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1. Introduction

A hypergraph H consists of a vertex set V(H) and an edge set F(H) whose members
are subsets of V(H). Let H; and Hy be two hypergraphs. If V(H;) C V(H3) and
E(H,) C E(H3), then H; is said to be a subgraph of Hy and we denote this by H; C Hs.
Let k be a positive integer and write [k] = {1,...,k}. For a set S, let (i) ={TCS:
|T| = k}. A hypergraph H is k-uniform if E(H) C (V(kH)), and a k-uniform hypergraph
is also called a k-graph. Given T C V(H), let H — T denote the subgraph of H with
vertex set V(H)\ T and edge set {e € E(H) : e CV(H)\T}.

Let H be a hypergraph and S C V(H). The neighborhood of S in H is Ny (S) = {T C
V(H)\S:TUS € E(H)} and the degree of S in H is dg(S) = |[Ng(S)]. For any positive
integer I, 0;(H) := min{dg(S) : S € (V(ZH))} is the minimum [-degree of H. Note that
91 (H) is called the minimum vertex degree of H. If H is a k-graph then d;_1(H) is known
as the minimum co-degree of H. For a subset M C E(H), we let V(M) = ¢, e-

A matching in a hypergraph H is a subset of E(H) consisting of pairwise disjoint
edges, which is perfect if V(M) = V(H). While a maximum matching in a graph can be
found in polynomial time [5], it is NP-hard to find even for 3-graphs [13]. Much effort has
been devoted to finding good sufficient conditions for the existence of a large matching
in uniform hypergraphs, including Dirac type conditions. A celebrated result in this area
is due to Ro6dl, Ruciniski, and Szemerédi [28], which refines the analysis in [27]. They
determined the minimum co-degree threshold function that ensures a perfect matching
in n-vertex k-graphs. For integers k,n, with n > k > 3 and n =0 (mod k), let

n/2+2—k, if k/2 is even and n/k is odd,
n/2+3/2—k, if kisoddand (n—1)/2 is odd,
n/2+1/2—k, if kisodd and (n—1)/2 is even,
n/2+1—k, otherwise.

t(n, k) =

Ro6dl, Ruciniski, and Szemerédi [28] proved the following result.

Theorem 1.1 (Rodl, Ruciniski, and Szemerédi 2009). Let k,n be integers, with k > 3,
n = 0 (mod k), and n sufficiently large. Let H be a k-graph on n vertices such that
0k—1(H) > t(n, k). Then H has a perfect matching.

Codegree condition 0;_1(H) > t(n,k) is best possible because of the following
k-graphs H(n,k) on vertex set [n] from [20] (for odd k, see Lemma 15) and [28]
(for even k, see Definition 3.2): When k is odd, [n] has a partition A, B such that
|A| is the unique odd integer from the set {252, 27l 2 nH} and E(H(n,k)) =
{e € (V(Hé"’k))) ilenAl =0 (mod 2)} When k is even, V(H (n, k)) has a partition A4, B
such that
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n/2—1, if n/k is even,
|A|:=d¢n/2—1, ifn/kisodd and n/2 is odd,
n/2, if n/k is odd and n/2 is even,

and E(H(n,k)) = {e € (V(H,(C”’k))) :len Al =1 (mod 2)}. Note that the sets A, B are
called partition classes of H(n, k).

Let I1,..., Fy be t hypergraphs and let F = {Fj};c[4 denote a family of hypergraphs
(we use multiset {F,..., Fi} to denote F when there is no confusion); a set of pairwise
disjoint edges, one from each Fj, is called a rainbow matching for F. In this case, we
also say that F admits a rainbow matching. There has been effort to extend results on
matchings in hypergraphs to rainbow matchings, see for instance, [2,6,7,10,16-19,22,24—
26]. The main result in this paper is a rainbow version of Theorem 1.1.x

Theorem 1.2. Let k,n be integers with k > 3, n = 0 (mod k), and n sufficiently large.
Let {Fy,...,F,,} be a family of k-graphs on the common wvertex set [n], such that
Ox—1(F;) > t(n, k) fori € [n/k]. Then {F1,...,F,/} admits a rainbow perfect matching.

It is easy to see that we derive Theorem 1.1 from Theorem 1.2 by setting F} = ... =
Fy/r = H. Moreover, if F; = H(n, k) fori € [n/k] then {Fy,..., F, ;. } admits no rainbow
perfect matching. So the co-degree bound in Theorem 1.2 is best possible. We point out
that Theorem 1.2 for k = 2 is a result of Joos and Kim [12] and Akiyama and Frankl [1].

For n =0 (mod k), let {F1,..., F,/} be a family of k-graphs on the same vertex set
[n]. Let X = {x1,...,2,/,} be disjoint from [n]. We consider the hypergraph F(n, k)
with vertex set X U [n] and edge set U?:/]f{{:vl} Ue : e € E(F;)}. We denote this
hypergraph by H(n, k) when F; = H(n, k) for i € [n/k] with same partition classes A, B
of [n], and refer to H(n, k) as extremal configuration. It is easy to see the following is
true.

Observation. 05,1 (F;) > t(n, k) for i € [n/k] implies that dz(, x)(S) > t(n, k) for any
S e (V(]:Scn’k))) with [SNX| = 1. {F,..., F,/} admits a rainbow matching if, and only
if, F(n, k) has a perfect matching.

So we will show that F(n,k) has a perfect matching. Indeed, we consider a more
general class of hypergraphs. Let @,V be two disjoint sets. A (k + 1)-graph H with
vertex set Q UV is said to be (1, k)-partite with partition classes Q,V if, for each edge
e€ E(H),lenQ|=1and |enV|=k. A (1,k)-partite (k + 1)-graph H with partition
classes @,V is balanced if |V| = k|Q|. We say that a subset S C V(H) is balanced if
|SNV| =k|SNQ| Theorem 1.2 follows from the following result.

Theorem 1.3. Let k,n be integers with k > 3, n = 0 (mod k), and n > k. Let F be
a balanced (1,k)-partite (k 4+ 1)-graph with partition classes X, [n], such that for any
S e (V(,f)) with |[SNX| =1, dg(S) > t(n, k). Then F admits a perfect matching.
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To prove Theorem 1.3, we consider whether or not F is “close” to the extremal configu-
ration H(n, k). In Section 2, we describe several properties of the extremal configurations.
In Section 3, we prove Theorem 1.3 for the case when F is close to the extremal configu-
ration. In Section 4, we study absorbing devices for perfect matchings, and in Section 5,
we study an absorbing device for near perfect matchings. We deal with the case when F
is not close to the extremal configuration in Section 6 and offer some concluding remarks
in Section 7.

2. Properties of extremal configurations

We will often use the following (1, k)-partite (k + 1)-graphs as intermediate config-
uration to compare (1,k)-partite (k 4+ 1)-graphs with H(n, k). Suppose W, U form a
partition of [n] such that |[W| = (1/2+0(1))n and |U| = (1/2+0(1))n. For i € {0, 1}, let
H), . (W,U) denote the k-graph with vertex set [n] and edge set {S € ([Z]) SNW =i
(mod 2)}. When [W| = [n/2], we denote H;}, ,(W,U) by Hj, ;.

We need the following definition to quantify the difference between F(n,k) and
H(n, k). Let € > 0 be a real number. Given two k-graphs Hy, He with V(H;) = V(Hz),
we say that Ho is strongly e-close to Hy if |E(Hy) \ E(Hz)| < |V(Hy)[k. We say that
Hy is weakly e-close to Hy if ¢(Hy, Hy) < |V (Hy)|¥, where ¢(Hy, H2) be the minimum
of |E(H1)\E(H))| taken over all isomorphic copies Hj of Ho with V(H}) = V(Hs). It is
easy to see that the following is true.

Lemma 2.1. Let € > 0 be a real number. Let k,n be integers with k > 3, n =0 (mod k)
and n is sufficiently large. Let W,U be a partition of [n] with |W| = (1/2 £ 0(1))n and
|U| = (1/2 £ 0(1))n. Then the following statements hold.

(i) If k is even then H, , (U, W) = H}, , (W,U) fori e {0,1}.
(it) If k is odd then H, (U, W) and Hglk(VV, U), i,5 €{0,1}, are weakly e-close to each
other.

Proof. First consider the case when k is even; so n is even. By the definition of
H), (U, W), we have

B W 0) = (e (1) Hen Wi =jentl =i (mod 2)) = B, (0. W))

So we have H, ,(U,W) = H}, , (W, U).
Now consider the case when k is odd. For i € {0,1},

B, W) = (e (1) Henwl =i (moa2)

—fee <[Z]> |lenU]=1—i (mod 2)}
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= E(H, ' (U,W)).

So we have H,, ,(W,U) = H)) ,(U,W) and H, ,(W,U) = H,. ;,(U,W). Hence, it suffices
to show that H) (U, W) is weakly e-close H)\ , (W, U).

If [W] > |U], let R € W such that |R| = |U|. One can see that H (R, [n] \ R) =
H}L,k(U7 W). Note that

B WO BB\ R) < WAR( ") = awi-op(," ) < et

So H,, (U, W) is weakly e-close H, (W, U).
Now we may assume that |W| < |U|. Let T' C [n] such that |T| = |U|] and W C T.
Then we have H) (U, W) = H}) (T, [n] \ T). Note that

BV O\ BTN D) < [PV WI(, ") = 0] ) < 2o

Hence H,, ;. (U, W) is weakly e-close H,, ; (W,U). This completes the proof. O

Let k,n be integers with ¥ > 3 and n =0 (mod k). Let mg, m; be integers between 0
and n/k (inclusive). For convenience, define H, """ (W, U) as the (1, k)-partite (k + 1)-
graph H with partition classes X and [n] and a partition W, U of [n], such that | X| = n/k
and [{z € X : Ny(z) = H}, ,(W,U)}| = m; for i € {0,1}. For i € {0,1}, if m; = m and
mo 4+ m1 = n/k then we denote H,'y" (W, U) by H;, ,.(W,U;m).

In the remainder of this section, we study (1, k)-partite (k + 1)-graphs that F are
close to some H(n,k) and consider those vertices in F that are contained in lots of
edges of H(n, k). We introduce the following concept. Let k,n be integers with k > 3,
n =0 (mod k), and n sufficiently large. Let F and H be (1, k)-partite (k + 1)-graphs
with partition classes X, [n]. A vertex v of F is said to be a-good with respect to H if
|N3(v) \ Ne(v)| < a|V(F)[*. Otherwise, v is said to be a-bad with respect to H.

The following lemma shows that the number of bad vertices with respect to

s k(W U;m) in F is small if F is close to #}, (W, U;m) for some i € {0,1}.

Lemma 2.2. Let k,n be integers with k > 3 and n =0 (mod k), and let € be a constant.
Let F be a (1,k)-partite (k + 1)-graph with partition classes X and [n] where |X| =
n/k. Let 0 < m < n/k be an integer. If F is strongly e-close to some H, ,(W,U;m),
then the number of €2/3-bad vertices in F with respect to ’H;yk(VV, U;m) is at most
(1+1/k)(k +1)e¥/3n.

Proof. Let N be the set of €2/3-bad vertices in F with respect to H;yk(VV, U;m). If
IN| > (14 1/k)(k + 1)e'/3n then
; 1 n\ k+1
E(H ) E N|22/3 ks n
B, 1 (W,Usm) \ B(F)| > = INEP VI 22 (n 4 7)
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This contradicts the assumption that F is strongly e-close to HiLJC(VV, U;m). O

The next lemma says that we can find an edge in F which serves as “parity breaker”.
This is the only place in the proof of Theorem 1.3 where we require 651 (Nxz(z)) > t(n, k)
for all z € X.

Lemma 2.3. Let k,n be integers with k > 3, n = 0 (mod k), and n > 2k. Let F be a
balanced (1, k)-partite (k+1)-graph with partition classes X, [n], such that 61 (Nxz(z)) >
t(n, k) for allz € X. Let W, U be a partition of [n] with min{|W |, |U|} > k. Leti € {0,1}
be an integer such that |{e € F | leNW| =1 (mod 2)}| > |F|/4. Then for any proper
subset X' of X, there exists eg with eg € E(F) or eg = 0, such that

(i) if i =0 then [W\ eo| = | X'\ eo| (mod 2);
(i) if i = 1 then [W \ eg] = |X \ (X' Uep)| (mod 2);
(iii) if k —1i is even then |U \ eg| = | X'\ eo] (mod 2);
(iv) if k — i is odd then |U \ eg| = |X \ (X' Ueg)| (mod 2).

Proof. Fix z € X \ X’ and 2’ € X' if X" # (. Then §x_1(Nxg(z)) > t(n,k) + 1. In all
cases below, we may assume the assertion of this lemma does not hold for eq = ().

Case 1: i =0 and k — i = k is even.

We have either |W| £ | X’| (mod 2) or |U| # |X’| (mod 2). As n is even (because k
divides n and, by assumption, k is even) and |U| + |W| = n, we have that |U| and |W]|
must have the same parity. Therefore, it follows that

W= Ul #[X'] (mod 2). (1)

Suppose that there exists eg such that « € eg and either |egNW|=1or |[egNU| = 1.
As eg N X = {z} (recall that for e € F we have [eN X| =1) and x € X \ X', we have
| X"\ eg| = |X’|. Now note that if |eg N W| =1, then |egNU| = k — 1. As k is even, then
leo N W| and |eg N U| are odd. Obviously, the same holds when |eg N U| = 1. Therefore,
|[W| and |W \ eg| have different parities as well as |U| and |U \ eg|. By (1), it follows that
[W\ el = |X'| = |U\ eo| (mod 2). As | X'\ eg] = |X’|, we conclude that (i) and (iii)
holds.

Now we may assume that, for every e € E(F) with z € e, [eNW|# 1 and [eNU| # 1.
Then for any (k —1)-set S C U, Ny, (o)(S) € U\ S. Thus, |U — S| > [Ny, ()(S)| >
t(n,k)+1>mn/2+2—k. Thus |U| > n/2 + 1. Similarly, we derive |W| > n/2 + 1. This
leads to a contradiction as n = |U| + |W|.

Case 2: i =0 and k — i =k is odd.
We have |[W| # | X’| (mod 2) or |U| £ n/k—|X'| (mod 2). Since k is odd, n/k—|X'| =
n —|X’| (mod 2). Note that |U| 4+ |W| = n. Thus we have

U #n—|X'l (mod 2)and |W| # |X’| (mod 2). (2)
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Suppose that there exists eg € F such that x € eg and |[eg NW| =1 or |[eg N W| =
k —2. Then X Neg = {z}, |[W \ eg] # |W| (mod 2) and |U \ eo| = |U| (mod 2). Note
that X'\ eg = X’ and so | X \ (X’ Ueg)| # |X \ X’| (mod 2). Thus by (2), we have
[W\ eo] =X’ =|X"\ eg| (mod 2) and

[U\eo|=|U|=n—|X'|-1=n/k—|X'|-1=|X\X'|-1=|X\(X'Ue)| (mod 2).

Hence we may conclude that (i) and (iv) holds for this ep. So assume that for any
ec E(F)withzce, [eNnW|#1and eNW|#k — 2.

Subcase 2.1: n is even; so n/k is even.

Then for any (k—1)-subset S C U, Ny, ()(S) C U\S. Thus, |[U\S| > [Ny, (2)(S)] >
t(n,k)+1>mn/2+2—k; so |U| >n/2+ 1. Similarly, for any (k — 1)-subset T C [n]
with [TOAW| =k —2, Ny, (2)(T) S W\T. Thus, [W\T| > [Ny, (o)(T)| > t(n, k) +1 >
n/2+ 2 —k; so |W| > n/2. However, this is a contradiction as n = |W|+ |U| > n + 1.

Subcase 2.2. n is odd; so n/k is odd.

Then for any (k — 1)-subset S C U, Ny, (;)(S) € U\ S which implies |[U \ S| >
INN»(2)(S)| > t(n, k) +1>n/243/2 —k; so [U| > (n+ 1)/2. Similarly, for any (k —1)-
subset T C [n] with [T N W[ = k — 2, Ny,)(T) € W\ T and, hence, W \ T| >
INN,(2)(T)] > t(n, k) +1 > n/2+3/2 —k; so [W| > (n —1)/2 and the equality holds
only when (n — 1)/2 is even. Thus since n = |W| + |U],

[Ul=(n+1)/2and [W|=(n—-1)/2=0 (mod 2). (3)

By (2) and (3), we have | X’| =1 (mod 2).

Now we have X’ # (), and fix 2’ € X’. Suppose that there exists an edge ey € E(F)
such that 2’ € ep and |eg NW| =2 or |eg N W| = k — 1. Then we have |[W\eo| = |W|
(mod 2), |[U\eo| # |U| (mod 2) and |X"\eg| # |X’|. By (2), one can see that |W\eo| =
|X"\eg| (mod 2),

X\ (X' Ueo)| =X\ X'|=n/k—|X'| and n/k — |X'|=n—|X'| = |U| - 1= |U\eo|.

Thus we may conclude that (i) and (iv) hold with this eg. So we may assume that for any
e € E(F) with 2’ € e, |eNW| # 2 and |eNW| # k—1. Then for any (k—1)-subset ' C W,
Ny (2 (T) €W\ T and, hence, [W\T| > |Ny, o1 (T)| > t(n, k) +1>n/2+3/2 — k;
so |W| > (n+ 1)/2, which a contradicts to (3).

Case 3: i=1and k—i=Fk—1is odd (i.e., k is even).
Then |W| £ n/k — |X’| (mod 2) or |[U| # n/k—|X’| (mod 2). Note that n is even as
k is even. Since n = |W| 4+ |U|, |[W| and |U| have the same parity, i.e.,

(W= Ul #n/k—|X"| (mod 2). (4)
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Firstly, consider |X’| = 1 (mod 2). Then X’ # 0, and fix 2/ € X’. Suppose that
there exists eg € E(F) such that 2’ € eg, and |[eg N W| =1 or |eg N W| = k — 1, then
|[W| # |[W\ eg] (mod 2) and |U| # |U \ eg] (mod 2). Recall that | X Neg| = | X' Neg| = 1.
So | X"\ eg| # | X'| and | X\ (X'Uep)| = | X\ X'| =n/k—|X'| (mod 2). By (4), we have

[W\eo|=|U\eo| =X\ (X' Ueg)| (mod 2).

So we may conclude (ii) and (iv) holds for this e, in this case. So assume that, for
any e € E(F) with 2’ € e, eNnW| # 1 and |e N W| # k — 1. Hence, for any (k — 1)-
subset S C [n] with S € W, Ny, (S) € W\ S and, hence, [W \ S| > [Ny, (2 (S)] >
t(n,k)+1>n/242—k; so |W| > n/2+1. Similarly, |U| > n/2+1. This is a contradiction
since n = |W|+|U| > n+2.

Secondly, we may assume |X’| = 0 (mod 2). Suppose that there exists eg € E(F)
with « € eg such that |eg "W | =2 or |egNU| = 2. Then |W| = |W \ eo| = |U\eo| = |U]
(mod 2). Recall that | X \ (X' Ueg)| # |X \ X’| (mod 2) and | X \ X'| =n/k — |X'|. By
(4), we have |[W \ eg] = |U\eo| = |X \ (X' Ueg)| (mod 2). Thus (ii) and (iv) holds with
this eg. Hence, we may assume that, for any e € E(F) with = € e, [eN W] # 2 and
leNnU| # 2.

Hence, for any (k —1)-subset S C [n] with [WNS| =k —2, Ny, ()(S) C W\ S and,
hence, [W'\ S| > [Ny, (2)(S)| > t(n,k) +1 > n/2 42 — k. So |[W| > n/2 and equality
holds only when n/k is even or when n/k is odd and k/2 is odd. Similarly, |U| > n/2
and equality holds only when n/k is even or when n/k is odd and k/2 is odd. Since
n=|W|+|U|, |W|=|U| =n/2. If n/k is even then |W| = n/2 is even (as k is even);
however, |W| is odd since |W| # n/k —|X’| (mod 2), a contradiction. If n/k is odd then
k/2 is odd and, hence, |W| =n/2 is odd. However, |W| is even, since |W| # n/k — | X'|
(mod 2), a contradiction.

Case4:i=1and k—i=k—1iseven (ie., k is odd).
Then |W| # n/k —|X’| (mod 2) or |U| # |X’| (mod 2). Note that n = |W|+ |U| and
n/k—|X'| =n—|X’'| (mod 2). So

(W|#£n—|X'| (mod?2)and |U|# |X’'| (mod 2). (5)

Suppose that there exists eg € E(F) with « € eg such that |egNU| =1 or |egNU| = k—2.
Then |eg N W| =0 (mod 2). Thus |[W \ eo| = |W| (mod 2) and |U \ eo| # |U]| (mod 2).
Recall that | X'\ eg] = |X'] and | X \ (X' Uep)| # |X \ X’| (mod 2). By (5), we have
|U\ eo] = X"\ eg| (mod 2) and

Wheo| = [W|=n—|X'|-1=n/k—|X'|-1=|X\X'|-1=|X\(X'Ue)| (mod 2).

Thus (ii) and (iii) hold for this eg. So assume that for any e € E(F) with z € ¢, [eNU| # 1
and leNU| # k — 2.

Subcase 4.1: n is even.
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Then, for any (k — 1)-subset S C W, Ny, (5)(S) € W\ S and, hence, |W \ S| >
INN(2)(S)| > t(n, k)+1 > n/2+2—Fk; so [W| > n/2+1. Similarly, for any (k—1)-subset
T C [n] with [TNU|[ =k —2, Nn,(2)(T) CU\T and, hence, [U\T| > [Ny, (@) (T)| >
t(n,k)+1>n/2+2—k;s0|U| >n/2. Nown=|W|+ |U| >n+1, a contradiction.

Subcase 4.2: n is odd.

Then for any some (k — 1)-subset S € W, Ny, ()(S) € W\ S and, hence, [W \ S| >
INN(2)(S)| = t(n, k) +1 > n/243/2—Fk; so [W| > n/2+41/2. Also, for any (k—1)-subset
T C [n] with [TNU|[ =k —2, Ny,(2)(T) CU\T and, hence, |[U\T| > [Ny, (@) (T)| >
t(n,k)+1>n/24+3/2—k;so |U| > n/2—1/2 and the equality holds only when (n—1)/2
is even. Since n = |W| + |U|, |[W|= (n+1)/2 and

|U| = (n—1)/2 and (n —1)/2 is even. (6)

By (5), [U| £ |X’| (mod 2) and so | X’| is odd.

Now fix 2’ € X'. If there exists eg € E(F) with o’ € ey such that e N W]| =1 or
leo N W| = k — 2, then with similar discussion as above, (ii) and (iii) hold for this eo.
So assume that for any e € E(F) with 2’ € e, [eNW| # 1 and |eg N W| # k — 2. Then
for any (k — 1)-subset S C U, Ny, (,/(S) C U\ S and, hence, |U\ S| > [Ny, () (S)] >
t(n,k)+1>n/2+4+3/2—k;so |U| > (n+1)/2, contradicting to (6). O

3. Hypergraphs close to extremal configurations

We often need to move some vertices between two sets and keep track of their degrees.
The following notation will be convenient. Let H be a k-graph. For j € {0,1},v € V(H),
and S C V(H), we define

d%{,s(v) =|{e€ E(H):veeand [eNnS|=5 (mod 2)}|.

We begin with a lemma that allows us to find a matching in the balanced (1,k)-
partite (k4 1)-graph F referred in Theorem 1.3 covering any small fixed set of vertices.
For convenience, we set the following parameters for a given integer k for the remainder
of thi§/3sekcti0n: n=1/(4k!), c = 1/(8(k + 1)!), e = 1/(80FkF=>(k)* ((k + 1)1)*)3/2, and
V= S

Lemma 3.1. Let k,n be integers with k > 3, n = 0 (mod k), and n > 1/e. Let
F be a balanced (1,k)-partite (k 4+ 1)-graph with partition classes X, [n], and assume
Op—1(Nxg(x)) > t(n,k) for all x € X. Let W,U be a partition of [n] such that
min{|W|,|U|} > k, and let Xo, X1 be a partition of X such that dJ}-yW(x) > nnF for
j €{0,1} and z € X;. Suppose there exists i € {0,1} such that di_y  y (v) > nn* for
all v € [n].

Then for any ey satisfying the conclusion of Lemma 2.3 and for any N C X U [n]| with
|N| < 2¢n, there exists a matching M in F such that N C V (M), eg € M when ey # 0,
[V(M)| < (k4 1)2cn, and W\ V(M)| = X1\ V(M)| (mod 2).
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Proof. Let No = NN Xy and Ny = NN X;. Let eg be the edge satisfying the conclusion
of Lemma 2.3. If N C ¢, then let M := () when eg = 0, and M = {eg} when ¢y # ). So
assume N ¢ eg. Divide N \ eg into three pairwise disjoint sets: No \ eg = {v1,..., v},
Ni\eg = {vp41,...,0s}, and (N\eg)N[n] = {vs41,...,v:}. We find the desired matching
M by covering the vertices in N \ eq greedily.

Suppose we have found the matching M, := {eg, ey, ..., e, } for some u > 0 such that
for 1 < j <wu, {v;} =e NN and for 1 < i < min{u,r}, |e; N W| = 0 (mod 2), for
r+1<j <min{u,s}, [e;NW| =1 (mod 2), and for s+1 < j < min{u,t}, |e; NW| =1
(mod 2) and e; N X C X;.

If N C U e, then M, is the desired matching. Otherwise, let v,41 € N \ U e;.
Since u + 1 < |N| < 2¢n, the number of edges in F containing v, 1 € N and a vertex
from U}_je; U N is less than

(IN]+ (u+ 1) (k4 1)) n*~! < (k4 1)2en”.

By assumption, d(}’w(v) > gnF for v € Ny, d}f’w(v) > ngnF for v € N; and
di_y, , w(v) =nnF for v e (N\eg)N[n]. Thus there exists an edge e,41 in F — Ui ge;
such that {vy11} = eyy1 NN, |eyr1 NW] =0 (mod 2) when u+1 <7, |eyy1 "W|=1
(mod 2) when r < u+1 < s, and |ey41 N W| = i (mod 2) and e; N X C X; when
s+ 1 < u+1 <t Continuing this process for at most |N \ eg| steps, we obtain the
desired matching M. O

Let H(W,U;r) denote the balanced (1, k)-partite (k + 1)-graph with partition classes
X, [n] and a partition W, U of [n] such that for every v € X, Nyw,u;r(x) = {e € ([Z]) :
leNW| = r}. Now we show that if all the vertices of a (1, k)-partite (k + 1)-graph F are
~v-good with respect to H(W,U;r), then there exists a perfect matching in F consisting
of edges intersecting W exactly r times.

Lemma 3.2. Let k,n,r be integers such that k > 3,0 < r < k, n = 0 (mod k), and
n > k. Let F be a balanced (1, k)-partite (k + 1)-graph with partition classes X, [n], and
let W, U be a partition of [n] with |W| = rn/k. Suppose all vertices in F are y-good with
respect to H(W,U;r). Then there exists a perfect matching M in F such that |eNW| =1
foralle € M.

Proof. As |W| = rn/k, we have |U| = (k — r)n/k and |e N W| = r if and only if
leNU| = k — r. By symmetry between W and U, we may assume |W| > |U| and so
r > k/2. Let M be a maximum matching in F such that, for every e € M, leNW| =r.
Let Wy := W\ V(M) and Uy := U\ V(M). Then |Wy| = |W|—r|M| =r(n/k—m) and
|Uo| = |U| = (k—7r)|M| = (k—r)(n/k —m). Since r > k/2, |Wy| > |Up|.

Suppose |[M| < z. Then |[Wy| > %. By maximality of M, for v € Wy, we have

N @\ Nx(o)] = e () (1),
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Thus, if r = k then

INaw,u;r) (v) \ Nre(v) 3n ( [Wol

1> k_1> > (n +n/k)".

Now suppose r < k — 1. Then

k—r k—r n
[Wol > (n/4) >

Tol == r Ak —1)

So we have

3n
INew,ury(v) \ Ne(v)| > 1

> y(n +n/k)"

(|Wo| —r+2)""Y(|Us| — k+ 7+ 1)*"/k!

contradicting the fact that v is y-good with H(W, U;r).

We may assume |M| > . Now, suppose for a contradiction that M is not a perfect
matching. There exist xi41 € X\V (M), distinct vgy11, .. Vtr1,r € Wo, and distinct
Vkt 1415 - V1, € Ug. Let {e1, ea,...;ex} € (A,f) and write e; := {;,v; 1, ..., V; 1 }, such
that, for ¢ € [k], x; € X, v;; € W for j € [r], and v; ; € U for j € [k]\[r]. For j € [k+1],
let f; :={x;,vj41,1,0j42,2, .-, Vj414k,k }, With the addition in the subscripts modulo k+1
(except we write k+1 for 0). Note that f1, ..., fx4+1 are pairwise disjoint and |[f; "W |=1r
for j € [k +1].

If f; € E(F)forall j € [k+1], then M’ := (MU{f1, ..., frr1})\{e1, ..., ex} is matching
in F, contradicting the maximality of |[M|. Hence, f; ¢ E(F) for some j € [k + 1]. Note
that there are (“,\:[‘) choices of {ey,...,ex} € M. Thus we have

‘{e e E(H(W,U; 7))\ E(F) : le N {vpsri s i € [K]}] = 1}

()

> (i —k+ 1)k/k' (since | M| > ﬁ)
— \4k ’ — 4k
1
> Wﬂk (since n > 20k2)
>y(k+1)(n+n/k)k
This implies that there exists © € {Zg+1,Vk+1,1,-- -, Vk+1,k} such that

INuw,vm (@) \ Nr(z)| > y(n+n/k)".

That is, = is not y-good with respect to H(W,U;r), a contradiction. 0O
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Note that Lemma 3.2 requires W, U to have specific sizes. After obtaining the matching
M in F from Lemma 3.1, we need to find a perfect matching in F — V(M) to conclude
the proof of Theorem 1.3 for the case when all the vertices of F — V(M) are good. The
following lemma serves this purpose.

Lemma 3.3. Let k,n be integers such that k > 3, n =0 (mod k), and 1/n < ¢ < 1/k.
Let F be a balanced (1, k)-partite (k 4+ 1)-graph with partition classes X, [n]. Let W' U’
be a partition of [n] with min{|U’|,|W’|} > 1.1n/k + k, and let i € {0,1} such that

(i) if i =0 then |W’'| =0 (mod 2),

(ii) if i =1 then |W'| =n/k (mod 2),
(iii) if k —i =0 (mod 2) then |[U'| =0 (mod 2), and
(iv) if k—i=1 (mod 2) then |U'| =n/k (mod 2).

If all vertices of F are y-good with respect to 'Hfl,k(W', U’), then there is a perfect match-
ing in F.

Proof. First, suppose there exists an edge e; € E(F) such that |W'\ e1| = riz+roy and
U\ e1] = (k—r1)x+ (k — o)y, where x, 5,71, ro are integers satisfying =,y > 20k? and
0 < rq,re < k. We partition W’ \ e; to Wy, Wa such that |[Wq| = riz and |[Wa| = ray,
partition U’ \ e; to Uy, Us such that |U;| = (kK —r1)x and |Us| = (k — r2)y, and partition
X \ e1 to X1, X5 such that |X;] = z and |X2| = y. By assumption, for ¢ € {0,1},
0 < r; < k. Hence, by Lemma 3.2, F[X; U W, UU;] has a perfect matching, say M,
consisting of edges containing exactly r; vertices from W;. Now M; U My (when e; = ()
or My UM, U {e1} gives the desired matching.

Therefore, it suffices to prove the existence of such e;. This is done in the following
four cases.

Case 1. i =0and k —i = k is even.

Then (i) and (iii) hold. So |W’| and |U’| are both even. Then, since all vertices of F are
v-good with respect to H,, , (W', U’), there is an edge e, € F such that e, NW'| = [W|
(mod k). Thus, W'\ e1] =0 (mod k).

Since n = 0 (mod k), we have |e; NU'| =k — |es N W'| = k — |W'| (mod k); hence,
lex NU'| = |U’| (mod k). So |U’\ e1] =0 (mod k).

Thus, we may take 71 = k and r = 0. Note that = = [W’ \ e1|/k > n/k?* > 20k* and
y=|U"\ei|/k >n/k* > 20k

Case 2. i =0and k —¢ =k is odd.

Then (i) and (iv) hold. So |W'| is even and |U’| = n/k (mod 2). Since all vertices of
F are y-good with respect to H) (W', U’), there is an edge e; € F such that [e; NW'| =
[W’'| (mod k —1).

Write [W/\e1]| = (k—1)x for some integer x. Then |U'\e1|—2z = n—z—|W'|—|eyNU’| =
n—z—|W\e1| = |W'Nei|+lexNU' | =n—k(z+1) =0 (mod k). So we take r; = k—1
and 7o = 0.
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Note that z = |[W’\ e1|/(k — 1) > n/k® > 20k? and

=(U"\ei| —=)/k

:(I "Ne| = W\ el/(k—1))/k

=(U'\ei| = (n—k—|U"\ex])/(k —1))/k
=(U'\ el =n/k+1)/(k-1)

> 0.1n/k?* > 20k%.

Case3.it=1and k—i=k —11is odd.

Then (ii) and (iv) hold. So [W'| = n/k (mod 2) and |U’| = n/k (mod 2). Without
loss generality, suppose that |[W’| > |U’|. Since all vertices of F are y-good with respect
to H,, (W', U’), there is an edge e; € E(F) such that [W'\ e[ =n/k—1 (mod k —2).
Soley "W/ =|W'|—n/k+1 (mod k — 2).

Let [W'\e1| = (k—1Dz+yand z+y=n/k—1;thenx+(k—1)y =n—k—|W'\e1| =
|U’\ e1]. Moreover, x = (|[W'\e1|—n/k+1)/(k—2) and y = (|[U'\e1| —n/k+1)/(k—2).
So we may set 11 =k — 1 and ro = 1.

Note that z = (|[W’ \ e1| —n/k +1)/(k —2) > 0.1n/k* > 20k? and y = ([W' \ e1| —
n/k+1)/(k —2) > 0.1n/k? > 20k2.

Case4.i=1and k—i=Fk—11is even.

Then (ii) and (iii) hold. So |W’| = n/k (mod 2) and |U’| is even. Since all vertices
in F are -good with respect to H}L,k(W,v U’), there is an edge e; € E(F) such that
ler NU'| = |U'| (mod k —1).

Write |U’ \ e1] = (k — 1)y for some integer y. Then

W\ el —y=n—y—|U]|-|esn W
=n—y—[U\e1| = (les NU'| + [ex N W'|)
=n—y—(k—-1y—k
=n—Fk(y+1)=0 (mod k).

Solet ry =k and ro = 1.
Note that

(IW'\ e —y)/k

(W' \er| = U\ eal/(k = 1))/

(IW'\ e = (n—k =W\ ex])/(k—1))/k
(

0.

W'\ e1| =n/k+1)/(k—1)
1n/k?
> 20k2.

v
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Moreover y = |U’ \ e1]/(k — 1) > n/k* > 20k>. O
We are ready to prove the main result in this section.

Lemma 3.4. Let k,n be integers with k > 3, n = 0 (mod k), and 1/n < ¢ < 1/k.
Let F be a balanced (1,k)-partite (k + 1)-graph with partition classes X, [n], such that
dk—1(Nx(x)) > t(n,k) for all x € X. Suppose [n] has a partition W, U with |W| =
n/2+ o(n) and |U| = n/2 % o(n) such that F is strongly e-close to H, ,(W,U;m) for
some m € [n/k]. Then F admits a perfect matching.

Proof. Since F is strongly e-close to H, , (W,U;m) for some m € [n/k], the number of
£2/3-bad vertices in F is at most (k+1)e'/3(n/k+n) 2/3 (see Lemma 2.2). Let B denote
the set of €2/3-bad vertices in F. Write Xo = X N B and N = [n] N B. For i € {0, 1},
Xi=A{z € X\Xa [ Nyo , wusm)(2) = Hy, (W, U)}.
Write m; := | X;| for i € {0,1,2}. For i € {0,1} and = € X;, z is £€2/3-good; hence,
| Ny (w,vm) (2) \ Nx(z)| < e23(n+n/k)k < (1+1/k)ke?/3nk.

So Nz(z) is strongly (1 + 1/k)*e?/3-close to H;)k(W, U).
Recall the definition of constants n=1/(4k!), c=1/(8(k+1)!), e =1/(80*k*=5(k")*((k

£2/39k

+1))*)3/2 and v = £ Let F; == (F — X2) — X1 for i € {0,1}. Define a partition
Wo, Uy of [n] as follows: If | Xo| > | X1] then let

Wo=W\{veWnNN :d¥, () < mPHU{veUNN : dy, w(v) > nn*}
and
Uy=U\{veUNN: d;—o,w(v) >mFHufve WnN : dg_-o,w(v) < nnk}.
If | Xo| < |X1| then let
Wo=W\{ve WNN :df () < mFHu{veUNN: dofhw(v) > nn*}
and
Up=U\{veUNN :d¥, y(v) > mFHu{fve WnN: dy, w(v) < nmF}.
Let X9y :={z € X5 : do]—‘,wo (x) > nn*} and X9o = X5\ X2;. We apply Lemma 2.3 to
F with X’ = X1 U X9 and ¢ = 0 (if |Xo| > |X1]), or X’ = Xy U Xo; and ¢ = 1 (when

| Xo| < |X1]). So there exists eq such that eg = 0) or ey € E(F) satisfying (i)(ii)(iii)(iv)
of Lemma 2.3.
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Define

BUXl, lf|X1|§CTL
N’ = BUXo, if |X0| <cn

B, otherwise.

Then |N’| < 2cn. Next, we apply Lemma 3.1 to F with Wy and Up as a partition of
[n] and with N’ as the N in Lemma 3.1. Note that if |Xg| > |X;|, we set ¢ = 0 and
have d%_ x, w, (v) > nn” for all v € [n], and that if [Xo| < |X1], we set i = 1 and have
d¥_x, w,(v) = nn* for all v € [n]. Hence, there is a matching M; in F with g € M
(when eg # 0), and |V (M7)] < (k + 1)2cn such that

(i) N' CV(My);

(i) [Wo \ V(My)| = [X2\V(My)] (mod 2).

Let Wy := Wy \ V(M) and U; := Up \ V(My). Let X := X0\ V(M1) and X| =
X; \ V(My). Note that | X]| > en/2 or X! =0 for i € {0,1}. If | Xo| < cn, then Xj =0
and let Wyy := Wy, Uy := Uy and Wyg = Uyg = 0; if | X1]| < cn, then X] = () and let
Wig :== Wy, Up := Uy and Wiy = U1 = 0. Otherwise, let Wio U Wi be a partition of
W1 and Uyp U Upp be a partition of Uy such that for i € {0,1},

(iif) [Wio| = 0 (mod 2), [Wi| = [X{| (mod 2), [Wy; U Uy| = k|X/|, and if X} # 0 then
min{|Wy;|, Uy} > 1.1 X[] + k.

Note that the existence of these partitions is guaranteed by (ii).
Let F! := F[X!UWy; UUy] for i € {0,1}. Since every vertex in V(F)\B is %/3-
good with respect to ”H,gk(VV, U;m), every vertex of F/ is 7-good with respect to

H};‘X”’k(WM, Uli)', For, otherwise, without loss of generality, suppose v € V(F}) is 7-bad
with respect to H2|X;|,k(Wli> U1;). Then

IN’Hn,k(W,U;m)(U) \NF(U)‘ > |N7-li

kIX|k
> y((k+ D)X

>52/32k (k+1)en\”
= cREF 2

=¥ (n+n/k)",

Wi 1) () \ Nzz(v)]

contradicting that v in F is £2/3-good on H,, (W, U;m).
By Lemma 3.3, F/ contains a perfect matching Msy; for ¢ = 0,1 (and let My; = 0 if

7

F! is empty). So My U Mag U My is a perfect matching in F. O
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Fig. 1. Example of absorbing device I for k = 3.

4. Absorbing devices for perfect matchings

We need the following lemma from [28]. For subsets Ny, ..., Nj of the vertex sets of a
k-graph H, let Eg(Ny,...,Ng) == {(v1,...,v;) : v; € N; for i € [k] and {vy,...,0x} €
E(H)}. Let ey (N1, ..., Ni) = |Eg(Ny,...,Ng)|. Given a k-graph H, let H denote the
k-graph with vertex set V(H) and edge set

E(H) = {e € (V(kH)> e ¢ E(H)} .

The following lemma is Claim 5.1 in [28].

Lemma 4.1 (Ridl, Ruciriski, and Szemerédi [28]). Let n, k be two integers such that n >
k>3 andn =0 (mod k). Let H be a k-graph on n wvertices. If dp—1(H) > (1/2 —

1/logn)n and H is not weakly e-close to H(n,k) or H(n,k), then at least one of the
following holds.

(i) For all Ny,...,N CV(H) with |N;| > (1/2—1/logn)n, we have ey (N1,...,N) >
n¥/log® n.
(i) {(vi,..yvi-1) € (YD) s dg({or, ..o oe1}) > (1/2+ 2/ logn)n}| > nF~1/logn.

Next we define two types of absorbing devices for a given balanced set S of k + 1
vertices. Both are (k + 1)-matchings. The vertices of each device together with S induce
a (k + 1)-graph with a perfect matching.

Absorbing device I: Let H be a (1, k)-partite (k 4+ 1)-graph with partition classes
X, V. Given a balanced set S = {xg,v1,...,v5} with g € X and v; € V for i € [k], a
(k+1)-matching {e1, ..., ek, g} in H is said to be S-absorbing if H has a (k+2)-matching
{€,..., ey, f,g} such that (see Fig. 1)

(i) eine; =0 for all i # j,
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Fig. 2. Example of absorbing device II for k = 3.

(ii) e;\ e; = {v;} and le; \ ei| =1 for i € [k], and
(i) / = {0} UUsep(e: \ €)-

Note that the inclusion of the edge g is only for later convenience.

Absorbing device II: Let H be a (1, k)-partite (k + 1)-graph with partition classes
X, V. Given a balanced set S = {xg,v1,...,05} with g € X and v; € V for i € [k], a
(k41)-matching {es, ..., ext+1} in H is said to be S-absorbing if H has a (k+2)-matching
{€1, ... €,y1, f} such that (see Fig. 2)

(i) e;Ne; =0 fori,j € [k], where i # j,

(i) e;\ e; = {v;} and |e; \ €| = 1 for i € [k],
(iii) e;c+1 Ner = ek \ €, [ert1 \6;€+1‘ =1
(iv) f=A{zo}U Uie[k+1]\{k}(ei \ €).

Next, we show that if (i) or (ii) of Lemma 4.1 holds for F(n, k), then for each balanced
set S there are many S-absorbing devices in F(n, k).

Lemma 4.2. Let n, k be two integers such thatn >k >3 andn =0 (mod k). Let F be a
(1, k)-partite (k + 1)-graph with partition classes X, [n] such that 6x—1(Nx(z)) > (1/2 —
1/logn)n for each x € X. Let R:= {x € X : Ne(x) is not weakly e-close to H(n,k) or
H(n,k)}. Let S = {xg,v1,...,ux} be a balanced (k + 1)-set such that zo € R.

(i) If (i) of Lemma J.1 holds for Nx(xq), then the number of S-absorbing devices I in
F is Q(n*HD* /1og® n).

(i) If |R| = o(n) and {z € R\ {xo}: (%) of Lemma 4.1 holds for Nr(z)}| > n/logn,
then the number of S-absorbing devices II in F is Q(n(’“+1)2/ log*n).

Proof. First, suppose (i) of Lemma 4.1 holds for Nz(xg). Since 6;_1(Nxz(zg)) > (1/2 —
1/logn)n, there are Q(n*) sets B;, for each for i € [k], such that B; U {v;} € F.
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Consequently, there are Q(nkQ) choices of (pairwise disjoint) such sets By, ..., By. Let
e} = B; U{v;} for i € [k].
Since |Nx(B;)| > (1/2 — 1/logn)n and (i) of Lemma 4.1 holds for Nz(x¢), we have

er(xo, Nr(By),...,Nr(By)) > n*/log® n.

So, there are at least n*/logn choices of edges f = {zo,u1,...,ur} such that e; =
B; U{u;} € E(F) for i € [k]. Moreover, there are Q(n**1) choices g such that g €
E((F —S) —UF_je;). Hence, altogether there are

(n¥/1og® n)Q(n* H)QnF 1) = Q(n*+D* /1og® n)

choices of S-absorbing (k + 1)-matchings {e,..., e}, f,g}.

Next we show (ii). As in the argument for (i), since |R| = o(n), there are Q(nkz) choices
of (pairwise disjoint) sets By, ..., By such that RN (UF_;B;) = 0 and e} = B; U {v;} €
E(F) for i € [k].

For i € [k — 1], we choose u; € Nx(B;), each in at least (1/2 — 1/logn)n ways,
and let e; = B; U{u;}. Let y € R\ {xo} such that (ii) of Lemma 4.1 holds for
Nx(y). By assumption, there are at least n/logn such y. We select a (k — 1)-element
sequence of vertices, say T, such that dn. (T) > (1/2 + 2/logn)n and T is dis-
joint from S U By U Uf;ll e;. Let Br11 = T U {y}. Then we may pick ug, ugs1 such
that Br U {ug}, Bg+1 U {ug}, Bre1 U {ugs1}, {uo,u1, ..., uk—1,upr1} € E(F). Note
that dr(Bg+1) > (1/2 + 2/logn)n. We have |Nz(Bit1) N Nxe(Bg)| > n/logn and
|INz(Bi+1) " Ne({zo,u1 ..., up—1}) | > n/logn. Thus there are at least n/logn choices
for each of zp,zxy1. By Lemma 4.1 (ii), there are at least n*~!/logn choices for T.
Summarizing, we have chosen By, ..., By, Bg+1,u1,...,ux—1, 1T forming an S-absorbing
(k 4+ 1)-matching, in

Q") (¥ /log n)n* 1 (n/logn)?) = Qn**t1° /log* n)
ways. 0O

Absorbing device III: Let H be a (1, k)-partite (k + 1)-graph with partition classes
X, V. Given a balanced set S = {xg,v1,...,05} with g € X and v; € V for i € [k], a
(k+1)-matching {ey, ..., exy1} in H is said to be S-absorbing if H has a (k+2)-matching
{€e1,..., €)1, [} such that (see Fig. 3)

(i) e;Ne; =0 fori,j € [k], where i # j,
(ii) e/ \ e; = {v;} and |e; \ €| = 1 for i € [k],
(ili) €fpq \ ex+1 = {zo} lens1 \ g =1,

)

(iv) f= Uie[k+1] (ei \ €).
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Fig. 3. Example of absorbing device III for k = 3.

In the following lemma, we show that any (1, k)-partite (k 4+ 1)-graph is close to a
(k + 1)-graph with same partition classes, or contains an absorbing matching.

Lemma 4.3. Let n, k be two integers such that n =0 (mod k) and let 1/n € ¢ € f K
1/k. Let H be a balanced (1,k)-partite (k + 1)-graph with partition classes X, [n]. Let

= {z € X : Ny(x) is not weakly e-close to H) , or H}, ,}. Let zo € X \ R such
that Ny (zq) is strongly e-close to Hflk(I/V, U) for some i € {0,1} and for some partition
(W, U) of [n] with [W| = (1/2x0(1))n = |U|. Suppose |R| < n/logn and d;—1(Ny(z)) >
(1/2=1/logn)n for every x € X. If H is not strongly B-close to "H?Lk(VV, U;m) for any
integer 0 < m < n/k, then for any balanced (k + 1)-set S with xo € S, there are at least
Q(n*+1* /log* n) S-absorbing devices I or III.

Proof. First, let o be a number with ¢ < a < 5. We prove

Claim 1. Let z € X and let Wy, U, be a partition of [n] such that [W,| = (1/2 =+
o(1))n and [U;| = (1/2 £ o(1))n and Ny (x) is strongly e-close to H , (W, U,) for
some j € {0,1}. For any Ny,..., N, C [n] with |[N;| > (1/2 — 1/1ogn)n for ¢ € [k], if
€Ny () (N1, Na, ..., Ni) < n*/logn then, for j € [k], U, \ N;| < an or [W, \ N;| < an.

Otherwise, suppose, without loss of generality, |U, \ Ni| > an and [W, \ Ni| = an.
Let D denote the set of \/e-bad vertices on H;, , (W, U,); then |D| < k+/en. Then, since
|N1| > (1/2—1/logn)n, [Ny \ (U, UD)| > an/? and |N;\ (W,UD)| > an/2. Note for any
z€ Ny\(W,UD) and y € N;\ (U, UD), since ¢ < « and both z and y are \/e-good with
respect to Hj w(We, Uy), we have [Ny ({z,2}) U Ny ({z,y})| > (}Z1) — an*~1. Hence,
either ex,y(a)({2}, Noyoo Ni) > gy — ant™! > ey or enyy(u, Ny, Ni) >
’ékk, —anf~1 > Qkﬂk, So by symmetry, we may assume that there exists Nj C Ny \
(Wz U D) such that [N{| > |Ny \ (W, UD)|/2 and for all z € N

nk—l

eN,H(m)({Z}7N2, e ,Nk) Z m

Hence,
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(-;’NH(QJ)(Nl,NQ,...,Nk)Z >le/10g’fl,

an
2k+3 |
contradicting the assumption of Claim 1 and completing its proof.
Let A= {z € X\ R:|Ny(z) N Ny(x9)| > an*} and let B = X \ (AUR). Let = € B.
Then
|N3(a) 0 E(H;, (W, U))| < [Na(x) 0 Nyg(0)| + |E(H;, 1 (W,U)) \ Nag(0)]

< an® + en®.
Hence, for any = € B, we have

|E(H,, (W, U)) \ E(Ny(2))| = e(H,, ,(W,U)))
= (IN3 ()| = [Ny () 0 E(H,, (W, U))])
e(H}) = (e(Hj, ;) — an® —en®)

+ [Ny (z) N E(H], (W, U))]

< en® + an® + en® + an® + en® < 3an”.

Thus, we have

Claim 2. For any = € B, Ny(x) is strongly (3a)-close to H;,k(W, U), which is
strongly 3a-close to Hi‘,;(VV, U). So

Claim 3. |B| < (1—8)n/k;so |A] > pn/k —n/logn.
For, otherwise, |B| > (1 — 8)n/k. Then |A| 4+ |R| < fn/k and

BV B B0l = 3 N g @\ Vo)l + 41+ 1))

xz€B

< %mk + Bn/k (Z) < B(n+ n/k)F,

a contradiction since H is not strongly S-close to 7—[ L (W,U;|B).

Claim 4. Let H' = H[A U [n]]. Then, for any Ni,...,Ni C [n] with |N]|
(1/2 — 1/logn)n, either ey ({zo}, N1,...,Np) > n¥/logn or ey (A, Ny,..., Ny)
nk+1/1og? n.

Suppose on the contrary that there exist Ny,...,N, C [n] with |V;| > (1/2 —
1/logn)n, such that

Vv v

ez ({zo}, N1,...,Ny) < n*/logn (7)

and
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e (A, Ny,..., Np) < n**1/log? n. (8)

Since Ny (o) is strongly e-close to H:Lk(W, U), the number of y/e-bad vertices in Ny (z)
with respect to H}, (W, U) is at most kv/zn.

By Claim 1 and (1), |U \ N;| < an or |[W\ N;| < an for each i € [k]. Let 4; :={z €
A:en, @) (Ni,...,Ni) >n*/logn} and Ay = A\ A;. By (8), |A1] < n/log”n.

Let y € Ag. Soy ¢ Rand, thus, Ny(y) is weakly e-close to H)) ; or H. ;. Let W,,, U, be
a partition of [n] such that Ny (y) is strongly e-close to Hi,k(Wy, Uy) for some j € {0,1}.
By Claim 1, we have for all i € [k], |U, \ N;| < an or |[W, \ N;| < an. Hence

Uy \U| < Uy \ Ni| +[Ni \ U] < 2an 9)
or
Uy \ W[ < Uy \ Ni| + [Ni \ W[ < 2an (10)
We claim that Ny (y) is strongly (5a)-close to Hi,k(W, U) if inequality (9) holds.

\E(H (W, U))\ Ny(y)| < |E(H] , (W,,U,)) \ Ny(y))|
+B(H] (W, U))\ B(H] (W, U,))|

< enf +dan® < 5an”.
If inequality (10) holds then

|E(H (U W)\ Nyg(y)| < [E(H (W, Uy)) \ Nyg(y)]
+B(H] ,(U,W)\ E(H), (W, U,))]

< en® + dan® < 5an®.

Thus Ny (y) is strongly (5«)-close to Hiyk(U, Ww).

Hence by Claim 2, for all z € X\ (A1 UR), Ny (z) is strongly (5a)-close to Hflk(W, U)
for some j € {0,1}. For j € {0,1}, let X; = {x € X : Ny(x) is strongly (5a)-close to
HTJL,C(VV, U)}. Since |A;| < n/log?n, and |R| < n/logn, we have |X \ (Xo U X;)| =
|A1 U R| < 2n/logn. Hence

1
|E(Hp (WU [ X0 D)\ EH) <D D INne  wwsixon () \ Nae(@)| + (| A + | R|)n"
j=0 zeX;

< %50471’c + 2n* 1 [logn < B(n + n/k)F L

So H is strongly B-close ’H?l,k(W, U;|Xol), a contradiction. This concludes the proof of
Claim 4.
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Let S = {zo,v1,...,vr} with v1,...,v; € [n] all distinct. For each i € [k], there are
Q(n*) sets B; such that ¢/ = B;U{v;} € E(H), and there are Q(n*") choices of (pairwise
disjoint) such sets Bi,...,By. For i € [k], we have Ny (B;) > (1/2 — 1/logn)n by
assumption. So there are Q(nkz) choices of (disjoint) sets By, ..., By such that by Claim
4, one of the following two inequalities holds:

eH'({x0}7NH’(B1)a"'vN’H'(Bk)) an/logn (11)
e'H’(AaN'H’(Bl)a"'aNH'(Bk)) an+1/10g3n' (12)
First, assume (11) holds. Then there at least n*/logn choices ui,...,u such that

e; = B;U{u;} € E(H') for i € [k] and {zo,u1,...,ur} € E(H'). Moreover, there are
Q(n**+1) choices of g € E(H') such that g is disjoint from we U¥_;e;. Thus the number
of S-absorbing devices I is at least

Q(n*)Qn*/logn)QnFt1) = Q(n* D’ /logn).

Now assume (12) holds. Then there are n**1/log® n choices {y,u1,...,ux} such that
y € A and, for i € [k], B; U{u;} € E(H'). By definition of A, there are (n*) choices
By11 such that Bri1 € Ny (y) N Ny (zo). Let exr1 = Biy1 U{y}. So there are at least
Q(n*+1/1og® n)Q(n*)Q(n**) = Q(n*+1° /1og® n) different choices of {e1, ..., epi1} such
that {e1,...,eg+1} is an S-absorbing device III. O

To prove another absorbing lemma, we need to use Chernoff bounds, see [3].

Lemma 4.4. Suppose X1, ..., X,, are independent random variables taking values in {0, 1}.
Let X denote their sum and p = E[X] denote the expected value of X. Then for any
0<d<1,

m

PX<(1-dul<e 2.

Lemma 4.5. Let k > 3 be an integer and let 0 < ¢ < B <K 1. There exists ny > 0 such

that the following holds for any integer n > ns. Let H be a balanced (1, k)-partite (k+1)-

graph with partition classes X, [n] such that di—1(Ny(z)) > t(n, k) for all v € X. Let

R :={z € X : Ny(x) is not weakly e-close to Hy) , or H, ,}, and let zo € X. Suppose

one of the following three conditions holds for every S € (‘g(ﬁ)) with SN X = {xo}:

(1) (i) of Lemma /.1 holds for Ny(xzo), and H has (2(7L(’€+1)2/10g4 n) S-absorbing

devices I.

(#@) {xz € R\ {xo} : (ii) of Lemma 4.1 holds for Ny (x)}| > n/logn, and H has
Q(n*+D* /1ogt n) S-absorbing devices II.

(#11) |R| < n/logn, zo ¢ R, and Ny (x0) is strongly e-close to H)) , (W, U) or H ,(W,U)
for some partition (W,U) of [n] with |[W| = (1/2+ o(1))n = |U|, H is not strongly
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B-close to Hy) (W,U;m) for any m € [n/k], and H has Q(n*+D* /1og?n) S-
absorbing devices I or I11.

Then there exists a matching M’ in H such that |M'| = O(log®n) and, for each S €

(‘7@(4-1{1)) with SN X ={xo}, M’ contains an S-absorbing (k + 1)-matching.

Proof. For each balanced (k+1)-set S C V(H) with zp € S, let I'(S) be the collection of
S-absorbing (k+1)-matchings. Then by Lemmas 4.2 and 4.3, [T(S)| = Q(n*1* /log* n).
So we may choose constant o := a(k) > 0 such that

T(S)] > a(k? + ) (k”j’“l) (W’; 1))/<<k!>k+l log? ).

Let M be the family obtained by choosing a sequence of balanced (k + 1)-sets
(S1,...,Sk+1) independently with probability

(ENs+110g%n
(Zﬁ) (k(/ﬁu)) (k* + k)!

Note that p < 1 as we can choose ng large enough. Then

p:

B = () (s 1)) 2+ R/ = Oftog® ),

and, for (k4 1)-set S C V(H) with {zo} = 5N X,

n/k

E(MNT(S)]) > pa(k? + k)! (k +1

) <k(kn+ 1)>/<(k!)k+1 log* n) = alog?n.

By Lemma 4.4 and by choosing nsy large enough, we have, for n > ny and for each

S e (%) with SN X = {xo},

P[IM| > 2alog® n] = P[|M| > 2E(JM|)] < e EIMD/3 — e (los”n)/3
So with probability at least 1 — o(1)
|IM| < 2alog® n. (13)

Again by Lemma 4.4 and by choosing ny large enough, we have, for n > ng and for each

S e (W) with SN X = {0},

PIMNT(S)| < (alog®n)/2) < PMNT(S)| < E(IMNT(S)])/2]
e—E(MAI(S)))/8

IA

e—(a log? n)/8-

IN
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So by union bound and by choosing ny large, we have for n > ng,

P[3S € (ZS??) with SN X = {0} : IMNT(S)| < (alog®n)/2]

< <Z> e—(a logZn)/8

= opk—(aleen)/8 1 /10,

Thus, with probability at least 9/10, for all S € (V(H)) with SN X = {xg}, we have

k+1
IMNT(S)| > (alog®n)/2 > 1. (14)
Furthermore, the expected number of pairs of sequences (S1, ..., Sk+1), (71, -+, Tht+1)

€ M satisfying (U;cr)Si) N (Ui Ti) # 0 is at most

() () ()
(1)) (etn) <k2 VO (e o))<

Thus, with probability at least 1/2 (by Markov’s inequality), for all distinct (S1,. .., Sk+1)
e Mand (Ty,...,Tky1) €M,

U S; and U T, are disjoint. (15)
i€[k+1] i€[k+1]

Hence, with positive probability, M satisfies (13), (14), and (15). So we may assume
that M satisfies (13), (14), and (15). Let M be the union of M NT(S) for all S € (‘2(+H1))
with SN X = {z¢}. Then M is the desired matching. O

5. Absorbing devices for near perfect matchings

Let H be a (1,k)-partite (k + 1)-graph with partition classes @, [n]. For a set S €
(‘2(52)) with [SN Q| =1, an edge e € E(H) is said to be S-absorbing if H[e U S] has a
matching of size 2.

Lemma 5.1. Let k > 3, 0 < ¢ < 1/(100k!), and n be a sufficiently large integer, and let
H be a (1,k)-partite (k + 1)-graph with partition classes Q,[n] such that n/(100zk) <
Q| < (n—1)/k. If 0k,—1(Nu(v)) > cn for all v € Q, then, for any S € (‘gg)) with
ISNQ| =1, H has at least c*n*T1/2 S-absorbing edges.

Proof. Let S = {v} U B, where v € Q and B = {b1,...,bk,bp+1} € (k[i]l) Let B’ =

B\ {bk,bi+1}. Since 6;_1(Ng(v)) > cn, we have at least ecn — 2 choices for ¢ € [n] \ B
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such that B'U{v,q} € E(H). For a (k—2)-set Aof V(H)\ (SU{¢}) with |[ANQ| =1,
since dg (AU {bg,br+1}) > cn, there are at least cn — 2k choices ¢’ € [n]\ (SU AU {q})
such that {¢'} U {bx,br+1} UA € E(H). Since dg(AU{q,q¢'}) > cn, there are at least
en — 2k choices ¢ such that AU {q,q¢’,q"} € E(H). Clearly, any such {q,¢’,¢"} U A is
S-absorbing.

Note that there are (|Q| — 1)(""5?) different choices for set A. Hence the number of
S-absorbing edges is at least

—k—2
(Q|—1)( _3 )(cn—2)(cn—2k)(cn—2k) >kt
This completes the proof. 0O

Analogous to the absorbing results in [8,23,28], we prove the existence of small ab-
sorbing matching for (1, k)-partite (k + 1)-graphs with |Q| > n/k — k2.

Lemma 5.2. Let k > 3. For any constant 0 < ¢ < 1/(100k!), there exists an integer ng > 0
with the following holds for every integer n > no: Let H be a (1, k)-partite (k + 1)-graph
with partition classes Q, [n] such that n/k — k* < |Q| < (n —1)/k and §(Ng(v)) > cn
for all v € Q. Then there is a matching M in H such that |M| < (32(k + 3)/c*)logn
and, for each S € (:(_g)) with |SNQ| =1, M contains at least 4(k+3)logn S-absorbing
edges.

Proof. Let C = 32(k + 3)/c*. Let M be the family obtained by choosing each edge
independently with probability p = (C/2)n~**Dlogn. Thus E[|M'|] = |E(H)|p <
nFtlp = (C/2)logn.

The number of intersecting pairs of edges in F(H) is at most |Q| (”)2 +1Q*n (Z:})Q <

n?**1: so the expected number of intersecting pairs of edges in M’ is at most

n?*1p? < C?log?n/(4n) = o(1).
By Markov’s inequality, with probability strictly larger than 1/3, M is a matching of
size at most C'logn.
(H)

For aset S € ( b2 ) with |[SNQ| = 1, let Xg denote the number of S-absorbing edges
in M. Then by Lemma 5.1, we have

E[Xg] > pc'n*T1/2 = 8(k 4 3) logn.
By Lemma 4.4,

P[Xs < E[Xs]/2] < exp(—E[Xs]/8) = exp(—(k + 2)logn) = n~++2),



108 H. Lu et al. / Journal of Combinatorial Theory, Series B 163 (2023) 83—-111

Note that there are at most |Q[(}) < n*/k sets S € (‘;c(ﬁ)) with |SNQ| = 1. It follows
from union bound that, with probability strictly larger than 1/4, Xg > E[Xg]/2 >
4(k + 3)logn for all S € (i(ﬁ)) with |S N Q| = 1. Thus, the desired M exists. O

6. Hypergraphs not close to extremal configurations

In this section, we prove Theorem 1.2 for hypergraphs that are not close to extremal
configurations. For this, we need a result on almost perfect matchings in (1, k)-partite
(k + 1)-graphs.

Lemma 6.1. Let k,n be positive integers with k > 3. Let H be a (1, k)-partite (k+1)-graph
with vertex partition classes @, [n], where k+ 1 < |Q| < n/k. If 0_1(Ng(v)) > n/k for
every v € Q, then H has a matching covering all but at most k — 1 vertices of Q.

Proof. Let M be a maximum matching in H. We may assume |Q \ V(M)| > k; for,
otherwise, M gives the desired matching. Note

]\ V(M) =n —k|M| > k|Q| — kM| > k|Q\ V(M)| > k*.

So there exist k pair-disjoint k-sets in [n]\V (M), say Si,...,Sk such that |[S;NQ| =1
for i € [k]. By maximality of M, Ng(S;) C V(M) for i € [k].

We claim that Zle [N (S;) Ne| <k for all e € M. For otherwise, there exist e € M
and distinct u,v € e such that uw € Ny (S5;) Ne and v € Ng(S;) Ne. Since S; and S; are
disjoint, (M \ {e})U{S;U{u}, S;U{v}} is a matching in H, contradicting the maximality
of M.

Since Ny (S;) C V(M),

k k
Z |Nu (Si)] = Z Z INg(S;) Ne| < kM| < n.

ecM 1=1

However, since dx_1(Ng(v)) > n/k for all v € @, we have Zf:1|NH(S¢)| >
kdg—1(Ng(v)) > n, a contradiction. O

Lemma 6.2. Let k,n be integers with k > 3. Let H be a (1,k)-partite (k + 1)-graph
with partition classes Q,[n], where k+1 < |Q| < (n—1)/k. If 0p—1(Nu(v)) > n/k +
29108 (kA (k + 3)klogn for every v € Q, then H has a matching covering Q.

Proof. Let ¢ = 1/(200k!). Since d_1(Ng(v)) > n/k + 2910%(k)*(k + 3)klogn > cn for
every v € @, by Lemma 5.2, H has a matching M of size at most 2910%(k!)*(k + 3) logn
such that for any set S € (‘gfg)) with [S N Q| = 1, the number of S-absorbing edges in
M is at least k + 1. Let H' = H — V(M), with partition classes @ \ V(M), [n] \ V(M).

For every v € Q \ V(M), we have
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5]9,1(NH/(’U)) > 5k,1(NH(’U)) — k‘M| > n/k

Thus by Lemma 6.1, H' has a matching M’ covering all but at most k vertices of
Q\V(M).

Let My := M and Mj = M'. If MyU M| covers @, then we are done. Otherwise, there
exists S; € (V(H)\‘gsr]\;"UMé)) with |S1 N @] = 1. Recall My contains an Sj-absorbing
edge, say eg; so H[S] U eg] contains a matching Xy of size 2. Then M; := Mj U X,
is a matching in H. Let My := My \ {eo}. If M1 U M| covers @, then we are done.
Otherwise, since |Q \ V(M U M7)| < k and M has at least k 4+ 1 S-absorbing matching
for each S € (V(H)\ZS_I\Q/{NM{)) with |S N Q| = 1, we may repeat the above procedure.
Thus, we obtain a maximal sequence of pairs of matchings My, M}, My, M7, ..., My, M],
a sequence of (k + 2)-sets Sy,...,S: with |[S; N Q| = 1 for ¢ € [t], and a sequence of
matchings Xo, X1,..., X;. Now M; U M/ is a matching of H covering Q. O

Lemma 6.3. Let € > 0 be a constant and k,n be integers with k > 3 and n =0 (mod k)
such that 0 < 1/n < ¢ < 1/k. Let F be a balanced (1, k)-partite (k+1)-graph with parti-
tion classes X and [n]. Let R := {x € X : Np(x) is not weakly e-close to H,) , or H) ,}.
Suppose

o Op—1(Nr(x)) > t(n, k) for allz € X;

« |R| > n/logn, or |R| < n/logn and F is not strongly e-close to H3 , (W, U;m)
for any m € [n/k] and for any partition W,U of [n] with |W| = n/2 + o(n) and
Ul =n/2 =+ o(n).

Then F admits a perfect matching.
Proof. Note that the conclusion of Lemma 4.5 holds. We define xy € X as follows:

(i) If |R| > n/logn then choose xy € R such that, whenever possible, (i) of Lemma 4.1
holds for Nx(z).

(ii) If |R| < n/logn then let zp € X \ R and let W,U be a partition of [n] with
[W| = n/2 £ o(n) = |U] such that Nz(zo) is strongly e-close to H) , (W,U) or
HL (W, D).

By Lemma 4.5, there exists a matching M in F with [M| = O(log® n) such that for
any balanced (k + 1)-set S C V(F) containing xo, F[S UV (M)] has a perfect matching.

Let 7/ = F — (V(M) U {z0}). Then k+1 < |[V(F)n X| = |V(F) N [n]|/k - 1.
Moreover, for every v € X N V(F’), we have

Ok—1(NF (v)) 2 01 (NF(v)) = V(M) = n/2 — k — k[ M]|
>n/2 —k —klog®n > n/k + log®n.



110 H. Lu et al. / Journal of Combinatorial Theory, Series B 163 (2023) 83—-111

Thus by Lemma 6.2, 7' has a matching M’ covering X\ (V (M) U {zo}). Now it is easy
to see that S := V(F) — V(M UM’) is a balanced (k + 1)-set with {zo} =S N X. Note
that F[SUV(M)] has a perfect matching M"'. Therefore, M’ UM" is a perfect matching
of F. O

7. Concluding remarks

First, we point out that Theorem 1.3 follows immediately from Lemmas 3.4 and 6.3,
which in turn implies Theorem 1.2.

Thus, we proved a rainbow version of the result of Rodl, Ruciriski, and Szemerédi [28]
that determines the co-degree threshold function for the existence of a perfect matching
in a k-graph.

There are many results on various Dirac type conditions for the existence of a matching
of certain size. One can ask questions about whether similar rainbow versions hold for
those results. Our method of converting the rainbow matching problem to a matching
problem for a special class of hypergraphs provides a way for establishing the rainbow
versions by using existing tools for matching problems.

We list some results that their rainbow version may be studied using our approach.
Rodl, Rucinski, and Szemerédi [28] proved that, for n # 0 (mod k), the minimum co-
degree threshold that ensures a matching M in a k-graph H with |[V(M)| > |V(H)| —
k is between |n/k| and n/k + O(logn), and conjectured that this threshold function
is |n/k|. This conjecture was proved recently by Han [8]. Treglown and Zhao [29,30]
determined the minimum I-degree threshold for perfect matchings in k-graphs for k/2 <
I < k — 1. Bollobéas, Daykin, and Erdds [4] considered the minimum vertex degree for
the appearance of matchings of certain size. They proved that for integer k > 2, if H is
a k-graph of order n > 2k3(m — 1) and §;(H) > (Zj) — (72:7?), then H has a matching
of size at least m. The bound on n is improved to n > 3k*m by Huang and Zhao
[11] recently. For 3-graphs, Kiihn, Osthus, and Treglown [21] and, independently, Khan
[14] determined the minimum vertex degree threshold for perfect matchings in 3-graphs,
which improves an earlier result by Han, Person, and Schacht [9]. The minimum vertex
degree threshold for perfect matchings in 4-graphs is obtained by Khan in [15].

Data availability
No data was used for the research described in the article.
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