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1. Introduction

The Four Color Theorem [1,2] (also see [9]) states that every plane graph is 4-face-
colorable. All known proofs of the Four Color Theorem require the use of a computer.
However, if a plane graph has a Hamilton cycle then one can properly four color all its
faces easily.
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Tait [10] conjectured that every 3-connected cubic planar graph contains a Hamil-
ton cycle, which, if true, would imply the Four Color Theorem. However, Tutte [13]
discovered a counterexample in 1946 and, since then, families of counterexamples have
been constructed, see for instance [4]. On the other hand, Whitney [15] proved that
every planar triangulation without separating triangles is Hamiltonian, which was ex-
tended by Tutte [14] to all 4-connected planar graphs. Later, Thomassen [11] showed
that 4-connected planar graphs are in fact Hamilton-connected, i.e., there is a Hamilton
path between any two vertices in the graph. Thomas and the second author [12] further
extended Thomassen’s technique to show that all 4-connected projective-planar graphs
contain Hamilton cycles. There has also been work on long cycles in graphs on other
surfaces, see, for instance, [3] and [16].

In [11], Thomassen prove a more general result for 2-connected planar graphs. To
state that result, we need the following concepts and notation. Let G be a graph and
H C G (i.e., H a subgraph of G). An H-bridge of G is a subgraph of G which is either
induced by an edge in E(G)\ E(H) with both incident vertices on H, or induced by the
edges of G that are incident with one or two vertices in a single component of G — H
(the graph obtained from G by deleting all vertices in V(H) and all incident edges). For
any H-bridge B of G, a vertex in V(BN H) is called an attachment of B on H. We say
that H is a Tutte subgraph of G if every H-bridge of G has at most three attachments on
H. Moreover, for any subgraph F' C G, H is said to be an F'-Tutte subgraph of G if H
is a Tutte subgraph of G and every H-bridge of G containing an edge of F' has at most
two attachments on H. A Tutte cycle (respectively, Tutte path) is a Tutte subgraph that
is a cycle (respectively, path).

Thomassen [11] showed that if G is a 2-connected plane graph and C' is a facial cycle
of G, then for any e € E(C), u € V(C), and v € V(G) \ {u}, G has a C-Tutte path P
between u and v and through e. We prove a similar result in which we also control the
number of P-bridges. For a graph G and a subgraph P of G, let

Bc(P) = |{B: B is a P-bridge of G and |V(B)| > 3}|.

To state our result, we need additional notation. For two graphs G and H, we use
GUH and GNH to denote the union and intersection of G and H, respectively. For any
positive integer k and any graph G, a k-separation in G is a pair (G, G3) of subgraphs
of G such that |[V(G1NG2)| =k, G =G1 UG, E(G1)NE(G2) =0, and G; € Gs_; for
i=1,2. A k-cut in G is a set S C V(@) with |S| = k such that there exists a separation
(G1,Gs) in G with V(G1 N Gy) = S and V(G;) \ V(G3—;) # 0 for i =1, 2.

Given a plane graph G and a cycle C in G, we say that (G, C) is a circuit graph if G is
2-connected, C' is the outer cycle of G (i.e., C bounds the infinite face of G), and, for any
2-cut T in G, each component of G — T' must contain a vertex of C. Note that C has a
clockwise orientation and a counterclockwise orientation, and we may use the symmetry
between these two orientations. For any distinct elements z,y € V(C) U E(C), we use
xC'y to denote the subpath of C in clockwise order from z to y such that z,y ¢ E(xCy).
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We say that xCy is good if G has no 2-separation (G1,Gs) with V(G1 N Ga) = {s,t}
such that x, s, t,y occur on zCy in order, sCt C Ga, and |G2| > 3. Moreover, let

2/3, xCly is not good;
2/3, {z,y} N E(C)| =1 and z and y are incident;
173, Hz,y} N E(C)| =1 and [V (zCy)| = 2;

0, otherwise.

TGxy =

If there is no danger of confusion, we may drop the reference to G in the subscripts. Our
main result can be stated as follows.

Theorem 1.1. Let n > 3 be an integer, let (G,C) be a circuit graph on n vertices, let
u,v € V(C) be distinct, and let e € E(C), such that u,e,v occur on C in clockwise order.
Then G has a C-Tutte path P between u and v such that e € E(P) and

ﬂ(P) < (n_ 6)/3+TGvu + TGue + TGev-

The proof of Theorem 1.1 follows the ideas in [11], but many adjustments are needed
to complete the work. In Section 2, we deal with some special cases of Theorem 1.1
when there exist certain 2-cuts in the graph. In Section 3, we complete the proof of
Theorem 1.1. In Section 4, we use Theorem 1.1 to derive a bound on the circumference
of essentially 4-connected planar graphs.

We conclude this section with useful notation. We often use |G| to denote the number
of vertices in G, and represent a path by a sequence of vertices (with consecutive vertices
being adjacent). Let G be a graph. For any S C V(G), G — S denotes the subgraph of
G obtained from G by deleting all vertices in S and all edges of G incident with S. We
often write G — H for G — V(G N H). Moreover, for any family T of 2-clement subsets of
V(G) we use G + T to denote the graph with vertex set V(G) and edge set E(G)UT.
When T = {{u, v}}, we write G + uv instead of G + {{u,v}}.

2. Special cases

To help the reader get familiar with the notation involved in the statement of Theo-
rem 1.1, we illustrate them by considering two simple cases: e = uv, and |G| = 3.

Lemma 2.1. Theorem 1.1 holds when e = uv or |G| = 3.

Proof. As G is 2-connected, we have |G| > 3. First, suppose e = uv. Then vCu is not
good because of the 2-separation (uCv, G — uv); s0 Ty, = 2/3. Moreover, since u,v are
both incident with e, T,e = Tep = 2/3. Hence, P := vu gives the desired C-Tutte path
as B(P) =1 < (|G| = 6)/3 4 Tou + Tev + Tue-
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Fig. 1. The separation (G1,G2) in G.

Now assume e # uv and |G| = 3. Further assume by symmetry that u is not incident
with e. Then 7, = 0, T4e = 1/3, and 7, = 2/3. Hence, P := C — uv gives the desired
C-Tutte path as B(P) =0 = (|G| — 6)/3 4+ Tou + Tue + Tew- O

We now deal with two special cases when the plane graph G in Theorem 1.1 has
certain 2-cuts. In the first case, G has a 2-cut separating {u, v} from e. We formulate it
as a lemma.

Lemma 2.2. Suppose n > 4 is an integer and Theorem 1.1 holds for graphs on at most
n — 1 vertices. Let (G,C) be a circuit graph on n vertices, u,v € V(C) be distinct, and
e € E(C), such that u,e,v occur on C in clockwise order.

If G has a 2-separation (G1,G2) such that {u,v} C V(G1), {u,v} € V(Ga), e €
E(Gs), and |Ga| > 3, then G has a C-Tutte path P between u and v such that e € E(P)
and B(P) < (n—6)/3 4 Tyu + Tue + Tev-

Proof. Let V(G N G2) = {z,y} with x € V(eCv) and y € V(uCe). See Fig. 1. Let
G} = G;+xy for i € {1, 2} such that G} is a plane graph with outer cycle C; := zCy+yzx
and G is a plane graph with outer cycle Cy := yCz + zy. Note that both (G}, C;) and
(G4, C9) are circuit graphs. Let e := zy, ny := |G}|, and ng := |G4|. Then ny+ns = n+2.
Since {u,v} € V(G2), we may assume by symmetry that u # y.

By assumption, G} has a C-Tutte path between u and v such that e; € E(P;) and

By (P1) < (n1 —6)/3 + Tarvu + Tahue, + Tahervs
and G4 has a Cy-Tutte path P, between z and y such that e € E(P») and
By (P2) < (n2 —6)/3 + Tayay + Tapye + Tapen-

Note that P := (P; U P;) — e1 is a C-Tutte path in G between v and v such that
e € E(P). Moreover, 71 vy = TGvu and Tgygy = 0. Thus,

Ba(P) = Bay (P1) + Bay, (P2)



M.C. Wigal, X. Yu / Journal of Combinatorial Theory, Series B 158 (2023) 813-330 317

Fig. 2. The separation (G1,G2) in G.

< (n—06)/3—4/3 4 Tawu + Taque, + T erv + Tayye + Tahen

We claim that 7¢re,0 + Tapear < Taew +2/3. This is clear if 7o, = 2/3. If Tge, = 1/3
then [eCv| = 2 and, hence, |e;C1v| = |[¢Cv| = 2 or |eCox| = |[eCx| = 2; 50 Tgye,0 = 1/3
OT Tgyer = 1/3, and the inequality holds as well. Now assume 7ge, = 0. Then |[eCv| > 3
and eCwv is good in G. So |e;Cyv| > 3 and e;Civ is good in GY, or |eCox| > 3 and
eCox is good in GY, or |ejCrv| = |eCox| = 2. Hence, Tgie,o = 0, OF Tgper = 0, or
TGlerw = Tahea = 1/3. Again we see that the inequality holds.

Similarly, Tarue, +Tayye < Taue +2/3. S0 Ba(P) < (n—6)/3+Tcou + TGue + TGev- O

The next lemma deals with a different type of 2-cuts in the graph G in Theorem 1.1.

Lemma 2.3. Suppose n > 4 is an integer and Theorem 1.1 holds for graphs on at most
n — 1 vertices. Let (G,C') be a circuit graph on n vertices, u,v € V(C) be distinct, and
e =uxy € E(C), such that u,x,y,v occur on C in clockwise order.

If {u, 2z} or {v,y} is a 2-cut in G then G has a C-Tutte path P between uw and v such
that e € E(P) and Ba(P) < (n—6)/3 4+ TGou + TGue + TGev-

Proof. Suppose {u,z} or {v,y} is a 2-cut in G, say {u, z} by symmetry. See Fig. 2. Then
G has a 2-separation (G1, G2) such that xCu C G, uCz C G, and |G| > 3. We choose
(G1,G2) so that G9 is maximal. Then uxz ¢ E(G1). Note that 7gu. = 2/3.

Case 1. (G; is 2-connected.

Then let C denote the outer cycle of G1. Since (G, C) is a circuit graph, (Gy,Ch) is
a circuit graph. By assumption, G; has a C;-Tutte path P between v and v such that
e € E(P) and

6G1 (P) < (|G1| - 6)/3 + TGiou + TGrue T TGrev-
Note that 7¢,vu = Tavus Ta1ue = 0 (as uz ¢ E(G1)), and 7¢,ev = TGev- SO
BG(P) = 5G1(P) +1< (|G| - 6)/3 + TGou + TGue + TGevs

and P is the desired path.

Case 2. (G1 is not 2-connected.
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Let G} := G; + uzx be the plane graph with outer cycle C; := xCu + uz, and let

% := G2 + zu be the plane graph with outer cycle Cy := uCx + zu. Since (G,C) is a
circuit graph, we see that both (G}, C1) and (G5, C2) are circuit graphs.

Note that 7grvu = TGvu, Taque = 1/3, and Tgieo = Tgeo- By assumption, G’ has a
C4-Tutte path P; between u and v such that e € E(P;) and

ﬂG'l (Pl) < (|G,1|_6)/3+TG’1vu+TG'1ue+TG'lev = (|G1|_6)/3+TGvu+(TGue_1/3)+TGev~

Since (1 is not 2-connected, ux € E(Py).
Choose ¢’ € E(uCyr) such that 7g;., = 1/3 and 7gyuer < 2/3. Note that 7gy 4., = 0.
By assumption, G, has a Ce-Tutte path P, between x and u such that ¢/ € E(P,) and

Bey, (P2) < (|G| — 6)/3 4 Tarou + Tapuer + Tayera < (|G2| —6)/3 + 1.

Now P := (P; — ux) U P, is a C-Tutte path in G between u and v such that e € E(P).
Moreover,

Ba(P) = Bay (Pr) + By (Pe)
S (|Gl| - 6)/3 + TGou + (TGue - 1/3) + TGev + (‘GQ‘ - 6)/3 +1

< (’I’L - 6)/3 + TGou + TGue + TGev-
So P is the desired path. O
3. Proof of Theorem 1.1

We apply induction on n. By Lemma 2.1 and by symmetry, we may assume that
u is not incident with e, |G| = n > 4, and the assertion holds for graphs on at most
n — 1 vertices. Let e = v’v” such that u,v’,v"”,v occur on C in clockwise order. Then by
Lemma 2.3,

(1) neither {u,v'} nor {v,v"} is a 2-cut in G.

Moreover, by Lemma 2.2, we may assume that G has no 2-cut T' such that T # {u, v}
and T separates e from {u, v}. Thus, by planarity, uCe is contained in a block of G—eC,
which is denoted by H. See Fig. 3. Note that H = Ky or H is 2-connected. We may
assume that

(2) H is 2-connected.
For, suppose that H = K5. Then v’ must have degree 2 in G and G — v’ is 2-connected;

for otherwise, by planarity, there would exist a vertex z € V(v”Cwv) such that {v’, z}
is a 2-cut in G separating e from {u,v}. Let C’ := v""Cu + uwv” be the outer cycle of
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Fig. 3. The subgraph H of G and the bridges between eCv and H.

the plane graph G’ := (G — v') + wv”, and let €’ := wv”. Note that (G',C") is a circuit
graph, Taruer = 2/3 = Tue + 1/3, Trerv = TGew, a0d TGroy = TGou- Hence, by induction
hypothesis, G’ has a C’-Tutte path P’ between v and v such that ¢’ € E(P’) and

/BG’(P/) < (|G/| - 6)/3 + TGrvu + TGruer + TGrerv = (TZ - 6)/3 + TGvu + TGue T TGev-

Now P := (P’ —¢') Uuv'v” is a C-Tutte path in G between v and v such that e € E(P)
and Bg(P) < (n—6)/3 + Tguu + TGue + Tgev- O

By (2), let C’ denote the outer cycle of H. Our strategy is to use induction hypothesis
to find a path in H and extend it to the desired path in G along eCv. To do so, we need
to avoid double counting too many vertices and, hence, we will need to contract some
subgraphs of H. A 2-separation (Hi, Hs) in H with V(H; N Hy) C V(v'C'u) is said to
be mazimal if there is no 2-separation (H}, H}) in H with V(H; N H}) C V(v'C'u), such
that the subpath of v/C’u between the two vertices in V(Hj N Hj) properly contains the
subpath of v'C’u between the two vertices in V(Hy N Ha).

Let K be obtained from H as follows: For every maximal 2-separation (Hy, Hs) in H
with Hj containing uCv’, contract Hy to a single vertex (i.e., replace Hs by a path of
length 2 between the vertices of V(H; N Hz)). See Fig. 4. Let T denote the set of the
new vertices resulted from such contractions. Note that each vertex of T has degree 2
in K. Let D be the outer cycle of K. Then uDv’ = uCv'. Let w € V(vCu) such that
wC’v' = wCv' and, subject to this, wCv’ is maximal. Let w' = w if w € V(K); and
otherwise let w’ € T be the vertex resulted from the contraction of such an Hs containing
w. We may assume that
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Fig. 4. The graph K.
(3) K contains a D-Tutte path Px between u and v' such that w’ € V(Pg) and

(IK1=6)/3 4 Tque + 1, if |T| > 2,
Bk (Pr) = '
(K[ —=6)/3+ Tue +2/3,  if |[T| <1.

First, suppose Tiuy < TGue- Note that [v'Du| > 3 by (1) and (2) and by planarity. So
we may choose ¢/ € E(v'Du) with the following property: |v'De’| > 2; if |T| > 2 then
e’ is incident with w’; and if |T| = 1 then €’ is incident with the vertex in 7" and €’ is
incident with w’ (if possible). Then Tg,er < 1/3 when |T'| < 1. By induction hypothesis,
K contains a D-Tutte path Px between u and v’ such that ¢’ € E(Pk) and

5K(PK) < (|K| - 6)/3+7Kuv’ + TKve + TKe'u

< JUK[=6)/3+ TGue +1, if |T| > 2,
K| = 6)/3+ Tque +2/3, i [T| < 1.

By the choice of ¢, we see that w’ € V(Pg); so (3) holds.

Thus, we may assume that Tkuy > Tgue. Then Ty = 0 (80 Tgue = 0), OF Tiyy =
2/3 and uCv’ is not good (80 TGue = 2/3). Hence, Tiuw = Taue 7 1/3 and |uCe| > 3.

Suppose T # () and let ¢ € T such that ¢ € Ng(w') U {w'} whenever possible. Let
Nk (t) = {z,y} with v', z, ¢, y, w occurring on D in clockwise order. Let K’ := (K —t)+zy
and D’ := yDx + xy, such that K’ is a plane graph and D’ is its outer cycle. Then
(K',D') is a circuit graph. Let e’ := xy. Note that Tk yy = Tkuy' = TGue- By induction
hypothesis, K’ contains a D’-Tutte path P’ between u and v’ such that ¢’ € E(P’) and

B (P') < (IK'| = 6)/3 4 Trtunr + TErvrer + TR eru
(|K| - 6)/3 - 1/3 + TGue + TK'v'er + TR/ e/ u-

In particular, Sg/(P") < (JK| —6)/3 + Tgue + 1. Note that w’ € V(P’) by the choice of
t. Let Px := (P’ —¢')Uxty. If |T| > 2 then Pk is the desired path for (3). Now assume
T/ = 1.1 u # y then i < 1/3 (as [T] = 1); 50 B (P') < (IK| = 6)/3 + 7ue +2/3
and P is the desired path for (3). So assume u = y. Then by (1), z # v’ and, hence,
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Tie < 1/3 (as |T| =1). So Bk (P') < (|JK|—6)/34+7Tque +2/3; again Py is the desired
path for (3).

Hence, we may assume T' = (. If [v'Du| > 4 then we may choose ¢/ € E(v'Du) such
that Tk er = 0 and Trer < 2/3; so by induction hypothesis, K has a D-Tutte path Pg
between u and v’ such that ¢’ € F(Pk) and i (Pr) < (|[K| —6)/3 + Tkuw +2/3 =
(IK| — 6)/3 + Tgue + 2/3, and (3) holds as w’ € V(Pk) (since T = (}). Thus, we may
assume |v'Du| = 3 and let x € V(v Du) \ {u,v'}. Then v’ € {u,z}.

Since |[uCv'| > 3 (as Tgue # 1/3), we may choose f € E(uCv') such that g f,r = 1/3
and Ty 5 < 2/3. Note that 7., = 0 (as T = 0). So by induction hypothesis, K has a
D-Tutte path Pk between u and v’ such that f € E(Px) and Sk (Pk) < (|[K|—6)/3+1.
Note w’ € V(Pk) as T = ). Thus, we may assume 7g,. = 0, for, otherwise, Sx (Pr) <
(IK| —6)/3 + Tque + 2/3, and (3) holds. So uCe is good in G.

Since T' = (), = has a neighbor in K — v'Du. Let K’ := (K —v'z) + uv’ be the plane
graph whose outer cycle D’ consists of uv” and the path in the outer walk of K — vz
from v’ to u and containing x. Then (K', D’) is a circuit graph, since uCe is good in G.
Let ¢’ := zu. Then Tk = 0, Tkrprer = 0, and Txrer,, = 2/3. By induction hypothesis,
K’ has a D'-Tutte path Px between u and v’ such that ¢’ € E(Pk) and

ﬂK’(PK) < (|K/| - 6)/3+TK’uv’ + Tkve + TR e'u = (|K| - 6)/3+TGue +2/3

Clearly, Pk is also a D-Tutte path in K and Sk (Px) = Bk (Pk). Since w’ € {u,x},
w’ € V(Pxk); so Pk is the desired path for (3). O

We wish to extend Py along eC'v to the desired path P in G. Thus we need a useful
description of the structure of the part of G that lies between H and eCv. See Fig. 3 for
an illustration.

Let B be the set of (H UeCwv)-bridges of G. Then G = HUeCvU (Upcp B). Since H
is a block of G—eCv, [BNH| < 1 for all B € B. Note that each vertex t € T corresponds
to a (Px — T)-bridge of H whose attachments on P — T are the neighbors of ¢ in P,
and that all other (P — T')-bridges of H are also Pg-bridges of K.

For By, B2 € B with |By N H| = |By N H| = 1, we write By ~ By if V(BN H) =
V(BoeNH) CV(Pg—T), or if there exists a (Pxg — T)-bridge B of H such that V(B; N
H)UV(B;NH) C V(B — Pg). Clearly, ~ is an equivalence relation on B. Let B;,
i = 1,...,m, be the equivalence classes of B with respect to ~, such that the sets
V(H) N (Ugep, V(B)) occur on D from v’ to w in order i = 1,...,m, with v' € V(B)
for all B € By and w € V(B’) for some B’ € B,,. Let a;,b; € V(eCv) such that

(a) a; € V(B) for some B € B; and b; € V(B’) for some B’ € B; (possibly B = B’),
(b) v", a;,b;,v occur on eCw in order, and
(c) subject to (a) and (b), a;Cb; is maximal.

Note that v/ = a; and v = b,,. Let J; denote the union of a;Cb;, all members of B;,
those (H U eCwv)-bridges of G whose attachments are all contained in a;Cb;, and, if
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applicable, also the (Px — T')-bridge of H containing B N H for all B € B;. Note that
|J:N(Px—T)| € {1,2}, and if | J;N(Px—T)| = 2 welet t; € T be the vertex corresponding
to the (Px — T)-bridge of H contained in J;. For 1 < i < m, let L; denote the union
of b;Ca;;+1 and those (H U eCwv)-bridges of G whose attachments are all contained in
biCa;rq. Let L={L;:1<i<m}.

By Lemma 2.2, we have |J;| = 2. Thus, letting P, = J;, we have

(4) B (P1)=0= (1] —1)/3—1/3.

For 1 < i < m, let

o« J1 = {Jz : |JZQ(PK—T)‘
. jQZ{JlLJZﬂ(PK*T)‘
. ng{Jil|Jiﬂ(PK—T)‘=

1 and a; # b;},
2 and t; ¢ V(Pk)}, and
2 and t; € V(PK)}

(5) For J; € Ji1, J; has a path P; between a; and b; such that P; U (J; N Pg) is an
a;Cb;-Tutte subgraph of J; and

B, (P U (Ji A P)) < {(|Jz| —-2)/3-1/3, if eCv .1s good,
(IJ:| — 2)/3, otherwise.

Let V(J; N Pk) = {x}. Consider the plane graph J! := J; + a;x whose outer cycle
C; consists of a;Cb;, the edge e; := za;, and the path in the outer walk of J; between
b; and x not containing a;. Then (J},C;) is a circuit graph. Note that 7;,., = 2/3 and
Type =0 (as i < m).

Hence, by induction hypothesis, J! has a C;-Tutte path P! between = and b; such that
e; € E(P) and B, (P]) < (|Ji] = 6)/3 4 7jre,5, +2/3. Note that 7;:c, < 2/3 and if eCv
is good in G then 7y/cp, < 1/3 (as a; # b;). So P; := P/ — x gives the desired path for
(5). O

(6) For J; € J2, J; has a path P; between a; and b; such that P, U (J; N (Px —1T)) is an
a;Cb;-Tutte subgraph of J/ and

B, (P U (Ji 0 (P —T)) < {(|JZ| —-4)/3+1/3, if eCw %s good,
(|7:] —4)/3 + 1, otherwise.
Let V(J; N (Px —T)) = {x,y} such that v, y,z,w occur on D in clockwise order. Let
J! be the block of J; — {z,y} containing a;Cb;, and let C; be the outer cycle of J!. Note
that aZCibi = CLZC'bz
By planarity there exists a vertex z € V(b;C;a;) \ {a;, b; } such that b;C;z — z contains
no neighbor of y and z2C;a; — z contains no neighbor of x.
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First, suppose b;C;a; is good in J!. Let e; € E(b;C;a;) be incident with z such that
Tiiesa; < 1/3 or Ty, < 1/3. Now by induction hypothesis, J/ has a C;-Tutte path
P; between a; and b; such that e; € E(P;) and B;/(P;) < (|J| —6)/3 + Tjrap, + 1. If
J! # J; — {z,y} then |J!| < |J;] — 3 and, since b;C;a; is good in J/,

Br(PU(Jin(Px —T))) =By (F)+1
< (|JZ| -3 - 6)/3+T~]{aibi +1+1
= (|JZ| _4)/3—’—7—]{&1'171' + 1/3

If J, = J; — {z,y} then |J/| = |J;| — 2 and

By, (P U (Jin (P = T))) = By (Pi)
< (|J1| -2- 6)/3+TJ{aib11 +1
= (|J1| —4)/3 +7—J{aib,; - 1/3

Since 74,5, = 0 (if eCv is good) and 7145, < 2/3 (if eCv is not good), we see that P;
gives the desired path for (6).

Now assume that b;C;a; is not good in J/. Then let (M7, M2) be a 2-separation in
J{ such that a;Cb; C My, |Ma| > 3, z € My (whenever possible), and, subject to these
conditions, My is minimal. Let V(M; N M) = {z1,22} such that a;,b;, 21,22 occur
on C; in clockwise order. Let M| := Mj + 2122 be the plane graph with outer cycle
Dy = 2C;z1 + 2129, and let M} := My + 2227 be the plane graph with outer cycle
Dy := 21C;29 + z221. Then (M], Dy) and (M}, Do) are circuit graphs. Let f := 2z 25.

By induction hypothesis, M{ has a D;-Tutte path R; between a; and b; such that
f € E(Ry) and

Barg (Ra) < (IMi] = 6)/3 + Taza,n, +4/3 = (M| — 6)/3 + Tysan, +4/3.

Also by induction hypothesis and choosing an edge [’ € E(z1C;z2) so that Taz., p < 1/3
OF Tapyfrzy <1 /3, we see that M} has a Dy-Tutte path Rs between z; and 2y such that
/' € E(R2) and

B (Ra) < (M| —6)/3 + 1,

as Thyz,2, = 0 (since (G, C) is a circuit graph). Let P; = (Ry — f) U Ry, which is a path
in J! between a; and b; such that P, U (J; N (Px —T)) is an a;Cb;-Tutte subgraph of J}.
Note that z € V(P;) by the choice of (My, M) (that zo € V(M) whenever possible and
M> is minimal).

If J, = J; — {z,y} then |J/| = |J;| — 2 and

By, (P, U (JiN (Pr —T))) = By (Ry) + Bagy (Rz2)
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< (IM{] = 6)/3+ 7yan, +4/3+ (IM5] = 6)/3+1
(‘Jz/| - 6)/3 + TJlaib; +1
(‘J1| - 4)/3+Tji/a7.’b1.’ - 1/3

If J # J; — {z,y} then |J/| <|J;| — 3 and

By, (P U (J; N (Px —T))) = Bary (R1) + Bagy (Ra2) + 1
< (IMi] = 6)/3 + Tyraum; +4/3+ (|M5] —6)/3 +2
= (|J{] = 6)/3 + Tya., +2
< (|Ji] =4)/3+ Trram, +1/3.

Therefore, since 7145, = 0 if eCv is good and 74,5, < 2/3 otherwise, we see that P;
is the desired path for (6). O

(7) For J; € J3, J; has disjoint paths P;, P/ such that P; is between a; and b;, P/ is

between the two vertices in V(J; N (Px —T)), P; U P/ is an a;Cb;-Tutte subgraph of
JZ‘, and

8, (P,UP) < {(|Ji —4)/3-1/3,  if eCv is good,
(|J:] —4)/3, otherwise.

Let V(J;N(Px —T)) = {x,y} and assume that v’,y, z, w occur on D in clockwise order.
Consider the plane graph J! := J; + b;z with a;Cb;, e; := b;x,y occur on its outer cycle
C; in clockwise order. (Note that xy ¢ E(J;) by the definition of J;.) Then, since (G, C)
is a circuit graph, (J;,C;) is a circuit graph and 7/¢,, = Tj7yq, = 0.

Thus, by induction hypothesis, J/ contains a C;-Tutte path R; between a; and y such
that e; € E(R;) and

B (Ri) < (i = 6)/3 + Tyrase, = ([Jil = 4)/3 + Trae, — 2/3.
So R; — e; is an a;Cb;-Tutte subgraph of J; such that

Br(Ri —ei) = Br(Ri) < (|il =4)/3+ Trra;e; — 2/3.

Note that 7/4,c, < 1/3 (if eCv is good) and Tj14,e, < 2/3 (if eCv is not good). So R; —e;
gives the desired paths for (7). O

Next, we consider Jy,. Note that if |J,,, N (Px —T')| = 2 then ¢, = w’ € V(Px)NT,
and if |J,, N (Px — T)| = 1 then w' € V(J,, N (Px — T)). (Recall the definition of
w’ in the paragraph preceding (3).) Let ¢ = 2 if |J,,, N (Px — T)| = 1, and ¢ = 4 if
|Jm N (Px — T)| = 2. Note that when ¢ = 2, ¢ is the number of vertices double counted
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by |Jm| and |KU (Jy ULy )U...U(Jm—1ULpy—1)|. In the case ¢ = 4, ¢ counts the vertex
t., and the vertices double counted by |J,,| and |[K U (Jy UL1)U... U (Jpme1 U Lp—1)].

(8) Jo, has disjoint paths P, P, with P, between a,, and b,, = v and P/, between the
vertices in V(J,, N (Px —T)), such that P, UP/ is an (a,,CunNJ,)-Tutte subgraph
of J,, and

By (P UPL) < {(|Jm| —0)/3 4+ Tgou — 1/3, if ay, # by, and eCo is good,
(|Tm| — ©)/3 + Tavu, otherwise.
First, suppose a,, = b,, and |J,, N (Px — T)| = 1. Then ¢ = 2, and let P,, = a,, and
P/, = w. Now B, (PnUP/,) <1, with equality only when |J,,,| > 3, in which case, vCu
is not good in G and TGy = 2/3. So B, (P U PL) < (|Jm| — €)/3 + Tguu as ¢ = 2.
Now assume a,, # by, or |J,, N (Px —T)| = 2. If |J, N (Px — T)| = 2 then let
V(Jm N (Pk —T)) = {z,y} such that v',y,w’,x occur on D (the outer cycle of K)
in clockwise order, and if |J,, N (Px — T)| = 1 then let y = = = w’. Consider the
plane graph J¥ = Jp,, + ya,, with outer cycle C,, containing a,,Cx and ya,,. Then
(J*,Cp) is a circuit graph. Let e,, := ya,,. Note that TJ% bz < TGuu, if © =y then
TJs zen, = 2/3 = (4 —c)/3, and if & # y then 7- ,c, = 0= (4 —¢)/3.
By induction hypothesis, J, has a C,,-Tutte path P between b,, = v and z such
that e,, € E(P}) and

= (|Jm| —¢)/3 —=2/3 4+ TGou + Ti* e, b, -

m

Note that TJ% emb
not good in G). Hence, P}, — ya,, gives the desired paths for (8). O

< 1/3 (when eCwv is good in G) and 7 ¢,.b

m —

< 2/3 (when eCv is

m —

Next, we consider the family £ := {L; : 1 <14 < m}, see its definition preceding (4).

(9) For each L; € L, L; contains a b;Ca;11-Tutte path Q; from b; to a;+1 such that
Br.(Q:) < max{0, (|L;| —2)/3 —1/3}.

If |b;Ca;q1] < 2 then let Q; := b;Ca;41; we see that 5r,,(Q;) = 0 as (G, C) is a circuit
graph. So assume |b;Ca;y1| > 3. Then consider the plane graph L, := L; + a;4+1b; with
outer cycle D; := b;Ca;y1 + a;+1b;. Note that (L}, D;) is a circuit graph. Choose an edge
ei € E(biCa;y1) so that 7p1,., = 1/3. Note that 77,4, .5, = 0 and 71, < 2/3. So
by induction hypothesis, L} contains a D;-Tutte path Q; between b; and a;41 such that
e € B(Qs) and 1(Qu) < (L] — 6)/3+1 = (L —2)/3 — 1/3. 0

Let P be the union of Px —T', P,UP/ fori =1,...,m (where we let P/ = J;N(Px—T)
when J; € J1 U Js), and Q; for i = 1,...,m — 1. Clearly, P is a path between u and v
and e € E(P).

€iQi41



326 M.C. Wigal, X. Yu / Journal of Combinatorial Theory, Series B 158 (2023) 3813-330

It is easy to see that if B is a P-bridge of G then B is a Pk-bridge of K, or a (P;UP))-
bridge of J; for some ¢ with 1 <4 < m, or a @;-bridge of L; for some ¢ with 1 < i < m,
or |B|=2and |[BNneCv| = |BN(Px —T)| =1. Thus, P is a C-Tutte path in G between
u and v and containing e. Note that

jgz{Ji:1<i<m,|Jiﬁ(PK—T)|:2andPi':Jiﬂ(PK—T)}and
ng{Ji21<i<m,|Jiﬂ(PK7T)|ZQaHdPZ‘/#Jiﬂ(PKfT)}.

If we extend Px — T from v’ to v through Jy, Ly, J2, Lo, ..., Jym—1, Limn_1, Jm in order,
we see that

e Jp and K double count 1 vertex (namely, v');

e when |J,, N (Pxk = T)| =1, J, and KU (JyULy)U...U (Jp_1 ULy—_1) double
count ¢ = 2 vertices (namely, a,, and w’); when |J,, N (Px — T)| = 2, J, and
KU(JLUL)U...U(Jm—1ULp_1) count ¢ = 4 additional vertices (double counting
@y, and the vertices in V(J,, N Px) and counting the additional vertex ¢,,);

e Liand KU (J;UL)U...U(J;—1 UL;—1) U J; double count 1 vertex, namely b;;

e forl <i<m,if J; € then J; and KU(J;ULq)U...U(J;—1 UL;_1) double count
2 vertices: a; and the vertex in V(J; N Pk);

o forl<i<m,ifJ; € JoUJ3 then J; and KU (J; UL)U...U(J;—1UL;_1) double
count a; and the vertices in V(J; N Pk ) and count the additional vertex ;.

Note that for each J; € Jo, the Pg-bridge of K corresponding to the vertex t; € T does
not contribute to Bg(P). Thus,

Ba(P) = Bk (Pr) + B, (P1) + Z By, (P;UP]) + Z (Br,(P;UP]) = 1)+

Ji€T1 Ji€T2

m—1
> Br(PiUP)+ B, (PnUPL) + Y Br.(Qu)
=1

Ji€T3

We may assume
(10) eCw is good in G.

For, suppose eCv is not good in G. Then 7g., = 2/3. Hence, by (4)—(9) and the above
observation on double counting vertices, we have

Ba(P) < B (Pr) + (1N = 1)/3=1/3)+ D> (1l =2)/3+ D (|5l —4)/3
Ji €T Ji€T2UT3

+ (|| = ©)/3+ Tqou + > max{0, (|Li| - 2)/3 — 1/3}
L;eL
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< (n—6)/3—1/3+4 7guu + (Bx(Px) — (|K| — 6)/3)
<(n—16)/3-1/3+7qvu+Taue +1  (by (3))
= (n - 6)/3 + TGou T TGue + TGev-

So P is the desired path. O

By (10), |L;| < 2 for all L; € L. By (4)—(10) and the above observation on double
counting vertices, we have

Ba(P) < B (Px)+ (11| = 1)/3=1/3)+ > (17| — 2)/3 - 1/3)+

Ji €T
D (H-9/B+1/3-1)+
Ji€T2
(T =4)/3=1/3) + (|| = €)/3 + T6wu
Ji€J3

<(n=6)/3+ 16ou — [/3 = (IT]+ 1)/3 + (Br (Px) — (IK| = 6)/3),
since |T'| = |J2 U J3|. We may assume that
(11) Ji =0 for i = 1,2,3, and |eCv| > 3.

First, we may assume |T| < 1. For, suppose |T'| > 2. Then, since 8k (Px) < (|K|—6)/3+
TGue T 1 (by (3))7

ﬂG(P) < (n - 6)/3 + TGou + TGue < (TL - 6)/3+TGvu + TGue + TGev,

and P gives the desired path.
Therefore, Sk (Px) < (|K| —6)/3 4+ Tgue + 2/3 by (3). We may also assume J; = ()

for i = 1,2,3. For, otherwise, |J1] > 1 or |T| > 1; so
ﬁG(P) é (n - 6)/3 + TGvu — 2/3 + TGue + 2/3 S (TL - 6)/3 + TGou + TGue +7-Gev7

and P is the desired path.
If |eCv| = 1 then 7ge, = 2/3 and

/6G(P) S (’Il - 6)/3 +TGvu + TGue + 2/3 - (’I'L - 6)/3 + TGou + TGue + TGevs
P gives the desired path. If |eCv| = 2 then 7ge, = 1/3 and
ﬁG(P) é (TL - 6)/3 + TGvu — 1/3 + TGue + 2/3 = (TL - 6)/3 + TGou + TGue +7-Gev;

so P is the desired path. Therefore, we may assume |eCv| > 3. O
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Suppose @, 7# by, Then by (3), (4), (8), (10), and (11), we have

Ba(P) < Br(Pr) + (|1 = 1)/3 = 1/3) + ((|Jm| — €)/3 + Tawu — 1/3)
< ((IK] = 6)/3 4 Taue +2/3) + ((|1]| — 1)/3 —1/3)
+ (([Jm| = ©)/3+ TGou —1/3)
< (n=6)/3+ TGou + TGue
= (n—6)/3 4 TGvu + TGue + TGev-

So P is the desired path.
Thus, we may assume G, = by,. If |J,,,| = 2 then

Be(P) = Br (Pr)
< (|K|—=6)/34 Tgue +2/3 (by (3) and (11))
< (n—106)/34+ Tgue —1/3 (since |eCv| > 3)

< (n—6)/3+ Taou + TGue + TGews

and P is the desired path. So assume |J,,,| > 3. Then ¢y, = 2/3. Since |eCv| > 3,

Ba(P) = Br(Pk) +1
<(|K|=6)/34+Tcue +2/3+1 (by (3) and (11))
< (n—6)/34 Tgue +2/3 (since |eCv| > 3)

S (n - 6)/3 + Tavu T TGue + TGewv-

Again, P gives the desired path. O
4. Essentially 4-connected planar graphs

There has been interest in finding good lower bounds on the circumference of 3-
connected planar graphs. (The circumference of a graph is the length of a longest cycle in
that graph.) For instance, Chen and the second author [5] showed that the circumference
of a 3-connected planar n-vertex graph is at least n'°8s 2, which is best possible because
of iterated planar triangulations T'r(k): starting with Tr(0) = Kj, for each k£ > 1, add
a vertex in each face of Tr(k — 1) and connect it with an edge to each vertex on the
boundary of that face.

A graph is essentially 4-connected if it is connected and, for any S C V(G) with
|S| < 4, G — S is connected or has exactly two components one of which has exactly
one vertex. Jackson and Wormald [7] proved that the circumference of any essentially 4-
connected n-vertex planar graph is at least (2n+4)/5. Very recently, this bound has been
improved to 5(n + 2)/8 by Fabrici, Harant, Mohr, and Schmidt [6]. Using Theorem 1.1,
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we give a short proof of the following result. We mention that Kessler and Schmidt [8]
announced an independent proof using a different technique.

Theorem 4.1. Let n > 6 be an integer and let G be any essentially 4-connected n-vertex
planar graph. Then the circumference of G is at least [(2n 4 6)/3].

Proof. First, suppose G is 4-connected. Fix a planar drawing of G and let T' be the outer
cycle of G. Let wv,e € E(T) be distinct. By applying Theorem 1.1, G has a T-Tutte
path P between u and v such that e € E(P). Since G is 4-connected, Sg(P) = 0; so P
is in fact a Hamilton path. Hence, P 4+ uv is a Hamilton cycle in G and, thus, has length
n, which is at least (2n +6)/3 (as n > 6).

Hence, we may assume that G is not 4-connected. Then, since G is essentially 4-
connected, there exists € V(G) such that = has degree 3 in G. So let Ng(z) = {u,v, w}
and let H := G — x and assume that H is a plane graph with u, v, w on the outer cycle
C of H in counter clockwise order. Note that (H,C) is a circuit graph.

Suppose two of [uCw|, lwCv|, [vCul is at least 3. Without loss of generality, we may
assume that |[uCw| > 3 and |wCwv| > 3. Let e € E(uCw) be incident with w. Then
THouw = 0, THue < 1/3, and 7He, = 0. Hence, by Theorem 1.1, H has a C-Tutte path
between u and v such that e € E(P) and Sy (P) < (n—7)/3+1/3 = (n—6)/3. Thus,
@ = P Uuazv is a Tutte cycle in G such that f¢(Q) < (n — 6)/3. Since G is essentially
4-connected, every Q-bridge is a K; 3. Hence, |Q| > n — (n—6)/3 = (2n+6)/3.

So we may assume that |wCv| = |[vCu| = 2. Consider the plane graph K := H — wv
whose outer cycle D contains vCw. Since G is essentially 4-connected, K is 2-connected;
so (K, D) is a circuit graph. We can choose e € E(wDwv) incident with w. Now Tx,, = 0,
TKue S 1/3, and TKev S 1/3

If Tkwe = 0 or Tie, = 0, then by Theorem 1.1, K has a D-Tutte path P between
and v such that e € E(P) and Sx(P) < (n—7)/34+1/3 = (n—6)/3. Thus, Q := PUuzv
is a cycle in G with |Q| >n— (n—6)/3 = (2n+ 6)/3.

So assume Tiyue = Tiev = 1/3 and, hence, |[wDv| = 3 and |uDw| = 2. Since n > 6 and
G is essentially 4-connected, one of {v, w} has a neighbor inside D, say w by symmetry.
Now consider the plane graph J := H — uw, which is 2-connected as G is essentially
4-connected. Let F' denote the outer cycle of J, which contains {u,v,w}. Clearly, (J, F)
is a circuit graph. Choose f € E(uFw) incident with w. Then 7, < 1/3, 755, = 0, and
Tjou = 0. Hence, by Theorem 1.1, J has an F-Tutte path between u and v such that
feE(P)and B;(P)<(n—7)/3+1/3=(n—06)/3. Thus, @ := PUuzvisacyclein G
with |Q] >n—(n—6)/3=(2n+6)/3. O

Note that we need n > 6 in Theorem 4.1; however, when n < 5 the graph G is
Hamiltonian. The bound in Theorem 4.1 is best possible in the following sense. Take a
4-connected triangulation T on k vertices, and inside each face of T' add a new vertex
and three edges from that new vertex to the three vertices in the boundary of that face.
The resulting graph, say G, has n := 3k — 4 vertices. Now take an arbitrary cycle C
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in G. For each z € V(C) with degree three in G, we delete x from C and add the
edge of G between the two neighbors of z in C. This results in a cycle in T, say D.
Clearly, |D| < k; which implies |C|] < 2k. Hence, the circumference of G is at most
2k =2(n+4)/3=1[(2n+6)/3].
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