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For any positive integer t, a t-broom is a graph obtained from 
K1,t+1 by subdividing an edge once. In this paper, we show 
that, for graphs G without induced t-brooms, we have χ(G) =
o(ω(G)t+1), where χ(G) and ω(G) are the chromatic number 
and clique number of G, respectively. When t = 2, this answers 
a question of Schiermeyer and Randerath. Moreover, for t = 2, 
we strengthen the bound on χ(G) to 7ω(G)2, confirming a 
conjecture of Sivaraman. For t ≥ 3 and {t-broom, Kt,t}-free 
graphs, we improve the bound to o(ωt).
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1. Introduction

A class of graphs G is called hereditary if every induced subgraph of any graph in G
also belongs to G. One important and well-studied hereditary graph class is the family 
of H-free graphs, i.e., graphs that have no induced subgraph isomorphic to a fixed graph 
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H. Given a class of graphs H, we say that a graph G is H-free if G is H-free for every 
H ∈ H.

For a graph G, χ(G) and ω(G) denote the chromatic number and the clique number 
of G, respectively. Tutte [10,11] showed that for any n, there exists a triangle-free graph 
with chromatic number at least n. (See [21] for another construction, and see [24] for more 
constructions.) Hence in general there exists no function of ω(G) that gives an upper 
bound on χ(G) for all graphs G. A hereditary class of graphs G is called χ-bounded if 
there is a function f (called a χ-binding function) such that χ(G) ≤ f(ω(G)) for every 
G ∈ G. If f is additionally a polynomial function, then we say that G is polynomially 
χ-bounded. Graph classes with polynomial χ-binding functions are important, as they 
satisfy the Erdős-Hajnal conjecture [13] on the Ramsey number of H-free graphs.

One well-known hereditary χ-bounded graph class is the class of perfect graphs (i.e., 
graphs G such that every induced subgraph H of G satisfies χ(H) = ω(H)), which is a 
class of graphs for which the identity function is a χ-binding function. A hole in a graph 
G is an induced cycle in G of length at least four. An antihole of G is an induced subgraph 
of G whose complement graph is a cycle of length at least four. Chudnovsky, Robertson, 
Seymour, and Thomas [7] characterized perfect graphs as the set of graphs that have 
neither odd holes nor odd antiholes, known as the Strong Perfect Graph Theorem.

One important research direction in the area of χ-boundedness is about determining 
graph families H such that the class of H-free graphs is χ-bounded, as well as finding the 
smallest possible χ-binding function for such hereditary class of graphs. By a probabilistic 
construction of Erdős [12], if H is finite and none of the graphs in H is acyclic, then the 
family of H-free graphs is not χ-bounded. Gyárfás [15] and Sumner [26] independently 
conjectured that for every tree T , the class of T -free graphs is χ-bounded. This conjecture 
has been confirmed for some special trees (see, for example, [8,15,16,18,19,23,24]), but 
remains open in general.

There is a natural connection between χ-boundedness and the classical Ramsey num-
ber R(m, n), the smallest integer N such that every graph on at least N vertices contains 
an independent set on m vertices or a clique on n vertices. Gyárfás [15] showed that the 
class of K1,t-free graphs is χ-bounded with the smallest χ-binding function f∗(ω) satis-
fying R(t,ω+1)−1

t−1 ≤ f∗(ω) ≤ R(t, ω). It is shown in [1–3,20] that R(3, n) = Θ(n2/ logn)
and, for fixed t > 3, c1( n

logn ) t+1
2 ≤ R(t, n) ≤ c2

nt−1

logt−2 n
, where c1 and c2 are ab-

solute constants. Hence for K1,3-free (also known as claw-free) graphs G, we have 
χ(G) = O(ω(G)2/ logω(G)). Chudnovsky and Seymour [9] showed that if G is a con-
nected claw-free graph with independence number α(G) ≥ 3 then χ(G) ≤ 2ω(G).

In this paper, we consider a slightly larger class of graphs. For a positive integer t, a 
t-broom is the graph obtained from K1,t+1 by subdividing an edge once. See the graph 
on the right in Fig. 1, and we denote that t-broom by (u0, v1v2, u1, u2, . . . , ut) or by 
(u0, v1v2, S), where S = {u1, . . . , ut}. (Note that u0 is the vertex of degree t + 1, v1 is 
the vertex of degree 2 whose neighbors are u0 and v2, and u1, . . . , ut are the remaining 
neighbors of u0.)
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Fig. 1. The chair graph and the t-broom.

A 2-broom is also known as a chair graph or fork graph, see the left graph in Fig. 1. 
The class of chair-free graphs is an immediate superclass of claw-free graphs and P4-free 
graphs, both of which are polynomially χ-bounded. Although it has been known [18]
that the class of t-broom-free graphs is χ-bounded, it is unknown whether this class 
is polynomially χ-bounded. Esperet [14] conjectured that any hereditary χ-bounded 
graph family admits a polynomial χ-binding function. Very recently, extending an idea 
from a recent result of Carbonero, Hompe, Moore, and Spirkl [5], Briański, Davies and 
Walczak [4] disproved the conjecture. For the family of chair-free graphs, Schiermeyer 
and Randerath [22] asked the following:

Question 1 (Schiermeyer and Randerath [22]). Does there exist a polynomial χ-binding 
function for the family of chair-free graphs?

There has been recent work on polynomial χ-binding functions for certain subclasses 
of chair-free graphs. See [6,17], where the chair graph is referred to as a fork graph. In 
this paper, we show that the class of t-broom-free graphs is polynomially χ-bounded.

Theorem 1.1. Let t be a positive integer. For t-broom-free graphs G, χ(G) = o(ω(G)t+1).

When t = 1, a t-broom-free graph is a P4-free graph and, hence, perfect; so the 
assertion of Theorem 1.1 holds. When t = 2, Theorem 1.1 answers Question 1 in the 
affirmative. Indeed, we prove a quadratic bound for the case when t = 2, confirming a 
conjecture of Sivaraman mentioned in [17].

Theorem 1.2. For all chair-free graphs G, χ(G) ≤ 7ω(G)2.

We remark that after the submission of our paper, Scott, Seymour and Spirkl [25]
extended Theorem 1.1 by showing that for any fixed double star T , the class of T -free 
graphs is polynomially χ-bounded, where a double star is a tree in which at most two 
vertices have degree more than one. In the case of t-broom-free graphs, our χ-binding 
function is much smaller.

Schiermeyer and Randerath [22] informally conjectured that the smallest χ-binding 
functions for the class of chair-free graphs and the class of claw-free graphs are asymptot-
ically the same. Very recently, Chudnovsky, Huang, Karthick, and Kaufmann [6] proved 
that every {chair, K2,2}-free graph G satisfies that χ(G) ≤ $3

2ω(G)%. Here, we consider 
{t-broom,Kt,t}-free graphs for t ≥ 3 and prove the following
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Theorem 1.3. Let t ≥ 3 be an integer. For all {t-broom, Kt,t}-free graphs G, χ(G) =
o (ω(G)t).

In Section 2, we obtain useful structural information on t-broom-free graphs, by taking 
an induced complete multipartite subgraph and studying subgraphs induced by vertices 
at certain distance from this mulitpartite graph. In Section 3, we complete the proofs of 
Theorems 1.1 and 1.2. We prove Theorem 1.3 in Section 4.

In the remainder of this section, we describe notation and terminology used in the 
paper. For a positive integer k, we use [k] to denote the set {1, . . . , k}. We denote a path 
by a sequence of vertices in which consecutive vertices are adjacent. For a graph G and 
S ⊆ V (G), G[S] denotes the subgraph of G induced by S. We use α(G) to denote the 
independence number of G.

Let G be a graph. For any v ∈ V (G), NG(v) denotes the neighborhood of v and 
dG(v) = |NG(v)| is the degree of v in G. We use ∆(G) and δ(G) to denote the maximum 
and minimum degree of G, respectively. For any positive integer i, let N i

G(S) := {u ∈
V (G)\S : min{dG(u, v) : v ∈ S} = i}, where dG(u, v) is the distance between u and v in 
G. Then N1

G(S) = NG(S) is the neighborhood of S in G. Moreover, we let N≥i
G (S) :=

∪∞
j=iN

j
G(S). When S = {s} we write N i

G(s) instead of N i
G({s}). For any subgraph H of 

G, we write N i
G(H) for N i

G(V (H)) and N≥i
G (H) for N≥i

G (V (H)). When G is clear from 
the context, we ignore the subscript G.

Let G be a graph and let S, T be disjoint subsets of V (G). For a vertex v ∈ V (G)\S, 
we say that v is complete to S in G if vs ∈ E(G) for all s ∈ S; v is anticomplete to S if 
vs /∈ E(G) for all s ∈ S; and v is mixed on S if v is neither complete nor anticomplete 
to S. We say that S is complete (respectively, anticomplete) to T if all vertices in S are 
complete (respectively, anticomplete) to T .

2. Structure of t-broom-free graphs

In our proofs of the three results stated in Section 1, we work with an induced com-
plete multipartite subgraph Q of G and bound the chromatic numbers of subgraphs 
induced by vertices at certain distance from Q. In this section, we prove a few lemmas 
on the structure of those subgraphs. (Since the statements of the lemmas are somewhat 
technical, the interested reader may want to read Sections 3 and 4 before this section.) 
The first lemma concerns G[N≥2(Q)].

Lemma 2.1. Let t, q be integers with t ≥ 2 and q ≥ 2. Let G be a t-broom-free 
connected graph and V1, . . . , Vq be pairwise disjoint independent sets in G, such that 
Q := G[∪i∈[q]Vi] is a complete q-partite graph. Suppose for every v ∈ N(Q), v is not 
complete to V (Q). Then ∆(G[N≥2(Q)]) < 3R(t, ω).

Proof. For convenience, let ω = ω(G). Suppose there exists zk ∈ Nk(Q) for some k ≥ 2
such that |N(zk) ∩ N≥2(Q)| ≥ 3R(t, ω). Then G has a path zkzk−1 · · · z1z0, such that 
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z0 ∈ V (Q) and zi ∈ N i(Q) for i ∈ [k]. Note that this path is induced. Since z1 ∈ N(Q), 
there exist distinct i, j ∈ [q] such that z1ai ∈ E(G) for some ai ∈ Vi, and z1aj /∈ E(G)
for some aj ∈ Vj .

If G[(N(zk) ∩N≥2(Q)) ∩N(zk−2)] has an independent set of size t, say T , then k ≥ 3
and (z1, aiaj , T ) (when k = 3) or (zk−2, zk−3zk−4, T ) (when k ≥ 4) is an induced t-broom 
in G, a contradiction. So such T does not exist. Then |(N(zk) ∩N≥2(Q)) ∩N(zk−2)| <
R(t, ω), which implies |(N(zk) ∩ N≥2(Q))\N(zk−2)| ≥ 2R(t, ω). Therefore, |(N(zk) ∩
N≥2(Q)\N(zk−2))\N(zk−1)| ≥ R(t, ω) or |(N(zk) ∩ N≥2(Q)\N(zk−2)) ∩ N(zk−1)| ≥
R(t, ω).

In the former case, let I1 be an independent set in G[(N(zk) ∩ N≥2(Q)\N(zk−2))\
N(zk−1)] with |I1| = t; then (zk, zk−1zk−2, I1) is an induced t-broom in G, a con-
tradiction. In the latter case, let I2 be an independent set of size t in G[(N(zk) ∩
N≥2(Q)\N(zk−2)) ∩ N(zk−1)]. Then (z1, aiaj , I2) (when k = 2) or (zk−1, zk−2zk−3, I2)
(when k ≥ 3) is an induced t-broom in G, a contradiction. !

The next lemma describes the structure of subgraphs of G induced by certain subsets 
of N(Q).

Lemma 2.2. Let t, q be integers with t ≥ 2 and q ≥ 2. Let G be a t-broom-free graph 
and V1, . . . , Vq be pairwise disjoint independent sets in G, such that |Vq| = t and Q :=
G[∪i∈[q]Vi] is a complete q-partite graph. Let

• Z = {v ∈ N(Q) : v is complete to Vq},
• W = {v ∈ N(Q) : v is anticomplete to Vq}, and,
• for each I ⊆ ∪i∈[q−1]Vi, let

WI := {v ∈ W : v is complete to I and anticomplete to ∪i∈[q−1]Vi\I}.

Then the following statements hold:

(i) For any distinct subsets I, I ′ of ∪i∈[q−1]Vi, WI is anticomplete to WI′ .
(ii) For each z ∈ Z and for any component X of G[W ], z is complete to V (X) or z is 

anticomplete to V (X).
(iii) For any component X of G[W ] with α(X) ≥ t, let ZX := {z ∈ Z : z is complete to

V (X)}; then ZX is complete to Z\ZX .

Proof. Let I, I ′ ⊆ ∪i∈[q−1]Vi such that I )= I ′, and assume that WI is not anticomplete 
to WI′ . Then there exist w ∈ WI and w′ ∈ WI′ such that ww′ ∈ E(G). Since I )= I ′, we 
may assume that there exists a ∈ I\I ′. Then (a, ww′, Vq) is an induced t-broom in G, a 
contradiction. So (i) holds.
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Next, let z ∈ Z and w, w′ ∈ V (X) such that ww′ ∈ E(G). If zw ∈ E(G) and 
zw′ /∈ E(G), then (z, ww′, Vq) is an induced t-broom in G, a contradiction. Hence (ii) 
holds.

To prove (iii), suppose there exist z ∈ ZX and z′ ∈ Z\ZX such that zz′ /∈ E(G). By 
assumption, X contains an independent set of size t, say T . By (ii), z′ is anticomplete to 
V (X); so z′ is anticomplete to T . Choose a ∈ Vq. Now (z, az′, T ) is an induced t-broom 
in G, a contradiction. Thus we have (iii). !

We now consider a specific type of complete multipartite subgraphs Q, as well as the 
vertices in N(Q) that are complete to all but the last part of Q. We can bound the 
maximum degree of the subgraph of G induced by such vertices.

Lemma 2.3. Let t, q be integers with t ≥ 2 and q ≥ 2. Let G be a t-broom-free graph and 
V1, . . . , Vq be pairwise disjoint independent sets in G, such that |Vi| = 1 for i ∈ [q − 1], 
|Vq| = t, and Q := G[∪i∈[q]Vi] is a complete q-partite graph. Suppose such Q is chosen 
to maximize q. Let

B := {v ∈ N(Q) : v is complete to V (Q)\Vq}.

Then ∆(G[B]) < R(t, ω(G)).

Proof. Suppose, otherwise, there exists v ∈ B such that dG[B](v) ≥ R(t, ω(G)). Observe 
that ω(G[NG[B](v)]) ≤ ω(G) −1. Hence, G[NG[B](v)] contains an independent set of size 
t, say T . By the definition of B, both v and T are complete to Vj for all j ∈ [q − 1]. 
Let V ′

j = Vj for j ∈ [q − 1], V ′
q = {v}, and V ′

q+1 = T . Then G[∪j∈[q+1]V
′
j ] is an induced 

complete (q + 1)-partite subgraph in G, contradicting the choice of Q. !

We also need to consider the vertices in N(Q) that are mixed on the last part of Q
and not complete to some other part of Q. We can bound the number of such vertices.

Lemma 2.4. Let t, q be integers with t ≥ 2 and q ≥ 2. Let G be a t-broom-free graph and 
V1, . . . , Vq be pairwise disjoint independent sets in G, such that |Vi| = 1 for i ∈ [q − 1], 
|Vq| = t, and Q := G[∪i∈[q]Vi] is a complete q-partite graph. Let

A := {v ∈ N(Q) : v is mixed on Vq and v is not complete to V (Q)\Vq}.

Then |A| < t2ω(G)R(t, ω(G)).

Proof. For each i ∈ [q − 1], let vi be the unique vertex in Vi. Let v ∈ A be arbitrary. 
By definition there exists j ∈ [q − 1] and there exist aq, bq ∈ Vq, such that vaq ∈
E(G), vbq /∈ E(G), and vvj /∈ E(G). If there are multiple such choices of (aq, bq, j), we 
pick an arbitrary one and assign the vertex v the label (aq, bq, j). Since q ≤ ω(G) and 
|Vq| = t, there are in total at most t2ω(G) such labels.
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Thus, if |A| ≥ t2ω(G)R(t, ω(G)), then there exists a set A′ ⊆ A such that |A′| ≥
R(t, ω(G)) and all vertices in A′ receive the same label, say, (aq, bq, j). Since all vertices 
in A′ are adjacent to aq, it follows that ω(G[A′]) < ω(G). Hence, G[A′] must contain 
an independent set of size t, say T . Now (aq, vjbq, T ) is an induced t-broom in G, a 
contradiction. !

When t = 2, we can substitute Lemma 2.4 with the following result. Its proof is the 
only place where we use the Strong Perfect Graph Theorem [9]: A graph is perfect if 
and only if it contains no odd hole or odd antihole. (Recall that a graph G is perfect if 
χ(H) = ω(H) for all induced subgraphs H of G.)

Lemma 2.5. Let q be an integer with q ≥ 2. Let G be a chair-free graph and let V1, . . . , Vq

be pairwise disjoint independent sets in G, such that |Vi| = 1 for i ∈ [q − 1], |Vq| = 2, 
and Q := G[∪i∈[q]Vi] is a complete q-partite graph. Let Vq = {vq, v′q}, Vi = {vi} for 
i ∈ [q − 1], and

A := {v ∈ N(Q) : v is mixed on Vq and v is not complete to V (Q)\Vq}.

Then both G[A ∩N(vq)] and G[A ∩N(v′q)] are perfect.

Proof. Let A′ = A ∩N(vq) and A′′ = A ∩N(v′q). By the definition of A, |NG(v) ∩Vq| = 1
for all v ∈ A; so A′ ∩ A′′ = ∅ and A′ ∪ A′′ = A. By symmetry, it suffices to prove that 
G[A′] is perfect.

We partition A′ into q − 1 pairwise disjoint sets (possibly empty) as follows. Let 
A1 := {v ∈ A′ : vv1 /∈ E(G)}. Suppose for some i ∈ [q − 1], we have defined A1, . . . , Ai. 
If i = q − 1, we are done; if i < q − 1, let Ai+1 := {v ∈ A′\ 

⋃
j∈[i] Aj : vvi+1 /∈ E(G)}. 

Hence, by the definition of A, A′ = ∪i∈[q−1]Ai.
Observe that if i ≥ 2 and Ai )= ∅, then for all j ∈ [i − 1], vj is complete to Ai. We 

claim that for each i ∈ [q− 1] with Ai )= ∅, G[Ai] is a clique; indeed, suppose there exist 
u1, u2 ∈ Ai such that u1u2 /∈ E(G), then (vq, viv′q, {u1, u2}) is an induced chair in G, a 
contradiction.

Now assume for a contradiction that G[A′] is not perfect. Then, by the Strong Perfect 
Graph Theorem, G[A′] contains an odd hole or an odd antihole. Let {a1, a2, . . . , a2k+1}
be the vertex set of an odd hole or odd antihole in G[A′] (so k ≥ 2). For each i ∈ [2k+1], 
since ai ∈ A, there exists σ(i) ∈ [q − 1] such that ai ∈ Aσ(i). By symmetry, we may 
assume that σ(1) = min{σ(i) : i ∈ [2k + 1]}.

Suppose G[{a1, . . . , a2k+1}] is an odd hole. Without loss of generality, assume for 
i, j ∈ [2k + 1], aiaj ∈ E(G) if |i − j| ≡ 1 (mod 2k − 1), and aiaj /∈ E(G) other-
wise. Since a2a2k+1 /∈ E(G) and G[Aσ(1)] is a clique, a2 /∈ Aσ(1) or a2k+1 /∈ Aσ(1). By 
symmetry, we may assume that a2 /∈ Aσ(1). Hence, σ(2) > σ(1) and a2vσ(1) ∈ E(G). 
Similarly, a2k /∈ Aσ(1) as a2ka1 /∈ E(G); so a2kvσ(1) ∈ E(G). Since a1a2k, a2a2k /∈ E(G), 
(vσ(1), a2a1, {a2k, v′q}) is an induced chair in G, a contradiction.
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Thus, G[{a1, . . . , a2k+1}] is an odd antihole. Without loss of generality, we may assume 
that, for i, j ∈ [2k+1], aiaj /∈ E(G) if |i −j| ≡ 1 (mod 2k−1), and aiaj ∈ E(G) otherwise. 
Note that a1a3 ∈ E(G) and a1a2, a2a3 /∈ E(G). Hence a2 /∈ Aσ(1) and a2vσ(1) ∈ E(G). 
If a3 /∈ Aσ(1), then a3vσ(1) ∈ E(G); now (vσ(1), a3a1, {a2, v′q}) is an induced chair in G, 
a contradiction. So a3 ∈ Aσ(1). Proceeding inductively, we see that a2j+1 ∈ Aσ(1) for all 
j ∈ [k]. Thus a1a2k+1 ∈ E(G) as G[Aσ(1)] is a clique. This gives a contradiction since 
a1a2k+1 /∈ E(G). !

We now prove a lemma about {t-broom, Kt,t}-free graphs, using a similar idea as in 
the proof of Lemma 2.5 above, and show that χ(G[A]) admits a degenerate structure. 
A graph H is said to be d-degenerate, where d is a positive integer, if the vertices of H
may be labeled as u1, . . . , un such that |NH(ui) ∩ {ui+1, . . . , un}| ≤ d for all i ∈ [n − 1]. 
It is not hard to see that the chromatic number of a d-generate graph is at most d + 1
by coloring its vertices greedily with respect to this ordering.

Lemma 2.6. Let t, q be integers with t ≥ 2 and q ≥ 2. Let G be a {t-broom, Kt,t}-free 
graph and let V1, . . . , Vq be pairwise disjoint independent sets in G, such that |Vi| = 1 for 
i ∈ [q − 1], |Vq| = t, and Q := G[∪i∈[q]Vi] is a complete q-partite graph. Let Vi = {vi}
for i ∈ [q − 1], let a1, a2 ∈ Vq, and let

A := {v ∈ N(Q) : va1 ∈ E(G), va2 /∈ E(G), and v is not complete to V (Q)\Vq}.

Then there exists X ⊆ A with |X| ≤ ω(G)(t + 2)R(t − 1, ω(G)) such that G[A\X] is 
(2R(t, ω(G)) − 1)-degenerate.

Proof. We partition A into q − 1 pairwise disjoint sets (possibly empty) as follows. Let 
A1 := {v ∈ A : vv1 /∈ E(G)}. Suppose for some i ∈ [q − 1], we have defined A1, . . . , Ai. 
If i = q− 1, we are done; if i < q− 1, let Ai+1 := {v ∈ A\ 

⋃
j∈[i] Aj : vvi+1 /∈ E(G)}. By 

the definition of A, we have A = ∪i∈[q−1]Ai and, if i ≥ 2 and Ai )= ∅, then Ai is complete 
to {vj} for all j ∈ [i − 1]. For simplicity of notation, if x ∈ Ai for some i ∈ [q − 1], we 
use Ax to refer to Ai.

Let ω := ω(G). Since a1 is complete to A, ω(G[A]) ≤ ω−1. Observe that α(G[Ai]) < t; 
for, if T is an independent set of size t in G[Ai] then (a1, via2, T ) is an induced t-broom 
in G, a contradiction. Thus, |Ai| < R(t, ω).

We define a pre-order (A, -) (i.e., a binary relation that is reflexive and transitive) 
on vertices in A. For any two vertices u ∈ Ai and v ∈ Aj , let u - v if i ≤ j. Moreover, 
we say u ≺ v if i < j. For any vertex x ∈ A, define Fx = {y ∈ A : x - y} and 
F>x = {y ∈ A : x ≺ y}.

Suppose for all x ∈ A, |N(x) ∩ Fx| ≤ 2R(t, ω) − 1. Consider an ordering u1, . . . , u|A|
of the vertices in A such that ui - ui+1 for all i ∈ [|A| − 1]. By the above assumption, 
|N(ui) ∩ {ui+1, . . . , u|A|}| ≤ |N(ui) ∩Fui | ≤ 2R(t, ω) − 1 for all i ∈ [|A| − 1]. Thus, G[A]
is (2R(t, ω) − 1)-degenerate, and the assertion of Lemma 2.6 holds with X = ∅.
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So we may assume that there exists some x1 ∈ A such that |N(x1) ∩ Fx1 | ≥ 2R(t, ω). 
Choose a minimal such x1 (with respect to -). Let H1 = N(x1) ∩Fx1 . Suppose for some 
positive integer k ≥ 2, we have defined H1, . . . , Hk−1 such that Hi ⊆ N(xi) ∩ Fxi for all 
i ∈ [k − 1]. If |NHk−1(x) ∩ Fx| ≤ 2R(t, ω) − 1 for all x ∈ Hk−1, then we terminate this 
process. Otherwise pick a minimal xk ∈ Hk−1 (with respect to -) such that |NHk−1(xk) ∩
Fxk | ≥ 2R(t, ω). Then let Hk := NHk−1(xk) ∩ Fxk . When the above process terminates, 
we obtain a sequence, say (xk, Hk), k = 1, . . . , s. Note that {xk : k ∈ [s]} induces a clique 
in G. Moreover, by definition, each xk is adjacent to a1 ∈ Vq. Hence s < ω.

Let X := ∪k∈[s] ((Hk−1\Hk) ∩ Fxk) where H0 = A. Then A\X =
⋃

k∈[s+1](Hk−1\Fxk), 
where Fxs+1 = ∅. It suffices to show that |(Hk−1\Hk) ∩ Fxk | ≤ (t + 2)R(t − 1, ω) for all 
k ∈ [s] and that G[A\X] is (2R(t, ω) − 1)-degenerate.

First we consider G[A\X]. For k ∈ [s], by the minimality of xk (with respect to -), 
for all u ∈ Hk−1 such that u ≺ xk, we have |NHk−1(u) ∩ Fu| ≤ 2R(t, ω) − 1. Observe 
that NA\X(u) ∩ Fu ⊆ NHk−1(u) ∩ Fu. Hence |NA\X(u) ∩ Fu| ≤ 2R(t, ω) − 1. By the 
terminating condition, |NA\X(u) ∩ Fu| ≤ |NHs(u) ∩ Fu| ≤ 2R(t, ω) − 1 for all u ∈ Hs. 
Therefore, we can order the vertices in A\X as u1, . . . , u|A\X|, such that ui - ui+1 for all 
i ∈ [|A\X| − 1]; then |N(ui) ∩ {ui+1, . . . , u|A\X|}| ≤ 2R(t, ω) − 1 for all i ∈ [|A\X| − 1]. 
Thus, G[A\X] is (2R(t, ω) − 1)-degenerate.

To show that |(Hk−1\Hk) ∩ Fxk | ≤ (t + 2)R(t − 1, ω) for any k ∈ [s], we see that 
no vertex in (Hk−1\Hk) ∩ Fxk is adjacent to xk. So it suffices to bound the number 
of non-neighbors of xk in Hk−1 ∩ Fxk . Note that Fxk = Axk ∪ F>xk . Observe that xk

has at most R(t − 1, ω) − 1 non-neighbors in Axk ; otherwise the graph induced on the 
vertex set of non-neighbors of xk in Axk has an independent set of size t − 1 and this 
implies that α(G[Axk ]) ≥ t, a contradiction. Thus, it suffices to bound the number of 
the non-neighbors of xk in Hk−1 ∩ F>xk , i.e., |(Hk−1 ∩ F>xk)\N(Xk)|, from above by 
(t + 1)R(t − 1, ω).

Recall that xk has at least 2R(t, ω) neighbors in Hk−1 ∩Fxk (as |NHk−1(xk) ∩Fxk | ≥
2R(t, ω)). Since |Axk | < R(t, ω), |NHk−1(xk) ∩ F>xk | ≥ R(t, ω). Hence there exists an 
independent set Yk of size t in G[NHk−1(xk) ∩ F>xk ].

We claim that for each y ∈ Yk, y and xk has at most R(t − 1, ω) common non-
neighbors in Hk−1 ∩ F>xk . Otherwise there is an independent set T of size t − 1 in 
G[(Hk−1 ∩ F>xk)\(N(xk) ∪ N(y))]. Let u be the vertex in {v1, . . . , vq−1} that is anti-
complete to Axk and complete to F>xk . Then (u, yxk, T ∪ {a2}) is an induced t-broom 
in G, a contradiction.

Thus, each y ∈ Yk has at most R(t − 1, ω) non-neighbors in (Hk−1 ∩ F>xk)\N(xk). 
Suppose |(Hk−1 ∩ F>xk)\N(xk)| ≥ (t + 1)R(t − 1, ω). Then there exists a set S ⊆
(Hk−1 ∩ F>xk)\N(xk) with |S| ≥ (t + 1)R(t − 1, ω) − |Yk|R(t − 1, ω) = R(t − 1, ω)
such that S is complete to Yk. Since |S| ≥ R(t − 1, ω), G[S] has an independent set of 
size t − 1, say S′. Now (S′ ∪ {xk}) ∪ Yk induces a Kt,t in G, a contradiction. Hence, 
|(Hk−1 ∩ F>xk)\N(xk)| < (t + 1)R(t − 1, ω). !
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3. Proofs of Theorems 1.1 and 1.2

When t = 1, a t-broom is a path on 4 vertices. So Theorem 1.1 holds for t = 1 since 
a P4-free graph is perfect. Hence we may assume t ≥ 2. To prove Theorems 1.1 and 1.2, 
we apply induction on ω(G). The proofs are the same, except in the case when t = 2 we 
bound χ(G[A]) by using Lemma 2.5 (instead of Lemma 2.4).

Let f(ω) be a convex function satisfying

• R(t, ω) ≤ f(ω) and 1 ≤ f(1), and
•

(
t2ωR(t,ω) + 5R(t,ω)

)
+ f(ω − 1) + f(1) ≤ f(ω).

By the generalized binomial theorem, we may choose f(ω) to be Ctω2R(t, ω) for some 
sufficiently large Ct depending on t. Hence, using the upper bound of R(t, ω), f(ω) may 
be chosen such that f(ω) = o(ωt+1).

We will show that χ(G) ≤ f(ω(G)). Note that the assertions of Theorems 1.1 and 1.2
are clearly true when ω(G) = 1. Hence, let G be a t-broom-free graph with ω(G) = ω ≥ 2, 
and assume that for all t-broom-free graphs H with ω(H) < ω, we have χ(H) ≤ f(ω(H)).

We choose pairwise disjoint independent sets V1, . . . , Vq in G, such that

(1) |Vq| = t and |Vi| = 1 for i ∈ [q − 1],
(2) Q := G[∪i∈[q]Vi] is a complete q-partite graph, and
(3) subject to (1) and (2), q is maximum.

Note that q ≥ 2, otherwise G is K1,t-free; so ∆(G) < R(t, ω) (hence χ(G) ≤ R(t, ω) ≤
f(ω)) and we are done. Clearly, q ≤ ω.

We study the structure of G by partitioning G into several vertex disjoint subgraphs 
and bounding the chromatic number of each subgraph. We partition N(Q) as follows:

• A := {v ∈ N(Q) : v is mixed on Vq and v is not complete to V (Q)\Vq}.
• B := {v ∈ N(Q) : v is mixed on Vq and v is complete to V (Q)\Vq}.
• C := N(Q)\(A ∪B).

By the maximality of q, no vertex in N(Q) is complete to V (Q). Thus, for any v ∈ C, 
either v is anticomplete to Vq, or v is complete to Vq and not complete to V (Q)\Vq. Note 
that

V (G) = V (Q) ∪N(Q) ∪N≥2(Q) and N(Q) = A ∪B ∪ C.

Since there is no edge between Q and N≥2(Q), we can color Q and G[N≥2(Q)] with at 
most max{χ(Q), χ(G[N≥2(Q)])} colors. Since χ(Q) = q and χ(G[N≥2(Q)]) ≤ 3R(t, ω)
by Lemma 2.1, we then obtain the following claim.
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Claim 1. χ(G) ≤ max{q, 3R(t, ω)} + χ(G[A]) + χ(G[B]) + χ(G[C]).

Since ∆(G[B]) < R(t, ω) (by Lemma 2.3), we have χ(G[B]) ≤ R(t, ω). By Lemmas 2.4
and 2.5, χ(G[A]) ≤ t2ωR(t, ω) (when t ≥ 3) and χ(G[A]) ≤ 2ω (when t = 2). Thus, in 
view of Claim 1, we need to bound χ(G[C]).

Let Z = N(Vq) ∩ C and W = C\Z; so Z is complete to Vq and W is anticomplete 
to Vq. We consider G[W ] first. For any component X of G[W ], if I is the set of all its 
neighbors in V (Q)\Vq (note that I ⊆ ∪i∈[q−1]Vi and I )= ∅) then by (i) of Lemma 2.2, 
V (X) is complete to I and anticomplete to ∪i∈[q−1]Vi\I. It follows that any component of 
G[W ] has clique number at most ω−1. Thus, each component of G[W ] with independent 
number at most t − 1 has at most R(t, ω) − 1 vertices. Let X0 denote the union of all 
components of G[W ] with independence number at most t − 1; so χ(X0) ≤ R(t, ω).

Claim 2. χ(G[C] −X0]) ≤ f(ω − 1) + f(1).

Proof. For any component X of G[W ] −X0, let

ZX := {z ∈ Z : z is complete to V (X)}.

Let S1, S2, . . . , Sp be the sets that form the smallest partition of Z which refines all the 
bipartitions ZX , Z\ZX of Z for all components X of G[W ] −X0. By (iii) of Lemma 2.2, 
Si is complete to Sj for all distinct i, j ∈ [p]. Let ωi := ω(G[Si]) for i ∈ [p]. For each 
component X of G[W ] − X0, let FX := {k ∈ [p] : Sk is anticomplete to V (X)}. Then 
by (ii) of Lemma 2.2, [p]\FX = {k ∈ [p] : Sk is complete to V (X)}.

Observe that ω(G[Z]) < ω and ω(X) < ω for every component X of G[W ] − X0. 
Hence the induction hypothesis applies to all subgraphs of G[Z] and all G[X]. We now 
describe, inductively, a coloring of G[C] −X0 and show it uses at most f(ω − 1) + f(1)
colors.

• For each i ∈ [p], inductively color the vertices of G[Si] with colors from a set Ri, 
where |Ri| ≤ f(ωi). We choose Ri, i ∈ [p], such that Ri ∩Rj = ∅ whenever i )= j.

• Let R be a fixed set of colors, such that R is disjoint from ∪i∈[p]Ri and |R| =
max{f(ω(X)) −

∑
k∈FX

|Rk|, 0}, where the maximum is taken over all components 
X of G[W ] −X0.

• For each component X of G[W ] −X0, it follows from induction that χ(X) ≤ f(ω(X)). 
Note that the vertex set of X is anticomplete to Sk if k ∈ FX . Thus we can use the 
colors used on ∪k∈FXG[Sk] (i.e., colors in ∪k∈FXRk) to color X first. If χ(X) ≤∑

k∈FX
|Rk|, we are done. Otherwise we use at most f(ω(X)) −

∑
k∈FX

|Rk| colors 
from R to color X. Hence for each component X of G[W ] −X0, we assign the vertices 
of X with colors from ∪k∈FXRk and, if needed, some additional colors from R.

Therefore, we have χ(G[C] − X0) = χ(G[Z] ∪ (G[W ] − X0)) ≤
∑

i∈[p] |Ri| + |R|. 
Since Si is complete to Sj for all distinct i, j ∈ [p] and Z is complete to Vq, we have 
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p∑

i=1
ωi ≤ ω− 1. Moreover, for each component X in G[W ] −X0, V (X) is complete to Sk

if k ∈ [p]\FX ; therefore, ω(X) +
∑

k∈[p]\FX

ωk ≤ ω. Thus, by the convexity of the function 

f , we have

p∑

i=1
f(ωi) ≤ f(ω − 1),

and

f(ω(X)) +
∑

k∈[p]\FX

f(ωk) ≤ f(ω − 1) + f(1).

Thus,

χ(G[C] −W0) ≤ |R| +
p∑

i=1
|Ri|

= max
X: a component
of G[W ] − X0

{
f(ω(X)) −

∑

i∈FX

|Ri|, 0
}

+
p∑

i=1
|Ri|

= max
X: a component
of G[W ] − X0




f(ω(X)) +
∑

i∈[p]\FX

|Ri|,
p∑

i=1
|Ri|






≤ max
X: a component
of G[W ] − X0




f(ω(X) +
∑

i∈[p]\FX

f(ωi),
p∑

i=1
f(ωi)






≤ f(ω − 1) + f(1).

This completes the proof of Claim 2 !

We can now bound χ(G). Since χ(X0) ≤ R(t, ω), it follows from Claim 2 that

χ(G[C]) ≤ χ(G[C] −X0]) + χ(X0) ≤ f(ω − 1) + f(1) + R(t,ω).

Hence, by Claim 1, Lemma 2.3 and Lemma 2.4, we have

χ(G) ≤ max{ω, 3R(t,ω)} + t2ωR(t,ω) + R(t,ω) + f(w − 1) + f(1) + R(t,ω)
≤ t2ωR(t,ω) + 5R(t,ω) + f(ω − 1) + f(1)
≤ f(ω),

by our choice of f(ω). This proves Theorem 1.1.
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When t = 2, we have R(2, ω) = ω, and χ(G[A]) ≤ 2ω(G) (by Lemma 2.5). Thus, 
using those bounds in the above inequality, we obtain

χ(G) ≤ f(ω − 1) + f(1) + 7ω.

By choosing f(ω) = 7ω2, we see that f(ω − 1) + f(1) + 7ω ≤ f(ω). Hence, χ(G) ≤ 7ω2, 
completing the proof of Theorem 1.2.

4. Proof of Theorem 1.3

Let g(ω) be a convex function satisfying

• 1 ≤ g(1),
• ω + R(t, ω) + (t + 2)t2ωR(t − 1, ω) + (2t2 + 4)R(t, ω) ≤ g(ω), and
• g(ω − 1) + ω + R(t, ω) ≤ g(ω).

Similar to the proof in Section 3, by the generalized Binomial Theorem, g(ω) can be cho-
sen such that g(ω) = Ct (ωR(t,ω) + ωR(t− 1,ω)) for some large constant Ct depending 
only on t. Hence we may choose g(ω) such that g(ω) = o(ωt).

We will show that χ(G) ≤ g(ω(G)) by applying induction on ω(G). It is clear that the 
assertion of the theorem holds when ω(G) = 1. Let G be a {t-broom, Kt,t}-free graph 
with ω(G) = ω ≥ 2 and, for all {t-broom, Kt,t}-free graphs H with ω(H) < ω, we have 
χ(H) ≤ g(ω(H)).

We choose pairwise disjoint independent sets V1, . . . , Vq in G, such that

(1) |Vq| = t and |Vi| = 1 for i ∈ [q − 1],
(2) Q := G[∪i∈[q]Vi] is a complete q-partite graph, and
(3) subject to (1) and (2), q is maximum.

Such Q with q ≥ 2 must exist, otherwise G is K1,t-free and hence ∆(G) < R(t, ω) and 
we are done. Clearly, 2 ≤ q ≤ ω. Let Vi = {vi} for i ∈ [q − 1]. We partition N(Q) as 
follows.

• A := {v ∈ N(Q) : v is mixed on Vq and v is not complete to V (Q)\Vq}.
• B := {v ∈ N(Q) : v is mixed on Vq and v is complete to V (Q)\Vq}.
• C := N(Q)\(A ∪B).

Thus, for each v ∈ C, either v is complete to Vq or v is anticomplete to Vq. Let Z =
N(Vq) ∩ C and W = C\Z; so Z = {v ∈ C : v is complete to Vq} and W := {v ∈ C :
v is anticomplete to Vq}. Note that N(Q) is the disjoint union of A, B, Z, W .

Claim 1. N(W ) ∩N2(Q) = ∅, χ(G[A]) ≤ t2(2R(t, ω) + (t + 2)ωR(t − 1, ω)), ∆(G[B]) <
R(t, ω), and |Z| ≤ R(t, ω).
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Proof. Suppose there exists wy ∈ E(G) with w ∈ W and y ∈ N2(Q). Choose i ∈ [q − 1]
such that wvi ∈ E(G). Now (vi, wy, Vq) is an induced t-broom in G, a contradiction. 
Hence, N(W ) ∩N2(Q) = ∅.

By Lemma 2.3, we have ∆(G[B]) < R(t, ω); hence χ(G[B]) ≤ R(t, ω). For Z, recall 
that Z is complete to Vq. Hence ω(G[Z]) ≤ ω − 1. Moreover, since |Vq| = t and G is 
Kt,t-free, we have that α(G[Z]) < t. So |Z| ≤ R(t, ω).

It remains to bound χ(G[A]). Write Vq = {a1, a2, . . . , at}. Since A is mixed on Vq, 
for each v ∈ A, there exist i, j ∈ [t] such that vai ∈ E(G) and vaj /∈ E(G). Let 
A(i,j) = {v ∈ A : vai ∈ E(G), and vaj /∈ E(G)}. By Lemma 2.6, there exists X ⊆
A(i,j) such that |X| ≤ (t + 2)ωR(t − 1, ω) and G[A(i,j)\X] is (2R(t, ω) − 1)-degenerate. 
Hence, χ(G[A(i,j)]) ≤ 2R(t, ω) + |X| = 2R(t, ω) + (t + 2)ωR(t − 1, ω). Thus, χ(G[A]) ≤
t2(2R(t, ω) + (t + 2)ωR(t − 1, ω)). !

Next we consider G[W ]. It follows from (i) of Lemma 2.2 that, for any component X
of G[W ], V (X) is complete to its neighborhood in V (Q)\Vq. Let X0 denote the union 
of all components of G[W ] with chromatic number at most 3R(t, ω). By the definition 
of X0 and the fact that every component of G[W ] has clique number at most ω − 1, we 
have the following claim.

Claim 2. χ(X0) ≤ 3R(t, ω) and χ(G[W ] −X0) ≤ g(ω − 1).

Claim 3. A ∪B is anticomplete to W\V (X0).

Proof. For any component X in G[W ] −X0, χ(X) > 3R(t, ω) by the definition of X0. 
This implies that |V (X)| ≥ χ(X) > 3R(t, ω); hence X contains an independent set of 
size t.

We claim that, for any distinct components X1, X2 of G[W ] −X0, N(X1) ∩ V (Q) ⊆
N(X2) ∩ V (Q) or N(X2) ∩ V (Q) ⊆ N(X1) ∩ V (Q). For, suppose there exist distinct 
u1, u2 ∈ V (Q) such that u1 ∈ (N(X1)\N(X2)) ∩V (Q) and u2 ∈ (N(X2)\N(X1)) ∩V (Q). 
We know that X2 has an independent set of size t, say T2. Let x1 be a vertex of X1; 
then (u2, u1x1, T2) is an induced t-broom in G, a contradiction.

Thus, we choose a component X of G[W ] −X0 such that N(X) ∩ V (Q) is maximal. 
Observe that N(X) ∩ V (Q) = N(X) ∩ (V (Q)\Vq) which is a proper subset of V (Q)\Vq; 
otherwise V (X) is complete to V (Q)\Vq and ∆(X) < R(t, ω) by Lemma 2.3, contradict-
ing that χ(X) > 3R(t, ω). So there exists j ∈ [q− 1] such that vj /∈ N(X). Hence by the 
choice of X, vj /∈ N(X ′) for any component X ′ of G[W ] − X0. This implies that vj is 
anticomplete to W\V (X0).

Now suppose there exists a vertex a in A ∩ B such that a is not anticomplete to 
W\V (X0). Then there exists a component X of G[W ] − X0 and w ∈ V (X) such that 
aw ∈ E(G). Since a is mixed on Vq, we may assume without loss of generality that 
a1, a2 ∈ Vq such that aa1 ∈ E(G) and aa2 /∈ E(G). Note that χ(X) > 3R(t, ω) and 
recall that vj is anticomplete to V (X).
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If avj ∈ E(G) then G′ := G[{vj , a2, a} ∪ V (X)] is a t-broom-free graph and ω(G′) ≤
ω(G) = ω. Note that Q′ := G′[{vj , a2}] is a complete bipartite subgraph of G′, NG′(Q′) =
{a}, and G′[N≥2

G′ (Q′)] = X. Since a is not complete to V (Q′) in G′, we may apply 
Lemma 2.1 and conclude that ∆(G′[N≥2

G′ (Q′)]) < 3R(t, ω). Hence, χ(G′[N≥2
G′ (Q′)]) ≤

3R(t, ω), a contradiction as X = G′[N≥2
G′ (Q′)] and χ(X) > 3R(t, ω).

Now assume that avj /∈ E(G). Then G′′ := G[{vj , a1, a} ∪ V (X)] is a t-broom-free 
graph and Q′′ := G′′[{vj , a1}] is a complete bipartite subgraph of G′′, NG′′(Q′′) = {a}, 
and X = G′′[N≥2

G′′ (Q′′)]. Since a is not complete to V (Q′′), we may apply Lemma 2.1
and conclude that ∆(G′′[N≥2

G′′ (Q′′)]) < 3R(t, ω). Hence, χ(G′′[N≥2
G′′ (Q′′)]) ≤ 3R(t, ω), a 

contradiction as X = G′′[N≥2
G′′ (Q′′)] and χ(X) > 3R(t, ω). !

Note that V (G) = V (Q) ∪N(Q) ∪N≥2(Q) and N(Q) = A ∪B∪Z∪V (X0) ∪(W\V (X0))
and χ(Q) = q. Also note that W\V (X0) is anticomplete to A ∪B∪N≥2(Q) (by Claims 1
and 3), V (X0) is anticompete to N≥2(Q) (by Claim 1), and W\V (X0) is anticomplete 
to V (X0) (by definition). Thus, we have

χ(G) ≤ q + |Z|

+ max
{
χ(G[W\V (X0)]),χ(G[A]) + χ(G[B]) + max{χ(X0),χ(G[N≥2(Q)])}

}
.

By the maximality of q, no vertex in N(Q) is complete to Vj for all j ∈ [q]. Thus, by 
Lemma 2.1, χ(G[N≥2(Q)]) ≤ 3R(t, ω). Therefore,

χ(G) ≤ ω + R(t,ω) + max{g(ω − 1), (t + 2)t2ωR(t− 1,ω) + (2t2 + 4)R(t,ω)}.

Hence, by the choice of g(ω), we have χ(G) ≤ g(ω), completing the proof of Theorem 1.3.
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