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1. Introduction

A hypergraph H consists of a vertex set V (H) and an edge set E(H) whose members 
are subsets of V (H). Let H1 and H2 be two hypergraphs. If V (H1) ⊆ V (H2) and 
E(H1) ⊆ E(H2), then H1 is said to be a subgraph of H2 and we denote this by H1 ⊆ H2. 
Let k be a positive integer and write [k] = {1, . . . , k}. For a set S, let 

(S
k

)
:= {T ⊆ S :

|T | = k}. A hypergraph H is k-uniform if E(H) ⊆
(V (H)

k

)
, and a k-uniform hypergraph 

is also called a k-graph. Given T ⊆ V (H), let H − T denote the subgraph of H with 
vertex set V (H) \ T and edge set {e ∈ E(H) : e ⊆ V (H) \ T}.

Let H be a hypergraph and S ⊆ V (H). The neighborhood of S in H is NH(S) = {T ⊆
V (H) \S : T ∪S ∈ E(H)} and the degree of S in H is dH(S) = |NH(S)|. For any positive
integer l, δl(H) := min{dH(S) : S ∈

(V (H)
l

)
} is the minimum l-degree of H. Note that 

δ1(H) is called the minimum vertex degree of H. If H is a k-graph then δk−1(H) is known 
as the minimum co-degree of H. For a subset M ⊆ E(H), we let V (M) =

⋃
e∈M e.

A matching in a hypergraph H is a subset of E(H) consisting of pairwise disjoint 
edges, which is perfect if V (M) = V (H). While a maximum matching in a graph can be 
found in polynomial time [5], it is NP-hard to find even for 3-graphs [13]. Much effort has 
been devoted to finding good sufficient conditions for the existence of a large matching 
in uniform hypergraphs, including Dirac type conditions. A celebrated result in this area 
is due to Rödl, Ruciński, and Szemerédi [28], which refines the analysis in [27]. They 
determined the minimum co-degree threshold function that ensures a perfect matching 
in n-vertex k-graphs. For integers k, n, with n ≥ k ≥ 3 and n ≡ 0 (mod k), let

t(n, k) :=






n/2 + 2 − k, if k/2 is even and n/k is odd,
n/2 + 3/2 − k, if k is odd and (n− 1)/2 is odd,
n/2 + 1/2 − k, if k is odd and (n− 1)/2 is even,
n/2 + 1 − k, otherwise.

Rödl, Ruciński, and Szemerédi [28] proved the following result.

Theorem 1.1 (Rödl, Ruciński, and Szemerédi 2009). Let k, n be integers, with k ≥ 3, 
n ≡ 0 (mod k), and n sufficiently large. Let H be a k-graph on n vertices such that 
δk−1(H) > t(n, k). Then H has a perfect matching.

Codegree condition δk−1(H) > t(n, k) is best possible because of the following 
k-graphs H(n, k) on vertex set [n] from [20] (for odd k, see Lemma 15) and [28]
(for even k, see Definition 3.2): When k is odd, [n] has a partition A, B such that 
|A| is the unique odd integer from the set {n−2

2 , n−1
2 , n2 , 

n+1
2 } and E(H(n, k)) ={

e ∈
(V (H(n,k))

k

)
: |e ∩A| ≡ 0 (mod 2)

}
. When k is even, V (H(n, k)) has a partition A, B

such that
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|A| :=






n/2 − 1, if n/k is even,
n/2 − 1, if n/k is odd and n/2 is odd,
n/2, if n/k is odd and n/2 is even,

and E(H(n, k)) = {e ∈
(V (H(n,k))

k

)
: |e ∩ A| ≡ 1 (mod 2)}. Note that the sets A, B are 

called partition classes of H(n, k).
Let F1, . . . , Ft be t hypergraphs and let F = {Fi}i∈[t] denote a family of hypergraphs 

(we use multiset {F1, . . . , Ft} to denote F when there is no confusion); a set of pairwise 
disjoint edges, one from each Fi, is called a rainbow matching for F . In this case, we 
also say that F admits a rainbow matching. There has been effort to extend results on 
matchings in hypergraphs to rainbow matchings, see for instance, [2,6,7,10,16–19,22,24–
26]. The main result in this paper is a rainbow version of Theorem 1.1.x

Theorem 1.2. Let k, n be integers with k ≥ 3, n ≡ 0 (mod k), and n sufficiently large. 
Let {F1, . . . , Fn/k} be a family of k-graphs on the common vertex set [n], such that 
δk−1(Fi) > t(n, k) for i ∈ [n/k]. Then {F1, . . . , Fn/k} admits a rainbow perfect matching.

It is easy to see that we derive Theorem 1.1 from Theorem 1.2 by setting F1 = . . . =
Fn/k = H. Moreover, if Fi = H(n, k) for i ∈ [n/k] then {F1, . . . , Fn/k} admits no rainbow 
perfect matching. So the co-degree bound in Theorem 1.2 is best possible. We point out 
that Theorem 1.2 for k = 2 is a result of Joos and Kim [12] and Akiyama and Frankl [1].

For n ≡ 0 (mod k), let {F1, . . . , Fn/k} be a family of k-graphs on the same vertex set 
[n]. Let X = {x1, . . . , xn/k} be disjoint from [n]. We consider the hypergraph F(n, k)
with vertex set X ∪ [n] and edge set 

⋃n/k
i=1{{xi} ∪ e : e ∈ E(Fi)}. We denote this 

hypergraph by H(n, k) when Fi = H(n, k) for i ∈ [n/k] with same partition classes A, B
of [n], and refer to H(n, k) as extremal configuration. It is easy to see the following is 
true.

Observation. δk−1(Fi) > t(n, k) for i ∈ [n/k] implies that dF(n,k)(S) > t(n, k) for any 
S ∈

(V (F(n,k))
k

)
with |S ∩X| = 1. {F1, . . . , Fn/k} admits a rainbow matching if, and only 

if, F(n, k) has a perfect matching.
So we will show that F(n, k) has a perfect matching. Indeed, we consider a more 

general class of hypergraphs. Let Q, V be two disjoint sets. A (k + 1)-graph H with 
vertex set Q ∪ V is said to be (1, k)-partite with partition classes Q, V if, for each edge 
e ∈ E(H), |e ∩Q| = 1 and |e ∩ V | = k. A (1, k)-partite (k + 1)-graph H with partition 
classes Q, V is balanced if |V | = k|Q|. We say that a subset S ⊆ V (H) is balanced if 
|S ∩ V | = k|S ∩Q|. Theorem 1.2 follows from the following result.

Theorem 1.3. Let k, n be integers with k ≥ 3, n ≡ 0 (mod k), and n ( k. Let F be 
a balanced (1, k)-partite (k + 1)-graph with partition classes X, [n], such that for any 
S ∈

(V (F)
k

)
with |S ∩X| = 1, dF (S) > t(n, k). Then F admits a perfect matching.
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To prove Theorem 1.3, we consider whether or not F is “close” to the extremal configu-
ration H(n, k). In Section 2, we describe several properties of the extremal configurations. 
In Section 3, we prove Theorem 1.3 for the case when F is close to the extremal configu-
ration. In Section 4, we study absorbing devices for perfect matchings, and in Section 5, 
we study an absorbing device for near perfect matchings. We deal with the case when F
is not close to the extremal configuration in Section 6 and offer some concluding remarks 
in Section 7.

2. Properties of extremal configurations

We will often use the following (1, k)-partite (k + 1)-graphs as intermediate config-
uration to compare (1, k)-partite (k + 1)-graphs with H(n, k). Suppose W, U form a 
partition of [n] such that |W | = (1/2 ±o(1))n and |U | = (1/2 ±o(1))n. For i ∈ {0, 1}, let 
Hi

n,k(W, U) denote the k-graph with vertex set [n] and edge set {S ∈
([n]

k

)
: |S ∩W | ≡ i

(mod 2)}. When |W | = )n/2*, we denote Hi
n,k(W, U) by Hi

n,k.
We need the following definition to quantify the difference between F(n, k) and 

H(n, k). Let ε > 0 be a real number. Given two k-graphs H1, H2 with V (H1) = V (H2), 
we say that H2 is strongly ε-close to H1 if |E(H1) \ E(H2)| ≤ ε|V (H1)|k. We say that 
H2 is weakly ε-close to H1 if c(H1, H2) ≤ ε|V (H1)|k, where c(H1, H2) be the minimum 
of |E(H1)\E(H ′

2)| taken over all isomorphic copies H ′
2 of H2 with V (H ′

2) = V (H2). It is 
easy to see that the following is true.

Lemma 2.1. Let ε > 0 be a real number. Let k, n be integers with k ≥ 3, n ≡ 0 (mod k)
and n is sufficiently large. Let W, U be a partition of [n] with |W | = (1/2 ± o(1))n and 
|U | = (1/2 ± o(1))n. Then the following statements hold.

(i) If k is even then Hi
n,k(U, W ) = Hi

n,k(W, U) for i ∈ {0, 1}.
(ii) If k is odd then Hi

n,k(U, W ) and Hj
n,k(W, U), i, j ∈ {0, 1}, are weakly ε-close to each 

other.

Proof. First consider the case when k is even; so n is even. By the definition of 
Hi

n,k(U, W ), we have

E(Hi
n,k(W,U)) = {e ∈

([n]
k

)
| |e ∩W | ≡ |e ∩ U | ≡ i (mod 2)} = E(Hi

n,k(U,W )).

So we have Hi
n,k(U, W ) = Hi

n,k(W, U).
Now consider the case when k is odd. For i ∈ {0, 1},

E(Hi
n,k(W,U)) = {e ∈

([n]
k

)
| |e ∩W | ≡ i (mod 2)}

= {e ∈
([n]

k

)
| |e ∩ U | ≡ 1 − i (mod 2)}
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= E(H1−i
n,k (U,W )).

So we have H1
n,k(W, U) = H0

n,k(U, W ) and H0
n,k(W, U) = H1

n,k(U, W ). Hence, it suffices 
to show that H1

n,k(U, W ) is weakly ε-close H1
n,k(W, U).

If |W | ≥ |U |, let R ⊆ W such that |R| = |U |. One can see that H1
n,k(R, [n] \ R) ∼=

H1
n,k(U, W ). Note that

|E(H1
n,k(W,U)) \ E(H1

n,k(R, [n] \R))| ≤ |W \R|
(

n

k − 1

)
= (|W |− |U |)

(
n

k − 1

)
< εnk.

So H1
n,k(U, W ) is weakly ε-close H1

n,k(W, U).
Now we may assume that |W | < |U |. Let T ⊆ [n] such that |T | = |U | and W ⊆ T . 

Then we have H1
n,k(U, W ) ∼= H1

n,k(T, [n] \ T ). Note that

|E(H1
n,k(W,U)) \ E(H1

n,k(T, [n] \ T ))| ≤ |T \W |
(

n

k − 1

)
= (|U |− |W |) < εnk.

Hence H1
n,k(U, W ) is weakly ε-close H1

n,k(W, U). This completes the proof. !

Let k, n be integers with k ≥ 3 and n ≡ 0 (mod k). Let m0, m1 be integers between 0
and n/k (inclusive). For convenience, define Hm0,m1

n,k (W, U) as the (1, k)-partite (k + 1)-
graph H with partition classes X and [n] and a partition W, U of [n], such that |X| = n/k

and |{x ∈ X : NH(x) = Hi
n,k(W, U)}| = mi for i ∈ {0, 1}. For i ∈ {0, 1}, if mi = m and 

m0 + m1 = n/k then we denote Hm0,m1
n,k (W, U) by Hi

n,k(W, U ; m).
In the remainder of this section, we study (1, k)-partite (k + 1)-graphs that F are 

close to some H(n, k) and consider those vertices in F that are contained in lots of 
edges of H(n, k). We introduce the following concept. Let k, n be integers with k ≥ 3, 
n ≡ 0 (mod k), and n sufficiently large. Let F and H be (1, k)-partite (k + 1)-graphs 
with partition classes X, [n]. A vertex v of F is said to be α-good with respect to H if 
|NH(v) \NF (v)| < α|V (F)|k. Otherwise, v is said to be α-bad with respect to H.

The following lemma shows that the number of bad vertices with respect to 
Hi

n,k(W, U ; m) in F is small if F is close to Hi
n,k(W, U ; m) for some i ∈ {0, 1}.

Lemma 2.2. Let k, n be integers with k ≥ 3 and n ≡ 0 (mod k), and let ε be a constant. 
Let F be a (1, k)-partite (k + 1)-graph with partition classes X and [n] where |X| =
n/k. Let 0 ≤ m ≤ n/k be an integer. If F is strongly ε-close to some Hi

n,k(W, U ; m), 
then the number of ε2/3-bad vertices in F with respect to Hi

n,k(W, U ; m) is at most 
(1 + 1/k)(k + 1)ε1/3n.

Proof. Let N be the set of ε2/3-bad vertices in F with respect to Hi
n,k(W, U ; m). If 

|N | > ((1 + 1/k)(k + 1)ε1/3n then

|E(Hi
n,k(W,U ;m)) \ E(F)| > 1

k + 1 |N |ε2/3|V (F)|k ≥ ε
(
n + n

k

)k+1
.
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This contradicts the assumption that F is strongly ε-close to Hi
n,k(W, U ; m). !

The next lemma says that we can find an edge in F which serves as “parity breaker”. 
This is the only place in the proof of Theorem 1.3 where we require δk−1(NF (x)) > t(n, k)
for all x ∈ X.

Lemma 2.3. Let k, n be integers with k ≥ 3, n ≡ 0 (mod k), and n ≥ 2k. Let F be a 
balanced (1, k)-partite (k+1)-graph with partition classes X, [n], such that δk−1(NF (x)) >
t(n, k) for all x ∈ X. Let W, U be a partition of [n] with min{|W |, |U |} ≥ k. Let i ∈ {0, 1}
be an integer such that |{e ∈ F | |e ∩W | ≡ i (mod 2)}| ≥ |F|/4. Then for any proper 
subset X ′ of X, there exists e0 with e0 ∈ E(F) or e0 = ∅, such that

(i) if i = 0 then |W \ e0| ≡ |X ′ \ e0| (mod 2);
(ii) if i = 1 then |W \ e0| ≡ |X \ (X ′ ∪ e0)| (mod 2);
(iii) if k − i is even then |U \ e0| ≡ |X ′ \ e0| (mod 2);
(iv) if k − i is odd then |U \ e0| ≡ |X \ (X ′ ∪ e0)| (mod 2).

Proof. Fix x ∈ X \ X ′ and x′ ∈ X ′ if X ′ .= ∅. Then δk−1(NF (x)) ≥ t(n, k) + 1. In all 
cases below, we may assume the assertion of this lemma does not hold for e0 = ∅.

Case 1: i = 0 and k − i = k is even.
We have either |W | .≡ |X ′| (mod 2) or |U | .≡ |X ′| (mod 2). As n is even (because k

divides n and, by assumption, k is even) and |U | + |W | = n, we have that |U | and |W |
must have the same parity. Therefore, it follows that

|W | ≡ |U | .≡ |X ′| (mod 2). (1)

Suppose that there exists e0 such that x ∈ e0 and either |e0 ∩W | = 1 or |e0 ∩U | = 1. 
As e0 ∩X = {x} (recall that for e ∈ F we have |e ∩X| = 1) and x ∈ X \X ′, we have 
|X ′ \ e0| = |X ′|. Now note that if |e0 ∩W | = 1, then |e0 ∩U | = k− 1. As k is even, then 
|e0 ∩W | and |e0 ∩ U | are odd. Obviously, the same holds when |e0 ∩ U | = 1. Therefore, 
|W | and |W \ e0| have different parities as well as |U | and |U \ e0|. By (1), it follows that 
|W \ e0| ≡ |X ′| ≡ |U \ e0| (mod 2). As |X ′ \ e0| = |X ′|, we conclude that (i) and (iii) 
holds.

Now we may assume that, for every e ∈ E(F) with x ∈ e, |e ∩W | .= 1 and |e ∩U | .= 1. 
Then for any (k − 1)-set S ⊆ U , NNF (x)(S) ⊆ U \ S. Thus, |U − S| ≥ |NNF (x)(S)| ≥
t(n, k) + 1 ≥ n/2 + 2 − k. Thus |U | ≥ n/2 + 1. Similarly, we derive |W | ≥ n/2 + 1. This 
leads to a contradiction as n = |U | + |W |.

Case 2: i = 0 and k − i = k is odd.
We have |W | .≡ |X ′| (mod 2) or |U | .≡ n/k−|X ′| (mod 2). Since k is odd, n/k−|X ′| ≡

n − |X ′| (mod 2). Note that |U | + |W | = n. Thus we have

|U | .≡ n− |X ′| (mod 2) and |W | .≡ |X ′| (mod 2). (2)
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Suppose that there exists e0 ∈ F such that x ∈ e0 and |e0 ∩ W | = 1 or |e0 ∩ W | =
k − 2. Then X ∩ e0 = {x}, |W \ e0| .= |W | (mod 2) and |U \ e0| = |U | (mod 2). Note 
that X ′ \ e0 = X ′ and so |X \ (X ′ ∪ e0)| .= |X \ X ′| (mod 2). Thus by (2), we have 
|W \ e0| ≡ |X ′| ≡ |X ′ \ e0| (mod 2) and

|U \ e0| ≡ |U | ≡ n− |X ′|− 1 ≡ n/k− |X ′|− 1 ≡ |X \X ′|− 1 ≡ |X \ (X ′ ∪ e0)| (mod 2).

Hence we may conclude that (i) and (iv) holds for this e0. So assume that for any 
e ∈ E(F) with x ∈ e, |e ∩W | .= 1 and |e ∩W | .= k − 2.

Subcase 2.1 : n is even; so n/k is even.
Then for any (k−1)-subset S ⊆ U , NNF (x)(S) ⊆ U \S. Thus, |U \S| ≥ |NNF (x)(S)| ≥

t(n, k) + 1 ≥ n/2 + 2 − k; so |U | ≥ n/2 + 1. Similarly, for any (k − 1)-subset T ⊆ [n]
with |T ∩W | = k− 2, NNF (x)(T ) ⊆ W \T . Thus, |W \T | ≥ |NNF (x)(T )| ≥ t(n, k) + 1 ≥
n/2 + 2 − k; so |W | ≥ n/2. However, this is a contradiction as n = |W | + |U | ≥ n + 1.

Subcase 2.2. n is odd; so n/k is odd.
Then for any (k − 1)-subset S ⊆ U , NNF (x)(S) ⊆ U \ S which implies |U \ S| ≥

|NNF (x)(S)| ≥ t(n, k) + 1 ≥ n/2 + 3/2 − k; so |U | ≥ (n + 1)/2. Similarly, for any (k− 1)-
subset T ⊆ [n] with |T ∩ W | = k − 2, NNF (x)(T ) ⊆ W \ T and, hence, |W \ T | ≥
|NNF (x)(T )| ≥ t(n, k) + 1 ≥ n/2 + 3/2 − k; so |W | ≥ (n − 1)/2 and the equality holds 
only when (n − 1)/2 is even. Thus since n = |W | + |U |,

|U | = (n + 1)/2 and |W | = (n− 1)/2 ≡ 0 (mod 2). (3)

By (2) and (3), we have |X ′| ≡ 1 (mod 2).
Now we have X ′ .= ∅, and fix x′ ∈ X ′. Suppose that there exists an edge e0 ∈ E(F)

such that x′ ∈ e0 and |e0 ∩ W | = 2 or |e0 ∩ W | = k − 1. Then we have |W\e0| ≡ |W |
(mod 2), |U\e0| .= |U | (mod 2) and |X ′\e0| .= |X ′|. By (2), one can see that |W\e0| ≡
|X ′\e0| (mod 2),

|X \ (X ′ ∪ e0)| = |X \X ′| = n/k − |X ′| and n/k − |X ′| ≡ n− |X ′| ≡ |U |− 1 ≡ |U\e0|.

Thus we may conclude that (i) and (iv) hold with this e0. So we may assume that for any 
e ∈ E(F) with x′ ∈ e, |e ∩W | .= 2 and |e ∩W | .= k−1. Then for any (k−1)-subset T ⊆ W , 
NNF (x′)(T ) ⊆ W \ T and, hence, |W \ T | ≥ |NNF (x′)(T )| ≥ t(n, k) + 1 ≥ n/2 + 3/2 − k; 
so |W | ≥ (n + 1)/2, which a contradicts to (3).

Case 3: i = 1 and k − i = k − 1 is odd (i.e., k is even).
Then |W | .≡ n/k− |X ′| (mod 2) or |U | .≡ n/k− |X ′| (mod 2). Note that n is even as 

k is even. Since n = |W | + |U |, |W | and |U | have the same parity, i.e.,

|W | ≡ |U | .≡ n/k − |X ′| (mod 2). (4)
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Firstly, consider |X ′| ≡ 1 (mod 2). Then X ′ .= ∅, and fix x′ ∈ X ′. Suppose that 
there exists e0 ∈ E(F) such that x′ ∈ e0, and |e0 ∩ W | = 1 or |e0 ∩ W | = k − 1, then 
|W | .= |W \ e0| (mod 2) and |U | .= |U \ e0| (mod 2). Recall that |X ∩ e0| = |X ′∩ e0| = 1. 
So |X ′ \ e0| .= |X ′| and |X \ (X ′ ∪ e0)| = |X \X ′| = n/k− |X ′| (mod 2). By (4), we have

|W \ e0| ≡ |U \ e0| ≡ |X \ (X ′ ∪ e0)| (mod 2).

So we may conclude (ii) and (iv) holds for this e0, in this case. So assume that, for 
any e ∈ E(F) with x′ ∈ e, |e ∩ W | .= 1 and |e ∩ W | .= k − 1. Hence, for any (k − 1)-
subset S ⊆ [n] with S ⊆ W , NNF (x′)(S) ⊆ W \ S and, hence, |W \ S| ≥ |NNF (x′)(S)| ≥
t(n, k) +1 ≥ n/2 +2 −k; so |W | ≥ n/2 +1. Similarly, |U | ≥ n/2 +1. This is a contradiction 
since n = |W | + |U | ≥ n + 2.

Secondly, we may assume |X ′| ≡ 0 (mod 2). Suppose that there exists e0 ∈ E(F)
with x ∈ e0 such that |e0 ∩W | = 2 or |e0 ∩U | = 2. Then |W | ≡ |W \ e0| ≡ |U\e0| ≡ |U |
(mod 2). Recall that |X \ (X ′ ∪ e0)| .= |X \X ′| (mod 2) and |X \X ′| = n/k − |X ′|. By 
(4), we have |W \ e0| ≡ |U\e0| ≡ |X \ (X ′ ∪ e0)| (mod 2). Thus (ii) and (iv) holds with 
this e0. Hence, we may assume that, for any e ∈ E(F) with x ∈ e, |e ∩ W | .= 2 and 
|e ∩ U | .= 2.

Hence, for any (k− 1)-subset S ⊆ [n] with |W ∩ S| = k− 2, NNF (x)(S) ⊆ W \ S and, 
hence, |W \ S| ≥ |NNF (x)(S)| ≥ t(n, k) + 1 ≥ n/2 + 2 − k. So |W | ≥ n/2 and equality 
holds only when n/k is even or when n/k is odd and k/2 is odd. Similarly, |U | ≥ n/2
and equality holds only when n/k is even or when n/k is odd and k/2 is odd. Since 
n = |W | + |U |, |W | = |U | = n/2. If n/k is even then |W | = n/2 is even (as k is even); 
however, |W | is odd since |W | .≡ n/k− |X ′| (mod 2), a contradiction. If n/k is odd then 
k/2 is odd and, hence, |W | = n/2 is odd. However, |W | is even, since |W | .≡ n/k − |X ′|
(mod 2), a contradiction.

Case 4: i = 1 and k − i = k − 1 is even (i.e., k is odd).
Then |W | .≡ n/k− |X ′| (mod 2) or |U | .≡ |X ′| (mod 2). Note that n = |W | + |U | and 

n/k − |X ′| ≡ n − |X ′| (mod 2). So

|W | .≡ n− |X ′| (mod 2) and |U | .≡ |X ′| (mod 2). (5)

Suppose that there exists e0 ∈ E(F) with x ∈ e0 such that |e0∩U | = 1 or |e0∩U | = k−2. 
Then |e0 ∩W | ≡ 0 (mod 2). Thus |W \ e0| ≡ |W | (mod 2) and |U \ e0| .= |U | (mod 2). 
Recall that |X ′ \ e0| = |X ′| and |X \ (X ′ ∪ e0)| .= |X \ X ′| (mod 2). By (5), we have 
|U \ e0| ≡ |X ′ \ e0| (mod 2) and

|W\e0| ≡ |W | ≡ n− |X ′|−1 ≡ n/k− |X ′|−1 ≡ |X \X ′|−1 ≡ |X \ (X ′∪ e0)| (mod 2).

Thus (ii) and (iii) hold for this e0. So assume that for any e ∈ E(F) with x ∈ e, |e ∩U | .= 1
and |e ∩ U | .= k − 2.

Subcase 4.1 : n is even.
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Then, for any (k − 1)-subset S ⊆ W , NNF (x)(S) ⊆ W \ S and, hence, |W \ S| ≥
|NNF (x)(S)| ≥ t(n, k) +1 ≥ n/2 +2 −k; so |W | ≥ n/2 +1. Similarly, for any (k−1)-subset 
T ⊆ [n] with |T ∩ U | = k − 2, NNF (x)(T ) ⊆ U \ T and, hence, |U \ T | ≥ |NNF (x)(T )| ≥
t(n, k) + 1 ≥ n/2 + 2 − k; so |U | ≥ n/2. Now n = |W | + |U | ≥ n + 1, a contradiction.

Subcase 4.2 : n is odd.
Then for any some (k− 1)-subset S ⊆ W , NNF (x)(S) ⊆ W \ S and, hence, |W \ S| ≥

|NNF (x)(S)| ≥ t(n, k) +1 ≥ n/2 +3/2 −k; so |W | ≥ n/2 +1/2. Also, for any (k−1)-subset 
T ⊆ [n] with |T ∩ U | = k − 2, NNF (x)(T ) ⊆ U \ T and, hence, |U \ T | ≥ |NNF (x)(T )| ≥
t(n, k) +1 ≥ n/2 +3/2 −k; so |U | ≥ n/2 −1/2 and the equality holds only when (n −1)/2
is even. Since n = |W | + |U |, |W | = (n + 1)/2 and

|U | = (n− 1)/2 and (n− 1)/2 is even. (6)

By (5), |U | .≡ |X ′| (mod 2) and so |X ′| is odd.
Now fix x′ ∈ X ′. If there exists e0 ∈ E(F) with x′ ∈ e0 such that |e0 ∩ W | = 1 or 

|e0 ∩ W | = k − 2, then with similar discussion as above, (ii) and (iii) hold for this e0. 
So assume that for any e ∈ E(F) with x′ ∈ e, |e ∩W | .= 1 and |e0 ∩W | .= k − 2. Then 
for any (k − 1)-subset S ⊆ U , NNF (x′)(S) ⊆ U \ S and, hence, |U \ S| ≥ |NNF (x′)(S)| ≥
t(n, k) + 1 ≥ n/2 + 3/2 − k; so |U | ≥ (n + 1)/2, contradicting to (6). !

3. Hypergraphs close to extremal configurations

We often need to move some vertices between two sets and keep track of their degrees. 
The following notation will be convenient. Let H be a k-graph. For j ∈ {0, 1}, v ∈ V (H), 
and S ⊆ V (H), we define

djH,S(v) := |{e ∈ E(H) : v ∈ e and |e ∩ S| ≡ j (mod 2)}|.

We begin with a lemma that allows us to find a matching in the balanced (1, k)-
partite (k + 1)-graph F referred in Theorem 1.3 covering any small fixed set of vertices. 
For convenience, we set the following parameters for a given integer k for the remainder 
of this section: η = 1/(4k!), c = 1/(8(k + 1)!), ε = 1/(80kkk−5(k!)k((k + 1)!)k)3/2, and 
γ = ε2/32k

ckkk .

Lemma 3.1. Let k, n be integers with k ≥ 3, n ≡ 0 (mod k), and n ( 1/ε. Let 
F be a balanced (1, k)-partite (k + 1)-graph with partition classes X, [n], and assume 
δk−1(NF (x)) > t(n, k) for all x ∈ X. Let W, U be a partition of [n] such that 
min{|W |, |U |} ≥ k, and let X0, X1 be a partition of X such that djF,W (x) ≥ ηnk for 
j ∈ {0, 1} and x ∈ Xj. Suppose there exists i ∈ {0, 1} such that diF−X1−i,W

(v) ≥ ηnk for 
all v ∈ [n].

Then for any e0 satisfying the conclusion of Lemma 2.3 and for any N ⊆ X ∪ [n] with 
|N | < 2cn, there exists a matching M in F such that N ⊆ V (M), e0 ∈ M when e0 .= ∅, 
|V (M)| ≤ (k + 1)2cn, and |W \ V (M)| ≡ |X1 \ V (M)| (mod 2).



92 H. Lu et al. / Journal of Combinatorial Theory, Series B 163 (2023) 83–111

Proof. Let N0 = N ∩X0 and N1 = N ∩X1. Let e0 be the edge satisfying the conclusion 
of Lemma 2.3. If N ⊆ e0, then let M := ∅ when e0 = ∅, and M = {e0} when e0 .= ∅. So 
assume N ! e0. Divide N \ e0 into three pairwise disjoint sets: N0 \ e0 = {v1, . . . , vr}, 
N1\e0 = {vr+1, . . . , vs}, and (N \e0) ∩[n] = {vs+1, . . . , vt}. We find the desired matching 
M by covering the vertices in N \ e0 greedily.

Suppose we have found the matching Mu := {e0, e1, ..., eu} for some u ≥ 0 such that 
for 1 ≤ j ≤ u, {vj} = ej ∩ N and for 1 ≤ i ≤ min{u, r}, |ej ∩ W | ≡ 0 (mod 2), for 
r+1 ≤ j ≤ min{u, s}, |ej ∩W | ≡ 1 (mod 2), and for s +1 ≤ j ≤ min{u, t}, |ej ∩W | ≡ i

(mod 2) and ej ∩X ⊆ Xi.
If N ⊆ ∪u

i=0ei, then Mu is the desired matching. Otherwise, let vu+1 ∈ N \ ∪u
i=0ei. 

Since u + 1 < |N | ≤ 2cn, the number of edges in F containing vu+1 ∈ N and a vertex 
from ∪u

i=0ei ∪N is less than

(|N | + (u + 1)(k + 1))nk−1 ≤ (k + 1)2cnk.

By assumption, d0
F,W (v) ≥ ηnk for v ∈ N0, d1

F,W (v) ≥ ηnk for v ∈ N1 and 
diF−X1−i,W

(v) ≥ ηnk for v ∈ (N \ e0) ∩ [n]. Thus there exists an edge eu+1 in F −∪u
i=0ei

such that {vu+1} = eu+1 ∩N , |eu+1 ∩W | ≡ 0 (mod 2) when u + 1 ≤ r, |eu+1 ∩W | ≡ 1
(mod 2) when r < u + 1 ≤ s, and |eu+1 ∩ W | ≡ i (mod 2) and ej ∩ X ⊆ Xi when 
s + 1 < u + 1 ≤ t. Continuing this process for at most |N \ e0| steps, we obtain the 
desired matching M . !

Let H(W, U ; r) denote the balanced (1, k)-partite (k+ 1)-graph with partition classes 
X, [n] and a partition W, U of [n] such that for every x ∈ X, NH(W,U ;r)(x) = {e ∈

([n]
k

)
:

|e ∩W | = r}. Now we show that if all the vertices of a (1, k)-partite (k+ 1)-graph F are 
γ-good with respect to H(W, U ; r), then there exists a perfect matching in F consisting 
of edges intersecting W exactly r times.

Lemma 3.2. Let k, n, r be integers such that k ≥ 3, 0 ≤ r ≤ k, n ≡ 0 (mod k), and 
n ( k. Let F be a balanced (1, k)-partite (k + 1)-graph with partition classes X, [n], and 
let W, U be a partition of [n] with |W | = rn/k. Suppose all vertices in F are γ-good with 
respect to H(W, U ; r). Then there exists a perfect matching M in F such that |e ∩W | = r

for all e ∈ M .

Proof. As |W | = rn/k, we have |U | = (k − r)n/k and |e ∩ W | = r if and only if 
|e ∩ U | = k − r. By symmetry between W and U , we may assume |W | ≥ |U | and so 
r ≥ k/2. Let M be a maximum matching in F such that, for every e ∈ M , |e ∩W | = r. 
Let W0 := W \ V (M) and U0 := U \ V (M). Then |W0| = |W | − r|M | = r(n/k−m) and 
|U0| = |U | − (k − r)|M | = (k − r)(n/k −m). Since r ≥ k/2, |W0| ≥ |U0|.

Suppose |M | < n
4k . Then |W0| ≥ n

4 . By maximality of M , for v ∈ W0, we have

|NH(W,U ;r)(v) \NF (v)| ≥ |X\V (M)|
(
|W0|
r − 1

)(
|U0|
k − r

)
.
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Thus, if r = k then

|NH(W,U ;r)(v) \NF (v)| ≥ 3n
4k

(
|W0|
k − 1

)
≥ γ(n + n/k)k.

Now suppose r ≤ k − 1. Then

|U0| = k − r

r
|W0| ≥

k − r

r
(n/4) ≥ n

4(k − 1) .

So we have

|NH(W,U ;r)(v) \NF (v)| ≥ 3n
4k (|W0|− r + 2)r−1(|U0|− k + r + 1)k−r/k!

≥ γ(n + n/k)k

contradicting the fact that v is γ-good with H(W, U ; r).
We may assume |M | ≥ n

4k . Now, suppose for a contradiction that M is not a perfect 
matching. There exist xk+1 ∈ X\V (M), distinct vk+1,1, ..., vk+1,r ∈ W0, and distinct 
vk+1,r+1, ..., vk+1,k ∈ U0. Let {e1, e2, ..., ek} ∈

(M
k

)
and write ei := {xi, vi,1, ..., vi,k}, such 

that, for i ∈ [k], xi ∈ X, vi,j ∈ W for j ∈ [r], and vi,j ∈ U for j ∈ [k] \ [r]. For j ∈ [k+1], 
let fj := {xj , vj+1,1, vj+2,2, ..., vj+1+k,k}, with the addition in the subscripts modulo k+1
(except we write k+1 for 0). Note that f1, ..., fk+1 are pairwise disjoint and |fj ∩W | = r

for j ∈ [k + 1].
If fj ∈ E(F) for all j ∈ [k+1], then M ′ := (M∪{f1, ..., fk+1}) \{e1, ..., ek} is matching 

in F , contradicting the maximality of |M |. Hence, fj /∈ E(F) for some j ∈ [k + 1]. Note 
that there are 

(|M |
k

)
choices of {e1, ..., ek} ⊆ M . Thus we have

∣∣∣{e ∈ E(H(W,U ; r)) \ E(F) : |e ∩ {vk+1,i : i ∈ [k]}| = 1}
∣∣∣

≥
(
|M |
k

)

≥
( n

4k − k + 1
)k

/k! (since |M | ≥ n

4k )

≥ 1
k!(5k)k n

k (since n ≥ 20k2)

> γ(k + 1)(n + n/k)k

This implies that there exists x ∈ {xk+1, vk+1,1, . . . , vk+1,k} such that

|NH(W,U ;r)(x) \NF (x)| > γ(n + n/k)k.

That is, x is not γ-good with respect to H(W, U ; r), a contradiction. !
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Note that Lemma 3.2 requires W, U to have specific sizes. After obtaining the matching 
M in F from Lemma 3.1, we need to find a perfect matching in F − V (M) to conclude 
the proof of Theorem 1.3 for the case when all the vertices of F − V (M) are good. The 
following lemma serves this purpose.

Lemma 3.3. Let k, n be integers such that k ≥ 3, n ≡ 0 (mod k), and 1/n / ε / 1/k. 
Let F be a balanced (1, k)-partite (k + 1)-graph with partition classes X, [n]. Let W ′, U ′

be a partition of [n] with min{|U ′|, |W ′|} ≥ 1.1n/k + k, and let i ∈ {0, 1} such that

(i) if i = 0 then |W ′| ≡ 0 (mod 2),
(ii) if i = 1 then |W ′| ≡ n/k (mod 2),
(iii) if k − i ≡ 0 (mod 2) then |U ′| ≡ 0 (mod 2), and
(iv) if k − i ≡ 1 (mod 2) then |U ′| ≡ n/k (mod 2).

If all vertices of F are γ-good with respect to Hi
n,k(W ′, U ′), then there is a perfect match-

ing in F .

Proof. First, suppose there exists an edge e1 ∈ E(F) such that |W ′ \e1| = r1x +r2y and 
|U ′ \ e1| = (k− r1)x + (k− r2)y, where x, y, r1, r2 are integers satisfying x, y > 20k2 and 
0 ≤ r1, r2 ≤ k. We partition W ′ \ e1 to W1, W2 such that |W1| = r1x and |W2| = r2y, 
partition U ′ \ e1 to U1, U2 such that |U1| = (k− r1)x and |U2| = (k− r2)y, and partition 
X \ e1 to X1, X2 such that |X1| = x and |X2| = y. By assumption, for i ∈ {0, 1}, 
0 ≤ ri ≤ k. Hence, by Lemma 3.2, F [Xi ∪ Wi ∪ Ui] has a perfect matching, say Mi, 
consisting of edges containing exactly ri vertices from Wi. Now M1 ∪M2 (when e1 = ∅) 
or M1 ∪M2 ∪ {e1} gives the desired matching.

Therefore, it suffices to prove the existence of such e1. This is done in the following 
four cases.

Case 1. i = 0 and k − i = k is even.
Then (i) and (iii) hold. So |W ′| and |U ′| are both even. Then, since all vertices of F are 

γ-good with respect to H0
n,k(W ′, U ′), there is an edge e1 ∈ F such that |e1 ∩W ′| ≡ |W ′|

(mod k). Thus, |W ′ \ e1| ≡ 0 (mod k).
Since n ≡ 0 (mod k), we have |e1 ∩ U ′| = k − |e1 ∩W ′| ≡ k − |W ′| (mod k); hence, 

|e1 ∩ U ′| ≡ |U ′| (mod k). So |U ′ \ e1| ≡ 0 (mod k).
Thus, we may take r1 = k and r2 = 0. Note that x = |W ′ \ e1|/k > n/k2 > 20k2 and 

y = |U ′ \ e1|/k > n/k2 > 20k2.
Case 2. i = 0 and k − i = k is odd.
Then (i) and (iv) hold. So |W ′| is even and |U ′| ≡ n/k (mod 2). Since all vertices of 

F are γ-good with respect to H0
n,k(W ′, U ′), there is an edge e1 ∈ F such that |e1∩W ′| ≡

|W ′| (mod k − 1).
Write |W ′\e1| = (k−1)x for some integer x. Then |U ′\e1| −x = n −x −|W ′| −|e1∩U ′| =

n −x − |W ′\e1| − |W ′∩ e1| + |e1 ∩U ′| = n −k(x +1) ≡ 0 (mod k). So we take r1 = k−1
and r2 = 0.
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Note that x = |W ′ \ e1|/(k − 1) > n/k2 > 20k2 and

y = (|U ′ \ e1|− x)/k
= (|U ′ \ e1|− |W ′ \ e1|/(k − 1))/k
= (|U ′ \ e1|− (n− k − |U ′ \ e1|)/(k − 1))/k
= (|U ′ \ e1|− n/k + 1)/(k − 1)
≥ 0.1n/k2 > 20k2.

Case 3. i = 1 and k − i = k − 1 is odd.
Then (ii) and (iv) hold. So |W ′| ≡ n/k (mod 2) and |U ′| ≡ n/k (mod 2). Without 

loss generality, suppose that |W ′| ≥ |U ′|. Since all vertices of F are γ-good with respect 
to H1

n,k(W ′, U ′), there is an edge e1 ∈ E(F) such that |W ′ \ e1| ≡ n/k− 1 (mod k− 2). 
So |e1 ∩W ′| ≡ |W ′| − n/k + 1 (mod k − 2).

Let |W ′ \e1| = (k−1)x +y and x +y = n/k−1; then x +(k−1)y = n −k− |W ′ \e1| =
|U ′ \e1|. Moreover, x = (|W ′ \e1| −n/k+1)/(k−2) and y = (|U ′ \e1| −n/k+1)/(k−2). 
So we may set r1 = k − 1 and r2 = 1.

Note that x = (|W ′ \ e1| − n/k + 1)/(k − 2) > 0.1n/k2 > 20k2 and y = (|W ′ \ e1| −
n/k + 1)/(k − 2) > 0.1n/k2 > 20k2.

Case 4. i = 1 and k − i = k − 1 is even.
Then (ii) and (iii) hold. So |W ′| ≡ n/k (mod 2) and |U ′| is even. Since all vertices 

in F are γ-good with respect to H1
n,k(W ′, U ′), there is an edge e1 ∈ E(F) such that 

|e1 ∩ U ′| ≡ |U ′| (mod k − 1).
Write |U ′ \ e1| = (k − 1)y for some integer y. Then

|W ′ \ e1|− y = n− y − |U ′|− |e1 ∩W ′|

= n− y − |U ′\e1|− (|e1 ∩ U ′| + |e1 ∩W ′|)
= n− y − (k − 1)y − k

= n− k(y + 1) ≡ 0 (mod k).

So let r1 = k and r2 = 1.
Note that

x = (|W ′ \ e1|− y)/k
= (|W ′ \ e1|− |U ′ \ e1|/(k − 1))/k
= (|W ′ \ e1|− (n− k − |W ′ \ e1|)/(k − 1))/k
= (|W ′ \ e1|− n/k + 1)/(k − 1)
≥ 0.1n/k2

> 20k2.
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Moreover y = |U ′ \ e1|/(k − 1) > n/k2 > 20k2. !

We are ready to prove the main result in this section.

Lemma 3.4. Let k, n be integers with k ≥ 3, n ≡ 0 (mod k), and 1/n / ε / 1/k. 
Let F be a balanced (1, k)-partite (k + 1)-graph with partition classes X, [n], such that 
δk−1(NF (x)) > t(n, k) for all x ∈ X. Suppose [n] has a partition W, U with |W | =
n/2 ± o(n) and |U | = n/2 ± o(n) such that F is strongly ε-close to H0

n,k(W, U ; m) for 
some m ∈ [n/k]. Then F admits a perfect matching.

Proof. Since F is strongly ε-close to H0
n,k(W, U ; m) for some m ∈ [n/k], the number of 

ε2/3-bad vertices in F is at most (k+1)ε1/3(n/k+n) ε2/3 (see Lemma 2.2). Let B denote 
the set of ε2/3-bad vertices in F . Write X2 = X ∩B and N = [n] ∩B. For i ∈ {0, 1},

Xi = {x ∈ X\X2 | NH0
n,k(W,U ;m)(x) ∼= Hi

n,k(W,U)}.

Write mi := |Xi| for i ∈ {0, 1, 2}. For i ∈ {0, 1} and x ∈ Xi, x is ε2/3-good; hence,

|NH0(W,U ;m)(x) \NF (x)| ≤ ε2/3(n + n/k)k ≤ (1 + 1/k)kε2/3nk.

So NF (x) is strongly (1 + 1/k)kε2/3-close to Hi
n,k(W, U).

Recall the definition of constants η= 1/(4k!), c = 1/(8(k+1)!), ε =1/(80kkk−5(k!)k((k
+ 1)!)k)3/2 and γ = ε2/32k

ckkk . Let Fi := (F −X2) −X1−i for i ∈ {0, 1}. Define a partition 
W0, U0 of [n] as follows: If |X0| ≥ |X1| then let

W0 = (W \ {v ∈ W ∩N : d0
F0,W (v) ≤ ηnk}) ∪ {v ∈ U ∩N : d1

F0,W (v) > ηnk}

and

U0 = (U \ {v ∈ U ∩N : d1
F0,W (v) > ηnk}) ∪ {v ∈ W ∩N : d0

F0,W (v) ≤ ηnk}.

If |X0| < |X1| then let

W0 = (W \ {v ∈ W ∩N : d1
F1,W (v) ≤ ηnk}) ∪ {v ∈ U ∩N : d0

F1,W (v) > ηnk}

and

U0 = (U \ {v ∈ U ∩N : d0
F1,W (v) > ηnk}) ∪ {v ∈ W ∩N : d1

F1,W (v) ≤ ηnk}.

Let X21 := {x ∈ X2 : d0
F,W0

(x) ≥ ηnk} and X22 = X2\X21. We apply Lemma 2.3 to 
F with X ′ = X1 ∪X22 and i = 0 (if |X0| ≥ |X1|), or X ′ = X0 ∪X21 and i = 1 (when 
|X0| < |X1|). So there exists e0 such that e0 = ∅ or e0 ∈ E(F) satisfying (i)(ii)(iii)(iv) 
of Lemma 2.3.
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Define

N ′ :=






B ∪X1, if |X1| ≤ cn

B ∪X0, if |X0| ≤ cn

B, otherwise.

Then |N ′| ≤ 2cn. Next, we apply Lemma 3.1 to F with W0 and U0 as a partition of 
[n] and with N ′ as the N in Lemma 3.1. Note that if |X0| ≥ |X1|, we set i = 0 and 
have d0

F−X1,W0
(v) ≥ ηnk for all v ∈ [n], and that if |X0| < |X1|, we set i = 1 and have 

d1
F−X0,W0

(v) ≥ ηnk for all v ∈ [n]. Hence, there is a matching M1 in F with e0 ∈ M1
(when e0 .= ∅), and |V (M1)| ≤ (k + 1)2cn such that

(i) N ′ ⊆ V (M1);
(ii) |W0 \ V (M1)| ≡ |X1\V (M1)| (mod 2).

Let W1 := W0 \ V (M1) and U1 := U0 \ V (M1). Let X ′
0 := X0 \ V (M1) and X ′

1 =
X1 \ V (M1). Note that |X ′

i| > cn/2 or X ′
i = ∅ for i ∈ {0, 1}. If |X0| < cn, then X ′

0 = ∅
and let W11 := W1, U11 := U1 and W10 = U10 = ∅; if |X1| < cn, then X ′

1 = ∅ and let 
W10 := W1, U10 := U1 and W11 = U11 = ∅. Otherwise, let W10 ∪W11 be a partition of 
W1 and U10 ∪ U11 be a partition of U1 such that for i ∈ {0, 1},

(iii) |W10| ≡ 0 (mod 2), |W11| ≡ |X ′
1| (mod 2), |W1i ∪ U1i| = k|X ′

i|, and if X ′
i .= ∅ then 

min{|W1i|, |U1i|} ≥ 1.1|X ′
i| + k.

Note that the existence of these partitions is guaranteed by (ii).
Let F ′

i := F [X ′
i ∪ W1i ∪ U1i] for i ∈ {0, 1}. Since every vertex in V (F)\B is ε2/3-

good with respect to H0
n,k(W, U ; m), every vertex of F ′

i is γ-good with respect to 
Hi

k|X′
i|,k

(W1i, U1i). For, otherwise, without loss of generality, suppose v ∈ V (F ′
i) is γ-bad 

with respect to Hi
k|X′

i|,k
(W1i, U1i). Then

|NHn,k(W,U ;m)(v) \NF (v)| ≥ |NHi
k|X′

i|,k
(W1i,U1i)(v) \NF ′

i
(v)|

> γ((k + 1)|X ′
i|)k

≥ ε2/32k
ckkk

( (k + 1)cn
2

)k

= ε2/3(n + n/k)k,

contradicting that v in F is ε2/3-good on Hn,k(W, U ; m).
By Lemma 3.3, F ′

i contains a perfect matching M2i for i = 0, 1 (and let M2i = ∅ if 
F ′

i is empty). So M1 ∪M20 ∪M21 is a perfect matching in F . !
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Fig. 1. Example of absorbing device I for k = 3.

4. Absorbing devices for perfect matchings

We need the following lemma from [28]. For subsets N1, . . . , Nk of the vertex sets of a 
k-graph H, let EH(N1, . . . , Nk) := {(v1, . . . , vk) : vi ∈ Ni for i ∈ [k] and {v1, . . . , vk} ∈
E(H)}. Let eH(N1, . . . , Nk) := |EH(N1, . . . , Nk)|. Given a k-graph H, let H denote the 
k-graph with vertex set V (H) and edge set

E(H) =
{
e ∈

(
V (H)
k

)
: e /∈ E(H)

}
.

The following lemma is Claim 5.1 in [28].

Lemma 4.1 (Rödl, Ruciński, and Szemerédi [28]). Let n, k be two integers such that n (
k ≥ 3 and n ≡ 0 (mod k). Let H be a k-graph on n vertices. If δk−1(H) ≥ (1/2 −
1/ logn)n and H is not weakly ε-close to H(n, k) or H(n, k), then at least one of the 
following holds.

(i) For all N1, . . . , Nk ⊆ V (H) with |Ni| ≥ (1/2 −1/ logn)n, we have eH(N1, . . . , Nk) ≥
nk/ log3 n.

(ii) |{(v1, . . . , vk−1) ∈
(V (H)

k−1
)

: dH({v1, . . . , vk−1}) > (1/2 + 2/ logn)n}| ≥ nk−1/ logn.

Next we define two types of absorbing devices for a given balanced set S of k + 1
vertices. Both are (k+ 1)-matchings. The vertices of each device together with S induce 
a (k + 1)-graph with a perfect matching.

Absorbing device I: Let H be a (1, k)-partite (k + 1)-graph with partition classes 
X, V . Given a balanced set S = {x0, v1, . . . , vk} with x0 ∈ X and vi ∈ V for i ∈ [k], a 
(k+1)-matching {e1, . . . , ek, g} in H is said to be S-absorbing if H has a (k+2)-matching 
{e′1, . . . , e′k, f, g} such that (see Fig. 1)

(i) e′i ∩ ej = ∅ for all i .= j,
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Fig. 2. Example of absorbing device II for k = 3.

(ii) e′i \ ei = {vi} and |ei \ e′i| = 1 for i ∈ [k], and
(iii) f = {x0} ∪

⋃
i∈[k](ei \ e′i).

Note that the inclusion of the edge g is only for later convenience.

Absorbing device II: Let H be a (1, k)-partite (k + 1)-graph with partition classes 
X, V . Given a balanced set S = {x0, v1, . . . , vk} with x0 ∈ X and vi ∈ V for i ∈ [k], a 
(k+1)-matching {e1, . . . , ek+1} in H is said to be S-absorbing if H has a (k+2)-matching 
{e′1, . . . , e′k+1, f} such that (see Fig. 2)

(i) ei ∩ e′j = ∅ for i, j ∈ [k], where i .= j,
(ii) e′i \ ei = {vi} and |ei \ e′i| = 1 for i ∈ [k],
(iii) e′k+1 ∩ ek = ek \ e′k, |ek+1 \ e′k+1| = 1;
(iv) f = {x0} ∪

⋃
i∈[k+1]\{k}(ei \ e′i).

Next, we show that if (i) or (ii) of Lemma 4.1 holds for F(n, k), then for each balanced 
set S there are many S-absorbing devices in F(n, k).

Lemma 4.2. Let n, k be two integers such that n ( k ≥ 3 and n ≡ 0 (mod k). Let F be a 
(1, k)-partite (k + 1)-graph with partition classes X, [n] such that δk−1(NF (x)) ≥ (1/2 −
1/ logn)n for each x ∈ X. Let R := {x ∈ X : NF (x) is not weakly ε-close to H(n, k) or 
H(n, k)}. Let S = {x0, v1, . . . , vk} be a balanced (k + 1)-set such that x0 ∈ R.

(i) If (i) of Lemma 4.1 holds for NF (x0), then the number of S-absorbing devices I in 
F is Ω(n(k+1)2/ log3 n).

(ii) If |R| = o(n) and |{x ∈ R \ {x0} : (ii) of Lemma 4.1 holds for NF (x)}| ≥ n/ logn, 
then the number of S-absorbing devices II in F is Ω(n(k+1)2/ log4 n).

Proof. First, suppose (i) of Lemma 4.1 holds for NF (x0). Since δk−1(NF (x0)) ≥ (1/2 −
1/ logn)n, there are Ω(nk) sets Bi, for each for i ∈ [k], such that Bi ∪ {vi} ∈ F . 
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Consequently, there are Ω(nk2) choices of (pairwise disjoint) such sets B1, . . . , Bk. Let 
e′i = Bi ∪ {vi} for i ∈ [k].

Since |NF (Bi)| ≥ (1/2 − 1/ logn)n and (i) of Lemma 4.1 holds for NF (x0), we have

eF (x0, NF (B1), . . . , NF (Bk)) ≥ nk/ log3 n.

So, there are at least nk/ log3 n choices of edges f = {x0, u1, . . . , uk} such that ei :=
Bi ∪ {ui} ∈ E(F) for i ∈ [k]. Moreover, there are Ω(nk+1) choices g such that g ∈
E((F − S) − ∪k

i=1ei). Hence, altogether there are

(nk/ log3 n)Ω(nk2)Ω(nk+1) = Ω(n(k+1)2/ log3 n)

choices of S-absorbing (k + 1)-matchings {e′1, . . . , e′k, f, g}.
Next we show (ii). As in the argument for (i), since |R| = o(n), there are Ω(nk2) choices 

of (pairwise disjoint) sets B1, . . . , Bk such that R ∩ (∪k
i=1Bi) = ∅ and e′i = Bi ∪ {vi} ∈

E(F) for i ∈ [k].
For i ∈ [k − 1], we choose ui ∈ NF (Bi), each in at least (1/2 − 1/ logn)n ways, 

and let ei = Bi ∪ {ui}. Let y ∈ R \ {x0} such that (ii) of Lemma 4.1 holds for 
NF (y). By assumption, there are at least n/ logn such y. We select a (k − 1)-element 
sequence of vertices, say T , such that dNF(y)(T ) ≥ (1/2 + 2/ logn)n and T is dis-
joint from S ∪ Bk ∪

⋃k−1
i=1 ei. Let Bk+1 = T ∪ {y}. Then we may pick uk, uk+1 such 

that Bk ∪ {uk}, Bk+1 ∪ {uk}, Bk+1 ∪ {uk+1}, {u0, u1, . . . , uk−1, uk+1} ∈ E(F). Note 
that dF (Bk+1) ≥ (1/2 + 2/ logn)n. We have |NF (Bk+1) ∩ NF (Bk)| ≥ n/ log n and 
|NF (Bk+1) ∩NF ({x0, u1 . . . , uk−1}) | ≥ n/ logn. Thus there are at least n/ logn choices 
for each of xk, xk+1. By Lemma 4.1 (ii), there are at least nk−1/ logn choices for T . 
Summarizing, we have chosen B1, . . . , Bk, Bk+1, u1, . . . , uk−1, T forming an S-absorbing 
(k + 1)-matching, in

Ω(nk2)(nk−1/ logn)nk−1(n/ logn)3) = Ω(n(k+1)2/ log4 n)

ways. !

Absorbing device III: Let H be a (1, k)-partite (k + 1)-graph with partition classes 
X, V . Given a balanced set S = {x0, v1, . . . , vk} with x0 ∈ X and vi ∈ V for i ∈ [k], a 
(k+1)-matching {e1, . . . , ek+1} in H is said to be S-absorbing if H has a (k+2)-matching 
{e′1, . . . , e′k+1, f} such that (see Fig. 3)

(i) ei ∩ e′j = ∅ for i, j ∈ [k], where i .= j,
(ii) e′i \ ei = {vi} and |ei \ e′i| = 1 for i ∈ [k],
(iii) e′k+1 \ ek+1 = {x0}, |ek+1 \ e′k+1| = 1,
(iv) f =

⋃
i∈[k+1](ei \ e′i).
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Fig. 3. Example of absorbing device III for k = 3.

In the following lemma, we show that any (1, k)-partite (k + 1)-graph is close to a 
(k + 1)-graph with same partition classes, or contains an absorbing matching.

Lemma 4.3. Let n, k be two integers such that n ≡ 0 (mod k) and let 1/n / ε / β /
1/k. Let H be a balanced (1, k)-partite (k + 1)-graph with partition classes X, [n]. Let 
R := {x ∈ X : NH(x) is not weakly ε-close to H0

n,k or H1
n,k}. Let x0 ∈ X \ R such 

that NH(x0) is strongly ε-close to Hi
n,k(W, U) for some i ∈ {0, 1} and for some partition 

(W, U) of [n] with |W | = (1/2 ±o(1))n = |U |. Suppose |R| ≤ n/ logn and δk−1(NH(x)) ≥
(1/2 − 1/ logn)n for every x ∈ X. If H is not strongly β-close to H0

n,k(W, U ; m) for any 
integer 0 ≤ m ≤ n/k, then for any balanced (k + 1)-set S with x0 ∈ S, there are at least 
Ω(n(k+1)2/ log4 n) S-absorbing devices I or III.

Proof. First, let α be a number with ε / α / β. We prove
Claim 1. Let x ∈ X and let Wx, Ux be a partition of [n] such that |Wx| = (1/2 ±

o(1))n and |Ux| = (1/2 ± o(1))n and NH(x) is strongly ε-close to Hj
n,k(Wx, Ux) for 

some j ∈ {0, 1}. For any N1, . . . , Nk ⊆ [n] with |Ni| ≥ (1/2 − 1/ logn)n for i ∈ [k], if 
eNH(x)(N1, N2, . . . , Nk) ≤ nk/ logn then, for j ∈ [k], |Ux \Nj | ≤ αn or |Wx \Nj | ≤ αn.

Otherwise, suppose, without loss of generality, |Ux \ N1| ≥ αn and |Wx \ N1| ≥ αn. 
Let D denote the set of √ε-bad vertices on Hj

n.,k(Wx, Ux); then |D| ≤ k
√
εn. Then, since 

|N1| ≥ (1/2 −1/ logn)n, |N1\(Ux∪D)| ≥ αn/2 and |N1\(Wx∪D)| ≥ αn/2. Note for any 
z ∈ N1 \(Wx∪D) and y ∈ N1\(Ux∪D), since ε / α and both z and y are 

√
ε-good with 

respect to Hj
n,k(Wx, Ux), we have |NH({x, z}) ∪ NH({x, y})| ≥

(n−1
k−1

)
− αnk−1. Hence, 

either eNH(x)({z}, N2, . . . , Nk) ≥ nk−1

2kk! − αnk−1 ≥ nk−1

2k+1k! or eNH(x)(y, N2, . . . , Nk) ≥
nk−1

2kk! − αnk−1 ≥ nk−1

2k+1k! . So by symmetry, we may assume that there exists N ′
1 ⊆ N1 \

(Wx ∪D) such that |N ′
1| ≥ |N1 \ (Wx ∪D)|/2 and for all z ∈ N ′

1

eNH(x)({z}, N2, . . . , Nk) ≥
nk−1

2k+1k! .

Hence,
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eNH(x)(N1, N2, . . . , Nk) ≥
αnk

2k+3k! > nk/ logn,

contradicting the assumption of Claim 1 and completing its proof.

Let A = {x ∈ X \R : |NH(x) ∩NH(x0)| ≥ αnk} and let B = X \ (A ∪R). Let x ∈ B. 
Then

|NH(x) ∩ E(Hi
n,k(W,U))| ≤ |NH(x) ∩NH(x0)| + |E(Hi

n,k(W,U)) \NH(x0)|
≤ αnk + εnk.

Hence, for any x ∈ B, we have

|E(Hi
n,k(W,U)) \ E(NH(x))| = e(Hi

n,k(W,U)))
− (|NH(x)|− |NH(x) ∩ E(Hi

n,k(W,U))|)

≤ e(Hi
n,k) − (e(Hi

n,k) − αnk − εnk)
+ |NH(x) ∩ E(Hi

n,k(W,U))|
≤ εnk + αnk + εnk + αnk + εnk ≤ 3αnk.

Thus, we have

Claim 2. For any x ∈ B, NH(x) is strongly (3α)-close to Hi
n,k(W,U), which is 

strongly 3α-close to H1−i
n,k (W, U). So

Claim 3. |B| ≤ (1 − β)n/k; so |A| ≥ βn/k − n/ logn.

For, otherwise, |B| > (1 − β)n/k. Then |A| + |R| < βn/k and

|E(H1−i
n,k (W,U ; |B|)) \ E(H)| =

∑

x∈B

|NH1−i
n,k (W,U ;|B|)(x) \NH(x)| + (|A| + |R|)

(
n

k

)

<
n

k
4αnk + βn/k

(
n

k

)
≤ β(n + n/k)k+1,

a contradiction since H is not strongly β-close to H1−i
n,k (W, U ; |B|).

Claim 4. Let H′ = H[A ∪ [n]]. Then, for any N1, . . . , Nk ⊆ [n] with |Ni| ≥
(1/2 − 1/ logn)n, either eH′({x0}, N1, . . . , Nk) ≥ nk/ logn or eH′(A, N1, . . . , Nk) ≥
nk+1/ log3 n.

Suppose on the contrary that there exist N1, . . . , Nk ⊆ [n] with |Ni| ≥ (1/2 −
1/ logn)n, such that

eH′({x0}, N1, . . . , Nk) < nk/ logn (7)

and
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eH′(A,N1, . . . , Nk) < nk+1/ log3 n. (8)

Since NH(x0) is strongly ε-close to Hi
n,k(W, U), the number of √ε-bad vertices in NH(x)

with respect to Hi
n,k(W, U) is at most k√εn.

By Claim 1 and (1), |U \Ni| ≤ αn or |W \Ni| ≤ αn for each i ∈ [k]. Let A1 := {x ∈
A : eNH(x)(N1, . . . , Nk) ≥ nk/ logn} and A2 = A \A1. By (8), |A1| ≤ n/ log2 n.

Let y ∈ A2. So y /∈ R and, thus, NH(y) is weakly ε-close to H0
n,k or H1

n,k. Let Wy, Uy be 
a partition of [n] such that NH(y) is strongly ε-close to Hj

n,k(Wy, Uy) for some j ∈ {0, 1}. 
By Claim 1, we have for all i ∈ [k], |Uy \Ni| ≤ αn or |Wy \Ni| ≤ αn. Hence

|Uy \ U | ≤ |Uy \Ni| + |Ni \ U | ≤ 2αn (9)

or

|Uy \W | ≤ |Uy \Ni| + |Ni \W | ≤ 2αn (10)

We claim that NH(y) is strongly (5α)-close to Hj
n,k(W, U) if inequality (9) holds.

|E(Hj
n,k(W,U)) \NH(y)| ≤ |E(Hj

n,k(Wy, Uy)) \NH(y)|
+ |E(Hj

n,k(W,U)) \ E(Hj
n,k(Wy, Uy))|

≤ εnk + 4αnk ≤ 5αnk.

If inequality (10) holds then

|E(Hj
n,k(U,W )) \NH(y)| ≤ |E(Hj

n,k(Wy, Uy)) \NH(y)|
+ |E(Hj

n,k(U,W )) \ E(Hj
n,k(Wy, Uy))|

≤ εnk + 4αnk ≤ 5αnk.

Thus NH(y) is strongly (5α)-close to Hj
n,k(U, W ).

Hence by Claim 2, for all x ∈ X \(A1∪R), NH(x) is strongly (5α)-close to Hj
n,k(W, U)

for some j ∈ {0, 1}. For j ∈ {0, 1}, let Xj = {x ∈ X : NH(x) is strongly (5α)-close to
Hj

n,k(W, U)}. Since |A1| ≤ n/ log2 n, and |R| ≤ n/ log n, we have |X \ (X0 ∪ X1)| =
|A1 ∪R| ≤ 2n/ logn. Hence

|E(H0
n,k(W,U ; |X0|)) \ E(H)| ≤

1∑

j=0

∑

x∈Xj

|NH0
n,k(W,U ;|X0|)(x) \NH(x)| + (|A1| + |R|)nk

≤ n

k
5αnk + 2nk+1/ logn ≤ β(n + n/k)k+1.

So H is strongly β-close H0
n,k(W, U ; |X0|), a contradiction. This concludes the proof of 

Claim 4.
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Let S = {x0, v1, . . . , vk} with v1, . . . , vk ∈ [n] all distinct. For each i ∈ [k], there are 
Ω(nk) sets Bi such that e′i = Bi∪{vi} ∈ E(H), and there are Ω(nk2) choices of (pairwise 
disjoint) such sets B1, . . . , Bk. For i ∈ [k], we have NH′(Bi) ≥ (1/2 − 1/ logn)n by 
assumption. So there are Ω(nk2) choices of (disjoint) sets B1, . . . , Bk such that by Claim 
4, one of the following two inequalities holds:

eH′({x0}, NH′(B1), . . . , NH′(Bk)) ≥ nk/ logn (11)
eH′(A,NH′(B1), . . . , NH′(Bk)) ≥ nk+1/ log3 n. (12)

First, assume (11) holds. Then there at least nk/ logn choices u1, . . . , uk such that 
ei = Bi ∪ {ui} ∈ E(H′) for i ∈ [k] and {x0, u1, . . . , uk} ∈ E(H′). Moreover, there are 
Ω(nk+1) choices of g ∈ E(H′) such that g is disjoint from we ∪k

i=1ei. Thus the number 
of S-absorbing devices I is at least

Ω(nk2)Ω(nk/ logn)Ω(nk+1) = Ω(n(k+1)2/ logn).

Now assume (12) holds. Then there are nk+1/ log3 n choices {y, u1, . . . , uk} such that 
y ∈ A and, for i ∈ [k], Bi ∪ {ui} ∈ E(H′). By definition of A, there are Ω(nk) choices 
Bk+1 such that Bk+1 ∈ NH(y) ∩NH(x0). Let ek+1 = Bk+1 ∪ {y}. So there are at least 
Ω(nk+1/ log3 n)Ω(nk)Ω(nk2) = Ω(n(k+1)2/ log3 n) different choices of {e1, . . . , ek+1} such 
that {e1, . . . , ek+1} is an S-absorbing device III. !

To prove another absorbing lemma, we need to use Chernoff bounds, see [3].

Lemma 4.4. Suppose X1, ..., Xn are independent random variables taking values in {0, 1}. 
Let X denote their sum and µ = E[X] denote the expected value of X. Then for any 
0 < δ ≤ 1,

P [X ≤ (1 − δ)µ] < e−
δ2µ
2 .

Lemma 4.5. Let k ≥ 3 be an integer and let 0 < ε / β / 1. There exists n2 > 0 such 
that the following holds for any integer n > n2. Let H be a balanced (1, k)-partite (k+1)-
graph with partition classes X, [n] such that δk−1(NH(x)) > t(n, k) for all x ∈ X. Let 
R := {x ∈ X : NH(x) is not weakly ε-close to H0

n,k or H1
n,k}, and let x0 ∈ X. Suppose 

one of the following three conditions holds for every S ∈
(V (H)

k+1
)

with S ∩X = {x0}:

(i) (i) of Lemma 4.1 holds for NH(x0), and H has Ω(n(k+1)2/ log4 n) S-absorbing 
devices I.

(ii) |{x ∈ R \ {x0} : (ii) of Lemma 4.1 holds for NH(x)}| ≥ n/ log n, and H has 
Ω(n(k+1)2/ log4 n) S-absorbing devices II.

(iii) |R| ≤ n/ log n, x0 /∈ R, and NH(x0) is strongly ε-close to H0
n,k(W, U) or H1

n,k(W, U)
for some partition (W, U) of [n] with |W | = (1/2 + o(1))n = |U |, H is not strongly 
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β-close to H0
n,k(W, U ; m) for any m ∈ [n/k], and H has Ω(n(k+1)2/ log4 n) S-

absorbing devices I or III.

Then there exists a matching M ′ in H such that |M ′| = O(log6 n) and, for each S ∈(V (H)
k+1

)
with S ∩X = {x0}, M ′ contains an S-absorbing (k + 1)-matching.

Proof. For each balanced (k+1)-set S ⊆ V (H) with x0 ∈ S, let Γ(S) be the collection of 
S-absorbing (k+1)-matchings. Then by Lemmas 4.2 and 4.3, |Γ(S)| = Ω(n(k+1)2/ log4 n). 
So we may choose constant α := α(k) > 0 such that

|Γ(S)| ≥ α(k2 + k)!
(

n/k

k + 1

)(
n

k(k + 1)

)
/((k!)k+1 log4 n).

Let M be the family obtained by choosing a sequence of balanced (k + 1)-sets 
(S1, . . . , Sk+1) independently with probability

p = (k!)k+1 log6 n
(n/k
k+1

)( n
k(k+1)

)
(k2 + k)!

.

Note that p < 1 as we can choose n2 large enough. Then

E(|M|) = p

(
n/k

k + 1

)(
n

k(k + 1)

)
(k2 + k)!/(k!)k+1 = O(log6 n),

and, for (k + 1)-set S ⊆ V (H) with {x0} = S ∩X,

E(|M ∩ Γ(S)|) ≥ pα(k2 + k)!
(

n/k

k + 1

)(
n

k(k + 1)

)
/((k!)k+1 log4 n) = α log2 n.

By Lemma 4.4 and by choosing n2 large enough, we have, for n > n2 and for each 
S ∈

(V (H)
k+1

)
with S ∩X = {x0},

P [|M| > 2α log6 n] = P [|M| > 2E(|M|)] ≤ e−E(|M|)/3 = e−(log6 n)/3.

So with probability at least 1 − o(1)

|M| ≤ 2α log6 n. (13)

Again by Lemma 4.4 and by choosing n2 large enough, we have, for n > n2 and for each 
S ∈

(V (H)
k+1

)
with S ∩X = {x0},

P [|M ∩ Γ(S)| ≤ (α log2 n)/2] ≤ P [|M ∩ Γ(S)| ≤ E(|M ∩ Γ(S)|)/2]
≤ e−E(|M∩Γ(S)|)/8

≤ e−(α log2 n)/8.
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So by union bound and by choosing n2 large, we have for n > n2,

P [∃S ∈
(
V (H)
k + 1

)
with S ∩X = {x0} : |M ∩ Γ(S)| ≤ (α log2 n)/2]

≤
(
n

k

)
e−(α log2 n)/8

= 2nk−(α logn)/8 < 1/10.

Thus, with probability at least 9/10, for all S ∈
(V (H)

k+1
)

with S ∩X = {x0}, we have

|M ∩ Γ(S)| ≥ (α log2 n)/2 > 1. (14)

Furthermore, the expected number of pairs of sequences (S1, . . . , Sk+1), (T1, . . . , Tk+1)
∈ M satisfying (∪i∈[k]Si) ∩ (∪i∈[k]Ti) .= ∅ is at most

( (k2 + k)!
(k!)k

)2 (
n/k

k + 1

)(
n

k2 + k

)

((
k + 1

1

)(
n/k

k

)(
n

k2 + k

)
+

(
k2 + k

1

)(
n/k

k

)(
n

k2 + k − 1

))
p2 < 1/2.

Thus, with probability at least 1/2 (by Markov’s inequality), for all distinct (S1, . . . , Sk+1)
∈ M and (T1, . . . , Tk+1) ∈ M,

⋃

i∈[k+1]
Si and

⋃

i∈[k+1]
Ti are disjoint. (15)

Hence, with positive probability, M satisfies (13), (14), and (15). So we may assume 
that M satisfies (13), (14), and (15). Let M be the union of M ∩Γ(S) for all S ∈

(V (H)
k+1

)

with S ∩X = {x0}. Then M is the desired matching. !

5. Absorbing devices for near perfect matchings

Let H be a (1, k)-partite (k + 1)-graph with partition classes Q, [n]. For a set S ∈(V (H)
k+2

)
with |S ∩ Q| = 1, an edge e ∈ E(H) is said to be S-absorbing if H[e ∪ S] has a 

matching of size 2.

Lemma 5.1. Let k ≥ 3, 0 < c < 1/(100k!), and n be a sufficiently large integer, and let 
H be a (1, k)-partite (k + 1)-graph with partition classes Q, [n] such that n/(100xk) ≤
|Q| ≤ (n − 1)/k. If δk−1(NH(v)) ≥ cn for all v ∈ Q, then, for any S ∈

(V (H)
k+2

)
with 

|S ∩Q| = 1, H has at least c4nk+1/2 S-absorbing edges.

Proof. Let S = {v} ∪ B, where v ∈ Q and B = {b1, . . . , bk, bk+1} ∈
( [n]
k+1

)
. Let B′ =

B \ {bk, bk+1}. Since δk−1(NH(v)) ≥ cn, we have at least cn − 2 choices for q ∈ [n] \ B
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such that B′ ∪ {v, q} ∈ E(H). For a (k− 2)-set A of V (H) \ (S ∪ {q}) with |A ∩Q| = 1, 
since dH(A ∪ {bk, bk+1}) ≥ cn, there are at least cn − 2k choices q′ ∈ [n] \ (S ∪A ∪ {q})
such that {q′} ∪ {bk, bk+1} ∪ A ∈ E(H). Since dH(A ∪ {q, q′}) ≥ cn, there are at least 
cn − 2k choices q′′ such that A ∪ {q, q′, q′′} ∈ E(H). Clearly, any such {q, q′, q′′} ∪ A is 
S-absorbing.

Note that there are (|Q| − 1)
(n−k−2

k−3
)

different choices for set A. Hence the number of 
S-absorbing edges is at least

(|Q|− 1)
(
n− k − 2
k − 3

)
(cn− 2)(cn− 2k)(cn− 2k) ≥ c4nk+1/2.

This completes the proof. !

Analogous to the absorbing results in [8,23,28], we prove the existence of small ab-
sorbing matching for (1, k)-partite (k + 1)-graphs with |Q| ≥ n/k − k2.

Lemma 5.2. Let k ≥ 3. For any constant 0 < c < 1/(100k!), there exists an integer n0 > 0
with the following holds for every integer n ≥ n0: Let H be a (1, k)-partite (k + 1)-graph 
with partition classes Q, [n] such that n/k − k2 ≤ |Q| ≤ (n − 1)/k and δ(NH(v)) ≥ cn

for all v ∈ Q. Then there is a matching M in H such that |M | ≤ (32(k + 3)/c4) logn
and, for each S ∈

(V (H)
k+2

)
with |S∩Q| = 1, M contains at least 4(k+3) logn S-absorbing 

edges.

Proof. Let C = 32(k + 3)/c4. Let M be the family obtained by choosing each edge 
independently with probability p = (C/2)n−(k+1) logn. Thus E[|M ′|] = |E(H)|p ≤
nk+1p = (C/2) logn.

The number of intersecting pairs of edges in E(H) is at most |Q|
(n
k

)2 + |Q|2n
(n−1
k−1

)2 ≤
n2k+1; so the expected number of intersecting pairs of edges in M ′ is at most

n2k+1p2 ≤ C2 log2 n/(4n) = o(1).

By Markov’s inequality, with probability strictly larger than 1/3, M is a matching of 
size at most C log n.

For a set S ∈
(V (H)

k+2
)

with |S∩Q| = 1, let XS denote the number of S-absorbing edges 
in M . Then by Lemma 5.1, we have

E[XS ] ≥ pc4nk+1/2 = 8(k + 3) logn.

By Lemma 4.4,

P [XS ≤ E[XS ]/2] ≤ exp(−E[XS ]/8) = exp(−(k + 2) logn) = n−(k+2).
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Note that there are at most |Q|
(n
k

)
< nk/k sets S ∈

(V (H)
k+1

)
with |S∩Q| = 1. It follows 

from union bound that, with probability strictly larger than 1/4, XS ≥ E[XS ]/2 ≥
4(k + 3) logn for all S ∈

(V (H)
k+1

)
with |S ∩Q| = 1. Thus, the desired M exists. !

6. Hypergraphs not close to extremal configurations

In this section, we prove Theorem 1.2 for hypergraphs that are not close to extremal 
configurations. For this, we need a result on almost perfect matchings in (1, k)-partite 
(k + 1)-graphs.

Lemma 6.1. Let k, n be positive integers with k ≥ 3. Let H be a (1, k)-partite (k+1)-graph 
with vertex partition classes Q, [n], where k + 1 ≤ |Q| ≤ n/k. If δk−1(NH(v)) > n/k for 
every v ∈ Q, then H has a matching covering all but at most k − 1 vertices of Q.

Proof. Let M be a maximum matching in H. We may assume |Q \ V (M)| ≥ k; for, 
otherwise, M gives the desired matching. Note

|[n] \ V (M)| = n− k|M | ≥ k|Q|− k|M | ≥ k|Q \ V (M)| ≥ k2.

So there exist k pair-disjoint k-sets in [n]\V (M), say S1, . . . , Sk such that |Si ∩Q| = 1
for i ∈ [k]. By maximality of M , NH(Si) ⊆ V (M) for i ∈ [k].

We claim that 
∑k

i=1 |NH(Si) ∩ e| ≤ k for all e ∈ M . For otherwise, there exist e ∈ M

and distinct u, v ∈ e such that u ∈ NH(Si) ∩ e and v ∈ NH(Sj) ∩ e. Since Si and Sj are 
disjoint, (M \{e}) ∪{Si∪{u}, Sj∪{v}} is a matching in H, contradicting the maximality 
of M .

Since NH(Si) ⊆ V (M),

k∑

i=1
|NH(Si)| =

∑

e∈M

k∑

i=1
|NH(Si) ∩ e| ≤ k|M | < n.

However, since δk−1(NH(v)) > n/k for all v ∈ Q, we have 
∑k

i=1 |NH(Si)| ≥
kδk−1(NH(v)) > n, a contradiction. !

Lemma 6.2. Let k, n be integers with k ≥ 3. Let H be a (1, k)-partite (k + 1)-graph 
with partition classes Q, [n], where k + 1 ≤ |Q| ≤ (n − 1)/k. If δk−1(NH(v)) ≥ n/k +
29108(k!)4(k + 3)k log n for every v ∈ Q, then H has a matching covering Q.

Proof. Let c = 1/(200k!). Since δk−1(NH(v)) ≥ n/k + 29108(k!)4(k + 3)k log n > cn for 
every v ∈ Q, by Lemma 5.2, H has a matching M of size at most 29108(k!)4(k+ 3) logn
such that for any set S ∈

(V (H)
k+2

)
with |S ∩Q| = 1, the number of S-absorbing edges in 

M is at least k + 1. Let H ′ = H − V (M), with partition classes Q \ V (M), [n] \ V (M). 
For every v ∈ Q \ V (M), we have
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δk−1(NH′(v)) ≥ δk−1(NH(v)) − k|M | > n/k.

Thus by Lemma 6.1, H ′ has a matching M ′ covering all but at most k vertices of 
Q \ V (M).

Let M0 := M and M ′
0 = M ′. If M0∪M ′

0 covers Q, then we are done. Otherwise, there 
exists S1 ∈

(V (H)\V (M0∪M ′
0)

k+2
)

with |S1 ∩ Q| = 1. Recall M0 contains an S1-absorbing 
edge, say e0; so H[S1 ∪ e0] contains a matching X0 of size 2. Then M ′

1 := M ′
0 ∪ X0

is a matching in H. Let M1 := M0 \ {e0}. If M1 ∪ M ′
1 covers Q, then we are done. 

Otherwise, since |Q \ V (M1 ∪M ′
1)| ≤ k and M has at least k + 1 S-absorbing matching 

for each S ∈
(V (H)\V (M1∪M ′

1)
k+2

)
with |S ∩ Q| = 1, we may repeat the above procedure. 

Thus, we obtain a maximal sequence of pairs of matchings M0, M ′
0, M1, M ′

1, . . . , Mt, M ′
t , 

a sequence of (k + 2)-sets S1, . . . , St with |Si ∩ Q| = 1 for i ∈ [t], and a sequence of 
matchings X0, X1, . . . , Xt. Now Mt ∪M ′

t is a matching of H covering Q. !

Lemma 6.3. Let ε > 0 be a constant and k, n be integers with k ≥ 3 and n ≡ 0 (mod k)
such that 0 < 1/n / ε / 1/k. Let F be a balanced (1, k)-partite (k+1)-graph with parti-
tion classes X and [n]. Let R := {x ∈ X : NF (x) is not weakly ε-close to H0

n,k or H1
n,k}. 

Suppose

• δk−1(NF (x)) > t(n, k) for all x ∈ X;
• |R| > n/ log n, or |R| ≤ n/ logn and F is not strongly ε-close to H0

n,k(W, U ; m)
for any m ∈ [n/k] and for any partition W, U of [n] with |W | = n/2 ± o(n) and 
|U | = n/2 ± o(n).

Then F admits a perfect matching.

Proof. Note that the conclusion of Lemma 4.5 holds. We define x0 ∈ X as follows:

(i) If |R| > n/ logn then choose x0 ∈ R such that, whenever possible, (i) of Lemma 4.1
holds for NF (x0).

(ii) If |R| ≤ n/ logn then let x0 ∈ X \ R and let W, U be a partition of [n] with 
|W | = n/2 ± o(n) = |U | such that NF (x0) is strongly ε-close to H0

n,k(W, U) or 
H1

n,k(W, U).

By Lemma 4.5, there exists a matching M in F with |M | = O(log6 n) such that for 
any balanced (k+ 1)-set S ⊆ V (F) containing x0, F [S ∪ V (M)] has a perfect matching.

Let F ′ = F − (V (M) ∪ {x0}). Then k + 1 ≤ |V (F ′) ∩ X| = |V (F ′) ∩ [n]|/k − 1. 
Moreover, for every v ∈ X ∩ V (F ′), we have

δk−1(NF ′(v)) ≥ δk−1(NF (v)) − |V (M)| ≥ n/2 − k − k|M |

> n/2 − k − k log6 n > n/k + log2 n.
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Thus by Lemma 6.2, F ′ has a matching M ′ covering X\(V (M) ∪ {x0}). Now it is easy 
to see that S := V (F) − V (M ∪M ′) is a balanced (k + 1)-set with {x0} = S ∩X. Note 
that F [S∪V (M)] has a perfect matching M ′′. Therefore, M ′∪M ′′ is a perfect matching 
of F . !

7. Concluding remarks

First, we point out that Theorem 1.3 follows immediately from Lemmas 3.4 and 6.3, 
which in turn implies Theorem 1.2.

Thus, we proved a rainbow version of the result of Rödl, Ruciński, and Szemerédi [28]
that determines the co-degree threshold function for the existence of a perfect matching 
in a k-graph.

There are many results on various Dirac type conditions for the existence of a matching 
of certain size. One can ask questions about whether similar rainbow versions hold for 
those results. Our method of converting the rainbow matching problem to a matching 
problem for a special class of hypergraphs provides a way for establishing the rainbow 
versions by using existing tools for matching problems.

We list some results that their rainbow version may be studied using our approach. 
Rödl, Ruciński, and Szemerédi [28] proved that, for n .≡ 0 (mod k), the minimum co-
degree threshold that ensures a matching M in a k-graph H with |V (M)| ≥ |V (H)| −
k is between )n/k* and n/k + O(logn), and conjectured that this threshold function 
is )n/k*. This conjecture was proved recently by Han [8]. Treglown and Zhao [29,30]
determined the minimum l-degree threshold for perfect matchings in k-graphs for k/2 ≤
l ≤ k − 1. Bollobás, Daykin, and Erdős [4] considered the minimum vertex degree for 
the appearance of matchings of certain size. They proved that for integer k ≥ 2, if H is 
a k-graph of order n ≥ 2k3(m − 1) and δ1(H) >

(n−1
k−1

)
−
(n−m
k−1

)
, then H has a matching 

of size at least m. The bound on n is improved to n ≥ 3k2m by Huang and Zhao 
[11] recently. For 3-graphs, Kühn, Osthus, and Treglown [21] and, independently, Khan 
[14] determined the minimum vertex degree threshold for perfect matchings in 3-graphs, 
which improves an earlier result by Hàn, Person, and Schacht [9]. The minimum vertex 
degree threshold for perfect matchings in 4-graphs is obtained by Khan in [15].
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