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Thomassen proved that 4-connected planar graphs are Hamil-
ton connected by showing that every 2-connected planar 
graph G contains a Tutte path P between any two given ver-
tices, that is, every component of G − P has at most three 
neighbors on P . In this paper, we prove a quantitative ver-
sion of this result for circuit graphs, a natural class of planar 
graphs which includes all 3-connected planar graphs, by fur-
ther controlling the number of components in G −P . We also 
give an application of this result by providing a best possible 
bound for the circumference of essentially 4-connected planar 
graphs.
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1. Introduction

The Four Color Theorem [1,2] (also see [9]) states that every plane graph is 4-face-
colorable. All known proofs of the Four Color Theorem require the use of a computer. 
However, if a plane graph has a Hamilton cycle then one can properly four color all its 
faces easily.
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Tait [10] conjectured that every 3-connected cubic planar graph contains a Hamil-
ton cycle, which, if true, would imply the Four Color Theorem. However, Tutte [13]
discovered a counterexample in 1946 and, since then, families of counterexamples have 
been constructed, see for instance [4]. On the other hand, Whitney [15] proved that 
every planar triangulation without separating triangles is Hamiltonian, which was ex-
tended by Tutte [14] to all 4-connected planar graphs. Later, Thomassen [11] showed 
that 4-connected planar graphs are in fact Hamilton-connected, i.e., there is a Hamilton 
path between any two vertices in the graph. Thomas and the second author [12] further 
extended Thomassen’s technique to show that all 4-connected projective-planar graphs 
contain Hamilton cycles. There has also been work on long cycles in graphs on other 
surfaces, see, for instance, [3] and [16].

In [11], Thomassen prove a more general result for 2-connected planar graphs. To 
state that result, we need the following concepts and notation. Let G be a graph and 
H ⊆ G (i.e., H a subgraph of G). An H-bridge of G is a subgraph of G which is either 
induced by an edge in E(G) \E(H) with both incident vertices on H, or induced by the 
edges of G that are incident with one or two vertices in a single component of G −H

(the graph obtained from G by deleting all vertices in V (H) and all incident edges). For 
any H-bridge B of G, a vertex in V (B ∩H) is called an attachment of B on H. We say 
that H is a Tutte subgraph of G if every H-bridge of G has at most three attachments on 
H. Moreover, for any subgraph F ⊆ G, H is said to be an F -Tutte subgraph of G if H
is a Tutte subgraph of G and every H-bridge of G containing an edge of F has at most 
two attachments on H. A Tutte cycle (respectively, Tutte path) is a Tutte subgraph that 
is a cycle (respectively, path).

Thomassen [11] showed that if G is a 2-connected plane graph and C is a facial cycle 
of G, then for any e ∈ E(C), u ∈ V (C), and v ∈ V (G) \ {u}, G has a C-Tutte path P
between u and v and through e. We prove a similar result in which we also control the 
number of P -bridges. For a graph G and a subgraph P of G, let

βG(P ) = |{B : B is a P -bridge of G and |V (B)| ≥ 3}|.

To state our result, we need additional notation. For two graphs G and H, we use 
G ∪H and G ∩H to denote the union and intersection of G and H, respectively. For any 
positive integer k and any graph G, a k-separation in G is a pair (G1, G2) of subgraphs 
of G such that |V (G1 ∩G2)| = k, G = G1 ∪G2, E(G1) ∩E(G2) = ∅, and Gi ! G3−i for 
i = 1, 2. A k-cut in G is a set S ⊆ V (G) with |S| = k such that there exists a separation 
(G1, G2) in G with V (G1 ∩G2) = S and V (Gi) \ V (G3−i) (= ∅ for i = 1, 2.

Given a plane graph G and a cycle C in G, we say that (G, C) is a circuit graph if G is 
2-connected, C is the outer cycle of G (i.e., C bounds the infinite face of G), and, for any 
2-cut T in G, each component of G − T must contain a vertex of C. Note that C has a 
clockwise orientation and a counterclockwise orientation, and we may use the symmetry 
between these two orientations. For any distinct elements x, y ∈ V (C) ∪ E(C), we use 
xCy to denote the subpath of C in clockwise order from x to y such that x, y /∈ E(xCy). 
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We say that xCy is good if G has no 2-separation (G1, G2) with V (G1 ∩ G2) = {s, t}
such that x, s, t, y occur on xCy in order, sCt ⊆ G2, and |G2| ≥ 3. Moreover, let

τGxy =






2/3, xCy is not good;
2/3, |{x, y} ∩ E(C)| = 1 and x and y are incident;
1/3, |{x, y} ∩ E(C)| = 1 and |V (xCy)| = 2;
0, otherwise.

If there is no danger of confusion, we may drop the reference to G in the subscripts. Our 
main result can be stated as follows.

Theorem 1.1. Let n ≥ 3 be an integer, let (G, C) be a circuit graph on n vertices, let 
u, v ∈ V (C) be distinct, and let e ∈ E(C), such that u, e, v occur on C in clockwise order. 
Then G has a C-Tutte path P between u and v such that e ∈ E(P ) and

β(P ) ≤ (n− 6)/3 + τGvu + τGue + τGev.

The proof of Theorem 1.1 follows the ideas in [11], but many adjustments are needed 
to complete the work. In Section 2, we deal with some special cases of Theorem 1.1
when there exist certain 2-cuts in the graph. In Section 3, we complete the proof of 
Theorem 1.1. In Section 4, we use Theorem 1.1 to derive a bound on the circumference 
of essentially 4-connected planar graphs.

We conclude this section with useful notation. We often use |G| to denote the number 
of vertices in G, and represent a path by a sequence of vertices (with consecutive vertices 
being adjacent). Let G be a graph. For any S ⊆ V (G), G − S denotes the subgraph of 
G obtained from G by deleting all vertices in S and all edges of G incident with S. We 
often write G −H for G −V (G ∩H). Moreover, for any family T of 2-element subsets of 
V (G) we use G + T to denote the graph with vertex set V (G) and edge set E(G) ∪ T . 
When T = {{u, v}}, we write G + uv instead of G + {{u, v}}.

2. Special cases

To help the reader get familiar with the notation involved in the statement of Theo-
rem 1.1, we illustrate them by considering two simple cases: e = uv, and |G| = 3.

Lemma 2.1. Theorem 1.1 holds when e = uv or |G| = 3.

Proof. As G is 2-connected, we have |G| ≥ 3. First, suppose e = uv. Then vCu is not 
good because of the 2-separation (uCv, G − uv); so τvu = 2/3. Moreover, since u, v are 
both incident with e, τue = τev = 2/3. Hence, P := vu gives the desired C-Tutte path 
as β(P ) = 1 ≤ (|G| − 6)/3 + τvu + τev + τue.
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Fig. 1. The separation (G1, G2) in G.

Now assume e (= uv and |G| = 3. Further assume by symmetry that u is not incident 
with e. Then τvu = 0, τue = 1/3, and τev = 2/3. Hence, P := C − uv gives the desired 
C-Tutte path as β(P ) = 0 = (|G| − 6)/3 + τvu + τue + τev. !

We now deal with two special cases when the plane graph G in Theorem 1.1 has 
certain 2-cuts. In the first case, G has a 2-cut separating {u, v} from e. We formulate it 
as a lemma.

Lemma 2.2. Suppose n ≥ 4 is an integer and Theorem 1.1 holds for graphs on at most 
n − 1 vertices. Let (G, C) be a circuit graph on n vertices, u, v ∈ V (C) be distinct, and 
e ∈ E(C), such that u, e, v occur on C in clockwise order.

If G has a 2-separation (G1, G2) such that {u, v} ⊆ V (G1), {u, v} ! V (G2), e ∈
E(G2), and |G2| ≥ 3, then G has a C-Tutte path P between u and v such that e ∈ E(P )
and β(P ) ≤ (n − 6)/3 + τvu + τue + τev.

Proof. Let V (G1 ∩ G2) = {x, y} with x ∈ V (eCv) and y ∈ V (uCe). See Fig. 1. Let 
G′

i = Gi+xy for i ∈ {1, 2} such that G′
1 is a plane graph with outer cycle C1 := xCy+yx

and G′
2 is a plane graph with outer cycle C2 := yCx + xy. Note that both (G′

1, C1) and 
(G′

2, C2) are circuit graphs. Let e1 := xy, n1 := |G′
1|, and n2 := |G′

2|. Then n1+n2 = n +2. 
Since {u, v} ! V (G2), we may assume by symmetry that u (= y.

By assumption, G′
1 has a C1-Tutte path between u and v such that e1 ∈ E(P1) and

βG′
1(P1) ≤ (n1 − 6)/3 + τG′

1vu + τG′
1ue1 + τG′

1e1v,

and G′
2 has a C2-Tutte path P2 between x and y such that e ∈ E(P2) and

βG′
2(P2) ≤ (n2 − 6)/3 + τG′

2xy + τG′
2ye + τG′

2ex.

Note that P := (P1 ∪ P2) − e1 is a C-Tutte path in G between u and v such that 
e ∈ E(P ). Moreover, τG′

1vu = τGvu and τG′
2xy = 0. Thus,

βG(P ) = βG′
1(P1) + βG′

2(P2)
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Fig. 2. The separation (G1, G2) in G.

≤ (n− 6)/3 − 4/3 + τGvu + τG′
1ue1 + τG′

1e1v + τG′
2ye + τG′

2ex.

We claim that τG′
1e1v + τG′

2ex ≤ τGev + 2/3. This is clear if τGev = 2/3. If τGev = 1/3
then |eCv| = 2 and, hence, |e1C1v| = |xCv| = 2 or |eC2x| = |eCx| = 2; so τG′

1e1v = 1/3
or τG′

2ex = 1/3, and the inequality holds as well. Now assume τGev = 0. Then |eCv| ≥ 3
and eCv is good in G. So |e1C1v| ≥ 3 and e1C1v is good in G′

1, or |eC2x| ≥ 3 and 
eC2x is good in G′

2, or |e1C1v| = |eC2x| = 2. Hence, τG′
1e1v = 0, or τG′

2ex = 0, or 
τG′

1e1v = τG′
2ex = 1/3. Again we see that the inequality holds.

Similarly, τG′
1ue1 +τG′

2ye ≤ τGue+2/3. So βG(P ) ≤ (n −6)/3 +τGvu+τGue+τGev. !

The next lemma deals with a different type of 2-cuts in the graph G in Theorem 1.1.

Lemma 2.3. Suppose n ≥ 4 is an integer and Theorem 1.1 holds for graphs on at most 
n − 1 vertices. Let (G, C) be a circuit graph on n vertices, u, v ∈ V (C) be distinct, and 
e = xy ∈ E(C), such that u, x, y, v occur on C in clockwise order.

If {u, x} or {v, y} is a 2-cut in G then G has a C-Tutte path P between u and v such 
that e ∈ E(P ) and βG(P ) ≤ (n − 6)/3 + τGvu + τGue + τGev.

Proof. Suppose {u, x} or {v, y} is a 2-cut in G, say {u, x} by symmetry. See Fig. 2. Then 
G has a 2-separation (G1, G2) such that xCu ⊆ G1, uCx ⊆ G2, and |G2| ≥ 3. We choose 
(G1, G2) so that G2 is maximal. Then ux /∈ E(G1). Note that τGue = 2/3.

Case 1. G1 is 2-connected.
Then let C1 denote the outer cycle of G1. Since (G, C) is a circuit graph, (G1, C1) is 

a circuit graph. By assumption, G1 has a C1-Tutte path P between u and v such that 
e ∈ E(P ) and

βG1(P ) ≤ (|G1|− 6)/3 + τG1vu + τG1ue + τG1ev.

Note that τG1vu = τGvu, τG1ue = 0 (as ux /∈ E(G1)), and τG1ev = τGev. So

βG(P ) = βG1(P ) + 1 ≤ (|G|− 6)/3 + τGvu + τGue + τGev,

and P is the desired path.

Case 2. G1 is not 2-connected.
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Let G′
1 := G1 + ux be the plane graph with outer cycle C1 := xCu + ux, and let 

G′
2 := G2 + xu be the plane graph with outer cycle C2 := uCx + xu. Since (G, C) is a 

circuit graph, we see that both (G′
1, C1) and (G′

2, C2) are circuit graphs.
Note that τG′

1vu = τGvu, τG′
1ue = 1/3, and τG′

1ev = τGev. By assumption, G′
1 has a 

C1-Tutte path P1 between u and v such that e ∈ E(P1) and

βG′
1(P1) ≤ (|G′

1|−6)/3+τG′
1vu+τG′

1ue+τG′
1ev = (|G1|−6)/3+τGvu+(τGue−1/3)+τGev.

Since G1 is not 2-connected, ux ∈ E(P1).
Choose e′ ∈ E(uC2x) such that τG′

2e
′x = 1/3 and τG′

2ue
′ ≤ 2/3. Note that τG′

2xu = 0. 
By assumption, G′

2 has a C2-Tutte path P2 between x and u such that e′ ∈ E(P2) and

βG′
2(P2) ≤ (|G′

2|− 6)/3 + τG′
2xu + τG′

2ue
′ + τG′

2e
′x ≤ (|G2|− 6)/3 + 1.

Now P := (P1 − ux) ∪ P2 is a C-Tutte path in G between u and v such that e ∈ E(P ). 
Moreover,

βG(P ) = βG′
1(P1) + βG′

2(P2)
≤ (|G1|− 6)/3 + τGvu + (τGue − 1/3) + τGev + (|G2|− 6)/3 + 1
< (n− 6)/3 + τGvu + τGue + τGev.

So P is the desired path. !

3. Proof of Theorem 1.1

We apply induction on n. By Lemma 2.1 and by symmetry, we may assume that 
u is not incident with e, |G| = n ≥ 4, and the assertion holds for graphs on at most 
n − 1 vertices. Let e = v′v′′ such that u, v′, v′′, v occur on C in clockwise order. Then by 
Lemma 2.3,

(1) neither {u, v′} nor {v, v′′} is a 2-cut in G.

Moreover, by Lemma 2.2, we may assume that G has no 2-cut T such that T (= {u, v}
and T separates e from {u, v}. Thus, by planarity, uCe is contained in a block of G −eCv, 
which is denoted by H. See Fig. 3. Note that H ∼= K2 or H is 2-connected. We may 
assume that

(2) H is 2-connected.

For, suppose that H ∼= K2. Then v′ must have degree 2 in G and G − v′ is 2-connected; 
for otherwise, by planarity, there would exist a vertex z ∈ V (v′′Cv) such that {v′, z}
is a 2-cut in G separating e from {u, v}. Let C ′ := v′′Cu + uv′′ be the outer cycle of 
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Fig. 3. The subgraph H of G and the bridges between eCv and H.

the plane graph G′ := (G − v′) + uv′′, and let e′ := uv′′. Note that (G′, C ′) is a circuit 
graph, τG′ue′ = 2/3 = τue + 1/3, τG′e′v = τGev, and τG′vu = τGvu. Hence, by induction 
hypothesis, G′ has a C ′-Tutte path P ′ between u and v such that e′ ∈ E(P ′) and

βG′(P ′) ≤ (|G′|− 6)/3 + τG′vu + τG′ue′ + τG′e′v = (n− 6)/3 + τGvu + τGue + τGev.

Now P := (P ′ − e′) ∪ uv′v′′ is a C-Tutte path in G between u and v such that e ∈ E(P )
and βG(P ) ≤ (n − 6)/3 + τGvu + τGue + τGev. !

By (2), let C ′ denote the outer cycle of H. Our strategy is to use induction hypothesis 
to find a path in H and extend it to the desired path in G along eCv. To do so, we need 
to avoid double counting too many vertices and, hence, we will need to contract some 
subgraphs of H. A 2-separation (H1, H2) in H with V (H1 ∩H2) ⊆ V (v′C ′u) is said to 
be maximal if there is no 2-separation (H ′

1, H
′
2) in H with V (H ′

1∩H ′
2) ⊆ V (v′C ′u), such 

that the subpath of v′C ′u between the two vertices in V (H ′
1 ∩H ′

2) properly contains the 
subpath of v′C ′u between the two vertices in V (H1 ∩H2).

Let K be obtained from H as follows: For every maximal 2-separation (H1, H2) in H
with H1 containing uCv′, contract H2 to a single vertex (i.e., replace H2 by a path of 
length 2 between the vertices of V (H1 ∩ H2)). See Fig. 4. Let T denote the set of the 
new vertices resulted from such contractions. Note that each vertex of T has degree 2 
in K. Let D be the outer cycle of K. Then uDv′ = uCv′. Let w ∈ V (vCu) such that 
wC ′v′ = wCv′ and, subject to this, wCv′ is maximal. Let w′ = w if w ∈ V (K); and 
otherwise let w′ ∈ T be the vertex resulted from the contraction of such an H2 containing 
w. We may assume that
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Fig. 4. The graph K.

(3) K contains a D-Tutte path PK between u and v′ such that w′ ∈ V (PK) and

βK(PK) =
{

(|K|− 6)/3 + τGue + 1, if |T | ≥ 2,
(|K|− 6)/3 + τGue + 2/3, if |T | ≤ 1.

First, suppose τKuv′ < τGue. Note that |v′Du| ≥ 3 by (1) and (2) and by planarity. So 
we may choose e′ ∈ E(v′Du) with the following property: |v′De′| ≥ 2; if |T | ≥ 2 then 
e′ is incident with w′; and if |T | = 1 then e′ is incident with the vertex in T and e′ is 
incident with w′ (if possible). Then τKv′e′ ≤ 1/3 when |T | ≤ 1. By induction hypothesis, 
K contains a D-Tutte path PK between u and v′ such that e′ ∈ E(PK) and

βK(PK) ≤ (|K|− 6)/3 + τKuv′ + τKv′e′ + τKe′u

≤
{

(|K|− 6)/3 + τGue + 1, if |T | ≥ 2,
(|K|− 6)/3 + τGue + 2/3, if |T | ≤ 1.

By the choice of e′, we see that w′ ∈ V (PK); so (3) holds.
Thus, we may assume that τKuv′ ≥ τGue. Then τKuv′ = 0 (so τGue = 0), or τKuv′ =

2/3 and uCv′ is not good (so τGue = 2/3). Hence, τKuv′ = τGue (= 1/3 and |uCe| ≥ 3.
Suppose T (= ∅ and let t ∈ T such that t ∈ NK(w′) ∪ {w′} whenever possible. Let 

NK(t) = {x, y} with v′, x, t, y, u occurring on D in clockwise order. Let K ′ := (K−t) +xy

and D′ := yDx + xy, such that K ′ is a plane graph and D′ is its outer cycle. Then 
(K ′, D′) is a circuit graph. Let e′ := xy. Note that τK′uv′ = τKuv′ = τGue. By induction 
hypothesis, K ′ contains a D′-Tutte path P ′ between u and v′ such that e′ ∈ E(P ′) and

βK′(P ′) ≤ (|K ′|− 6)/3 + τK′uv′ + τK′v′e′ + τK′e′u

= (|K|− 6)/3 − 1/3 + τGue + τK′v′e′ + τK′e′u.

In particular, βK′(P ′) ≤ (|K| − 6)/3 + τGue + 1. Note that w′ ∈ V (P ′) by the choice of 
t. Let PK := (P ′ − e′) ∪ xty. If |T | ≥ 2 then PK is the desired path for (3). Now assume 
|T | = 1. If u (= y then τK′e′u ≤ 1/3 (as |T | = 1); so βK′(P ′) ≤ (|K| − 6)/3 + τGue + 2/3
and PK is the desired path for (3). So assume u = y. Then by (1), x (= v′ and, hence, 
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τK′v′e′ ≤ 1/3 (as |T | = 1). So βK′(P ′) ≤ (|K| −6)/3 +τGue+2/3; again PK is the desired 
path for (3).

Hence, we may assume T = ∅. If |v′Du| ≥ 4 then we may choose e′ ∈ E(v′Du) such 
that τKv′e′ = 0 and τKe′u ≤ 2/3; so by induction hypothesis, K has a D-Tutte path PK

between u and v′ such that e′ ∈ E(PK) and βK(PK) ≤ (|K| − 6)/3 + τKuv′ + 2/3 =
(|K| − 6)/3 + τGue + 2/3, and (3) holds as w′ ∈ V (PK) (since T = ∅). Thus, we may 
assume |v′Du| = 3 and let x ∈ V (v′Du) \ {u, v′}. Then w′ ∈ {u, x}.

Since |uCv′| ≥ 3 (as τGue (= 1/3), we may choose f ∈ E(uCv′) such that τKfv′ = 1/3
and τKuf ≤ 2/3. Note that τKv′u = 0 (as T = ∅). So by induction hypothesis, K has a 
D-Tutte path PK between u and v′ such that f ∈ E(PK) and βK(PK) ≤ (|K| −6)/3 +1. 
Note w′ ∈ V (PK) as T = ∅. Thus, we may assume τGue = 0, for, otherwise, βK(PK) ≤
(|K| − 6)/3 + τGue + 2/3, and (3) holds. So uCe is good in G.

Since T = ∅, x has a neighbor in K − v′Du. Let K ′ := (K − v′x) + uv′ be the plane 
graph whose outer cycle D′ consists of uv′ and the path in the outer walk of K − v′x

from v′ to u and containing x. Then (K ′, D′) is a circuit graph, since uCe is good in G. 
Let e′ := xu. Then τK′uv′ = 0, τK′v′e′ = 0, and τK′e′u = 2/3. By induction hypothesis, 
K ′ has a D′-Tutte path PK between u and v′ such that e′ ∈ E(PK) and

βK′(PK) ≤ (|K ′|− 6)/3 + τK′uv′ + τK′v′e′ + τK′e′u = (|K|− 6)/3 + τGue + 2/3.

Clearly, PK is also a D-Tutte path in K and βK(PK) = βK′(PK). Since w′ ∈ {u, x}, 
w′ ∈ V (PK); so PK is the desired path for (3). !

We wish to extend PK along eCv to the desired path P in G. Thus we need a useful 
description of the structure of the part of G that lies between H and eCv. See Fig. 3 for 
an illustration.

Let B be the set of (H ∪ eCv)-bridges of G. Then G = H ∪ eCv ∪ (
⋃

B∈B B). Since H
is a block of G −eCv, |B∩H| ≤ 1 for all B ∈ B. Note that each vertex t ∈ T corresponds 
to a (PK − T )-bridge of H whose attachments on PK − T are the neighbors of t in PK , 
and that all other (PK − T )-bridges of H are also PK-bridges of K.

For B1, B2 ∈ B with |B1 ∩ H| = |B2 ∩ H| = 1, we write B1 ∼ B2 if V (B1 ∩ H) =
V (B2 ∩H) ⊆ V (PK − T ), or if there exists a (PK − T )-bridge B of H such that V (B1 ∩
H) ∪ V (B2 ∩ H) ⊆ V (B − PK). Clearly, ∼ is an equivalence relation on B. Let Bi, 
i = 1, . . . , m, be the equivalence classes of B with respect to ∼, such that the sets 
V (H) ∩

(⋃
B∈Bi

V (B)
)

occur on D from v′ to w in order i = 1, . . . , m, with v′ ∈ V (B)
for all B ∈ B1 and w ∈ V (B′) for some B′ ∈ Bm. Let ai, bi ∈ V (eCv) such that

(a) ai ∈ V (B) for some B ∈ Bi and bi ∈ V (B′) for some B′ ∈ Bi (possibly B = B′),
(b) v′′, ai, bi, v occur on eCv in order, and
(c) subject to (a) and (b), aiCbi is maximal.

Note that v′′ = a1 and v = bm. Let Ji denote the union of aiCbi, all members of Bi, 
those (H ∪ eCv)-bridges of G whose attachments are all contained in aiCbi, and, if 
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applicable, also the (PK − T )-bridge of H containing B ∩ H for all B ∈ Bi. Note that 
|Ji∩(PK−T )| ∈ {1, 2}, and if |Ji∩(PK−T )| = 2 we let ti ∈ T be the vertex corresponding 
to the (PK − T )-bridge of H contained in Ji. For 1 ≤ i < m, let Li denote the union 
of biCai+1 and those (H ∪ eCv)-bridges of G whose attachments are all contained in 
biCai+1. Let L = {Li : 1 ≤ i < m}.

By Lemma 2.2, we have |J1| = 2. Thus, letting P1 = J1, we have

(4) βJ1(P1) = 0 = (|J1| − 1)/3 − 1/3.

For 1 < i < m, let

• J1 = {Ji : |Ji ∩ (PK − T )| = 1 and ai (= bi},
• J2 = {Ji : |Ji ∩ (PK − T )| = 2 and ti /∈ V (PK)}, and
• J3 = {Ji : |Ji ∩ (PK − T )| = 2 and ti ∈ V (PK)}.

(5) For Ji ∈ J1, Ji has a path Pi between ai and bi such that Pi ∪ (Ji ∩ PK) is an 
aiCbi-Tutte subgraph of Ji and

βJi(Pi ∪ (Ji ∩ PK)) ≤
{

(|Ji|− 2)/3 − 1/3, if eCv is good,
(|Ji|− 2)/3, otherwise.

Let V (Ji ∩ PK) = {x}. Consider the plane graph J ′
i := Ji + aix whose outer cycle 

Ci consists of aiCbi, the edge ei := xai, and the path in the outer walk of Ji between 
bi and x not containing ai. Then (J ′

i , Ci) is a circuit graph. Note that τJ ′
ixei

= 2/3 and 
τJ ′

ibix
= 0 (as i < m).

Hence, by induction hypothesis, J ′
i has a Ci-Tutte path P ′

i between x and bi such that 
ei ∈ E(P ′

i ) and βJ ′
i
(P ′

i ) ≤ (|Ji| − 6)/3 + τJ ′
ieibi

+ 2/3. Note that τJ ′
ieibi

≤ 2/3 and if eCv

is good in G then τJ ′
ieibi

≤ 1/3 (as ai (= bi). So Pi := P ′
i − x gives the desired path for 

(5). !

(6) For Ji ∈ J2, Ji has a path Pi between ai and bi such that Pi ∪ (Ji ∩ (PK − T )) is an 
aiCbi-Tutte subgraph of J ′

i and

βJi(Pi ∪ (Ji ∩ (PK − T ))) ≤
{

(|Ji|− 4)/3 + 1/3, if eCv is good,
(|Ji|− 4)/3 + 1, otherwise.

Let V (Ji ∩ (PK − T )) = {x, y} such that v′, y, x, w occur on D in clockwise order. Let 
J ′
i be the block of Ji − {x, y} containing aiCbi, and let Ci be the outer cycle of J ′

i . Note 
that aiCibi = aiCbi.

By planarity there exists a vertex z ∈ V (biCiai) \{ai, bi} such that biCiz− z contains 
no neighbor of y and zCiai − z contains no neighbor of x.
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First, suppose biCiai is good in J ′
i . Let ei ∈ E(biCiai) be incident with z such that 

τJ ′
ieiai

≤ 1/3 or τJ ′
ibiei

≤ 1/3. Now by induction hypothesis, J ′
i has a Ci-Tutte path 

Pi between ai and bi such that ei ∈ E(Pi) and βJ ′
i
(Pi) ≤ (|J ′

i | − 6)/3 + τJ ′
iaibi + 1. If 

J ′
i (= Ji − {x, y} then |J ′

i | ≤ |Ji| − 3 and, since biCiai is good in J ′
i ,

βJi(Pi ∪ (Ji ∩ (PK − T ))) = βJ ′
i
(Pi) + 1

≤ (|Ji|− 3 − 6)/3 + τJ ′
iaibi + 1 + 1

= (|Ji|− 4)/3 + τJ ′
iaibi + 1/3.

If J ′
i = Ji − {x, y} then |J ′

i | = |Ji| − 2 and

βJi(Pi ∪ (Ji ∩ (PK − T ))) = βJ ′
i
(Pi)

≤ (|Ji|− 2 − 6)/3 + τJ ′
iaibi + 1

= (|Ji|− 4)/3 + τJ ′
iaibi − 1/3.

Since τJ ′
iaibi = 0 (if eCv is good) and τJ ′

iaibi ≤ 2/3 (if eCv is not good), we see that Pi

gives the desired path for (6).
Now assume that biCiai is not good in J ′

i . Then let (M1, M2) be a 2-separation in 
J ′
i such that aiCbi ⊆ M1, |M2| ≥ 3, z ∈ M2 (whenever possible), and, subject to these 

conditions, M2 is minimal. Let V (M1 ∩ M2) = {z1, z2} such that ai, bi, z1, z2 occur 
on Ci in clockwise order. Let M ′

1 := M1 + z1z2 be the plane graph with outer cycle 
D1 := z2Ciz1 + z1z2, and let M ′

2 := M2 + z2z1 be the plane graph with outer cycle 
D2 := z1Ciz2 + z2z1. Then (M ′

1, D1) and (M ′
2, D2) are circuit graphs. Let f := z1z2.

By induction hypothesis, M ′
1 has a D1-Tutte path R1 between ai and bi such that 

f ∈ E(R1) and

βM ′
1(R1) ≤ (|M ′

1|− 6)/3 + τM ′
1aibi + 4/3 = (|M ′

1|− 6)/3 + τJ ′
iaibi + 4/3.

Also by induction hypothesis and choosing an edge f ′ ∈ E(z1Ciz2) so that τM ′
2z1f

′ ≤ 1/3
or τM ′

2f
′z2 ≤ 1/3, we see that M ′

2 has a D2-Tutte path R2 between z1 and z2 such that 
f ′ ∈ E(R2) and

βM ′
2(R2) ≤ (|M ′

2|− 6)/3 + 1,

as τM ′
2z2z1 = 0 (since (G, C) is a circuit graph). Let Pi = (R1 − f) ∪R2, which is a path 

in J ′
i between ai and bi such that Pi ∪ (Ji ∩ (PK −T )) is an aiCbi-Tutte subgraph of J ′

i . 
Note that z ∈ V (Pi) by the choice of (M1, M2) (that z2 ∈ V (M2) whenever possible and 
M2 is minimal).

If J ′
i = Ji − {x, y} then |J ′

i | = |Ji| − 2 and

βJi(Pi ∪ (Ji ∩ (PK − T ))) = βM ′
1(R1) + βM ′

2(R2)
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≤ (|M ′
1|− 6)/3 + τJ ′

iaibi + 4/3 + (|M ′
2|− 6)/3 + 1

= (|J ′
i |− 6)/3 + τJ ′

iaibi + 1
= (|Ji|− 4)/3 + τJ ′

iaibi − 1/3.

If J ′
i (= Ji − {x, y} then |J ′

i | ≤ |Ji| − 3 and

βJi(Pi ∪ (Ji ∩ (PK − T ))) = βM ′
1(R1) + βM ′

2(R2) + 1
≤ (|M ′

1|− 6)/3 + τJ ′
iaibi + 4/3 + (|M ′

2|− 6)/3 + 2
= (|J ′

i |− 6)/3 + τJ ′
iaibi + 2

≤ (|Ji|− 4)/3 + τJ ′
iaibi + 1/3.

Therefore, since τJ ′
iaibi = 0 if eCv is good and τJ ′

iaibi ≤ 2/3 otherwise, we see that Pi

is the desired path for (6). !

(7) For Ji ∈ J3, Ji has disjoint paths Pi, P ′
i such that Pi is between ai and bi, P ′

i is 
between the two vertices in V (Ji ∩ (PK −T )), Pi ∪P ′

i is an aiCbi-Tutte subgraph of 
Ji, and

βJi(Pi ∪ P ′
i ) ≤

{
(|Ji|− 4)/3 − 1/3, if eCv is good,
(|Ji|− 4)/3, otherwise.

Let V (Ji∩ (PK −T )) = {x, y} and assume that v′, y, x, w occur on D in clockwise order. 
Consider the plane graph J ′

i := Ji + bix with aiCbi, ei := bix, y occur on its outer cycle 
Ci in clockwise order. (Note that xy /∈ E(Ji) by the definition of Ji.) Then, since (G, C)
is a circuit graph, (J ′

i , Ci) is a circuit graph and τJ ′
ieiy

= τJ ′
iyai

= 0.
Thus, by induction hypothesis, J ′

i contains a Ci-Tutte path Ri between ai and y such 
that ei ∈ E(Ri) and

βJ ′
i
(Ri) ≤ (|J ′

i |− 6)/3 + τJ ′
iaiei = (|Ji|− 4)/3 + τJ ′

iaiei − 2/3.

So Ri − ei is an aiCbi-Tutte subgraph of Ji such that

βJi(Ri − ei) = βJ ′
i
(Ri) ≤ (|Ji|− 4)/3 + τJ ′

iaiei − 2/3.

Note that τJ ′
iaiei ≤ 1/3 (if eCv is good) and τJ ′

iaiei ≤ 2/3 (if eCv is not good). So Ri−ei
gives the desired paths for (7). !

Next, we consider Jm. Note that if |Jm ∩ (PK − T )| = 2 then tm = w′ ∈ V (PK) ∩ T , 
and if |Jm ∩ (PK − T )| = 1 then w′ ∈ V (Jm ∩ (PK − T )). (Recall the definition of 
w′ in the paragraph preceding (3).) Let c = 2 if |Jm ∩ (PK − T )| = 1, and c = 4 if 
|Jm ∩ (PK − T )| = 2. Note that when c = 2, c is the number of vertices double counted 
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by |Jm| and |K ∪ (J1 ∪L1) ∪ . . .∪ (Jm−1 ∪Lm−1)|. In the case c = 4, c counts the vertex
tm and the vertices double counted by |Jm| and |K ∪ (J1 ∪ L1) ∪ . . . ∪ (Jm−1 ∪ Lm−1)|.

(8) Jm has disjoint paths Pm, P ′
m with Pm between am and bm = v and P ′

m between the 
vertices in V (Jm∩ (PK −T )), such that Pm∪P ′

m is an (amCu ∩Jm)-Tutte subgraph 
of Jm and

βJm(Pm ∪ P ′
m) ≤

{
(|Jm|− c)/3 + τGvu − 1/3, if am (= bm and eCv is good,
(|Jm|− c)/3 + τGvu, otherwise.

First, suppose am = bm and |Jm ∩ (PK − T )| = 1. Then c = 2, and let Pm = am and 
P ′
m = w. Now βJm(Pm ∪P ′

m) ≤ 1, with equality only when |Jm| ≥ 3, in which case, vCu

is not good in G and τGvu = 2/3. So βJm(Pm ∪ P ′
m) ≤ (|Jm| − c)/3 + τGvu as c = 2.

Now assume am (= bm or |Jm ∩ (PK − T )| = 2. If |Jm ∩ (PK − T )| = 2 then let 
V (Jm ∩ (PK − T )) = {x, y} such that v′, y, w′, x occur on D (the outer cycle of K) 
in clockwise order, and if |Jm ∩ (PK − T )| = 1 then let y = x = w′. Consider the 
plane graph J∗

m := Jm + yam with outer cycle Cm containing amCx and yam. Then 
(J∗

m, Cm) is a circuit graph. Let em := yam. Note that τJ∗
mbmx ≤ τGvu, if x = y then 

τJ∗
mxem = 2/3 = (4 − c)/3, and if x (= y then τJ∗

mxem = 0 = (4 − c)/3.
By induction hypothesis, J∗

m has a Cm-Tutte path P ∗
m between bm = v and x such 

that em ∈ E(P ∗
m) and

βJ∗
m

(P ∗
m) ≤ (|J∗

m|− 6)/3 + τGvu + (4 − c)/3 + τJ∗
membm

= (|Jm|− c)/3 − 2/3 + τGvu + τJ∗
membm .

Note that τJ∗
membm ≤ 1/3 (when eCv is good in G) and τJ∗

membm ≤ 2/3 (when eCv is 
not good in G). Hence, P ∗

m − yam gives the desired paths for (8). !
Next, we consider the family L := {Li : 1 ≤ i < m}, see its definition preceding (4).

(9) For each Li ∈ L, Li contains a biCai+1-Tutte path Qi from bi to ai+1 such that 
βLi(Qi) ≤ max{0, (|Li| − 2)/3 − 1/3}.

If |biCai+1| ≤ 2 then let Qi := biCai+1; we see that βLi(Qi) = 0 as (G, C) is a circuit 
graph. So assume |biCai+1| ≥ 3. Then consider the plane graph L′

i := Li + ai+1bi with 
outer cycle Di := biCai+1 +ai+1bi. Note that (L′

i, Di) is a circuit graph. Choose an edge 
ei ∈ E(biCai+1) so that τL′

ibiei
= 1/3. Note that τL′

iai+1bi = 0 and τL′
ieiai+1 ≤ 2/3. So 

by induction hypothesis, L′
i contains a Di-Tutte path Qi between bi and ai+1 such that 

ei ∈ E(Qi) and βL′
i
(Qi) ≤ (|L′

i| − 6)/3 + 1 = (|Li| − 2)/3 − 1/3. !
Let P be the union of PK−T , Pi∪P ′

i for i = 1, . . . , m (where we let P ′
i = Ji∩(PK−T )

when Ji ∈ J1 ∪ J2), and Qi for i = 1, . . . , m − 1. Clearly, P is a path between u and v
and e ∈ E(P ).
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It is easy to see that if B is a P -bridge of G then B is a PK-bridge of K, or a (Pi∪P ′
i )-

bridge of Ji for some i with 1 ≤ i ≤ m, or a Qi-bridge of Li for some i with 1 ≤ i < m, 
or |B| = 2 and |B∩ eCv| = |B ∩ (PK −T )| = 1. Thus, P is a C-Tutte path in G between 
u and v and containing e. Note that

J2 = {Ji : 1 < i < m, |Ji ∩ (PK − T )| = 2 and P ′
i = Ji ∩ (PK − T )} and

J3 = {Ji : 1 < i < m, |Ji ∩ (PK − T )| = 2 and P ′
i (= Ji ∩ (PK − T )}.

If we extend PK − T from v′ to v through J1, L1, J2, L2, . . . , Jm−1, Lm−1, Jm in order, 
we see that

• J1 and K double count 1 vertex (namely, v′);
• when |Jm ∩ (PK − T )| = 1, Jm and K ∪ (J1 ∪ L1) ∪ . . . ∪ (Jm−1 ∪ Lm−1) double 

count c = 2 vertices (namely, am and w′); when |Jm ∩ (PK − T )| = 2, Jm and 
K ∪ (J1 ∪L1) ∪ . . .∪ (Jm−1 ∪Lm−1) count c = 4 additional vertices (double counting 
am and the vertices in V (Jm ∩ PK) and counting the additional vertex tm);

• Li and K ∪ (J1 ∪ L1) ∪ . . . ∪ (Ji−1 ∪ Li−1) ∪ Ji double count 1 vertex, namely bi;
• for 1 < i < m, if Ji ∈ J1 then Ji and K ∪ (J1 ∪L1) ∪ . . .∪ (Ji−1 ∪Li−1) double count 

2 vertices: ai and the vertex in V (Ji ∩ PK);
• for 1 < i < m, if Ji ∈ J2 ∪J3 then Ji and K ∪ (J1 ∪L1) ∪ . . .∪ (Ji−1 ∪Li−1) double 

count ai and the vertices in V (Ji ∩ PK) and count the additional vertex ti.

Note that for each Ji ∈ J2, the PK-bridge of K corresponding to the vertex ti ∈ T does 
not contribute to βG(P ). Thus,

βG(P ) = βK(PK) + βJ1(P1) +
∑

Ji∈J1

βJi(Pi ∪ P ′
i ) +

∑

Ji∈J2

(βJi(Pi ∪ P ′
i ) − 1)+

∑

Ji∈J3

βJi(Pi ∪ P ′
i ) + βJm(Pm ∪ P ′

m) +
m−1∑

i=1
βLi(Qi).

We may assume

(10) eCv is good in G.

For, suppose eCv is not good in G. Then τGev = 2/3. Hence, by (4)–(9) and the above 
observation on double counting vertices, we have

βG(P ) ≤ βK(PK) + ((|J1|− 1)/3 − 1/3) +
∑

Ji∈J1

(|Ji|− 2)/3 +
∑

Ji∈J2∪J3

(|Ji|− 4)/3

+ (|Jm|− c)/3 + τGvu +
∑

Li∈L
max{0, (|Li|− 2)/3 − 1/3}
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≤ (n− 6)/3 − 1/3 + τGvu + (βK(PK) − (|K|− 6)/3)
≤ (n− 6)/3 − 1/3 + τGvu + τGue + 1 (by (3))
= (n− 6)/3 + τGvu + τGue + τGev.

So P is the desired path. !

By (10), |Li| ≤ 2 for all Li ∈ L. By (4)–(10) and the above observation on double 
counting vertices, we have

βG(P ) ≤ βK(PK) + ((|J1|− 1)/3 − 1/3) +
∑

Ji∈J1

((|Ji|− 2)/3 − 1/3)+

∑

Ji∈J2

((|Ji|− 4)/3 + 1/3 − 1)+

∑

Ji∈J3

((|Ji|− 4)/3 − 1/3) + (|Jm|− c)/3 + τGvu

≤ (n− 6)/3 + τGvu − |J1|/3 − (|T | + 1)/3 + (βK(PK) − (|K|− 6)/3) ,

since |T | = |J2 ∪ J3|. We may assume that

(11) Ji = ∅ for i = 1, 2, 3, and |eCv| ≥ 3.

First, we may assume |T | ≤ 1. For, suppose |T | ≥ 2. Then, since βK(PK) ≤ (|K| −6)/3 +
τGue + 1 (by (3)),

βG(P ) ≤ (n− 6)/3 + τGvu + τGue ≤ (n− 6)/3 + τGvu + τGue + τGev,

and P gives the desired path.
Therefore, βK(PK) ≤ (|K| − 6)/3 + τGue + 2/3 by (3). We may also assume Ji = ∅

for i = 1, 2, 3. For, otherwise, |J1| ≥ 1 or |T | ≥ 1; so

βG(P ) ≤ (n− 6)/3 + τGvu − 2/3 + τGue + 2/3 ≤ (n− 6)/3 + τGvu + τGue + τGev,

and P is the desired path.
If |eCv| = 1 then τGev = 2/3 and

βG(P ) ≤ (n− 6)/3 + τGvu + τGue + 2/3 = (n− 6)/3 + τGvu + τGue + τGev;

P gives the desired path. If |eCv| = 2 then τGev = 1/3 and

βG(P ) ≤ (n− 6)/3 + τGvu − 1/3 + τGue + 2/3 = (n− 6)/3 + τGvu + τGue + τGev;

so P is the desired path. Therefore, we may assume |eCv| ≥ 3. !
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Suppose am (= bm. Then by (3), (4), (8), (10), and (11), we have

βG(P ) ≤ βK(PK) + ((|J1|− 1)/3 − 1/3) + ((|Jm|− c)/3 + τGvu − 1/3)
≤ ((|K|− 6)/3 + τGue + 2/3) + ((|J1|− 1)/3 − 1/3)

+ ((|Jm|− c)/3 + τGvu − 1/3)
≤ (n− 6)/3 + τGvu + τGue

= (n− 6)/3 + τGvu + τGue + τGev.

So P is the desired path.
Thus, we may assume am = bm. If |Jm| = 2 then

βG(P ) = βK(PK)
≤ (|K|− 6)/3 + τGue + 2/3 (by (3) and (11))
≤ (n− 6)/3 + τGue − 1/3 (since |eCv| ≥ 3)
≤ (n− 6)/3 + τGvu + τGue + τGev,

and P is the desired path. So assume |Jm| ≥ 3. Then τGvu = 2/3. Since |eCv| ≥ 3,

βG(P ) = βK(PK) + 1
≤ (|K|− 6)/3 + τGue + 2/3 + 1 (by (3) and (11))
≤ (n− 6)/3 + τGue + 2/3 (since |eCv| ≥ 3)
≤ (n− 6)/3 + τGvu + τGue + τGev.

Again, P gives the desired path. !

4. Essentially 4-connected planar graphs

There has been interest in finding good lower bounds on the circumference of 3-
connected planar graphs. (The circumference of a graph is the length of a longest cycle in 
that graph.) For instance, Chen and the second author [5] showed that the circumference 
of a 3-connected planar n-vertex graph is at least nlog3 2, which is best possible because 
of iterated planar triangulations Tr(k): starting with Tr(0) = K3, for each k ≥ 1, add 
a vertex in each face of Tr(k − 1) and connect it with an edge to each vertex on the 
boundary of that face.

A graph is essentially 4-connected if it is connected and, for any S ⊆ V (G) with 
|S| < 4, G − S is connected or has exactly two components one of which has exactly 
one vertex. Jackson and Wormald [7] proved that the circumference of any essentially 4-
connected n-vertex planar graph is at least (2n +4)/5. Very recently, this bound has been 
improved to 5(n + 2)/8 by Fabrici, Harant, Mohr, and Schmidt [6]. Using Theorem 1.1, 
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we give a short proof of the following result. We mention that Kessler and Schmidt [8]
announced an independent proof using a different technique.

Theorem 4.1. Let n ≥ 6 be an integer and let G be any essentially 4-connected n-vertex 
planar graph. Then the circumference of G is at least +(2n + 6)/3,.

Proof. First, suppose G is 4-connected. Fix a planar drawing of G and let T be the outer 
cycle of G. Let uv, e ∈ E(T ) be distinct. By applying Theorem 1.1, G has a T -Tutte 
path P between u and v such that e ∈ E(P ). Since G is 4-connected, βG(P ) = 0; so P
is in fact a Hamilton path. Hence, P +uv is a Hamilton cycle in G and, thus, has length 
n, which is at least (2n + 6)/3 (as n ≥ 6).

Hence, we may assume that G is not 4-connected. Then, since G is essentially 4-
connected, there exists x ∈ V (G) such that x has degree 3 in G. So let NG(x) = {u, v, w}
and let H := G − x and assume that H is a plane graph with u, v, w on the outer cycle 
C of H in counter clockwise order. Note that (H, C) is a circuit graph.

Suppose two of |uCw|, |wCv|, |vCu| is at least 3. Without loss of generality, we may 
assume that |uCw| ≥ 3 and |wCv| ≥ 3. Let e ∈ E(uCw) be incident with w. Then 
τHvu = 0, τHue ≤ 1/3, and τHev = 0. Hence, by Theorem 1.1, H has a C-Tutte path 
between u and v such that e ∈ E(P ) and βH(P ) ≤ (n − 7)/3 + 1/3 = (n − 6)/3. Thus, 
Q := P ∪ uxv is a Tutte cycle in G such that βG(Q) ≤ (n − 6)/3. Since G is essentially 
4-connected, every Q-bridge is a K1,3. Hence, |Q| ≥ n − (n − 6)/3 = (2n + 6)/3.

So we may assume that |wCv| = |vCu| = 2. Consider the plane graph K := H − wv

whose outer cycle D contains vCw. Since G is essentially 4-connected, K is 2-connected; 
so (K, D) is a circuit graph. We can choose e ∈ E(wDv) incident with w. Now τKvu = 0, 
τKue ≤ 1/3, and τKev ≤ 1/3.

If τKue = 0 or τKev = 0, then by Theorem 1.1, K has a D-Tutte path P between u
and v such that e ∈ E(P ) and βK(P ) ≤ (n −7)/3 +1/3 = (n −6)/3. Thus, Q := P ∪uxv

is a cycle in G with |Q| ≥ n − (n − 6)/3 = (2n + 6)/3.
So assume τKue = τKev = 1/3 and, hence, |wDv| = 3 and |uDw| = 2. Since n ≥ 6 and 

G is essentially 4-connected, one of {v, w} has a neighbor inside D, say w by symmetry. 
Now consider the plane graph J := H − uw, which is 2-connected as G is essentially 
4-connected. Let F denote the outer cycle of J , which contains {u, v, w}. Clearly, (J, F )
is a circuit graph. Choose f ∈ E(uFw) incident with w. Then τJuf ≤ 1/3, τJfv = 0, and 
τJvu = 0. Hence, by Theorem 1.1, J has an F -Tutte path between u and v such that 
f ∈ E(P ) and βJ(P ) ≤ (n − 7)/3 + 1/3 = (n − 6)/3. Thus, Q := P ∪ uxv is a cycle in G
with |Q| ≥ n − (n − 6)/3 = (2n + 6)/3. !

Note that we need n ≥ 6 in Theorem 4.1; however, when n ≤ 5 the graph G is 
Hamiltonian. The bound in Theorem 4.1 is best possible in the following sense. Take a 
4-connected triangulation T on k vertices, and inside each face of T add a new vertex 
and three edges from that new vertex to the three vertices in the boundary of that face. 
The resulting graph, say G, has n := 3k − 4 vertices. Now take an arbitrary cycle C
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in G. For each x ∈ V (C) with degree three in G, we delete x from C and add the 
edge of G between the two neighbors of x in C. This results in a cycle in T , say D. 
Clearly, |D| ≤ k; which implies |C| ≤ 2k. Hence, the circumference of G is at most 
2k = 2(n + 4)/3 = +(2n + 6)/3,.
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