 6 in a plane graph.

Lemma 3.1. Let G be a 4-connected plane graph and e 2 E(G). Suppose u is a vertex of

degree at most 6 in G such that G[N(u)] is a cycle and e /2 E(G[N [u]]). Moreover, assume

that if d(u) 2 {5, 6} then {v 2 N(u) : uv /2 Au} is an independent set in G, and that if

d(u) = 4 then there exist two nonadjacent neighbors of u each having degree at least 5 in

G. Then the following statements hold.

(i) G has a Hamiltonian cycle through e as well as an edge in Au.

(ii) For any y 2 V (G)\{u} cofacial with e but not incident with e, G�y has a Hamiltonian

cycle through e and an edge in Au not incident with y.

Proof. Let y 2 V (G)\{u} be cofacial with e but not incident with e. Consider a drawing
of G in which y is contained in the infinite face of G� y. Let C denote the facial cycle of G
containing e and y, and C 0 denote the outer cycle of G� y. Then e 2 E(C 0) as y is cofacial
with e and not incident with e. Since G is 4-connected, both (G,C) and (G � y, C 0) are
circuit graphs.

Case 1. dG(u) 2 {5, 6} and dG(u)� |Au|  1.
By Lemma 2.12, G has a C-Tutte cycle D through e, and G�y has a C 0-Tutte cycle D1

through e. Since G is 4-connected, D is a Hamiltonian cycle in G, and D1 is a Hamiltonian
cycle in G� y. Since dG(u)� |Au|  1, both D and D1 contain some edge in Au. Thus, (i)
and (ii) hold.
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Case 2. dG(u) 2 {5, 6} and dG(u)� |Au| = 2.
Then let r 2 NG(u) such that ur /2 Au, and let G0 := G� ur.
Let C1 be a facial cycle of G0 containing e. Since G is 4-connected, (G0, C1) is a circuit

graph. By Lemma 2.12, G0 has a C1-Tutte cycle D1 through e, r, and u, which is a
Hamiltonian cycle in G containing e. Since dG(u)� |Au| = 2 and ur /2 Au, D1 must contain
an edge in Au. Hence, (i) holds.

Let C2 be the outer cycle of G0 � y. Since G is 4-connected, (G0 � y, C2) is a circuit
graph. By Lemma 2.12, G0 � y has a C2-Tutte cycle D2 through e and every vertex in
{r, u}\{y}. Now D2 is a Hamiltonian cycle in G � y containing e as G is 4-connected.
Moreover, D2 contains an edge in Au as dG(u)� |Au| = 2 and ur /2 Au. Hence, (ii) holds.

Case 3. dG(u) 2 {5, 6} and dG(u)� |Au| � 3.
Since {v 2 NG(u) : uv /2 Au} is an independent set in G, |Au| � ddG(u)/2e = 3 (as

dG(u) 2 {5, 6}). Hence, dG(u) = 6 and |Au| = 3 (as dG(u)� |Au| � 3). Let r1, r2 2 NG(u)
such that ur1, ur2 /2 Au, and let G0 = G� {ur1, ur2}. Note that r1r2 /2 E(G).

Let C1 be a facial cycle of G0 containing e. Then (G0, C1) is a circuit graph as G is
4-connected and dG(u) = 6. It follows from Lemma 2.12 that G0 has a C1-Tutte cycle D1

through e, r1, and r2. If D1 is a Hamiltonian cycle in G, then (i) holds, since D1 contains
an edge of Au (because dG(u)� |Au| = 3 and ur1, ur2 /2 Au). So suppose V (G)\V (D1) 6= ;.

Then there exists aD1-bridge of G0, say B, such that V (B)\V (D1) 6= ; and V (B\D1) 
3. Observe that u 2 V (B)\V (D1) otherwise, V (B \ D1) is a 3-cut in G, a contradiction.
Since G[NG(u)] is a cycle and r1r2 /2 E(G), V (B) \ V (r1D1r2 � {r1, r2}) 6= ; and V (B) \
V (r2D1r1 � {r1, r2}) 6= ;. Thus, since |V (B) \ V (D1)|  3, we may assume V (B) \
V (r2D1r1 � {r1, r2}) = {z}. Now since dG(u) = 6, {u, z} is a 2-cut in G, or {u} [ (V (B \
D1)\{z}) is a 3-cut in G, a contradiction.

Let C2 be the outer cycle of G0 � y. Since G is 4-connected and dG(u) = 6, (G0 � y, C2)
is a circuit graph. By Lemma 2.12, G0 � y has a C2-Tutte cycle D2 through e and every
vertex in {r1, r2}\{y}. Similarly, we can show that D2 is a Hamiltonian cycle in G � y
containing e as G is 4-connected and D2 is a C2-Tutte cycle. (In particular, note that if
B is a D2-bridge and V (B)\V (D2) contains a neighbor of y, then |V (B) \ V (D2)|  2.)
Moreover, D2 contains an edge in Au as |Au| = 3 and ur1, ur2 /2 Au. Hence, (ii) holds.

Case 4. dG(u) = 4.
Let G[NG(u)] = x1x2x3x4x1. By our assumption on u, two nonadjacent neighbors of u

must each have degree at least 5 in G. Without loss of generality, assume that dG(x2) � 5
and dG(x4) � 5.

We claim that (G�u)+x1x3 or (G�u)+x2x4 is 4-connected. For, suppose (G�u)+x1x3
is not 4-connected, and let S be a 3-cut in (G�u)+x1x3. Then {x1, x3} ✓ S, and S [ {u}
is a 4-cut in G separating x2 and x4. Suppose G1, G2 are the components of G� (S [ {u})
containing x2, x4, respectively. Since dG(x2i) � 5 for i = 1, 2, |V (Gi)| � 2 for i = 1, 2. Let
wi 2 V (Gi)\{x2i} for i = 1, 2. Since G is 4-connected, there exist a path Q0

i
from wi to x1

in (G� (S\{x1}))�x2i and a path Q00
i
from wi to x3 in (G� (S\{x3}))�x2i. Observe that

V (Q0
i
[Q00

i
) ✓ (V (Gi)\{x2i}) [ {x1, x3}. Hence, G� {u, x2, x4} has two internally disjoint

paths between x1 and x3. This implies that (G� u) + x2x4 is 4-connected.
So without loss of generality assume that G⇤ = (G� u) + x1x3 is 4-connected and that

the edge x1x3 is inside the face of G � u bounded by x1x2x3x4x1. Let G0 be the plane
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graph obtained from G⇤ by inserting two vertices r and z into the faces of G⇤ bounded by
x1x2x3x1 and x1x3x4x1, respectively, and then adding edges rxi for i = 1, 2, 3 and zxi for
i = 1, 3, 4.

Since G⇤ is 4-connected, (G0, C) is a circuit graph. By Lemma 2.12, G0 has a C-Tutte
cycle D0 containing e, r, and z, which is a Hamiltonian cycle in G0 as G⇤ is 4-connected.
It is easy to check that D0 can be modified at r and z to give a Hamiltonian cycle in G
containing e and an edge in Au; so (i) holds.

To prove (ii), we apply Lemma 2.12 to the circuit graph (G0 � y, C1), where C1 is the
outer cycle of G0 � y containing e. Then G0 � y has a C1-Tutte cycle D1 through e, r, and
z. (Note that if uy 2 E(G), then {r, z} \ V (C1) 6= ;.) Since G⇤ is 4-connected, D1 is a
Hamiltonian cycle in G0 � y. It is straightforward to check that D1 can be modified to give
a Hamiltonian cycle in G� y containing e and an edge in Au not incident with y.

We now prove that in a 4-connected planar triangulation on n vertices, any two cofacial
edges are contained in ⌦(n) Hamiltonian cycles.

Lemma 3.2. Let n be an integer with n � 4, G be a 4-connected planar triangulation on

n vertices, T be a facial triangle in G, and e1, e2 2 E(T ). Then G contains at least c1n
Hamiltonian cycles through e1 and e2, where c1 = (12⇥ 63⇥ 541⇥ 301)�1

.

Proof. We apply induction on n. Since G is a 4-connected plane graph and e1, e2 are
cofacial in G, it follows from Lemma 2.11 that G has a Hamiltonian cycle through e1 and
e2. So the assertion holds when n  1/c1. Now assume n > 1/c1 and the assertion holds
for 4-connected planar triangulations on fewer than n vertices.

Consider a drawing of G in which T is its outer cycle. Let y 2 V (T ) be incident with
both e1 and e2, and let e3 be the edge in E(T )\{e1, e2}.

We may assume that if there exist two adjacent vertices u1, u2 in G with dG(u1) =
dG(u2) = 4, then u1u2 = e3 or y 2 {u1, u2}. For, suppose there exist u1, u2 2 V (G)\{y}
such that dG(u1) = dG(u2) = 4 and u1u2 6= e3. We contract the edge u1u2 to obtain a
planar triangulation G⇤ on n � 1 vertices. (We retain the edges e1 and e2.) Note that
G⇤ is 4-connected (as n > 1/c1 > 6) and T is a triangle in G⇤. So by induction, G⇤ has
c1(n� 1) Hamiltonian cycles through e1 and e2. Observe that all such cycles in G⇤ can be
modified to give c1(n � 1) distinct Hamiltonian cycles in G through the edges e1, e2, and
u1u2. Therefore, it su�ces to show that G has a Hamiltonian cycle through e1 and e2 but
not u1u2, as c1(n� 1) + 1 � c1n. So let C1 denote the outer cycle of G1 := (G� y)� u1u2.
Observe that e3 2 E(C1) and (G1, C1) is a circuit graph as G is 4-connected and planar.
By Lemma 2.12, G1 contains a C1-Tutte cycle H1 through e3, u1, and u2. Moreover, H1 is
a Hamiltonian cycle in G1 (since G is 4-connected). Therefore, (H1 � e3) + {y, e1, e2} is a
Hamiltonian cycle in G through e1, e2 and avoiding u1u2.

Since G has minimum degree at least 4 and |E(G)| = 3n � 6 by Euler’s formula, we
have

2(3n� 6) = 2|E(G)| =
X

{v2V (G):4d(v)6}

d(v) +
X

{v2V (G):d(v)�7}

d(v)

� 4|{v 2 V (G) : d(v)  6}|+ 7(n� |{v 2 V (G) : d(v)  6}|).
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It follows that |{v 2 V (G) : d(v)  6}| � n/3 + 4. By the Four Color Theorem, there
exists an independent set I of vertices of degree at most 6 in G with I \ V (T ) = ; and
|I| � (n/3 + 4 � 3)/4 � n/12. By Lemma 2.10 (with t = 7), either there exist distinct
v, x 2 V (G) such that |N(v)\N(x)\ I| � 7, or there is a subset S ✓ I such that |S| > c1n
and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G. Moreover, S \ V (T ) = ;
as I \ V (T ) = ;.

Case 1. There exist distinct v, x 2 V (G) such that |N(v) \N(x) \ I| � 7.
Recall that any two adjacent degree 4 vertices of G cannot be contained in V (G)\V (T ).

Since |N(v) \N(x) \ I| � 7, G has at least two separating 4-cycles D1 and D2, such that
|V (Di)| � 6 for i = 1, 2, and D1 �D1 and D2 �D2 are disjoint. Without loss of generality,
we may assume |V (D1 �D1)|  n/2. By our assumptions on G and applying Lemma 2.3,
we see that D1 � (V (D1)\{a, b}) has at least two Hamiltonian paths between a and b for
any distinct a, b 2 V (D1).

Let G⇤
1 be obtained from G by contracting D1 �D1 to a new vertex v1. Observe that

G⇤
1 is a 4-connected planar triangulation with outer cycle T . It follows by induction that

G⇤
1 has at least c1(n� |V (D1�D1)|+1) � c1n/2 Hamiltonian cycles through e1 and e2. For

each such Hamiltonian cycle in G⇤
1, say H⇤, let a1, b1 2 NG

⇤
1
(v1) such that a1v1b1 ✓ H⇤. We

can then form a Hamiltonian cycle in G through e1 and e2 by taking the union of H⇤ � v1
and a Hamiltonian path between a1 and b1 in D1 � (V (D1)\{a1, b1}). Thus G has at least
2(c1n/2) = c1n Hamiltonian cycles through e1 and e2.

Case 2. There is an independent set S of vertices of degree at most 6 in G such that
|S| > c1n, S \ V (T ) = ;, and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G.

If there exist distinct u1, u2 2 S such that |NG(ui) \ V (T )| � 2 for i 2 [2], then u1, u2
are contained in a 4-cycle or a 5-cycle in G, a contradiction. Hence, at most one vertex in
S, say x, is adjacent to two vertices in V (T ). Let S0 = S if x does not exist, and S0 = S\{x}
if x exists. Hence, |S0| � |S|� 1 and for all u 2 S0, |NG(u) \ V (T )|  1.

Next we show that S0 satisfies the conditions of Lemma 2.5 and Lemma 2.6. First
suppose dG(y) > 4. If two degree 4 vertices are adjacent in G, they must be the two
vertices in V (T )\{y}. Hence, for any u 2 S0, since |NG(u)\V (T )|  1, if dG(u) = 4 then u
is not adjacent to a degree 4 vertex in G, and if dG(u) 2 {5, 6} then no degree 4 neighbors
of u are adjacent in G. Now assume that dG(y) = 4. Notice that for any v 2 NG(y),
|NG(v) \ V (T )| = 2, and thus, NG(y) \ S0 = ;. Hence, for any u 2 S0, if dG(u) = 4 then u
is adjacent to no degree 4 vertex in G, and if dG(u) 2 {5, 6} then no degree 4 neighbors of
u are adjacent in G. Therefore, S0 satisfies the conditions of Lemma 2.5 and Lemma 2.6.

Let k := |S0| and S0 = {u1, u2, . . . , uk}. Recall the definition of Aui for i 2 [k],
and let Ai := Aui\{e 2 E(G) : e is incident with y}. By Lemma 2.5, E(G[NG[ui]]) \
E(G[NG[uj ]]) = ; for i 6= j, and if dG(ui) 2 {5, 6} then {v 2 NG(ui) : vui /2 Aui} is
independent in G; so |Aui | � 3 for all ui 2 S0. Hence, |Ai| � 2 for all i 2 [k]. Note that
e3 /2 E(G[NG[ui]]), as S0 \ V (T ) = ; and |NG(ui) \ V (T )|  1. We now find k + 1 > c1n
Hamiltonian cycles H1, . . . , Hk+1 in G, as follows.

Let F0 = ; and X1 := G�F0 = G. Note that e3 /2 E(G[NG[u1]]) and by Lemma 2.5, u1
satisfies the conditions of Lemma 3.1 (with u1, e3, X1 as u, e,G in Lemma 3.1, respectively).
Since y is cofacial with e3 but not incident with e3, it follows from (ii) of Lemma 3.1 that
X1 � y = G � y has a Hamiltonian cycle D1 through e3 and an edge f1 2 A1. Hence,
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H1 = (D1 � e3) + {y, e1, e2} is a Hamiltonian cycle in G through e1, e2, and f1 2 A1. Set
F1 = {f1}.

Suppose for some j 2 [k + 1] (j � 2) we have found an edge set Fj�1 = {f1, . . . , fj�1}
where fi 2 Ai for each i 2 [j � 1], and a Hamiltonian cycle Hl in Xl := G � Fl�1 for
each l 2 [j � 1], such that {e1, e2, fl} ✓ E(Hl) and Fl�1 \ E(Hl) = ;. Consider the graph
Xj := G � Fj�1. By Lemma 2.6, Xj is 4-connected. When j = k + 1, Xk+1 := G � Fk is
4-connected; so by Lemma 2.11, Xk+1 has a Hamiltonian cycle Hk+1 through e1 and e2.
We stop this process and output the desired H1, . . . , Hk+1. Now suppose j  k. Note that
G[NG[uj ]] is a subgraph of Xj (as E(G[NG[uj ]]) \ Aul = ; for any l 2 [j � 1]), and that
e3 2 E(Xj)\E(G[NG[uj ]]). We now show that uj satisfies the conditions of Lemma 3.1
(with uj , e3, Xj as u, e,G in Lemma 3.1, respectively). Since uj 2 S0, Xj � f is 4-connected
for any f 2 Auj (by Lemma 2.6), and the link of uj in Xj is Auj (as G[NG[uj ]] ✓ Xi ✓ G).
Hence, if dXj (uj) = dG(uj) 2 {5, 6} then by Lemma 2.5, {v 2 Nxj (uj) : vuj /2 Auj} =
{v 2 NG(uj) : vuj /2 Auj} is independent in G (hence, in Xj); if dXj (uj) = dG(uj) = 4
then all neighbors of uj each have degree at least 5 in Xj , as Auj = E(G[NG(uj)]) and
Xj � f is 4-connected for any f 2 Auj . Therefore, by (ii) of Lemma 3.1, Xj � y has a
Hamiltonian cycle Dj through e3 and some edge fj 2 Aj . Now Hj = (Dj � e3)+ {y, e1, e2}
is a Hamiltonian cycle in G such that {e1, e2, fj} ✓ E(Hj). Note that Fj�1 \E(Hj) = ; as
Dj ✓ Xj . Set Fj = Fj�1 [ {fj}.

Therefore, G has at least k + 1 = |S0|+ 1 > c1n Hamiltonian cycles through e1, e2.

Proof of Theorem 1.2. Let c2 := (12⇥90⇥541⇥301)�1 and c = c22/2. We show that every
4-connected planar triangulation on n vertices has at least cn2 Hamiltonian cycles. It is
easy to check that the assertion holds when n  1/

p
c =

p
2/c2 as every 4-connected planar

graph is Hamiltonian by Tutte’s theorem (or by Lemma 2.11). Hence we may assume that
n >

p
2/c2 and that the assertion holds for 4-connected planar triangulations on fewer than

n vertices.

Case 1. G contains two adjacent vertices of degree 4.
Let u1, u2 2 V (G) such that u1u2 2 E(G) and dG(u1) = dG(u2) = 4. Let G⇤ be the

graph obtained from G by contracting the edge u1u2 to a new vertex u⇤. By induction, G⇤

has at least c(n�1)2 Hamiltonian cycles from which we obtain at least c(n�1)2 Hamiltonian
cycles in G through the edge u1u2.

Let x1, x2, x3, x4 be the vertices that occur on G[NG⇤(u⇤)] in the clockwise order such
that NG(u1) \ NG(u2) = {x2, x4}. Note that u1u2x2u1, u1u2x4u1 are two triangles in G.
By Lemma 3.2, G has at least c1n Hamiltonian cycles through u1x2i and u2x2i for each
i 2 [2]. Observe that if H is a Hamiltonian cycle in G through u1x2i and u2x2i, then H is
a Hamiltonian cycle in G � u1u2. Therefore, G contains at least 2c1n Hamiltonian cycles
all avoiding the edge u1u2. Hence, there exist at least c(n� 1)2 + 2c1n � cn2 Hamiltonian
cycles in G.

Case 2. No two vertices of degree 4 in G are adjacent.
Recall that G contains an independent set I of vertices of degree at most 6 with |I| �

n/12. By Lemma 2.10 (with t = 10), either there exist distinct vertices v, x 2 V (G) such
that |N(v) \N(x) \ I| � 10, or G contains S ✓ I such that |S| � c2n and S saturates no
4-cycle, or 5-cycle, or diamond-6-cycle in G.
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Suppose the former case holds. Since no two vertices of degree 4 in G are adjacent, we
can find a separating 4-cycle D such that 1 < |V (D �D)|  n/4. We contract D �D to a
vertex and denote this new graph by G0. Note that G0 is a 4-connected planar triangulation
with 3n/4  |V (G0)| = n� |V (D�D)|+1  n�1; so G0 has at least c(3n/4)2 Hamiltonian
cycles by induction. Therefore, G has at least 2c(3n/4)2 � cn2 Hamiltonian cycles, as by
Lemma 2.3, D� (V (D)\{a, b}) has at least two Hamiltonian paths between a and b for any
distinct a, b 2 V (D).

Now assume that there exists an independent set S of vertices of degree at most 6 in
G with |S| � c2n such that S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G.
By our assumptions on G, S satisfies the conditions in Lemma 2.5 and Lemma 2.6. Let
S = {u1, u2, . . . , uk}. Recall the definition of Aui , the link of ui for each i 2 [k].

Let F = {f1, f2, . . . , fk}, where fi 2 Aui for i 2 [k]. Let Fj = {f1, . . . , fj} for each
j 2 [k] and let F0 = ;.

We claim that for each integer j 2 [k], there exists a collection of Hamiltonian cycles
in G, say Cj , such that |Cj | = k � j + 1 and every cycle in Cj contains fj but no edge from
Fj�1. For each j 2 [k], let Xj := G � Fj�1. By Lemma 2.6, Xj is 4-connected for each j.

If j = k, it follows from Lemma 2.11 that Xk has a Hamiltonian cycle H(k)
k+1 through the

edge fk. Moreover, Fk�1 \ E(H(k)
k+1) = ; as H(k)

k+1 ✓ Xk. Let Ck = {H(k)
k+1}.

Now assume j < k. Let F (j)
j

= ; and Y (j)
j+1 := Xj � F (j)

j
= Xj . Note that fj 2 Xj as

Xj = G� Fj�1. Note that uj+1 satisfies the conditions in Lemma 3.1 (with uj+1, fj , Xj as
u, e,G in Lemma 3.1, respectively), since uj+1 2 S, S satisfies the conditions in Lemmas 2.5

and 2.6, and Fj�1 ✓ [j�1
i=1Aui if j � 1. Then by (i) of Lemma 3.1, Xj has a Hamiltonian

cycle H(j)
j+1 containing fj and some edge f (j)

j+1 2 Auj+1 . Set F (j)
j+1 = {f (j)

j+1}. For j + 2 
l  k+ 1, suppose we have found an edge set F (j)

l�1 = {f (j)
j+1, . . . , f

(j)
l�1}, where f (j)

t
2 Aut for

j + 1  t  l � 1, such that, for each j + 1  t  l � 1, Y (j)
t

:= Xj � F (j)
t�1 is 4-connected

and has a Hamiltonian cycle H(j)
t

through fj and f (j)
t

. Consider Y (j)
l

:= Xj � F (j)
l�1. Then

Y (j)
l

is 4-connected by Lemma 2.6. If l = k + 1, then, by Lemma 2.11, Y (j)
k+1 := Xj � F (j)

k

has a Hamiltonian cycle H(j)
k+1 through fj and F (j)

k
\ H(j)

k+1 = ;. We stop the process

and output the desired Cj = {H(j)
j+1, H

(j)
j+2, . . . , H

(j)
k+1}. Now assume that l < k + 1. Then

G[NG[ul]] is a subgraph of Y (j)
l

, and ul in Y (j)
l

satisfies the conditions in Lemma 3.1. Since

fj 2 E(Y (j)
l

)\E(G[NG[ul]]), we apply (i) of Lemma 3.1 to find a Hamiltonian cycle H(j)
l

in

Y (j)
l

through fj and an edge f (j)
l

in Aul . Set F
(j)
l

= F (j)
l�1 [ {f (j)

l
}.

Hence, by the above claim, the number of Hamiltonian cycles in G is at least
P

k

j=1 |Cj | �P
k

j=1(k + 1� j) = k(k + 1)/2 > c22n
2/2 = cn2.

4 Restricting degree 4 vertices

In this section, we prove Theorem 1.3. We first show several lemmas.

Lemma 4.1. Let G be a 4-connected planar triangulation. Let S be an independent set in G
saturating no 4-cycle or 5-cycle in G. Let u, u0 2 S be distinct and let Du and Du0 be 4-cycles
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containing u and u0, respectively. Then |V (Du) \ V (Du0)|  2, V (Du) \ V (Du0) \ S = ;,
and if V (Du) \ V (Du0) consists of two vertices, say a and b, then ab 2 E(Du) \ E(Du0).

Proof. Note that u0 /2 V (Du) since {u, u0} saturates no 4-cycle in G. Similarly, u /2 V (Du0).
So V (Du) \ V (Du0) \ S = ;. Moreover, |V (Du) \ V (Du0)|  2 since otherwise u, u0 are
contained in a 4-cycle in G[Du + u0], contradicting the assumption that S saturates no
4-cycle in G.

Now suppose V (Du)\V (Du0) = {a, b} with a 6= b. If ab 2 E(Du)\E(Du0) thenG[Du+u0]
has a 5-cycle containing u and u0, contradicting the assumption that S saturates no 5-cycle
in G. So, ab /2 E(Du)\E(Du0). Similarly, ab /2 E(Du0)\E(Du). If ab /2 E(Du) [ E(Du0),
then u, u0 are contained in a 4-cycle in G, a contradiction. Thus, ab 2 E(Du) \ E(Du0).

Recall that for a cycle D in G, D is the subgraph of G consisting of all vertices and
edges of G contained in the closed disc bounded by D. In the proof of Theorem 1.3, we will
need to consider the subgraphs of a planar triangulation that lie between two separating
4-cycles and use the following result on Hamiltonian paths in those subgraphs.

Lemma 4.2. Let G be a 4-connected planar triangulation in which the distance between

any two vertices of degree 4 is at least three. Let S be an independent set in G such that

S saturates no 4-cycle or 5-cycle in G. Let u, u0 2 S be distinct, and Du, Du0 be separating

4-cycles in G containing u and u0, respectively. Suppose Du0 ✓ Du, and Du0 is a maximal

separating 4-cycle containing u0 in G, i.e., Du0 is not contained in D for any other separating

4-cycle D 6= Du0 with u0 2 V (D). Let H denote the graph obtained from Du by contracting

Du0 �Du0 to a new vertex z so that H is a near triangulation with outer cycle Du. Then

one of the following holds:

(i) For any distinct a, b 2 V (Du), H�(V (Du)\{a, b}) has at least two Hamiltonian paths

between a and b.

(ii) There exist distinct a, b 2 V (Du) such that H � (V (Du)\{a, b}) has a unique Hamil-

tonian path, say P , between a and b; but for any distinct c, d 2 V (Du) with {c, d} 6=
{a, b}, H � (V (Du)\{c, d}) has at least two Hamiltonian paths between c and d and

avoiding an edge of P incident with z.

Proof. Let Du = uvwxu and Du0 = u0v0w0x0u0. Without loss of generality, assume that
u, v, w, x occur on Du in clockwise order, and u0, v0, w0, x0 occur on Du0 in clockwise order.

By Lemma 4.1, we have |V (Du) \ V (Du0)|  1 or |E(Du) \ E(Du0)| = 1. Thus,
|V (H)| � 7, and for any distinct a, b 2 V (Du) with ab /2 E(Du), H � (V (Du)\{a, b}) is not
a path. So by Lemma 2.1, we have

Claim 1. For any distinct a, b 2 V (Du) with ab /2 E(Du), H � (V (Du)\{a, b}) has at least
two Hamiltonian paths between a and b.

Claim 2. We may assume V (Du) \ V (Du0) 6= ;.

Proof. For, suppose V (Du) \ V (Du0) = ;. Then z is not incident with the infinite face of
H � Du. So for any distinct a, b 2 V (Du) with ab 2 E(Du), H � (V (Du)\{a, b}) cannot
be an outer planar graph. Thus, by Lemma 2.2, H � (V (Du)\{a, b}) has at least two
Hamiltonian paths between a and b. So (i) holds by Claim 1.
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Claim 3. We may further assume that |V (Du) \ V (Du0)| = 2.

Proof. For, suppose V (Du) \ V (Du0) consists of exactly one vertex, say y. Then y 2
{v, w, x} \ {v0, w0, x0}. We show that (i) holds. By Claim 1, it su�ces to consider distinct
a, b 2 V (Du) with ab 2 E(Du). By Lemma 2.2, it su�ces to show that H � (V (Du)\{a, b})
is not outer planar.

Let a, b 2 V (Du) with ab 2 E(Du). If y 2 {a, b}, then z is not incident with the infinite
face of H � (V (Du)\{a, b}); so H � (V (Du)\{a, b}) is not outer planar. Hence we may
assume that y /2 {a, b}. Let Du = yy1y2y3y and assume that y, y1, y2, y3 occur on Du in
clockwise order. Then {a, b} = {y1, y2} or {a, b} = {y2, y3}.

First, assume that y 2 {v0, x0}. We consider y = v0, as the other case y = x0 is
symmetric. If H � {y, y3} is outer planar, then u0 is adjacent to the vertices y, y3 in
V (Du). Since yy3 2 E(Du), G[Du + u0] has a 5-cycle containing u and u0, contradicting
the assumption that S saturates no 5-cycle. Hence, H � (V (Du)\{y1, y2}) = H � {y, y3}
is not outer planar. It remains to consider H � (V (Du)\{y2, y3}) = H � {y, y1}. Suppose
H�{y, y1} is outer planar. Then w0 and x0 are incident with the infinite face of H�{y, y1}
and w0y1 2 E(G). We claim that x0y1 2 E(G); otherwise x0y 2 E(G), implying that
x0w0yx0 or x0u0yx0 is a separating triangle in G, a contradiction. But then D = u0yy1x0u0

is a separating 4-cycle in G containing u0, and D properly contains Du0 , contradicting the
maximality of Du0 .

Suppose y = w0. For {a, b} = {y1, y2} or {a, b} = {y2, y3}, if H � (V (Du)\{a, b}) is not
outer planar, then u0y3 2 E(G) or u0y1 2 E(G). So D = u0y3w0x0u0 or D = u0y1w0v0u0 is
a separating 4-cycle in G such that D properly contains Du0 . Thus, H � (V (Du)\{a, b})
cannot be outer planar for {a, b} = {y1, y2} or {a, b} = {y2, y3}.

By Claim 3, |E(Du) \E(Du0)| = 1; so V (Du) \ V (Du0) = {v, w} or V (Du) \ V (Du0) =
{w, x}. By the symmetry among the edges in Du and between the two orientations of Du,
we may further assume V (Du) \ V (Du0) = {v, w}.

Claim 4. For {a, b} ✓ V (Du) with ab 2 E(Du), if {a, b} 6= {u, x}, then H�(V (Du)\{a, b})
has at least two Hamiltonian paths between a and b.

Proof. For {a, b} = {v, w}, since z is not incident with the infinite face of H � {x, u},
H � (V (Du)\{a, b}) = H � {x, u} is not outer planar and has at least two Hamiltonian
paths between a and b by Lemma 2.2.

For {a, b} = {u, v} or {a, b} = {w, x}, H � (V (Du)\{a, b}) cannot be outer pla-
nar. Otherwise, one can check that {u, u0} is contained in a 4-cycle or 5-cycle in G.
Hence, by Lemma 2.2, there exist at least two Hamiltonian paths between a and b in
H � (V (Du)\{a, b}) when {a, b} = {u, v} or {a, b} = {w, x}.

By Claim 4, we may assume that H�{v, w} has a unique Hamiltonian path P between
u and x, as otherwise (i) holds. It follows from Lemma 2.2 that H�{v, w} is an outer planar
near triangulation. Let y0 denote the vertex in V (Du0)\{u0, v, w}; so y0 = x0 or y0 = v0. Note
that V (uPz) ✓ NH(v), that V (xPz) ✓ NH(w), and that P contains u0zy0. Let r denote
the unique vertex in NH(u) \NH(x). Observe that {v, w} = {v0, w0} or {v, w} = {w0, x0}.
Recall the definition of diamond-4-cycle in Figure 1.

16



Claim 5. There exists a vertex y 2 V (P )\{u, x, z} such that yu0 2 E(P ) and D0 :=
G[Du0 + y] is a diamond-4-cycle with u0 and y as crucial vertices. Moreover, r /2 {y, y0}.

Proof. First, suppose {v, w} = {v0, w0}, i.e. v = v0 and w = w0. Then y0 = x0. Hence,
there exists a vertex y in V (uPu0)\{u, u0} such that yu0 2 E(P ) and yv 2 E(G). If
yx0 /2 E(G), then u0 has a neighbor z0 in V (xPx0) since H � {v, w} is an outer planar near
triangulation; now u0v0w0z0u0 is a separating 4-cycle in G containing u0 (as z0w = z0w0 2
E(G)), contradicting the maximality of Du0 . Therefore, yx0 2 E(G) and G[Du0 + y] is a
diamond-4-cycle with crucial vertices u0 and y. Moreover, r /2 {y, x0} = {y, y0}; otherwise,
uvu0yu (when r = y) or uvu0x0u (when r = y0) is a 4-cycle saturated by S, a contradiction.

Now assume that {v, w} = {w0, x0}, i.e., v = w0 and w = x0. Then y0 = v0. Observe that
u0x /2 E(G), otherwise uvwu0xu is a 5-cycle in G saturated by S, a contradiction. Hence,
there exists y 2 V (u0Px)\{u0, x} such that yu0 2 E(P ) and yw 2 E(G). Now yv0 2 E(G)
by the maximality of Du0 . Therefore, G[Du0 + y] is a diamond-4-cycle in G in which u0, y
are crucial vertices. If r = y0 = v0 then uvwu0y0u is a 5-cycle in G containing {u, u0}, and if
r = y then uyu0wxu is a 5-cycle in G containing {u, u0}. This contradicts the assumption
that S saturates no 5-cycle in G, completing the proof of Claim 5.

We need another claim, in order to show that for any {c, d} 6= {u, x}, H�(V (Du)\{c, d})
has at least two Hamiltonian paths between c and d and not containing u0zy0. Let H 0 :=
H� (V (Du)\V (Du0)[{z}) = H�{v, w, z}. Then H 0 is an outer planar near triangulation
and H 0 ✓ G.

Claim 6. r 2 V (H 0)\{y, u0, y0} and H 0 � {u, x, u0, y0} has a Hamiltonian path P1 between

r and y.

Proof. Since r 2 NG(u) and S is independent, r 6= u0. By Claim 5, r /2 {y, y0} and
y /2 {u, x, y0}. Thus, r /2 {y, y0, u0}.

Let C denote the outer cycle of H 0. Then ux, u0y0 2 E(C). We may assume y0 = x0; the
other case is similar.

Since G contains no separating triangle, each edge in H 0 � E(C) is incident with both
uPu0 and xPy0. Since V (uPu0) ✓ NG(v) and V (xPy0) ✓ NG(w), every degree 4 vertex of G
in V (H 0)\{u, x, u0, y0} has degree 3 in H 0. Hence, by assumption of the lemma, the distance
between any two degree 3 vertices of H 0, contained in V (H 0)\{u, x, u0, y0}, is at least three
in H 0. Applying Lemma 2.4 to H 0, we see that H 0 � {u, x, u0, y0} has a Hamiltonian path
P1 between r and y.

Let Q1 := P1 [ yu0y0z and Q2 := P1 [ yy0u0z. Then Q1 and Q2 are two distinct
Hamiltonian paths between r and z in H�V (Du), and neither contains u0zy0. We now show
that (ii) holds with {a, b} = {u, x}. Let c, d 2 V (Du) be distinct such that {c, d} 6= {u, x}.
Observe that one vertex in {c, d} is a neighbor of r and the other is a neighbor of z. We
may assume c 2 NH(r) and d 2 NH(z). Then cr [ Q1 [ zd, cr [ Q2 [ zd are two distinct
Hamiltonian paths in H � (V (Du)\{c, d}) between c and d and not containing u0zy0.

We also need the following result, which is given implicitly in the proof of Theorem 1.3
in [12].
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Lemma 4.3 (Liu and Yu [12]). Let G be a 4-connected planar triangulation. Assume

that G contains a collection of separating 4-cycles, say D = {D1, D2, . . . , Dt+1}, such that

D1 ◆ D2 ◆ · · · ◆ Dt+1. For j 2 [t], let Gj be the graph obtained from Dj by contracting

Dj+1 � Dj+1 to a new vertex, denoted by zj+1. Suppose the conclusion of Lemma 4.2

holds for Gj and zj+1 (as H and z, respectively, in Lemma 4.2). Then G has at least 2
p
t

Hamiltonian cycles.

Proof of Theorem 1.3. Note that, for any two distinct vertices x, y of degree 4 in G, we
have NG(x)\NG(y) = ; as dG(x, y) � 3. Hence, the number of vertices of degree 4 in G is
at most n/5. Thus, since |E(G)| = 3n� 6 and �(G) � 4, there exist at least n/5 vertices of
degree 5 or 6 in G. Then by the Four Color Theorem, there is an independent set I such
that every vertex in I has degree 5 or 6 in G and |I| � (n/5)/4 = n/20. We may assume
that

(1) G has an independent set S ✓ I of size ⌦(n3/4) such that S saturates no 4-cycle, or
5-cycle, or diamond-6-cycle in G.

For, otherwise, by Lemma 2.10, there exist distinct v, x 2 V (G) such that |NG(v)\NG(x)\
I| � c0n1/4 for some constant c0 > 0. Since any two vertices of degree 4 in G have
distance at least three, G[NG[v] [ NG[x]] contains separating 4-cycles C1, . . . , Ck in G,
where k � c0n1/4 � 1, such that |V (Ci)| � 6 for each i 2 [k], and Ci � Ci, Cj � Cj are
disjoint whenever 1  i 6= j  k. Let G⇤ be the graph obtained from G by contracting
Ci �Ci to a new vertex vi, for i 2 [k]. Then G⇤ is a 4-connected planar triangulation and,
hence, has a Hamiltonian cycle, say H.

Let ai, bi 2 NG⇤(vi) such that aivibi ✓ H for i 2 [k]. Since |V (Ci)| � 6 and no vertices
of degree 4 in G are adjacent, it follows from Lemma 2.3 that Ci � (V (Ci)\{ai, bi}) has
at least two Hamiltonian paths between ai and bi. We can form a Hamiltonian cycle in
G by taking the union of H � {vi : i 2 [k]} and one Hamiltonian path between ai and bi
in Ci � (V (Ci)\{ai, bi}) for each i 2 [k]. Thus, G has at least 2k � 2c0n

1/4�1 Hamiltonian
cycles and we are done. This completes the proof of (1).

For each u 2 S, recall the link Au defined in Section 2. We may assume that

(2) there exists S1 ✓ S such that |S1| � |S|/2 and, for each u 2 S1, dG(u)� |Au| � 2 and
u is contained in a separating 4-cycle D in G with |V (D)| � 6.

Suppose we have S2 ✓ S with |S2| � |S|/2 such that dG(u) � |Au|  1 for all u 2 S2.
Hence, for any u 2 S2, |Au| � 4 if dG(u) = 5; and |Au| � 5 if dG(u) = 6. Let F be any
subset of E(G) with |F | = |S2| and |F \ Au| = 1 for each u 2 S2. By Lemma 2.6, G � F
is 4-connected; so G� F has a Hamiltonian cycle by Tutte’s theorem (or by Lemma 2.11).
Let C be a collection of Hamiltonian cycles in G by taking precisely one Hamiltonian cycle
in G�F for each choice of F . Let a1 and a2 denote the number of vertices in S2 of degree
5 and 6 in G, respectively. There are at least 4a15a2 choices of the edge set F ✓ E(G).
Each Hamiltonian cycle of G in C is chosen at most (5� 2)a1(6� 2)a2 = 3a14a2 times. Thus

|C| � (4/3)a1(5/4)a2 � (5/4)a1+a2 = (5/4)|S2| � (5/4)⌦(n3/4).
Hence, we may assume that there exists S1 ✓ S such that |S1| � |S|/2 and dG(u)�|Au| �

2 for all u 2 S1. For each u 2 S1, since dG(u) � |Au| � 2, there exist at least two edges
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e1 and e2 incident with u such that G � ei is not 4-connected for i 2 [2]. Since u has at
most one neighbor of degree 4 in G (by assumption), there exists i 2 [2] such that a 3-cut
of G� ei and u induce a separating 4-cycle Du in G with |V (Du)| � 6. This completes the
proof of (2).

For each u 2 S1, we choose a maximal separating 4-cycle Du containing u. Note that
|V (Du)| � 6. Let D = {Du : u 2 S1}. Since S1 saturates no 4-cycle, Du 6= Du0 for any
distinct u, u0 2 S1 and |D| = |S1| � |S|/2. By Lemma 4.1, for any distinct D1, D2 2 D,
either D1 �D1 and D2 �D2 are disjoint, or D1 contains D2 or vice versa. We may assume
that

(3) there exist D1, D2, . . . , Dt+1 2 D, where t = ⌦(n1/2), such that D1 ◆ D2 ◆ · · · ◆
Dt+1.

For, otherwise, since |D| = |S1| � |S|/2 = ⌦(n3/4), there exist separating 4-cyclesD0
1, . . . , D

0
k
2

D, where k = ⌦(n1/4), such that |V (D0
i
)| � 6 for i 2 [k], and D0

i
�D0

i
, D0

j
�D0

j
are disjoint

for 1  i 6= j  k. Hence, G has at least 2k Hamiltonian cycles, as shown in the first
paragraph in the proof of (1). This completes the proof of (3).

For each j 2 [t], let Gj denote the graph obtained from Dj by contracting Dj+1 �Dj+1

to a new vertex zj+1. Note that Gj is a near triangulation with outer cycle Dj and that
Gj contains the 4-cycle Dj+1.

By Lemma 4.1 and the definition ofD, we see thatDj+1,Dj , Gj , andG (asDu0 , Du, H,G,
respectively, in Lemma 4.2) for j 2 [t], satisfy the conditions in Lemma 4.2. Hence, by

Lemma 4.2 and Lemma 4.3, G has at least 2
p
t = 2⌦(n1/4) Hamiltonian cycles.
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number of minimal codewords in long codes, Discrete Appl. Math. 161 (2013) 424–429.

[3] A. Alahmadi, R. E. L. Aldred, R. de la Cruz, P. Solé, and C. Thomassen, The maximum
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