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H. Given a class of graphs H, we say that a graph G is H-free if G is H-free for every
HeH.

For a graph G, x(G) and w(G) denote the chromatic number and the clique number
of G, respectively. Tutte [10,11] showed that for any n, there exists a triangle-free graph
with chromatic number at least n. (See [21] for another construction, and see [24] for more
constructions.) Hence in general there exists no function of w(G) that gives an upper
bound on x(G) for all graphs G. A hereditary class of graphs G is called x-bounded if
there is a function f (called a x-binding function) such that x(G) < f(w(G)) for every
G € G. If f is additionally a polynomial function, then we say that G is polynomially
x-bounded. Graph classes with polynomial y-binding functions are important, as they
satisfy the Erdés-Hajnal conjecture [13] on the Ramsey number of H-free graphs.

One well-known hereditary y-bounded graph class is the class of perfect graphs (i.e.,
graphs G such that every induced subgraph H of G satisfies x(H) = w(H)), which is a
class of graphs for which the identity function is a x-binding function. A hole in a graph
G is an induced cycle in G of length at least four. An antihole of G is an induced subgraph
of G whose complement graph is a cycle of length at least four. Chudnovsky, Robertson,
Seymour, and Thomas [7] characterized perfect graphs as the set of graphs that have
neither odd holes nor odd antiholes, known as the Strong Perfect Graph Theorem.

One important research direction in the area of x-boundedness is about determining
graph families H such that the class of H-free graphs is y-bounded, as well as finding the
smallest possible x-binding function for such hereditary class of graphs. By a probabilistic
construction of Erdés [12], if H is finite and none of the graphs in H is acyclic, then the
family of H-free graphs is not x-bounded. Gyérfas [15] and Sumner [26] independently
conjectured that for every tree T, the class of T-free graphs is x-bounded. This conjecture
has been confirmed for some special trees (see, for example, [8,15,16,18,19,23,24]), but
remains open in general.

There is a natural connection between yx-boundedness and the classical Ramsey num-
ber R(m,n), the smallest integer N such that every graph on at least NV vertices contains
an independent set on m vertices or a clique on n vertices. Gyarfas [15] showed that the
class of K ¢-free graphs is x-bounded with the smallest x-binding function f*(w) satis-
fying % < f*(w) < R(t,w). Tt is shown in [1-3,20] that R(3,n) = ©(n?/logn)
and, for fixed ¢ > 3, Cl(kf;n)% < R(t,n) < czlogz%;n, where ¢; and cy are ab-
solute constants. Hence for K s-free (also known as claw-free) graphs G, we have
X(G) = O(w(G)?/logw(G)). Chudnovsky and Seymour [9] showed that if G is a con-

nected claw-free graph with independence number a(G) > 3 then x(G) < 2w(G).

In this paper, we consider a slightly larger class of graphs. For a positive integer ¢, a
t-broom is the graph obtained from K ;1 by subdividing an edge once. See the graph
on the right in Fig. 1, and we denote that t-broom by (ug,viva,u1,us,...,us) or by
(up,v1v2,S), where S = {uy,...,u;}. (Note that ug is the vertex of degree t + 1, vy is
the vertex of degree 2 whose neighbors are uy and vg, and ug, ..., u; are the remaining
neighbors of ug.)
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Fig. 1. The chair graph and the ¢-broom.

A 2-broom is also known as a chair graph or fork graph, see the left graph in Fig. 1.
The class of chair-free graphs is an immediate superclass of claw-free graphs and P,-free
graphs, both of which are polynomially x-bounded. Although it has been known [18]
that the class of t-broom-free graphs is x-bounded, it is unknown whether this class
is polynomially x-bounded. Esperet [14] conjectured that any hereditary y-bounded
graph family admits a polynomial x-binding function. Very recently, extending an idea
from a recent result of Carbonero, Hompe, Moore, and Spirkl [5], Briaiski, Davies and
Walczak [4] disproved the conjecture. For the family of chair-free graphs, Schiermeyer
and Randerath [22] asked the following:

Question 1 (Schiermeyer and Randerath [22]). Does there exist a polynomial x-binding
function for the family of chair-free graphs?

There has been recent work on polynomial y-binding functions for certain subclasses
of chair-free graphs. See [6,17], where the chair graph is referred to as a fork graph. In
this paper, we show that the class of ¢-broom-free graphs is polynomially y-bounded.

Theorem 1.1. Let t be a positive integer. For t-broom-free graphs G, x(G) = o(w(G)**1).

When ¢t = 1, a t-broom-free graph is a Pj-free graph and, hence, perfect; so the
assertion of Theorem 1.1 holds. When ¢ = 2, Theorem 1.1 answers Question 1 in the
affirmative. Indeed, we prove a quadratic bound for the case when ¢t = 2, confirming a
conjecture of Sivaraman mentioned in [17].

Theorem 1.2. For all chair-free graphs G, x(G) < Tw(G)?.

We remark that after the submission of our paper, Scott, Seymour and Spirkl [25]
extended Theorem 1.1 by showing that for any fixed double star T', the class of T-free
graphs is polynomially y-bounded, where a double star is a tree in which at most two
vertices have degree more than one. In the case of t-broom-free graphs, our y-binding
function is much smaller.

Schiermeyer and Randerath [22] informally conjectured that the smallest x-binding
functions for the class of chair-free graphs and the class of claw-free graphs are asymptot-
ically the same. Very recently, Chudnovsky, Huang, Karthick, and Kaufmann [6] proved
that every {chair, K3 »}-free graph G satisfies that x(G) < [3w(G)]. Here, we consider
{t-broom, K ; }-free graphs for ¢t > 3 and prove the following
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Theorem 1.3. Let t > 3 be an integer. For all {t-broom, Ky }-free graphs G, x(G) =
o (w(@)").

In Section 2, we obtain useful structural information on ¢t-broom-free graphs, by taking
an induced complete multipartite subgraph and studying subgraphs induced by vertices
at certain distance from this mulitpartite graph. In Section 3, we complete the proofs of
Theorems 1.1 and 1.2. We prove Theorem 1.3 in Section 4.

In the remainder of this section, we describe notation and terminology used in the
paper. For a positive integer k, we use [k] to denote the set {1,...,k}. We denote a path
by a sequence of vertices in which consecutive vertices are adjacent. For a graph G and
S C V(G), G[S] denotes the subgraph of G induced by S. We use a(G) to denote the
independence number of G.

Let G be a graph. For any v € V(G), Ng(v) denotes the neighborhood of v and
d(v) = |Ng(v)| is the degree of v in G. We use A(G) and 6(G) to denote the maximum
and minimum degree of G, respectively. For any positive integer i, let N(S) := {u €
V(G)\S : min{dg(u,v) : v € S} =i}, where dg(u,v) is the distance between u and v in
G. Then N}(S) = Ng(9) is the neighborhood of S in G. Moreover, we let NGZi(S) =
U?‘;iNé(S). When S = {s} we write N (s) instead of N&({s}). For any subgraph H of
G, we write N}, (H) for N5 (V(H)) and N5'(H) for N5'(V(H)). When G is clear from
the context, we ignore the subscript G.

Let G be a graph and let S, T be disjoint subsets of V(G). For a vertex v € V(G)\S,
we say that v is complete to S in G if vs € E(G) for all s € S; v is anticomplete to S if
vs ¢ E(G) for all s € S; and v is mized on S if v is neither complete nor anticomplete
to S. We say that S is complete (respectively, anticomplete) to T if all vertices in S are
complete (respectively, anticomplete) to T

2. Structure of t-broom-free graphs

In our proofs of the three results stated in Section 1, we work with an induced com-
plete multipartite subgraph @ of G and bound the chromatic numbers of subgraphs
induced by vertices at certain distance from . In this section, we prove a few lemmas
on the structure of those subgraphs. (Since the statements of the lemmas are somewhat
technical, the interested reader may want to read Sections 3 and 4 before this section.)
The first lemma concerns G[N=2(Q)].

Lemma 2.1. Let t,q be integers with t > 2 and q > 2. Let G be a t-broom-free
connected graph and Vi,...,V, be pairwise disjoint independent sets in G, such that
Q = G[Uig[qVi] is a complete q-partite graph. Suppose for every v € N(Q), v is not
complete to V(Q). Then A(G[N=2(Q)]) < 3R(t,w).

Proof. For convenience, let w = w(G). Suppose there exists z; € N*(Q) for some k > 2
such that |[N(zx) N N22(Q)| > 3R(t,w). Then G has a path zyzy_1 --- 2120, such that
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20 € V(Q) and z; € NY(Q) for i € [k]. Note that this path is induced. Since z; € N(Q),
there exist distinct 4, j € [¢] such that z1a; € E(G) for some a; € V;, and z1a; ¢ E(G)
for some a; € Vj.

If G[(N(2x) N N22(Q)) N N(2x_2)] has an independent set of size ¢, say T, then k > 3
and (21, a;a;,T) (when k = 3) or (2x—2, 2k—32k—4,T) (when k > 4) is an induced ¢t-broom
in G, a contradiction. So such T' does not exist. Then |(N(zx) N N22(Q)) N N(z_2)| <
R(t,w), which implies |(N(zx) N N22(Q))\N(zx—2)| > 2R(t,w). Therefore, |(N(zx) N
NZ2(Q\N(z4_2)\N (s 1)| 2 R(t,) or [(N(z) 0 NZ2(@Q\N(34_2)) 1 N(z4_1)| =

R(t,w).
In the former case, let I; be an independent set in G[(N(zx) N N22(Q)\N(21_2))\
N(zg-1)] with |I;| = t; then (zk, 2k—12k—2,11) is an induced ¢-broom in G, a con-

tradiction. In the latter case, let Iy be an independent set of size t in G[(N(z;) N
NZ2(Q)\N(2k-2)) N N(2k-1)]. Then (21,a;a;, Is) (when k = 2) or (2,1, 252253, I2)
(when k£ > 3) is an induced t-broom in G, a contradiction. O

The next lemma describes the structure of subgraphs of G induced by certain subsets

of N(Q).

Lemma 2.2. Let t,q be integers with t > 2 and q > 2. Let G be a t-broom-free graph
and V1, ...,V be pairwise disjoint independent sets in G, such that |V, =t and Q =
G[Uieiq Vil is a complete g-partite graph. Let

o Z={veN(Q):vis complete to V,},
o W ={veN(Q):v is anticomplete to V,}, and,
o foreach I C Uicq—1)Vi, let

Wi :={veW: vis complete to I and anticomplete to U;cq—11Vi\I}.
Then the following statements hold:

(i) For any distinct subsets I,1" of U;cq—11Vi, Wr is anticomplete to Wp.
(ii) For each z € Z and for any component X of GIW], z is complete to V(X) or z is
anticomplete to V(X).
(iii) For any component X of GIW| with a(X) > t, let Zx :={z € Z : z is complete to
V(X)}; then Zx is complete to Z\Zx.

Proof. Let I,I' C Uie[q—1]Vi such that I # I’, and assume that W; is not anticomplete
to Wp.. Then there exist w € W and w’ € W such that ww’ € E(G). Since I # I', we
may assume that there exists a € I\I'. Then (a,ww’,V,) is an induced t-broom in G, a
contradiction. So (i) holds.
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Next, let z € Z and w,w’ € V(X) such that ww' € E(G). I zw € E(G) and
zw" ¢ E(G), then (z,ww’,V,) is an induced t-broom in G, a contradiction. Hence (ii)
holds.

To prove (iii), suppose there exist z € Zx and 2’ € Z\Zx such that zz’ ¢ E(G). By
assumption, X contains an independent set of size ¢, say T. By (ii), 2’ is anticomplete to
V(X); so 2 is anticomplete to T'. Choose a € V. Now (z,az’,T) is an induced ¢-broom
in G, a contradiction. Thus we have (iii). O

We now consider a specific type of complete multipartite subgraphs @, as well as the
vertices in N(Q) that are complete to all but the last part of . We can bound the
maximum degree of the subgraph of G induced by such vertices.

Lemma 2.3. Let t, q be integers with t > 2 and q > 2. Let G be a t-broom-free graph and
Vi,..., Vg be pairwise disjoint independent sets in G, such that |V;| =1 for i € [q¢ — 1],
Vol = t, and Q := G[U;c[qVi] is a complete q-partite graph. Suppose such @Q is chosen
to maximize q. Let

B:={v e N(Q): v is complete to V(Q)\V,}.
Then A(G[B]) < R(t,w(G)).

Proof. Suppose, otherwise, there exists v € B such that dgp)(v) > R(t,w(G)). Observe
that w(G[Ngp)(v)]) < w(G) — 1. Hence, G[Ng(p)(v)] contains an independent set of size
t, say T. By the definition of B, both v and T are complete to V; for all j € [¢ — 1].
Let V] =V for j € [¢ — 1], V] = {v}, and V,; = T. Then G[U;¢[q41)V;] is an induced
complete (g + 1)-partite subgraph in G, contradicting the choice of Q. O

We also need to consider the vertices in N (@) that are mixed on the last part of @
and not complete to some other part of (). We can bound the number of such vertices.

Lemma 2.4. Let t,q be integers with t > 2 and q > 2. Let G be a t-broom-free graph and
Vi,..., Vg be pairwise disjoint independent sets in G, such that |V;| = 1 fori € [¢ — 1],
Vol =t, and Q := G[U;¢c(qVi] is a complete q-partite graph. Let

A:={ve N(Q): v is mized on V, and v is not complete to V(Q)\V,}.
Then |A| < t2w(G)R(t,w(G)).

Proof. For each i € [¢ — 1], let v; be the unique vertex in V;. Let v € A be arbitrary.
By definition there exists j € [¢ — 1] and there exist aq,b; € V;, such that va, €
E(GQ),vb, ¢ E(G), and vv; ¢ E(G). If there are multiple such choices of (a4, by,7), we
pick an arbitrary one and assign the vertex v the label (ag, by, j). Since ¢ < w(G) and
|V,| = t, there are in total at most t>w(G) such labels.
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Thus, if |A] > t?w(G)R(t,w(q)), then there exists a set A’ C A such that |A'| >
R(t,w(G)) and all vertices in A’ receive the same label, say, (aq,bq,j). Since all vertices
in A’ are adjacent to agy, it follows that w(G[A']) < w(G). Hence, G[A'] must contain
an independent set of size ¢, say T. Now (aq,v;bq,T) is an induced ¢-broom in G, a
contradiction. O

When t = 2, we can substitute Lemma 2.4 with the following result. Its proof is the
only place where we use the Strong Perfect Graph Theorem [9]: A graph is perfect if
and only if it contains no odd hole or odd antihole. (Recall that a graph G is perfect if
X(H) = w(H) for all induced subgraphs H of G.)

Lemma 2.5. Let q be an integer with ¢ > 2. Let G be a chair-free graph and let Vi, ..., V,
be pairwise disjoint independent sets in G, such that |V;| =1 fori € [g—1], |V, = 2,
and Q = G[UieiqVi] is a complete g-partite graph. Let Vy = {vg, vy}, Vi = {vi} for
i€lg—1], and

A:={ve N(Q): v is mized on Vy and v is not complete to V(Q)\V,}.
Then both G[AN N(v,)] and GIAN N(vy)] are perfect.

Proof. Let A" = ANN(v,) and A” = AN N (v;). By the definition of A, [Ng(v)NV,| =1
forallv € A;s0 A/ NA” =0 and AU A” = A. By symmetry, it suffices to prove that
G[A] is perfect.

We partition A’ into ¢ — 1 pairwise disjoint sets (possibly empty) as follows. Let
Ay ={ve A : vv; ¢ E(G)}. Suppose for some i € [¢ — 1], we have defined Aq,..., A;.
If i = g —1, we are done; if i < g —1, let Ay = {v € A\U;c 45+ vvir1 ¢ E(G)}.
Hence, by the definition of A, A" = Ujcpq—174;.

Observe that if ¢ > 2 and A; # ), then for all j € [i — 1], v; is complete to A;. We
claim that for each i € [q — 1] with A; # 0, G[4;] is a clique; indeed, suppose there exist
uy,ug € A; such that uyug ¢ E(G), then (vg, vivy, {u1,uz}) is an induced chair in G, a
contradiction.

Now assume for a contradiction that G[A’] is not perfect. Then, by the Strong Perfect
Graph Theorem, G[A’] contains an odd hole or an odd antihole. Let {a1,aq,...,a2k41}
be the vertex set of an odd hole or odd antihole in G[A’] (so k > 2). For each i € [2k+1],
since a; € A, there exists o(i) € [¢ — 1] such that a; € Ay(;). By symmetry, we may
assume that o(1) = min{o(4) : ¢ € 2k + 1]}.

Suppose G[{a1,...,a2k1+1}] is an odd hole. Without loss of generality, assume for
i,j € 2k + 1], a;a; € E(G) if [i — j| = 1 (mod 2k — 1), and a;a; ¢ E(G) other-
wise. Since azazry1 ¢ E(G) and G[A, )] is a clique, az & Ay or asky1 € As(1y. By
symmetry, we may assume that as ¢ A, (1). Hence, 0(2) > o(1) and azv,1) € E(G).
Similarly, asy ¢ Ay(1) as askar & E(G); 0 axve) € E(G). Since ayagy, azazy ¢ E(G),
(Vo (1), @201, {azk, v, }) is an induced chair in G, a contradiction.
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Thus, G[{a1, ..., azk+1}] is an odd antihole. Without loss of generality, we may assume
that, for ¢, j € [2k+1], a;a; ¢ E(G) if |i—j| =1 (mod 2k—1), and a,a; € E(G) otherwise.
Note that ajaz € E(G) and ajaz,aza3 ¢ E(G). Hence az ¢ A, (1) and asvey € E(G).
If a3 ¢ Ay(1), then azvy1) € E(G); now (v (1), aza1, {az,v,}) is an induced chair in G,
a contradiction. So az € Ay (). Proceeding inductively, we see that ag;1 € Ay (y) for all
j € [k]. Thus aiasry1 € E(G) as G[Ay(1)] is a clique. This gives a contradiction since
arask+1 ¢ E(G). O

We now prove a lemma about {¢-broom, K ;}-free graphs, using a similar idea as in
the proof of Lemma 2.5 above, and show that x(G[A4]) admits a degenerate structure.
A graph H is said to be d-degenerate, where d is a positive integer, if the vertices of H
may be labeled as ug, ..., u, such that [Ng(u;) N {tit1,...,un}| < dforallie [n—1].
It is not hard to see that the chromatic number of a d-generate graph is at most d 4+ 1
by coloring its vertices greedily with respect to this ordering.

Lemma 2.6. Let t,q be integers with t > 2 and ¢ > 2. Let G be a {t-broom, K }-free
graph and let V1, ..., Vy be pairwise disjoint independent sets in G, such that |V;| =1 for
i€lqg—1], V4| =t, and Q := G[U;¢qVi] is a complete q-partite graph. Let Vi = {v;}
fori € [q—1], let ar,as € Vg, and let

A:={ve N(Q): vas € E(G), vas ¢ E(G), and v is not complete to V(Q)\V,}.

Then there exists X C A with | X| < w(G)(t 4+ 2)R(t — 1,w(Q)) such that G[A\X] is
(2R(t,w(G)) — 1)-degenerate.

Proof. We partition A into ¢ — 1 pairwise disjoint sets (possibly empty) as follows. Let
Ay :={ve€A: vu; ¢ E(G)}. Suppose for some i € [¢ — 1], we have defined Ay, ..., 4;.
Ifi=q—1, wearedone;ifi <g—1,let Aiy1:={v € A\U;c 4; © vvira ¢ E(G)}. By
the definition of A, we have A = U;c(,—1)A4; and, if i > 2 and A; # 0, then A; is complete
to {v;} for all j € [i — 1]. For simplicity of notation, if z € A; for some i € [¢ — 1], we
use A, to refer to A;.

Let w := w(@G). Since a4 is complete to A, w(G[A]) < w—1. Observe that a(G[A4;]) < t;
for, if T is an independent set of size ¢ in G[4;] then (a1, v;a2,T) is an induced ¢-broom
in G, a contradiction. Thus, |4;| < R(t,w).

We define a pre-order (A,=) (i.e., a binary relation that is reflexive and transitive)
on vertices in A. For any two vertices u € A; and v € A;, let u < v if ¢ < j. Moreover,
we say u < v if ¢ < j. For any vertex © € A, define F,, = {y € A : < y} and
Fo,={yeA:xz <y}

Suppose for all z € A, [N(z) N F;| < 2R(t,w) — 1. Consider an ordering uy, ..., u 4
of the vertices in A such that w; < u;41 for all i € [|A| — 1]. By the above assumption,
IN (ui) N {tigr, 5 upa ] < IN(u) N Fy, | < 2R(t,w) — 1 for all i € [|A| —1]. Thus, G[A]
is (2R(¢t,w) — 1)-degenerate, and the assertion of Lemma 2.6 holds with X = {.
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So we may assume that there exists some x1 € A such that |[N(z1) N Fy, | > 2R(t,w).
Choose a minimal such z; (with respect to <). Let H; = N(x1) N Fy,. Suppose for some
positive integer k > 2, we have defined Hy, ..., Hy_; such that H; C N(z;) N F, for all
i €lk—1]. If |[INg,_, () N Fy| < 2R(t,w) — 1 for all € Hy_1, then we terminate this
process. Otherwise pick a minimal z;, € Hy_1 (with respect to <) such that |Ng, _, ()N
F.,| > 2R(t,w). Then let Hy := Ng,_,(z;) N F,,. When the above process terminates,
we obtain a sequence, say (x, Hi),k = 1,...,s. Note that {z) : k € [s]} induces a clique
in G. Moreover, by definition, each x;, is adjacent to a; € V,. Hence s < w.

Let X := Uge(s) (He—1\Hg) N Fy, ) where Hy = A. Then A\X = U ¢ 1)(Hr—1\F%,.),
where F,_ , = 0. It suffices to show that |(Hy_1\Hi) N Fy, | < (t+2)R(t — 1,w) for all
k € [s] and that G[A\X] is (2R(t,w) — 1)-degenerate.

First we consider G[A\X]. For k € [s], by the minimality of z) (with respect to <),
for all w € Hy_1 such that u < =z, we have [Ny, _,(u) N F,| < 2R(t,w) — 1. Observe
that Na\x(u) N Fy € Np,_,(u) N Fy. Hence [N\ x(u) N F,| < 2R(t,w) — 1. By the
terminating condition, |[Na\x(u) N Fy| < [Ny, (u) N Fy| < 2R(t,w) — 1 for all u € Hy.
Therefore, we can order the vertices in A\X as u1, ..., u 4\ x|, such that u; < ;4 for all
i € [|[A\X] —1]; then |N(u;) N {wiy1, ..., ua\x} < 2R(t,w) — 1 for all i € [|A\X| - 1].
Thus, G[A\X] is (2R(t,w) — 1)-degenerate.

To show that [(Hi—1\Hx) N Fy, | < (t +2)R(t — 1,w) for any k € [s], we see that
no vertex in (Hi_1\H) N Fy, is adjacent to x. So it suffices to bound the number
of non-neighbors of z; in Hx_1 N F,,. Note that F,, = A;, U Fs;, . Observe that
has at most R(t — 1,w) — 1 non-neighbors in A, ; otherwise the graph induced on the
vertex set of non-neighbors of xj;, in A;, has an independent set of size ¢ — 1 and this
implies that a(G[Az,]) > t, a contradiction. Thus, it suffices to bound the number of
the non-neighbors of xx in Hi_1 N Fsy,y, i€, |(Hg—1 N Fs,, )\N(Xg)|, from above by
(t+ 1)R(t - 1,w).

Recall that z, has at least 2R(¢,w) neighbors in Hy_1 N F,, (as |Ng,_, (zx) N Fy,| >
2R(t,w)). Since |A, | < R(t,w), |Nm,_,(zx) N Fs,| > R(t,w). Hence there exists an
independent set Yy, of size t in G[Ng, , (zr) N Fsq, ]

We claim that for each y € Yy, y and xp has at most R(t — 1,w) common non-
neighbors in Hy_; N Fy,, . Otherwise there is an independent set T' of size t — 1 in
Gl(Hk—1 N Fsq, )\(N(zk) U N(y))]. Let u be the vertex in {v1,...,v4—1} that is anti-
complete to A,, and complete to Fs,, . Then (u,yzy, T U{az}) is an induced ¢-broom
in GG, a contradiction.

Thus, each y € Y has at most R(t — 1,w) non-neighbors in (Hi_1 N Fsy, )\N ().
Suppose |(Hi—1 N Fsyp )\N(zg)| > (t + 1)R(t — 1,w). Then there exists a set S C
(Hi—1 N Fsy, )\N(z) with S| > (¢t + 1)R(t — 1,w) — |[Yi|R(t — 1,w) = R(t — 1,w)
such that S is complete to Yj. Since |S| > R(¢t — 1,w), G[S] has an independent set of
size t — 1, say S’. Now (S’ U {zx}) UY} induces a K, in G, a contradiction. Hence,
(Hi1 N Fou \N(@)| < (t+ DR(E— 1), ©
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3. Proofs of Theorems 1.1 and 1.2

When ¢t = 1, a t-broom is a path on 4 vertices. So Theorem 1.1 holds for ¢ = 1 since
a P,-free graph is perfect. Hence we may assume t > 2. To prove Theorems 1.1 and 1.2,
we apply induction on w(G). The proofs are the same, except in the case when t = 2 we
bound x(G[A]) by using Lemma 2.5 (instead of Lemma 2.4).

Let f(w) be a convex function satisfying

e R(t,w) < f(w)and 1 < f(1), and
o (PwR(t,w)+5R(t,w)) + flw—1)+ f(1) < fw).

By the generalized binomial theorem, we may choose f(w) to be Cyw?R(t,w) for some
sufficiently large C; depending on ¢. Hence, using the upper bound of R(t,w), f(w) may
be chosen such that f(w) = o(w!*!).

We will show that x(G) < f(w(G)). Note that the assertions of Theorems 1.1 and 1.2
are clearly true when w(G) = 1. Hence, let G be a t-broom-free graph with w(G) = w > 2,
and assume that for all t-broom-free graphs H with w(H) < w, we have x(H) < f(w(H)).

We choose pairwise disjoint independent sets Vi, ..., V; in G, such that

(1) |Vy| =tand |[V;|=1forie[qg—1],
(2) Q= G|U¢g|qVi] is a complete g-partite graph, and
(3) subject to (1) and (2), ¢ is maximum.

Note that ¢ > 2, otherwise G is K 4-free; so A(G) < R(t,w) (hence x(G) < R(t,w) <
f(w)) and we are done. Clearly, ¢ < w.
We study the structure of G by partitioning G into several vertex disjoint subgraphs

and bounding the chromatic number of each subgraph. We partition N(Q) as follows:

{v e N(Q) : vis mixed on V, and v is not complete to V(Q)\V,}.
{ve N(Q): vis mixed on V, and v is complete to V(Q)\V,}.
N(@\(AUB).

A:
B :
C:

By the maximality of ¢, no vertex in N(Q) is complete to V(Q). Thus, for any v € C,
either v is anticomplete to V,, or v is complete to V;, and not complete to V(Q)\V;. Note
that

V(G)=V(Q)UN(Q)UN=%*(Q) and N(Q) = AUBUC.

Since there is no edge between Q and N=2(Q), we can color Q and G[N=2(Q)] with at
most max{x(Q), x(GIN=2(Q)])} colors. Since x(Q) = ¢ and x(G[N=2(Q)]) < 3R(t,w)
by Lemma 2.1, we then obtain the following claim.
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Claim 1. x(G) < max{q,3R(t,w)} + x(G[A]) + x(G[B]) + x(G[C)).

Since A(G[B]) < R(t,w) (by Lemma 2.3), we have x(G[B]) < R(t,w). By Lemmas 2.4
and 2.5, x(G[A]) < t?wR(t,w) (when t > 3) and x(G[A]) < 2w (when t = 2). Thus, in
view of Claim 1, we need to bound x(G[C]).

Let Z = N(V;)NC and W = C\Z; so Z is complete to V, and W is anticomplete
to V. We consider G[W] first. For any component X of G[W], if I is the set of all its
neighbors in V(Q)\V, (note that I C U;cy—1)Vi and I # 0)) then by (i) of Lemma 2.2,
V(X)) is complete to I and anticomplete to U;cjq—1]V;\ 1. It follows that any component of
G[W] has clique number at most w— 1. Thus, each component of G[W] with independent
number at most ¢ — 1 has at most R(¢,w) — 1 vertices. Let Xy denote the union of all
components of G[W] with independence number at most t — 1; so x(Xo) < R(t,w).

Claim 2. x(G[C] — Xo]) < f(w —1) + f(1).
Proof. For any component X of G[W] — Xy, let
Zx :={z€ Z: zis complete to V(X)}.

Let S1,52,...,5p be the sets that form the smallest partition of Z which refines all the
bipartitions Zx, Z\Zx of Z for all components X of G[W] — Xy. By (iii) of Lemma 2.2,
S; is complete to S; for all distinct ¢,j € [p]. Let w; := w(G[S;]) for i € [p]. For each
component X of G[W] — Xy, let Fx := {k € [p] : Si is anticomplete to V(X)}. Then
by (ii) of Lemma 2.2, [p]\Fx = {k € [p] : Sk is complete to V(X)}.

Observe that w(G[Z]) < w and w(X) < w for every component X of G[W] — Xp.
Hence the induction hypothesis applies to all subgraphs of G[Z] and all G[X]. We now
describe, inductively, a coloring of G[C] — X and show it uses at most f(w —1) + f(1)
colors.

e For each i € [p], inductively color the vertices of G[S;] with colors from a set R;,
where |R;| < f(w;). We choose R;, i € [p], such that R; N R; = () whenever i # j.

e Let R be a fixed set of colors, such that R is disjoint from U;c,R; and |R| =
max{f(w(X)) = X e, [1%],0}, where the maximum is taken over all components
X of GIW] — Xo.

o For each component X of G[W]— Xy, it follows from induction that x(X) < f(w(X)).
Note that the vertex set of X is anticomplete to S if k € F'x. Thus we can use the
colors used on Uger, G[Sk] (i.e., colors in Ugep, Ry) to color X first. If x(X) <
> kery [ Bkl, we are done. Otherwise we use at most f(w(X)) — >y cp, [Rk| colors
from R to color X . Hence for each component X of G[W]— Xy, we assign the vertices
of X with colors from Uger, Ry and, if needed, some additional colors from R.

Therefore, we have x(G[C] — Xo) = x(G[Z] U (G[W] — Xo)) < > i [Bil + [R.
Since S; is complete to S; for all distinct 4,5 € [p] and Z is complete to V,, we have
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p
Zwi < w — 1. Moreover, for each component X in G[W] — Xy, V(X) is complete to S
i=1

if k € [p]\Fx; therefore, w(X) + Z wy < w. Thus, by the convexity of the function

F L ke[p]\Fx
, we have
> flw) < flw—1),
i=1
and
F@X)+ D flwr) < flw—1)+ f(1).
ke[p\Fx
Thus,

X(G[C] = Wo) < |R| + Z | Ri

X: ag)lr%);onent {f Z |R | O} + Z |R |

of G[W] — i€Fx
p
— R: R,
X: ag)lr%};onent f + | Z|’Z| l|
of G[W] — i€ p]\Fx i=1
p
< ma.
X: a com};onent f Z f Wi ,Z f Z)
of GIW] — X, i€[p]\Fx i=1
<flw-1)+f(1

This completes the proof of Claim 2 O
We can now bound x(G). Since x(Xo) < R(t,w), it follows from Claim 2 that
X(G[C]) < x(G[C] = Xo]) + x(Xo) < flw = 1) + f(1) + R(t,w).
Hence, by Claim 1, Lemma 2.3 and Lemma 2.4, we have

X(G) < max{w,3R(t,w)} + t?wR(t,w) + R(t,w) + f(w — 1) + f(1) + R(t,w)
< PwR(t,w) + 5R(t,w) + flw —1) + f(1)
< fw),

by our choice of f(w). This proves Theorem 1.1.
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When ¢ = 2, we have R(2,w) = w, and x(G[4]) < 2w(G) (by Lemma 2.5). Thus,
using those bounds in the above inequality, we obtain

X(G) < flw=1)+ f(1) + Tw.

By choosing f(w) = Tw?, we see that f(w— 1) + f(1) + 7w < f(w). Hence, x(G) < 7w?,
completing the proof of Theorem 1.2.

4. Proof of Theorem 1.3
Let g(w) be a convex function satisfying

. ]_ S g(].),
o wt R(t,w) + (t+2)tPwR(t — 1,w) + (2t* + 4)R(t,w) < g(w), and
e glw—1)+w+ R(t,w) < g(w).

Similar to the proof in Section 3, by the generalized Binomial Theorem, g(w) can be cho-
sen such that g(w) = C (WR(t,w) + wR(t — 1,w)) for some large constant C; depending
only on t. Hence we may choose g(w) such that g(w) = o(w?).

We will show that x(G) < g(w(G)) by applying induction on w(G). It is clear that the
assertion of the theorem holds when w(G) = 1. Let G be a {t-broom, K, ,}-free graph
with w(G) = w > 2 and, for all {t-broom, K ;}-free graphs H with w(H) < w, we have
X(H) < g(w(H)).

We choose pairwise disjoint independent sets Vi,...,V, in G, such that

(1) |Vg| =tand |V;|=1forie[qg—1],
(2) Q := G[U;¢[qVi] is a complete g-partite graph, and
(3) subject to (1) and (2), ¢ is maximum.

Such @ with ¢ > 2 must exist, otherwise G is K ;-free and hence A(G) < R(t,w) and
we are done. Clearly, 2 < ¢ < w. Let V; = {v;} for i € [¢ — 1]. We partition N(Q) as
follows.

{v e N(Q) : vis mixed on V; and v is not complete to V(Q)\V,}.
{ve N(Q): vismixed on V;, and v is complete to V(Q)\V,}.
N(Q)\(AU B).

L]

A:
B
C:

Thus, for each v € C, either v is complete to V, or v is anticomplete to V,. Let Z =
NVy)NnCand W =C\Z;s0 Z ={v e :wviscomplete to V;} and W := {v € C :
v is anticomplete to V;}. Note that N(Q) is the disjoint union of A, B, Z, W.

Claim 1. N(W) N N%(Q) =0, x(G[A]) < 2(2R(t,w) + (t + 2)wR(t — 1,w)), A(G[B]) <
R(t,w), and |Z| < R(t,w).
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Proof. Suppose there exists wy € E(G) with w € W and y € N?(Q). Choose i € [g — 1]
such that wv; € E(G). Now (v;, wy,V,) is an induced ¢-broom in G, a contradiction.
Hence, N(W) N N?(Q) = 0.

By Lemma 2.3, we have A(G[B]) < R(t,w); hence x(G[B]) < R(t,w). For Z, recall
that Z is complete to V. Hence w(G[Z]) < w — 1. Moreover, since |V;| = t and G is
K, ;-free, we have that a(G[Z]) < t. So |Z| < R(t,w).

It remains to bound x(G[A]). Write V; = {a1,as,...,a;}. Since A is mixed on V,
for each v € A, there exist 4,5 € [t] such that va; € E(G) and va; ¢ E(G). Let
AGD) = {v € A:wva; € E(G), and va; ¢ F(G)}. By Lemma 2.6, there exists X C
A®3) such that |X| < (t + 2)wR(t — 1,w) and G[A"\X] is (2R(t,w) — 1)-degenerate.
Hence, x(G[A®D]) < 2R(t,w) + |X| = 2R(t,w) + (t + 2)wR(t — 1,w). Thus, x(G[A]) <
?(2R(t,w) + (t + 2)wR(t — L,w)). O

Next we consider G[W]. It follows from (i) of Lemma 2.2 that, for any component X
of G[W], V(X) is complete to its neighborhood in V(Q)\V;. Let X, denote the union
of all components of G[W] with chromatic number at most 3R(t,w). By the definition
of Xy and the fact that every component of G[W] has clique number at most w — 1, we
have the following claim.

Claim 2. x(Xo) < 3R(t,w) and x(G[W] — Xy) < g(w — 1).
Claim 3. AU B is anticomplete to W\V (Xj).

Proof. For any component X in G[W] — Xo, x(X) > 3R(¢,w) by the definition of Xj.
This implies that |[V(X)| > x(X) > 3R(t,w); hence X contains an independent set of
size t.

We claim that, for any distinct components X7, X5 of GIW] — X, N(X1) NV (Q) C
N(X2)NV(Q) or N(X2)NV(Q) C N(X;) NV(Q). For, suppose there exist distinct
ug, ug € V(Q) such that u; € (N(X1)\N(X2))NV(Q) and ug € (N(X2)\N(X1))NV(Q).
We know that X, has an independent set of size ¢, say T>. Let x1 be a vertex of Xj;
then (ug,uix1,T2) is an induced t-broom in G, a contradiction.

Thus, we choose a component X of G[W] — X such that N(X)NV(Q) is maximal.
Observe that N(X) NV (Q) = N(X) N (V(Q)\V,) which is a proper subset of V(Q)\Vy;
otherwise V(X)) is complete to V(Q)\V; and A(X) < R(t,w) by Lemma 2.3, contradict-
ing that x(X) > 3R(t,w). So there exists j € [¢ — 1] such that v; ¢ N(X). Hence by the
choice of X, v; ¢ N(X') for any component X’ of G[W] — Xy. This implies that v; is
anticomplete to W\V (Xp).

Now suppose there exists a vertex a in A N B such that a is not anticomplete to
WAV (Xy). Then there exists a component X of G[W] — Xy and w € V(X) such that
aw € E(G). Since a is mixed on V,, we may assume without loss of generality that
ai,as € Vy such that aaq € E(G) and aas ¢ E(G). Note that x(X) > 3R(t,w) and
recall that v; is anticomplete to V(X).
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If avj € E(G) then G’ := G[{vj,as,a} UV (X)] is a t-broom-free graph and w(G’) <
w(G) = w. Note that Q" := G'[{v;, az}] is a complete bipartite subgraph of G, N¢/ (Q’) =
{a}, and G’[NGZ,Q(Q’)] = X. Since a is not complete to V(Q') in G’, we may apply
Lemma 2.1 and conclude that A(G’[Né,z(Q’)]) < 3R(t,w). Hence, x(G'[NG*(Q")]) <
3R(t,w), a contradiction as X = G'[N5(Q")] and x(X) > 3R(t,w).

Now assume that av; ¢ E(G). Then G” := G[{v;,a1,a} UV (X)] is a t-broom-free
graph and Q" := G”[{vj,a1}] is a complete bipartite subgraph of G”, Ng~(Q") = {a},
and X = G”[NGZ/%(Q”)}. Since a is not complete to V(Q"), we may apply Lemma 2.1
and conclude that A(G”[NZ2(Q")]) < 3R(t,w). Hence, x(G”[N&H(Q")]) < 3R(t,w), a
contradiction as X = G”[NG2(Q")] and x(X) > 3R(t,w). O

Note that V(G) = V(Q)UN(Q)UN=2(Q) and N(Q) = AUBUZUV (X,)U(W\V (Xy))
and x(Q) = g. Also note that W\V (Xj) is anticomplete to AUBUN=2(Q) (by Claims 1
and 3), V(Xp) is anticompete to N22(Q) (by Claim 1), and W\V(X,) is anticomplete
to V(Xy) (by definition). Thus, we have

x(G) < q+1Z|
+max {X(GIW\V(Xo)]), x(G[A]) + x(G[B]) + max{x(Xo), x(GIN=*(Q)])} } -

By the maximality of ¢, no vertex in N(Q) is complete to V; for all j € [¢]. Thus, by
Lemma 2.1, x(G[N=2(Q)]) < 3R(t,w). Therefore,

X(G) < w+ R(t,w) + max{g(w — 1), (t + 2)PwR(t — 1,w) + (2t* + ) R(t,w)}.
Hence, by the choice of g(w), we have x(G) < g(w), completing the proof of Theorem 1.3.
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