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We prove that every simple 2-connected subcubic graph on
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Kral’, and Mohar. This bound is best possible; there are
infinitely many subcubic and cubic graphs whose minimum
TSP walks have lengths % — 1 and 57" — 2 respectively.
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algorithm for finding such a TSP walk. In particular, we
obtain a %—approximation algorithm for the graphic TSP on
simple cubic graphs, improving on the previously best known
approximation ratio of %
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1. Introduction

The famous Traveling Salesperson Problem (TSP) asks for a spanning cycle of mini-

mum length in an edge-weighted complete graph. It is not possible to approximate the

TSP within any constant factor of the optimum unless P = N P; otherwise, one could

solve the Hamiltonian cycle problem, one of Karp’s original NP-complete problems [13].

An important special case which admits a constant factor approximation is the metric
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TSP in which the edge weights form a metric, a natural assumption for many applica-
tions. A further specialization of the metric TSP is the graphic TSP in which the edge
weights form the distance function in some underlying connected graph G on the same
vertex set. This is equivalent to finding a spanning closed walk (a TSP walk) in G with
the minimum number of edges. Let us denote this minimum length by tsp(G).

The graphic TSP still contains the Hamiltonian cycle problem, and is thus NP-hard to
solve exactly. On the other hand, Christofides [5] and independently Serdyukov [20,21]
gave a %—approximation for the metric TSP in 1976 and 1978 respectively. For many
years, this had remained the best approximation ratio for any nontrivial special case of
the metric TSP. The first improvement to this ratio was made in 2005 by Gamarnik,
Lewenstein, and Sviridenko [9] who gave a (3 — 335)-approximation algorithm for the
special case of the graphic TSP on 3-connected cubic graphs (a graph is cubic if all
of its vertices have degree 3). Following this result, Gharan, Saberi, and Singh [10]
gave a (3 — €)-approximation algorithm for the general graphic TSP. Then Mémke and
Svensson [17] gave a novel approach for a 1.461-approximation algorithm for the graphic
TSP, which was shown to be in fact a %—approximation by Mucha [18]. Later, Seb6 and
Vygen [19] presented a new algorithm for an improved %—approximation for the graphic
TSP. For the metric TSP, the % ratio was only very recently improved by Karlin, Klein,
and Gharan [12] to (3 — ¢) for some constant & > 10736,

A further special case of the graphic TSP, namely on subcubic graphs, has received
significant attention (a graph is subcubic if all of its vertices have degree at most 3).
Subcubic and cubic graphs are among the simplest classes of graphs which retain the
inapproximability of the metric TSP; the general metric and graphic TSPs are NP-
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hard to approximate within a {55 and jg3-factor of the optimum respectively [14,16].

Even when restricted to subcubic and cubic graphs, it remains NP-hard to approximate

1 685 1153 : = :
within a 57 and {725-factor respectively [15]. Furthermore, subcubic graphs are known
w4

to exhibit the worst-case behavior in the well-known “3
the 80’s (see [11]), which asserts that the standard “subtour elimination” linear program

-integrality gap conjecture” from

relaxation for the metric TSP has an integrality gap of %. This %—integrality gap can be
asymptotically realized by a family of subcubic graphs (e.g. [2]).

Note that a polynomial-time constructive proof of the %—integrality gap would yield
a %—approximation algorithm. Motivated by this, Aggarwal, Garg, and Gupta [1] gave a
%—approximation for 3-connected cubic graphs. This approximation ratio was extended
to 2-connected cubic graphs by Boyd et al. [3], and to 2-connected subcubic graphs by
Momke and Svensson [17]. The % ratio was then slightly improved for cubic graphs to

(2 L55) by Correa, Larreé, and Soto [7] and independently to (3 L

3~ 61396 — g7z1) by Zuylen
[22], which was further improved to 1.3 by Candrakovd and Lukot’ka [4], and later to %
by Dvordk, Kral’, and Mohar [8].
Let G be a simple 2-connected subcubic graph. We write n(G) to denote the number
of vertices in G, and n2(G) to denote the number of degree 2 vertices in G. Dvorak, Kral’,
and Mohar [8] showed that G has a TSP walk of length at most w — 1. They

also constructed infinitely many subcubic (respectively, cubic) graphs whose minimum
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TSP walks have lengths w — 1 (respectively, (@) _ 2), and conjectured that

1
w — 1 is the right bound. In this paper, we prove this conjecture.

Theorem 1.1. Let G be a 2-connected simple subcubic graph. Then tsp(G) < w-
1. Moreover, a TSP walk of length at most w — 1 can be found in O(n(G)?)
time.

In particular, we obtain a %—approximation algorithm for the graphic TSP on simple
cubic graphs. We remark that our algorithm is purely combinatorial and deterministic.
We also characterize the extremal examples of Theorem 1.1; that is, the 2-connected
simple subcubic graphs G such that tsp(G) = w — 1 (see Theorem 5.5). As
pointed out by Dvorék et al. [8], Theorem 1.1 is false for non-simple graphs. This can be
seen from the graph obtained from three internally disjoint paths between two vertices,
each of length 2k + 1, by the addition of parallel edges so that it becomes cubic.

As in [8], rather than working with Eulerian multigraphs obtained from spanning
connected subgraphs by adding multiple edges (as often done in the literature), we
consider spanning subgraphs F' of G in which every vertex has degree 0 or 2. That is, F’
is a spanning subgraph consisting of vertex-disjoint cycles and isolated vertices. We call
such a subgraph F' an even cover of G. Let ¢(F') denote the number of cycles in F' and
i(F') denote the number of isolated vertices in F. Define the ezcess of F' to be

exc(F) = 2¢(F) +i(F).
For a graph G, let £(G) denote the set of even covers of G, and define the excess of G as

exc(G) = min exc(F).
FEE(G)
For example, consider the graph © which consists of three internally disjoint paths
between two vertices, each path with k vertices of degree 2. It is easy to see that an even

cover consisting of a cycle and k isolated vertices obtains the minimum excess. Thus for
k>1,

exc(@) =2+k < (3k+2)+3k+lzw

—_— 1
< 1 1 +1,

with equality when k£ =1 (in which case © = Ky 3).
It is observed in [8] that if G is a subcubic graph, then there is an exact relation
between tsp(G) and exc(G):

Proposition 1.2 (Dvorik et al. [8]). Let G be a subcubic graph. Then

tsp(G) = exc(G) — 2 + n(G). (1)
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Moreover, an even cover F € E(G) can be converted into a TSP walk in G of length
exc(F) — 24 n(G) in linear time.

Thus, to prove Theorem 1.1, it suffices to show that

n(G) +n2(G)

<
exc(G) < 1

+1, (2)
and that an even cover F' of G satisfying this bound can be found in quadratic time.
Indeed, we will see that (2) follows from a more technical result (Theorem 2.4) that
bounds exc(F) — w for certain sets of even covers F' of GG. In Section 2, we
develop our key definitions and state Theorem 2.4. In Section 3, we provide some technical
lemmas on the structure of the extremal graphs for Theorem 2.4, which we call 8-chains.
We complete the proof of Theorem 2.4 in Section 4. In Section 5, we characterize extremal
graphs for Theorem 1.1. In Section 6, we outline a quadratic-time algorithm that finds
n(G)+n2(G) 4 1.
1

We end this section with some notation. For a positive integer k, let [k] = {1,...,k}.
If G and H are graphs, we write G U H (respectively, G N H) to denote the graph
with vertex set V(G) UV (H) (respectively, V(G) NV (H)) and edge set F(G)U E(H)
(respectively, E(G) N E(H)). Let G be a graph. If S is a set of vertices or a set of edges,
we let G — S denote the subgraph of G obtained by deleting elements of S as well as

an even cover F' in simple 2-connected subcubic graphs G with exc(F) <

edges incident with a vertex in S. When S = {s} is a singleton, we simply write G — s.
For a collection of 2-element subsets of V(G), we write G + S for the graph with vertex
set V(G) and edge set E(G) U S. However, for z,y € V(G) we use G + zy to denote
the graph obtained from G by adding a (possibly parallel) edge between z and y. For
a subgraph H C G and a set S C V(G), we let H 4+ S denote the subgraph of G such
that V(H 4+ S) = V(H)US and E(H + S) = E(H). For S C V(G), we use N(S) to
denote the neighborhood of S in G. If S = {s} is a singleton, we simply write N(s).
When |N(S)| € {1,2}, suppressing S means deleting S and adding a (possibly loop or
parallel) edge between the vertices of N(S). When S = {s} is a singleton, suppressing s
means suppressing {s}.

2. Subcubic chains

In order to help with induction, we consider even covers which contain or avoid a
specified edge. Let G be a graph and let e € E(G). We write £(G, e) to denote the set
of even covers of G containing e, and & (G, e) to denote the set of even covers of G not
containing e. Define

exc(G,e) = - 1181(12 )exc(F) -2
S €

exc(G,e) ;== min exc(F)
Fe&(G,e)
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Fig. 1. A subcubic chain.

Clearly, we have exc(G) = min{exc(G,e) + 2,éxc(G,e)} for any edge e € E(G). The
“—2” in the definition of exc(G,e) leads to a natural interpretation of the quantities
§(G,e) and S(G, e) defined below, and also results in simpler calculations as it accounts
for the fact that the cycle C of F' containing e will often only be used as a path C' — e
as part of a larger cycle (see Propositions 2.1 and 2.2).

To prove (2), it will be convenient to define the following parameters for a graph G

and an edge e € E(G):

§(G,e) = exc(G,e) — n(G) + n2(G)

4 7
5(G,e) := &xe(G,e) — M

Note that if every vertex of G has degree 2 or 3 (for instance, if G is subcubic and
2-connected), then §(G,e) and 3(G,e) are always half-integral since n(G) + ny(G) =
(n(G) — n2(Q)) + 2n2(G) where (n(G) — ny(G)) is the number of vertices of odd degree
in GG, which is always even.

A subcubic chain C is a simple connected subcubic graph, written as an alternat-
ing sequence C' = zegBie1 By ... Biery for some nonnegative integer k, satisfying the
following properties (see Fig. 1):

e {eq,...,ex} is the set of cut-edges of C,

e {By, Bi,..., Bk, Bry1} is the set of connected components of C'—{eq, ..., ey}, where
V(Bo) = {z} and V(By41) = {y},

e B is either a single vertex or 2-connected for all ¢ € [k], and

e each e; has one endpoint in B; and one endpoint in B;; for alli =0,... k.

We say that C' has end points x,y and has end edges ey and ey. A subcubic chain is
trivial if k = 0 (that is, C is an edge xy), and nontrivial otherwise.

Let C = zeqBie1 By . .. Bregy be a nontrivial subcubic chain. For ¢ € [£], let a; denote
the endpoint of e¢;_1 in B; and let y; denote the endpoint of e; in B;. (Note that x; # y;
when n(B;) # 1, as C is subcubic.) We define B; = B; + & where & = z;y;, and
C = C —{z,y} + ec where ec = x1y;. We call each (B;,e;) a chain-block of C, and C
the closure of C. Note that the closure of a nontrivial subcubic chain C' is a subcubic
graph with no cut-vertex such that C' — e¢ is simple. If C is a trivial subcubic chain, we
define exc(C, ec) = 6x¢(C, ec) = 6(C,ec) = 6(C, ec) = 0.
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Proposition 2.1. Let C = zeqBie1 By . .. Brery be a subcubic chain, and let {(B;, &) : i €
[k]} denote the chain-blocks of C'. Then

o exc(Clec) = Zle exc(B;, &),
® ES‘;\6(67 ec)= Zk 16&\(3(E7 e_%)f
. QU, ec) = f: 5(31,61) and
« 0(Cre0) = Z¢=1 5(Bu €;).

Proof. If C is trivial then the proposition is true by definition (an empty sum is defined
to be 0), so we may assume that C' is nontrivial. Note that a cycle in C contains ec if
and only if it contains all of ey, ..., e;_1. This gives a natural bijective correspondence
between even covers F' € £(C,ec) and tuples of even covers (Fy,..., F)) where F; €
E(B;, &) for each i € [k]. Indeed, this correspondence is obtained by “splitting” the cycle
D of F containing ec into k cycles, (D N B;) + & for i € [k]. With this correspondence,
we have exc(F) =2+ Zle(exc(Fi) — 2). Hence,

exc(C,ec) = Fe;r(lgl )exc(F) -2
y€C
k
= min  (exc(F;) — 2)
im1 F,€&(B;,e;)

k
= ZeXC(E, €)-
i=1

Since n(C) = ZZ ,n(B;) and ny(C) = Zf 1 n2(B;), this also implies 6(C,ec) =
i1 0(Bi, ).

Similarly, there is a natural bijective correspondence between even covers F €
5(6, ec) and tuples (F1,..., Fy) where F; € g(E,eﬁ) for each i € [k]. That is, F; is
the restriction of F' on B; for all i € [k]. Moreover, exc(F) = Zk 1 exc(F;). Hence,

éxc(Coec) = min  exc(F)
FEE(T ec)

Il
™=

min  exc(F;)
F,€&(B; &)

Il
D
A
oy
9

This similarly gives 6(C, ec) = Zf 1 5(Bi,&). O

The parameters §(C, ec) and 5(6, ec) can be interpreted as the “difference” in the &
or § of the overall graph G made by the presence of the subcubic chain C' compared to
a trivial chain (a single edge). This is formalized in the next proposition.
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Let G be a graph containing a nontrivial subcubic chain C' = zegBj ... Biegy such
that C' — {z,y} is a connected component of G — {eg, ex}. In this case, we say that C' is
a subcubic chain of G. If C is a subcubic chain of G, we write G/C to denote the graph
obtained by suppressing V(C) \ {z,y}, and write ec /¢ to denote the resulting edge. We
say that G/C is obtained from G by suppressing C. A cycle in G containing the edge eq
(hence all of {eg,...,er}) is said to be a cycle through C, and an even cover through C
is an even cover of G containing a cycle through C.

Proposition 2.2. Let C be a subcubic chain of a graph G, and let e be a cut-edge of C'.
Then §(G,e) = 6(G/C,ec c) + 6(C,ec) and 6(G,e) = 6(G/C,eq/c) +6(C,ec).

Proof. Given an even cover F' € £(G, e), e is contained in some cycle D in F'. By splitting
D into two cycles (DNG/C)+eg/c and (DNC)+ec, we obtain from F' two even covers
F' € £(G/C,eq/c) and Fe € E(C, ec) satisfying exc(F) = exc(F') + exc(F¢) — 2. This
bijective correspondence gives

exc(G,e) = - I?(lg )eXC(F) -2
S ,e

= min exc(F') —2)+ min exc(Fo) — 2
F/ES(G/C,EG/C')( ( ) ) FCEE(@,@C)( ( C) )

= exc(G/C,eq/c) + exc(C,ec).

Similarly, for any even cover F € (G, ¢), its restriction on G/C is in £(G/C, eq/c) and
its restriction on C is in £(C, ec); and we have éx¢(G, e) = &x¢(G/C, ec/c)texe(Cec).

Since n(G) = n(G/C) +n(C) and na(G) = n2(G/C) +na(C), the proposition follows
from the definitions of § and . O

We will show in Theorem 2.4 that 6(G, e) +§(G, e) < 0 for every 2-connected subcubic
graph G and every edge e € E(G) for which G — e is simple. If §(G,e) + S\(G,e) =0,
then we say that (G, e) is tight. A subcubic chain C is tight if its closure (C, ec) is tight.

The next proposition states that a subcubic chain is tight if and only if all of its
chain-blocks are tight.

Proposition 2.3. Let C = xzegBie1Bsy...Bregy be a subcubic chain, and assume
§(B;, &) + 6(Bi,e;) < 0 for all i. Then §(C,ec) + 6(C,ec) < 0, with equality if and
only if §(B;,&;) + 6(Bi,e;) = 0 for all i € [K].

Proof. Since §(B;, ;) + E(E, g;) <0 for all 4, we have by Proposition 2.1,

k k
5(C.ec) = d(B; Z —5(B;,&)) = —8(C, ec).
j=1 j=1
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Fig. 2. A rooted 0-chain.

Fig. 3. A minimal #-chain.

~

Hence, §(C,ec) + 3(6, ec) < 0, with equality if and only if §(B;, ;) + 0(B;,&;) = 0 for
alli. O

We say that a subcubic chain C' is minimal if it is tight and §(C, ec) = —%, and that
C is near-minimal if it is tight and §(C,ec) € {—3, —1}. Two subcubic chains C; and
Cs are balanced if §(C1,ec,) = 0(Cy, ec, ).

A 0-chain is a graph G that is the union of three internally disjoint subcubic chains
C1,C5,C3 with common endpoints. We call C1, Cy,C5 the chains of G. Note that the
choices of the three chains C1, Cs, C3 may not be unique (consider the graph obtained
from two disjoint 4-cycles by adding two edges joining them so that the endpoints of the
two edges are nonadjacent in each 4-cycle). A rooted §-chain is a pair (G, e) where G is a
graph and e = uv € E(G) such that G — e is the union of two internally disjoint subcubic
chains C1, Cy with common endpoints {u,v}. We call Cy,C5 the chains of (G,e). See
Fig. 2.

A (rooted) 6-chain is balanced if all pairs of its chains are balanced, tight if the closures
of its chains are all tight, and (near) minimal if all of its chains are (near) minimal. Note
that a (near) minimal (rooted) #-chain is also balanced and tight by definition. See Fig. 3.

We can now state our main result, which immediately implies (2). For inductive
purposes, we allow the graph G to be a loop e on a single vertex and we also allow one
edge of G — e to be parallel to e. In all cases however, G — e is a simple subcubic graph.

Theorem 2.4. Let G be a 2-connected subcubic graph and let e = uv be an edge of G such
that G — e is simple. Then the following statements hold:



78 M.C. Wigal et al. / Journal of Combinatorial Theory, Series B 158 (2023) 70-104

(T1) 6(G,e) < —1, with equality if and only if either G is a loop or (G, e€) is a balanced
tight rooted 0-chain.
(T2) If G — e is 2-connected, then g(G,e) < %, with equality if and only if G — e is a
minimal 0-chain.
(T3) If 6(G,e) = —1, then either
(a) G = Ky, or
(b) e has a parallel edge, and suppressing {u,v} to an edge €' results in a graph G’
such that either G’ is a loop or (G',€') is a near-minimal rooted 6-chain, or
(c) there exists €' € E(G) such that {e, €'} is a 2-edge-cut in G, and suppressing
either subcubic chain C of G with end edges e,e’ yields either a loop or a
balanced tight rooted 0-chain (G/C,eq/c), or
(d) (G,e) is a rooted 0-chain such that min;e|y (6(@, ec;) —|—S(C’3_i,ec3ﬂ,)) =
1

(T4) §(G, e)2l+ 5(G,e) < 0.

One immediate consequence of Theorem 2.4 is that if C' is a subcubic chain, then
§(Cec) < —% unless C' is trivial, in which case §(C, ec) = 0 by definition. In particular,
§(G,e) < —1 for every nonempty 2-connected subcubic graph G and e € E(G) such that
G — e is simple. Hence, if C' is a minimal subcubic chain, then by Proposition 2.1, it has
exactly one chain-block (B,€g), and this chain-block satisfies §(B,ep) = —3.

3. Properties of 0-chains

In this section, we derive useful properties of balanced, tight, or minimal #-chains
assuming Theorem 2.4 for smaller graphs. We begin by proving statements (T1) and
(T3) of Theorem 2.4, assuming Theorem 2.4 for smaller graphs, for the special case
where (G, e) is a rooted #-chain (equivalently, G is simple and {u, v} forms a cut in G).
The proof is a relatively straightforward but illustrative demonstration of our techniques.

Lemma 3.1. Let (G,e) be a simple rooted 0-chain, and let C1,Cy denote the two chains
of (G, e). Assume that Theorem 2.4 holds for graphs with fewer than n(G) vertices. Then

(i) 6(G,e) = —% + minep (5(@, ec;) +g(03_i760371.)> < -1, with equality if and
only if (G, e) is a balanced tight rooted 0-chain,
(ii) 5(Ga 6) < % + 5(?1’ 601) + 5(?2’ 602) < %;

(iii) (8(G, e),g(G, e)) = (—3.%) if and only if (G,e) is a minimal rooted 6-chain, and
(iv) if 6(G,e) = —1 then min;cpy (5(@, ec;) + S(Cg,i, ecgﬂ.)> = —%.

Proof. An even cover F € £(G,e) corresponds to a pair (Fy, Fp) where F; € &(C})
for each i € [2] and F; € £(C;,ec,) for exactly one i € [2]. This correspondence gives
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exc(F) = exc(F1) + exc(F). Since n(G) = n(C1) + n(Cq) + 2 and na(G) = na(Cy) +
n2(Cs), we have

exc(G,e) = min exc(F)—2

Fe&(Ge)
= min min  (exc(F;) —2) + min exc(F5_;)
i€[2] \ Fie€(Ciec;) F3_;€E(Cs_s,ecy_;)
= mg} (exc(@, eci) + e/X\C(O?)—i’ eCS—i))
1€
:mln w+5(cl,ecl)+n( 3 )+n2< 3 ) _’_5(0371_’66'3_1)
i€[2] 4 4
1 - .
= min (M — 2+ 6(Chec,) + 5(03—i;603_i)>
1€[2] 4 2
Therefore,
8(G,e) = — +min (8(Cec,) + 8T, ) ) (3)
1€[2]
whence for i € 2],
1 _ N
5(G,€) < _5+6(OiveCi)+6(037iaeC3,i)~ (4)

By assumption, Theorem 2.4 holds for (Cj, ec,); so §(Ci,ec,) + g(a, ec;) < 0 for each
i € [2]. Adding the two inequalities of (1) gives

26(Ge) < -1+ 3 (8(Cirec,) +3(Crrec)) < —1.

i€[2]
Hence,
1
5(Gre) < —3. (5)
Moreover, 6(G, e) = —% if and only if all of the above inequalities are tight, which means

(C1,ec,) and (Cs,ec,) are tight, and
0=03(C1,ec,) +0(Ca,ec,) = 6(C1,ec,) — 8(Ca, ey,
In other words, C1, Cs are balanced. Together with (3) and (5), this proves (i).

If F; € £(Ci,ec,) for each i € [2] then, by merging the cycles in F; containing ec, for
i € [2], we obtain an even cover F € £(G,e) with exc(F') = exc(F}) + exc(Fy) — 2. So
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éxc(G,e) < min  exc(F)
FEE(G.e)

< min  exc(Fy) + min  (exc(Fz) —2)
Fleé‘(Cl,ecl) F2€5(02,6C2)

= (exc(a, ecl) + 2) + exc(@, 602)

_ ) () *4”2(01) +0(Cr,ec,) +

G Q) 3 Yo
_ % + 24 6(Cr,ec,) + 6(Caecs).

n(C’g) -+ ﬂQ(CQ)

1 +5(?27602)—|—2

Hence,

~

5(G7 6) <5+ 5(?1, 601) + 6(?2’ 602).

N W

Since G is simple, each C; is a nontrivial chain; so §(C;, ec,) < —% by the assumption
that Theorem 2.4 holds for (Cj,ec,). This gives 6(G,e) < 1 and proves (ii).

A~

To prove (iii), suppose (6(G,e),0(G,e)) = (—%, %) Then §(Cy, ec,)+(Cy,ec,) = —1
by (ii). Since §(C;, ec,) < —3 for i € [2] (by assumption), 6(C;, ec,) = —3 for each i € [2].
Moreover, each (Cj, ec,) is tight (by (i)), so (G, e) is a minimal rooted 6-chain.

Finally, note that (iv) follows from (i). O

The next lemma says that given a choice of adding an edge uwv, or uvs to a 2-connected
subcubic graph Z, the two quantities 6(Z 4 uwvq,uvy) and §(Z + uvy, uvy) cannot both
be large.

Lemma 3.2. Let Z be a 2-connected simple subcubic graph and let u, v, vs be three distinct
vertices of degree 2 in Z. Assume Theorem 2./ holds for graphs with at most n(Z)
vertices. Then 0(Z + uvy,uv1) + 06(Z + uvg, uve) < —2.

Proof. By the assumption that Theorem 2.4 holds for graphs with at most n(Z) vertices,
we have 6(Z +uv;, uv;) < —1 for each i € [2], with equality if and only if (Z 4 uv;, uv;) is
a balanced tight rooted 6-chain. If both 6(Z 4 wvy,uv1) < —1 and 6(Z 4+ uve, uve) < —1,
then there is nothing to prove. So we may assume by symmetry that 6(Z4wuvy, uvy) = — %;
thus (Z + wvy,uvy) is a balanced tight rooted 6-chain. Note that it suffices to show that
3(Z 4 uvg,uvg) < —%.

Let Cy,Cy denote the two chains of (Z + wuwvy,uvy). Let us assume without loss of
generality that vo € V/(Cy). Write C; = viegB1e1Bs ... Bregu (where k > 1) and write
its chain-blocks (B;, ;) for all i € [k]. Since C},Cy are balanced, we have §(C1,ec,) =
§(Cy,eq,), and since they are both tight, we have 6(Cy, ec,) 4 6(Cy, ec,) = 0 for i € [2].
So by Proposition 2.3 and the assumption that Theorem 2.4 holds for each (B;,;), we
have
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J— o~

0(B;,€)+0(Bys,e;) =0 forallie [k]. (6)

Let ¢ € [k] be the unique index such that vy € By. (Note £ is well defined as Z is subcubic
and vy has degree 2 in Z.) Let v’ denote the vertex of By incident with e;_q.

Then there is an even cover F' € £(Z +uvsy, uvy) obtained from a tuple (F’, Fy, ..., F))
where F' € &£(Cy,ec,), Fi € E(B;, &) for each i € [{ — 1], F, € E(By + v'va,v'va),
and F; € 5(B],ej) for each j = £+ 1,...,k. This gives exc(F) — 2 = (exc(F’') —

2) + Zizl(exc(Fi) -2)+ Z?:Z-',—l exc(F}). Moreover, since n(By + v'vy) = n(By) and
no(Be + v'va) = na(Byg), we have

-1 k
n(Z +uvy) =24+ n(Ca) + Y n(B) +n(Be+v'va) + Y n(B),
i=1 j=t+1
(Z+u02 an +n2 Bg—i—UUz)—F Z HQ(E)
j=t+1
This gives
-1
exc(Z + uvg, uvy) < exc(Ca,ec,) + Z exc(By, &)
i=1
k
+ exc(By + v'vg, v'va) + Z exc(By, &)
Jj=0+1
-1
(2 +uvg) +na(Z +uvy) 1 — —
- 1 -5 +6(C2,602)+;5(Bi,6i)
k P —
+6(Be+v'vg,v've) + > 8(B;, ),
j=t+1
whence
1 o -1
3(Z + uvg,uvg) < -3 +(Ca,ec,) + 25(31'76_2') + 6(By 4 v'vg, v'vo)
i=1

k
Z gF ej
j=t+1
Note that éxc(By, &) = éxc(By + v'vg,v'vs) since both quantities are equal to the
minimum excess of an even cover of B/ This implies 3(37/, er) = S(Bg + v'vg, v'v9).
Using (6) and that 6(By + v've, v've) + 5(Bg + v'vg,v'v9) < 0 as Theorem 2.4 holds for
(B¢ + v'v2,v'v9) (by assumption), we have
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1 {—1
8(Z + uva,uva) < —5 +3(Coyec,) + Y (—0(Bi@)

i=1

k
+ (= 0(Be +v'va,v'0)) + Y (B} 5)

j=0+1

-1 R R k R
== +0(Coec,) + > (= 0(Bi,@) + (—6(Br,er)) + Y 0(B;, )

i=1 j=L+1

k 4

=—=+0(Caec,) + Y _0(B;,5) -2y (Bi, )

j=1 j=1

1 S N
=5 +0(Ca,e0,) +0(Chec,) - 2 0(B;,;) (by Proposition 2.1)
j=1
14

=—==-2 Z A(E, €5) (as C1 and Cy are balanced and tight)

o~

since —6(B;,€;) = 6(B;,&;) < —1/2 for all j € [k] by (6) and the assumption that
Theorem 2.4 holds for (B;,&;). O

We can now prove the following lemma for #-chains.

Lemma 3.3. Let G be a subcubic graph with e = uv € E(QG) such that G —e is simple and
2-connected. Assume that Theorem 2./ holds for graphs with fewer than n(G) vertices.
Let G, be the graph obtained from G — e by suppressing u into an edge f,, and assume
that (G, fu) is a rooted O-chain. Then

(i) S(G, e) < %, with equality if and only if G — e is a minimal 6-chain whose three
minimal chains can be chosen to have common endpoints N(u) \ {v},
(ii) 0(G,e) < -2, and

Nyl

(iif) (6(G,e),0(G,€)) = (—2,3) if and only if G — e is a minimal 6-chain and e joins
two nonadjacent vertices of a 4-cycle in G — e.

Proof. Let N(u) \ {v} = {z,y}, the set of endpoints of f,. Let C1,Cy denote the two
chains of (G, f,) with common endpoints {z,y}, and let C5 denote the subcubic chain
x(zu)u(uy)y. Note that n(G) = 2+ 2?21 n(C;), na(G) = =2 + 2?21 no(C;) (since the
Cy’s do not account for the edge €), and Cs is a loop. Let i1,142,i3 be a permutation of
[3] such that 6(C;,, ec,,) < 6(Ciy,ec,,) < 6(Ciysec, )

Consider a triple (F1, F, F3) such that I, € £(Cy,ec, ), Fi, € E(Ciy,ec,,), and
F, € £(Cy,, ec,,)- Let I € £(G, e) be obtained from Fy U F, U Fy by merging the cycles
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in F;

11

F;, through ec;, , ec,, . Then exc(F)—2 = (exc(F;, ) —2)+ (exc(F;,) —2)+exc(Fi, );
S0

exc(G,e) — 2 = exc(Ch,  ec,, ) + exc(Cyy, ec,, ) + exc(Cy,, ec,,)

G G S -
= M2 1CO) 5@ e, + 0T cc,) + 3T ec,)

Since Theorem 2.4 holds for (Cj,ec,) for each i € [3] (by assumption), we have
6(Ciyec,,) < —0(Ciyrec,,) < —0(Ciy,ec,,) and 6(Cyec,) < —3% for i € [3], which
gives

n(G) + na(G)

M‘F(S(C_iuech) < M) T

~ 1
exc(G,e) —2 < 1 3
Therefore, eXC(G e) < M + 3, and 5(G.e) < 3.

Suppose (5(G e) = 5. Then the above inequalities hold with equality. Hence, —% =
6(Ciysec,,) = (5(012,60 ) = 5(013,60 ). Since Theorem 2.4 holds for all (Cy,ec;) (by
assumption), (C;,ec,) is tight (hence minimal) for all i € [3]. Therefore, G — e is a
minimal #-chain with its three chains having common endpoints N(u) \ {v}.

Now suppose G — e is a minimal 6-chain with the three minimal chains C7, Cy, Cs3
with common endpoints N(u) \ {v}. Let F € (G, ¢). If F contains a cycle through two

M +3 2. So we just need

of C1, Cq, C3, then the above argument shows exc(F) =
to show that if I’ does not contain a cycle through any of Cl, Cs, C’3, then exc(F) >
M + 2. Indeed, such F when restricted to (Cj,ec,) for i € [3] gives a triple
(Fy, Fy, F3) such that F; € £(C;, ec;) for each i € [3], and exc(F) = 2 + Z _, exc(F;)

(since the two vertices of N(u) \ {v} are isolated in F'). So

3
exc(F) > 2+ Y &xe(Ch,ec,)
=1

2+ Z (M +3(C, eci)>

_ MJrM—;g(@,ea)

_ n(G) +n2(G)
B

N~

The last equality holds since 6(Cj, ec, ) = 3 for each i € [3], completing the proof of (i).

We now prove (ii) and (iii). Let us assume without loss of generality that v € V/(C),
and write C; = zeqBie; By ... Brery with chain-blocks (B;, ;). Let £ € [k] denote the
unique index such that v € V(By). By symmetry, we may assume that Zf;ll §(B;,&) <
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Z?:e +10(Bj, ). Then, by the assumption that Theorem 2.4 holds for each (Bj,€;), we

have
k k o /-1 L
S B < S (aBe) < - (za&,e—») | 0
j=0+1 j=0+1 i=1

Consider the tuple of even covers (Fi,. .., Fy, F?), where F; € £(B;,&) for i € [( — 1],
Fy € E(By + 2'v,2'v) where 2’ is the endpoint of e,y in By, F; € g(Fm ep;) for
j=4L0+1,...,k and F? € £(Cy,ec,). This corresponds to an even cover F € £(G,e)
containing a cycle through all of zegB; ... By_1e4_1, €, uy, and Cy, such that

-1 k
exc(F)—2=") (exc(F;) —2)+ (exc(Fy) —2) + Z exc(F}) + (exc(F?) —2).
i=1 =41
Since
-1 L k .
n(G)=> n(Bi)+n(By+2v)+ Y n(B;)+n(Cz)+3, and
i=1 j=t+1
—1 k o
= na(B;) + na(By + 2'v) + Z 2(B;) + na(Ca) — 1,
=1 j=t+1
we have

-
exc(G, e) Z c(Bi, &) + exc(By + 2'v,2'v) + Z éxc(Bj,€5) + exc(Ca, ec,)

j=t+1
G
= ()i - = —|— (Zé B;,& ) +6(By + 2'v,2'v)
+ Z 5(B;,e5) | +6(Caecy,)
j=0{+1
G) + 1
< (@) 4n2 5 +8(By + 2'v,2'v) + 6(Ca, ec,) (by (7))
< n(G) +na(G) 3
— 4 2’
where the last inequality follows as by our assumption Theorem 2.4 holds for (By +
7'v,2'v) and (Ca, ec,). Hence §(G, )< -3 2 and (i) holds.
To prove (iii), suppose (§(G, e), 6(G e)) (—%, %) Then equality holds above, so we
have §(By + 2'v,2'v) = 6(Cy, ec,) = —5. Moreover, Cy and Cy are minimal chains (by

(i)), which implies k = ¢ = 1 and 6(By, ) = 6(Cy,ec,) = —3 (by Proposition 2.1).
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So §(By, &) + 6(By + x'v,2'v) = —1. Now By is a single vertex; otherwise, by applying
Lemma 3.2 to By, ’, the other endpoint 3’ of €, and v, we obtain 6(By, &) + 6(B, +
2'v,2'v) = 6(Be+ 'y, 2’y )+ §(Be+2'v, 2'v) < —2, a contradiction. Therefore, we have
B, = {2’} = {v}, and e joins two nonadjacent vertices of the 4-cycle zvyuz. O

We conclude this section with a lemma bounding g(G , ), which proves statement (T2)
of Theorem 2.4, assuming Theorem 2.4 for smaller graphs.

Lemma 3.4. Let G be a 2-connected subcubic graph with e = uv € E(G) such that G — e
is simple and 2-connected. Assume that Theorem 2./ holds for graphs with fewer than

n(Q) vertices. Then g(G, e) < 2, with equality if and only if (G, fu) is a minimal rooted

0-chain, where G, is the graph obtained from G — e by suppressing u into an edge f,.

Proof. Since G — e is 2-connected, both u and v have degrees 3. Define G, f,, as stated
in the lemma. We claim that

(G, e) = min{8(Gu, fu) +2,0(Gu, fu) + 1} (8)

Indeed, there is a bijective correspondence between £(G, e) and €(G,) obtained as fol-

~

lows. If F' € £(G,e) contains a cycle through w, then we obtain F,, € E(G,, fu) by
suppressing u in F, and we have exc(F) = exc(F,). Otherwise, if u is an isolated
vertex in F, then we obtain F, € EA(Gu,fu) by removing u from F, and we have
exc(F) = exc(Fy) + 1. Since n(G) + n2(G) = n(G,) + n2(Gy), (8) follows from the

o~

definitions of 6, d.

~

It follows from (8) that 6(G,e) < 6(Gy, fu) +2 < 2 by the assumption that The-

<
orem 2.4 holds for (G, f.). Moreover, 6(G,e) = % if and only if 6(G,, fu) = —%
— . ;

and 6(Gy, fu) = 3, which is equivalent to (G, f.) being a minimal rooted 6-chain

by Lemma 3.1. O
4. Proof of Theorem 2.4

We proceed by induction on n(G). Note that (T4) is implied by (T1) and (T2): If
d(G,e) < —1 and g(G,e) < 1, then (T4) holds. Otherwise, we have §(G,e) = —1 or
g(G,e) = % In the former case, (T4) follows from (T1) and Lemma 3.1; in the latter
case, (T4) follows from (T2) and Lemma 3.3. Also note that Lemmas 3.3 and 3.4 imply
(T2). Therefore, it suffices to prove (T1) and (T3).

If G —{u,v} is disconnected, then (T1) and (T3) both hold by Lemma 3.1. So we may
assume that G — {u, v} is connected. It now suffices to show that §(G,e) < —1 and that

if equality holds, then one of the outcomes of (T3) holds.

Claim 4.0.1. We may assume that G is simple.
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Proof. Since G — e is simple, if G is not simple, then there is exactly one edge e* parallel
with e. Let G’ be the graph obtained from G by suppressing {u, v} to an edge €.

Then n(G) = n(G’') 4+ 2 and n2(G) = n2(G’). By the inductive hypothesis, we have
§(G',€') < —i. But every even cover F' € (G, €’) gives an even cover F € £(G, e) with
the same excess, so

0(G,e) = min exc(F)—2— M
FEE(Ge) 1

G') + 12 (G') + 2

< min exc(F')—2-— n(

T OFeE(G ) 4
1
=4§(G,e)— =
(@,e) 5
< -1
Now suppose 6(G,e) = —1. Then both inequalities above are tight; in particular,
we have §(G',¢') = —%, and by the inductive hypothesis, G’ is a loop or (G',¢’) is a

balanced tight rooted -chain. If G’ is a loop then (G, e) satisfies (b) of (T3). So assume
that (G’,¢€’) is a balanced tight rooted 6-chain, and let C;, Cy denote the two chains of
(G, ¢€).

Then a pair of even covers Fy, F» where F; € £(C;, ec,) for each i € [2] gives an even
cover F € £(G,e) by combining the two cycles of F; through ec, and adding the cycle
with edge set {e, e*}, with

exc(F) — 2 = (exc(Fy) — 2) + (exc(Fz) — 2) + 2.
Since n(G) = n(Cy) + n(Cy) + 4 and na(G) = na2(C1) + na(Cs), we have

exc(G,e) < exc(Ch,ec,) + exc(Cy, ec,) + 2
n(G) + n2(G)

= f —+ 1 +5(a7601) +6(a7601)3

so 6(G,e) <1+ 8(Cy,ec,) + 6(Ca,ec,). Thus, we have 6(C;, ec,) € {—3,—1} for each
i € [2]; in other words, (G',¢’) is a near-minimal rooted 6-chain. So (G, e) satisfies (b)
of (T3). N

Claim 4.0.2. We may assume that e is not in any 2-edge-cut of G.
Proof. Suppose there is an edge e’ such that {e,e’} is a 2-edge-cut of G. Let C be
a subcubic chain of G with end edges e,e’. By Proposition 2.2 and by the inductive

hypothesis applied to (G/C, eq/¢) and (C,ec), we have

§(G,e) =6(G/C,eqic) +0(CLec) < —1.
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v

Fig. 4. Z; 96 Zs.

Moreover, if 6(G,e) = —1, then §(G/C,eq/c) = 6(C,ec) = —1%, so (G/C,eqc) and
(C,ec) are loops or balanced tight rooted #-chains and (c) of (T3) holds for (G,e). B

By Claim 4.0.2, let u;, us denote the two neighbors of u distinct from v, and let vy, vg
denote the two neighbors of v distinct from u. Moreover, there exist two disjoint paths
Py, Py from {uy,us} to {v1,v2} in G — {u,v}. We may assume without loss of generality
that the set of endpoints of P; is {u;,v;}, ¢ € [2].

Let S denote the set of all cut edges in G — {u,v}. Then each component of G —
{u,v} — S is either an isolated vertex or 2-connected.

Claim 4.0.3. For each i € [2], there is a unique component Z; of G — {u,v} — S, such
that there are three paths in G — {u,v} from Z; to {u;,v;,us—_;}, pairwise disjoint except
possibly at their endpoints in Z;, and there are three paths in G — {u,v} from Z; to
{ui, v, v3-;}, pairwise disjoint except possibly at their endpoints in Z;. See Figs. 4 and

5.

Proof. By symmetry, it suffices to prove the claim for ¢ = 1. First, we show that there is
a unique component Z; of G — {u,v} — S such that there are three paths in G — {u, v}
from Z; to {uy,v1,us}, pairwise disjoint except possibly at their endpoints in Z;. Indeed,
if there were two distinct such components Z, Z’, they are by definition separated by a
cut-edge s € S of G — {u,v}. But G — {u, v} — s has exactly two connected components,
one of which contains at least two of {u1,v1,us}, so one of Z, Z’ is separated from two
vertices of {uy,v1,us} by a cut-edge, contradicting the assumptions on Z, Z’.

Similarly, there is a unique connected component Zj of G — {u, v} — S such that there
are three paths in G — {u, v} from Z to {uy,v1,v2}, pairwise disjoint except possibly at
their endpoints in Z;. We now show that Z; = Z{. Otherwise, there is a cut edge s of
G — {u, v} separating Z; from Zj. Then the two connected components of G — {u,v} — s
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Uy u v U1

Fig. 5. Z1 = ZQ‘

each contain exactly one of {uj,v1} and exactly one of {us,vs}. But this implies that
{e, s} is a 2-edge-cut in G, contradicting Claim 4.0.2. H

There are two cases to consider: either Z; # Zy or Zy = Zs. For i € [2], let u}
/

(respectively, v}

) denote the vertex of Z; that is the endpoint of a (possibly trivial) path
in G—{u,v} from u; (respectively, v;) to Z; that is internally disjoint from Z; U Z5. Note
that u; and v} are uniquely determined. For ¢ € [2], let U; denote the unique (possibly
trivial) subcubic chain of G — {v,u3_;} with endpoints {u,u;}, and let V; denote the
unique subcubic chain of G — {u, v3_;} with endpoints {v,v}}.

Case 1: 71 # Zs.

There is a cut-edge separating Z; and Zs in G — {u, v} and there is a unique subcubic
chain Y of G — {u,v} with an endpoint z; € Z; for each i € [2], internally disjoint from
Z1U Zy. Then G is the union of Uy, Us, V1, Vo, Z1, Z5,Y, and the edge e = uv. We have,
for i,7 € [2],

n(G) = n(U1) +n(Uz) + n(Vi) +n(Va) +n(Zy + ujz1) +n(Zs + vjze) +n(Y) + 2,
n2(G) = n2(U1) + n2(U2) + n2(Vi) + na(Va) + na(Z1 + ujz1)
+ nQ(ZQ + 'U;-ZQ) + n2(7) — 2.

Suppose F € &(G,e) goes through Uy,Y, and V. Then there is a correspondence
between F' and the tuple (Fy,, Fz,, Fy, Fz,, Fv,, Fu,, Fv, ), where

o Iy, € 5(71,6111), Fy € &(Zy + uyz,ulz), Fy € 5(?,63/), Fz, € E(Zy +
vh2o,vh2), Fy, € E(Va,ey,), and
o Fy, € S(U276U2)7 Fy, € €(V176V1)'

This gives

exc(G,e) < exc(Uy, ey, ) +exc(Zy +uiz,uiz1) +exc(Y, ey) + exc(Zy + vhze, vhz)

+ exc(Va, ey, ) + éxc(Us, ey, ) + éxc(Vi, ev, )
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G G A Y
- % +0(Un,ev,) + 6(Z1 +uyz1,utz1) + (Y ey)

+ 8(Zy + vhza, vhza) + 6(Va, ev,) + 6(Ua, ewy) + 0(Vi, evs),
hence

§5(G,e) < 6(Uy,er,) +6(Z1 +ujz,uiz1) +0(Y,ey) + 6(Zy + vhzo, vhzo)

_ P - (9)
+ 5(‘/2,6\/2) + 6(U2,6U2) + 5(V1,6V1).

Similarly, by considering an even cover in £(G,e) through Us,Y, and V;, we obtain

§(G,e) < 6(Uy, er,) + 6(Zy + ubza, ubz) +0(Y, ey ) + 6(Z1 + v)z1,v)21)

o o2 272 (10)
+0(Vi,ev,) +6(Ur,ev,) +6(Va, evs,).

Now suppose §(G,e) > —1. Then

—1 < 8(Un, ery) +0(Z1 + uyz1,uiz1) +0(Y,ey) + 8(Za + vhze, vhze) + 6(Va, evy)

+0(T, ev,) +0(Vi, ev,)
(by (9))
(6 Uy, ey,) + 5(V2, ev,) + 6(Uy, er,) + 6(Vi, evl)) (by inductive hypothesis)
+0(Zy + 21, ulz1) +8(Y ey ) + 0(Za + vhze, vhz)
)+ 6(Uz,eu,) +6(Vi,en))

ey) +6(Z1 4 viz1,vi21))

( Uy, ev,) —|—5(V2,6V2
7( (Zo + 2o, uhzo) + 5(Y
+ (0(Za + uhze, ubzo) + 8(Y , ey) 4+ 0(Z1 + vi 21,1 21))
+0(Z1 +ulz1,uiz1) +0(Y, )—|—(5(ZQ+’U/222,U522)

<1+ 0(Z1 +uyz1,uyz1) + (Y, ey) + 0(Za + vhza, vh29) (by (10))
+ 0( 2y + 2o, ubze) + 6(Y, ey) + 8(Zy 4+ vy 21, v)21).

/\

“<|"

This gives

—2 < 6(Zy + uyz1,ul21) + 6(Zo + vhze, vhze) + (2o + ubza, ubz)
+0(Z1 +viz1,v121) +26(Y,ey)
S _27

since by inductive hypothesis, the all terms are each at most f% except 6(Y,ey) = 0
when Y is a trivial chain. Hence, §(G,e) = —1,

8(Z1 + uyz1,ul21) = 8(Za + vhzo,vh20) = 0(Z1 + ubza, ubzo)

1
=6(Z1 +viz1,v121) = —5
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and 6(Y,ey) = 0 (i.e., Y is a trivial chain). By Lemma 3.2, Z; and Z, are single vertices.
So for i,j € [2], 6(Z; + w)zi, ufz;) = 6(Z; 4 v)z;,v}z;) = —3. Hence, from (9) and (10),
and by the inductive hypothesis, we have

8(Ui,ev,) = 8(Vj,ev;) =0

for each 4,5 € [2], so U;,V; are all trivial chains as well. This proves that G = Ky,
satisfying (a) of (T3).

Case 2: 71 = Z>.

Let Z := Zy = Z5. Then uf, ub, v}, v} are distinct vertices (since G is subcubic and Z
is 2-connected), and G is the union of Uy, Us, V1, Vo, Z, and the edge e. Note that

n(G) = n(ﬁl) + n(@) + n(vl) + Tb(vz) +n(Z + u;vé) +2
n2(G) = na(U1) + n2(U2) + na (Vi) + na(V2) + na(Z + ujv}) — 2.

For i,j € [2], let F' € £(G,e) be an even cover through U; and V;. This corresponds
to a tuple (Fy,, Fu,, Fv,, Fv,, Fz) where

o Fy, € EUsen,), Fv, € E(Vj,ev,), Fz € E(Z + ujp}, ujv}), and
° FUS—i € E(U?)—ia eUSﬂ')’ FVS—j € E(V3—j7 €V3—j)’
which gives
exc(G, e) < exc(Us, ey,) + exc(Vj, ey,) + exc(Z + uju}, ujv))
+ e/X\C(Uv;;,i7 eUSﬂ.) + e/X\C(ngj, €V37j)
n(G) +na(G)

S e— +0(Ussev,) +6(Vj,ev,) +6(Z + UV, ujvy)

o~

+ 6(U3—i7 eUS—i) + g(‘@’_j7 €V3,j)-

Hence, for all 4, j € [2],

~ ~

5(Ga 6) < 5(ﬁ2, 6U:‘,) + 5(@7 er) + 6(2 + u;v;‘a u;v;) + 6(U3—i> 6U3—i) + 6(V3—j’ eVs—j)
(11)

We now show that §(G,e) < —%, which completes the proof of Theorem 2.4. Suppose
to the contrary that 6(G,e) > —1. Then by (11) and the inductive hypothesis,

~ ~

-1< 5(717 6Ui) + 5(717 eV]) + 6(U3—i7 eUB—i) + 5(‘/3—1’ eVS—j) + 6(Z + u;'v;'v U;U;)
(by (11))
< —(0(Ti,ev,) + 0(Vy,ev,) + 0(Tsirev,,) +6(Va_j,evy_,)) (by (T4))

/1.7 /1,7
+6(Z + ujvj, uiv;)
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o~

= —(0(T;, ev,) + 8(V;,ev,) + 6(Z +uy_vy_j,u_vh_;) + 6(Uss, ev,_,)

+0(Va—jsevy ) +0(Z + up, ujvi) + 6(Z +us_jv5_5,uz_v5_ )

<14 0(Z + upvf, upv)) + 0(Z 4+ us_yv3_5,us 05 5). (by (11))
Hence for i,j € [2],

=2 < 8(Z + iy, upvh) + 0(Z + uz_jvy_g,us_ 5 ;) (12)
On the other hand, applying Lemma 3.2 to wuj,vi,vy and v}, uj,us, we have for all
i,j € [2]

8(Z + uiv, uivy) + 8(Z + ulvhy, ujvh) < —2 and (13)

!,/

6(Z 4 uh v, uyvj) + 0(Z + upj, upv) < 2.
Now, setting ¢« = 7 = 1 and setting ¢ = 1 and j = 2 in (12), we have
—4 < §(Z + vy, uyvy) + 0(Z + usvh, usvy) + (7 + ujvy, uivy) + 6(Z + uhvy, ubvy).
On the other hand, setting ¢ = 1 and ¢ = 2 in the first inequality of (13), we have
5(Z + ujvy, uivl) + 8(Z + vl uivh) + 6(Z + ujvy, upvy) + 0(Z + usvy, ujvy) < —4.

We thus have equality everywhere. In particular, §(G,e) = —1 and we have equality in
(12) and (13), which implies that for all 7, j € [2],
6(Z + wvj, ujvi) = —1. (14)

Since Z + u;v} has at least two vertices of degree 2 (namely uj_; and v3_,), it is
not isomorphic to K4. Moreover, since Z is 2-connected, u;’U; is not contained in any
2-edge-cut in Z + ujv}. So each (Z + ujv}, ujv}) satisfies (b) or (d) of (T3).

We claim that ujv} ¢ F(Z) for all i, j € [2] (hence (Z+ujv}, ujv}) satisfies (d) of (T3)).
For, suppose without loss of generality that vjv] € F(Z). By the inductive hypothesis,
(b) of (T3) holds for (Z+ujv], ujv]), so suppressing {u}, v} in Z to an edge e’ results in
a graph Z’ such that (Z’,€’) is a near-minimal rooted #-chain. Let C;, Cs denote the two
chains of (Z', €’). Assume without loss of generality that v, € V(Cy). Since v} has degree
2 in Z, it is in the interior of C4, and this implies that Z — {u},v}} is connected and
vhuy ¢ E(Z). Then (Z 4 ufvh, ujvh) satisfies (d) of (T3), which implies that Z — {u}, v}
is disconnected, a contradiction.

It follows that (Z + ujvj, ujv}) satisfy (d) of (T3) for all i,j € [2], so (Z + ujvj, ujv})
is a rooted #-chain for all 4, j € [2]. Consider the rooted §-chain (Z + ujvi, ujv]). Since
(Z 4 ujvh, ujvh) (respectively, (Z + ubv], ubv))) is a rooted O-chain, {vh} (respectively,
{ub}) is a block in one of the chains of (Z + ujv],ujv]). Let C; denote the subcubic
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chain of Z with end points {u],v]} not containing v4, and let Cy denote the subcubic
chain of Z with end points {uf, v5} not containing vj. Let D denote the subcubic chain
of Z with end points {v],v5} not containing wj.

Then for j € [2], n(Z+ujv}) = n(C1)+n(Cs)+n(D)+3 and ny(Z +u)v}) = ny(Ch)+
n2(C2) +ng(D)+ 1. Thus for each j € [2], by forming an even cover in £(Z +ujv}, ujv))

o~

using even covers from £(Cj, ec,), £(D, ep), and E(Cs5_j, ec,_,), we obtain
8(Z + s, uiv) < 14 8(Cec,) + (D, ep) +8(Cs—y, ey, )-

Adding these two inequalities and using (14), we have

o~

0<8(Ch,ec,) +0(Cr,ec,) +28(D,ep) + 6(Ca, ec,) + 0(Ca, ec,)
< 25(E, ED)

by (T4) applied to (Cj, ec,). It follows that D is a trivial chain, and vjv} € E(Z).

By symmetry, uju)y € E(Z). Thus, {uju), v1vh} is a 2-edge-cut in Z. Let Dy, Dy denote
the connected components of Z — {ujuf,vjvs} and (by relabeling u},uf if necessary)
assume uj, v € V(D) for i € [2]. Then for i,j € [2], n(Z + ujv},ujv}) = n(Dy,ep,) +
n(Dz,ep,) +4 and na(Z +ujv}, uiv}) = na (D1, ep, ) +n2(Da, ep,) +2. Thus, by forming
an even cover in £(Z +ujv}, ujv}) using even covers from €(Dy, ep, ) and E(Ds_r, €Ds_1)
for k € [2], we get

iV50

3 o ~—
§(Z + wjv), ujvy) < —5t 0(Dk,ep,) +0(Ds—ks ;)

Adding these two inequalities and using (14) and (T4), we have

~

1 <8(Dr.ep,) +0(Dr,ep,) +8(Da,ep,) +5(Dayen,) <0,
a contradiction. This completes the proof of Theorem 2.4.
5. Extremal examples

In this section, we give a structural characterization of the extremal examples of
Theorem 1.1. Recall that for a subcubic graph G and any edge e € E(G), we have

exc(G) = min{exc(G, e) + 2, éxc(G,e)}

= M +min{§(G,e) +2, 5(G,e)}.

So if either §(G,e) < —3 or S(G,e) < 1 for any edge e € E(G), then exc(G) <
M + 3. It follows that exc(G) = M + 1 (equivalently, tsp(G) =

Inl@)Hn2(G) 1) if and only if (5(G,e),d(G,e)) = (—1,1) for all e € E(G).



M.C. Wigal et al. / Journal of Combinatorial Theory, Series B 158 (2023) 70-104 93

v @ —

Fig. 6. The ¢-operation.

Proposition 5.1. Let G be a simple 2-connected subcubic graph and let e be an edge of G.

o~

Then (§(G,e),d(G,e)) = (—1,1) if and only if either G = K4 or G is a minimal 0-chain.
Proof. Suppose (6(G, e),éA(G, e)) = (=1,1). Since §(G, e) = —1, one of the four outcomes
of (T3) holds. If G = K, then we are done. Since G is simple, (b) of (T3) cannot occur.
Moreover, (d) of (T3) does not hold; otherwise, (G, e) is a simple rooted 6-chain and, by
Lemma 3.1 (ii), S(G,e) < 34+6(C1,ec,) + 6(Ca,ec,) < 1/2, a contradiction.

Thus (c) of (T3) holds: there exists ¢’ € E(G) such that {e, e’} is a 2-edge-cut in
G and suppressing either subcubic chain C' of G with end edges e, ¢’ yields a loop or a
balanced tight rooted 6-chain (G/C,eq/c). Let C be a subcubic chain of G with end
edges e, ¢’. Then by Proposition 2.2 and (T4),

—1=0(G,e) = 8(G/Creqc) +6(Cec) < —(8(G/C,eqio) +0(C,ec))

=—0(G,e) = —1.
This implies that (§(G/C,eq/c),0(G/Creqsc)) = (3(C,ec),d(Crec)) = (~1,1), and
thus (C,ec) and (G/C, eg)c) are minimal rooted #-chains (by Lemma 3.1 (iii)). There-
fore, by definition, G is a minimal f-chain (since it is the internally disjoint union of C'
and the two chains of (G/C,eq/c), all of which are minimal). O

To give an alternate structural characterization of minimal (rooted) #-chains, we now
describe an operation introduced in [8]. Let H be a graph and v € V(H) be a vertex
of degree 2. A o-operation on H at v deletes v from H, adds a 4-cycle D disjoint from
H — v, and adds a matching between the neighbors of v and two nonadjacent vertices in
D. See Fig. 6. We say that a graph is H-constructible if it can be obtained from H by
repeated ¢-operations.

It is observed in [8] that after each o-operation, the excess of the new graph increases by
1 and the new quantity %”2(61) also increases by 1. We will consider K5 s-constructible
graphs and K -constructible graphs, where K is the graph obtained from the complete
graph K4 by removing an edge. Note that exc(Ks3) = w + 1; thus, if G is

K> 3-constructible then exc(G) = w + 1.

Proposition 5.2 (Dvorik et al. [8]). Let G be a simple 2-connected subcubic graph. If

~

G = K4 or G is Ks 3-constructible, then (6(G,e),d(G,e)) = (—1,1).
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We show that the converse of Proposition 5.2 is also true, thereby giving a structural
characterization of the extremal graphs for Theorem 1.1. First, we have an observation
similar to Proposition 5.2. The center of K, is the edge whose endpoints both have
degree 3.

Proposition 5.3. Let (G,e) be a simple minimal rooted O-chain. Then G is K -
constructible, with the edge e corresponding to the center of K .

~

Proof. By (T1) and Lemma 3.1 (iii), (6(G,e€),6(G,e)) = (—%,1). Let C; and C; be
the chains of (G, e). By the definition of a minimal rooted 6-chain, for each ¢ € [2], we
have (6(C, ec,),8(Cs,ec,)) = (—=%,1), so (Ci,ec,) is either a loop or a minimal rooted
f-chain by ((T1)) and Lemma 3.1. If (Cj,ec,) is not a loop, then by induction, it is
K -constructible with ec, corresponding to the center of K . It follows that (G,e) is

K, -constructible with e corresponding to the center of K, . O
Proposition 5.4. Let G be a simple minimal §-chain. Then G is Ky 3-constructible.

Proof. By definition, there exists a choice of three chains C4,Cs,C5 of G with com-
mon endpoints such that G is the internally disjoint union C; U Co U C3, and we have
(6(Ci,ec,), 0(Cyeq,)) = (—1,1) for each i € [3]. If G = K> 3, then we are done. So we
may assume without loss of generality that (C7,ec,) is not a loop. Then it is a minimal
rooted f-chain by Lemma 3.1, and by Proposition 5.3, it is K, -constructible with the
edge ec, corresponding to the center of K, . On the other hand, (G/C1,eq/c,) is by
definition a minimal rooted #-chain, so it is also K, -constructible by Proposition 5.3,
with eg /¢ corresponding to the center of K . It follows that G is K3 3-constructible. O

We thus have the following characterization of the extremal examples of Theorem 1.1.

Theorem 5.5. Let G be a simple 2-connected subcubic graph. Then exc(G) < er
1, with equality if and only if either G = K4 or G is Ka 3-constructible.

Proof. Let e € E(G). If §(G,e) < —3 or 5(G,e) < 1, then exc(G) < w + 3.
Otherwise, we have (§(G, e), g(G, e)) = (—1,1), or equivalently, exc(G) = M +1.
Now if G = K4 or G is K3 g-constructible, then (§(G, e),g(CLe)) = (—1,1) by Propo-
sition 5.2. Conversely, if (§(G,€),0(G,e)) = (=1,1), then by Propositions 5.1 and 5.4,
either G = K, or G is K 3-constructible. O

6. Algorithm

We now provide an algorithm for finding a TSP walk of length at most w -1
in any simple 2-connected subcubic graph G. This is achieved by following the proof of
Theorem 2.4 to construct an even cover F of G with exc(F) < w -+ 1. As noted

by Dvofak et al. [8], modifying this even cover to our desired TSP walk takes linear time.
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In the proof of Theorem 2.4, we often have a choice of routing a cycle through certain
subcubic chains and not through others. For each such chain C, we “save” §(C,ec) by
going through C' and incur a “cost” 3(6, ec) by not going through C. The key idea
of Theorem 2.4 is that these costs and savings are (at worst) balanced, i.e. §(C,ec) +
3(6, ec) <0.0f course, for a given subcubic graph G and an edge e, we cannot efficiently

compute 0(G, e) and §(G, e) exactly (unless P=NP). Instead, we compute “worst-case”
estimates

(A(G.0),AGe) € {(=3.3). (-1.1), (3. 8)}
such that (6(G, e),g(G,e)) < (A(G,e),E(G,e)) (coordinate-wise).

The natural approach would be to determine exactly when §(G,e) = —3 or S(G €)=
% using our characterization of the extremal examples in Theorem 2.4, and assign
(A(G,e),E(Gﬂe)) = (—3,3) or (—2,3) respectively (and assign (—1,1) in all other
cases). To check whether (G,e) is a minimal rooted #-chain (for example), we would
need to first check that it is a rooted #-chain (which takes linear time) and then recur-
sively check that each of its two chains are also minimal, taking quadratic time overall.
This approach would result in a cubic algorithm to produce the desired even covers.

It turns out that a much simpler linear-time estimate is sufficient, and yields a
quadratic-time algorithm to find the desired even covers. Indeed, by Lemma 3.1, if
(G, e) is a rooted #-chain (regardless of whether it is tight or balanced), then we have
(6(G,e), S(G, e)) < (—1%,1). And by Lemma 3.3, if G — e is simple and 2-connected and
(Gu, fu) is a rooted #-chain (where G, is obtained from G — e by suppressing an endpoint
u to an edge f,), then we have (§(G, e),g(G, e) < (-3,3).

We thus define an algorithm Scan(G, e) to estimate (§(G,e), g(G, e)) as follows. If G

is a loop or G — e is 2-connected, Scan(G, ) will assign

(—=%,3) if (G,e) is a loop or a rooted f-chain,
(A(G,e),A(G,e)) = (—=2,2) if (Gu, fu) is a rooted 6-chain,
(=1,1) otherwise.

If G —e is not 2-connected (and it is not a loop), then (G, e) can be written as the closure
(C,ec) of a subcubic chain C = zegBye; - - - e,_1 Brexy such that k > 2 (if k = 1, then
G —e = C —ec is 2-connected or an isolated vertex). In this case, our estimate on (G, e)
will be the sum of the estimates of the chain-blocks (B;,ep,) of C:

~

k
(A(G,e),A(G,e)) = > (A(Bi,ep,), A(Bi,ep,)).

=1

For the remainder of this section, given a 2-connected subcubic graph G and an edge
e = uv € E(G) such that G — e is simple and has no cut-vertex, we let uy, us denote the
two neighbors of u not equal to v, and denote by G, the graph obtained by deleting e
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and suppressing v to an edge f, = ujus. Note that computing G,, and f,, takes constant
time. To resolve ambiguities in the choice of the vertex u in the edge e = uv (in the case
where E(G7 e) = 3), we fix a linear ordering < of the vertices throughout, and assume
that u <.

Proposition 6.1. Let G be a subcubic graph and let e = uwv € E(G) such that G — e is
simple. Then 6(G,e) < A(G,e) and 6(G,e) < A(G,e).

Proof. First suppose G is a loop or G — e is 2-connected. If (G, e) is a loop or a rooted 6-
chain, then by Lemma 3.1, (§(G,e),(5(G, e)) < (—%, %) (A(G,e), ﬁ( e)). If (Gu, fu)
is a rooted f-chain, then by Lemma 3.3, (6(G, €), (G, e)) < (—%, 3) = (A(G,e), A(G, e)).
Otherwise, by Theorem 2.4, we have (6(G,¢),3(G,e)) < (—1,1) = (A(G, ), A(G, e)).
Now suppose G — e is not 2-connected. Then we can write (G, e) as the closure (C, ec)
of a subcubic chain C' = zegBie; - - - ex_1Brery where k > 2. By Proposition 2.1 and by

induction, we have

k k
(8(C,ec),0(Crec)) =Y (8(Bisen,),8(Bien,)) < > (A(Bi,en,), A(Bi,en,))

i=1 i=1

= (A(G,e),A(G,e)). O

Checking whether (G, e) is a rooted 8-chain is equivalent to checking whether G—{u, v}
is disconnected, which can be done in linear time. More generally, we can determine the
block structure of graphs with a depth first search (DFS) in O(n(G) + |E(G)|) time (e.g.
[6]), which is O(n(G)) when G is subcubic.

Algorithm 1: Scan(G, e).
Input : A loop or a 2-connected subcubic graph G and e = uv € E(G) such that G — e is simple
Output: A half integral vector (A(G, e), A(G e) e{(—-%1, 1), (-1,1),( )}
if G — e has a cut-vertex then
Write (G, e) as the closure (C, ec) of a subcubic chain C = xzegBje; - - - ex—1Brery;
return Y_%_, Scan(B;, eg,);
if G —{u,v} is disconnected or G is a loop then
| return (—3%,1);
else if G, — {u1,u2} is disconnected then
| return (—5, 2);
else
| return (—1,1);

© X gD A W N =

Proposition 6.2. Scan(G, e) can be computed in O(n(G)) time.

Proof. If Scan(G, e) returns on lines 5, 7, or 9, then it performs at most three depth first
searches, thus requiring O(n(G)) time. Now suppose Scan(G, e) returns on line 3; that
is, (G, e) is the closure of a subcubic chain C = xegBjey - - - ep_1 Brepy where k > 2. For
all i € [k], B; — ep, is either 2-connected or a single vertex, so Scan(B;,ep,) will not
execute line 2. Thus Scan(G, e) requires a depth first search on an input of size n(G) on
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line 1 and at most three depth first searches for each B;, i € [k]. As Zle n(B;) < n(G),
we have that in all cases, Scan(G, e) requires O(n(G)) time. O

We will define two algorithms EC(G, e) and EC(G, e) which will return an even cover
F in £(G,e) and E(G,e) respectively such that exc(F) < w + A(G,e) + 2
and exc(F) < M + E(G, e) respectively. For convenience, we wrap these two
algorithms in a main algorithm Algo with preprocessing to handle the base case (where
(G,e) is a loop) and the case where G — e is not 2-connected.

Algorithm 2: Algo(G, ¢, flag).
Input : A loop or a 2-connected subcubic graph G and e € E(G) such that G — e is simple, and a
binary input flag
Output: F' € £(G, e) such that exc(F) < M + A(G, €) + 2 (if flag == true) or F € £(G, e)
such that exc(F) < % + A(G, e) (if flag == false)
if G is a loop then
if flag == true then
| return ' = G,
else
| return F =G — ¢;
if G — e is not 2-connected then
Write (G, e) as the closure (C, ec) of a subcubic chain C = zegBie1Ba ... ex_1Brery;
Let F; = Algo(B;, ep,, flag) for all i € [k];
if flag == true then
| return F = Uf=1(F1 —ep,)te+{e:iek—1]}
else
| return F = Ule Fy;
Let (A, 3) = Scan(G, e);
if flag == true then
| return F =EC(G,e, A);
else
| return F = EC(G, e);
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For the remainder of the section, we let fy1g, : N — N denote a superadditive function
(i.e. fargo(n1) + fargo(n2) < fargo(n1 + n2) for all ny,ny € N) such that Algo(G, e, flag)
takes at most fago(n) steps on inputs of size at most n. We will show in the end that
we can take fugo(n) = O(n?).

We now give the algorithm EE(G, e) used in line 17 of Algo(G, e, flag), which produces
an even cover F € £(G,e) with exc(F) < w + A(G,e). Recall that (G, f.) is
obtained from G and e = uv by deleting e and suppressing u to an edge f, = ujus.

Algorithm 3: EC(G, e).
Input : A subcubic graph G and e = uwv € E(G) such that G — e is simple and 2-connected
Output: An even cover F' € E(G, e) with exc(F) < M + A(G, e) where
A(G, e) = Scan(G, e)2
1 Let F' = Algo(Goy, fu, true);
2 return F = (F' — f,) + {u} + {u1u, uua};

Proposition 6.3. Suppose Algo is correct on inputs of size less than n. Then EC is correct
and takes fago(n — 1) + O(1) time for all inputs of size less than or equal to n.
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Proof. We clearly have F € £(G, e). We claim that A(Gy, fu)+2 < A(G7 e). Ifﬁ(G, e) =
3, there is nothing to prove (since A < —1). If AA(G, e) =1, then (G, f.) is not a rooted
f-chain, so A(Gy, fu) < —1. Finally, suppose A(G,e) = %. Then (G, e) is a rooted 6-
chain. This implies that (G, f.) is the closure (C,ec) of a subcubic chain C' with at
least three blocks, so A(Gy, fu) = A(C,ec) < —3. It follows that

(G) +12(G)

_ N n(G) + n(G)
exc(F) = exc(F') < 1 Sl RN

1 +A(G,e).

T A(Gu, fu) +2 <

For the time complexity, note that Algo is called only once on (G, f,), which takes
Ja1go(n(Gy)) = fargo(n — 1) time. The remaining lines require constant time, thus EC
runs in fugo(n — 1) + O(1) time. O

We now give the algorithm EC(G, e, A) in line 15 of Algo, which produces an even cover
F € £(G,e) such that exc(F) < M + A(G, e) + 2. For clarity of presentation,
we split the algorithm into three cases depending on the value A. We first describe the
case A = —1.

. K 1

Algorithm 4: EC(G, e, —5).

Input : A subcubic graph G and e = uv € E(G) such that G — e is simple and 2-connected, and
A(G,e) = —3 (i.e. (G,e) is a rooted 0-chain)

Output: An even cover F € £(G, e) with exc(F) < %jlz(g) +3

Determine the subcubic chains C; and Cz of (G, e) with a DFS;

Let (A(Cy), A(C’l)) = Scan(C1, ec,) and let (A(Ca), A(C3)) = Scan(Cy, ec,);

Relabel if necessary so that A(Cy) + 3(02) < 0;

Let Fy, = Algo(Cy, ec,,true) and Fp = Algo(Ch, ec,, false);

Let v’ be the neighbor of v in C; and let u’ be the neighbor of w in Cy;

return F = (F1 —ec,) U Fo + {u, v} + {v'u, uv,vv’};

[= 3 T ORI R

Proposition 6.4. Suppose Algo is correct on inputs of size less than n = n(G). Then
EC(G,e,—1) is correct and takes frigo(n—1)~+O(n) time for all input graphs of size less
than or equal to n.

Proof. For correctness, first note that the relabeling step on line 3 is always possible as
A(C;) = —A(C;) for i € [2]. Since n(G) = n(Cy) +n(C2) + 2, n2(G) = na(C1) +na(Cy),
and exc(F) = exc(F1) + exc(F), we have

exc(F) = exc(Fy) + exc(Fy)

n(C1) 2712(01) n
n(G) +ns(G) 3

<2
- 4 Jr2

For the time complexity, line 1 requires O(n) time. By Proposition 6.2, line 2 re-
quires O(n(C1)) + O(n(C2)) = O(n) time. By induction, line 4 takes faigo(n(C1)) +
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[11g0(n(C2)) < fargo(n — 1) time. Thus, in total, EC(G, e, —3) takes fugo(n — 1) + O(n)
time of inputs of size n. O

Before we handle the analysis of EC(G, e, —1), we first give an important subroutine
which is an algorithmic version of Lemma 3.2.

Algorithm 5: Subroutine(Z, u, vy, v2).

Input : A simple 2-connected subcubic graph Z and distinct vertices u, vy, v2 of degree 2 in Z
Output: F' € £(Z + uv;, uv;) for some i € [2] with exc(F) < w +1
For each 1 € [2], let (A“Al) = Scan(Z + uv;, uv;);
if A; < —1 for some i € [2] then
| return F = Algo(Z + uv;, uv;, true);
Let C;,1, C;,2 denote the two subcubic chains of (Z + wv;, uv;), i € [2];
Let (A(Cs,5), A(Cy ;) = Scan(Ch, ec, ) for 4,7 € [2];
Relabel if necessary so that A(Cq,1) + 5(0112) <-%
Let F1 = Algo(C1,1,ec,,,true) and Fp = Algo(C1 2, ec, ,, false);
Let u’ be the neighbor of u in C1,1 and v’ be the neighbor of v; in Ci,1;
return F = (F1 — ec,,) U Fa + {u, v} 4+ {v/u, v, v1v'};

© o NS WA W N e

Proposition 6.5. Suppose Algo is correct for all inputs of size less than or equal to n =
n(Z). Then Subroutine is correct and takes fago(n) 4+ O(n) time for all inputs of size
less than or equal to n.

Proof. We first analyze correctness. If we return on line 3, by correctness of Algo, we
have exc(F) < "(Z+uvi)zn2(z+uvi) + 1. So assume A; = A(Z + uv;, wv;) = —1 for both
i € [2]. Thus both (Z + uv;, uv;) are rooted #-chains, which implies that vs_; is a trivial
block in one of the chains C; 1 and Cj; 2. This then implies that A(C; 1) # A(C;2) for
some ¢ € [2]. Thus the relabeling step on line 6 is always possible.

Now consider the even cover F returned on line 9. As n(Z+uvy) = n(Ci 1)+n(Ch2)+2,
ng(Z + U’Ul) = ng(C’l’l) + n2(01’2), and A(Cl,l) + A(Cl,Z) S —%, we have
exc(F) = exc(F1) + exc(F)

_ (@) + na(Ci) Ciz) +n2(C12) | R

- - +AC) +2+ " 4 Fal)
Z 4 1) +A(Crs

. n(Z + uvy) J;TM( + uv) +A(C11)+ A(Cr2) + g

- n(Z + uvy) ZW(Z ) Ly

For the time complexity, as n(Ci,1) + n(Ci,2) < n, lines 3 and 7 both take at most
fa1go(n) time. Furthermore, by Proposition 6.2, the remaining lines require O(n) time.
Since we call exactly one of line 3 or 7, Subroutine(Z,u,vi,v2) takes fago(n) + O(n)
time. O

We are now ready to present EC(G, e, —1).
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Algorithm 6: EC(G, e, —1).
Input : A subcubic graph G and e = uv € E(G) such that G — e is simple and 2-connected, and
A(G,e) = —1.
Output: F' € £(G, e) with exc(F) < "(G)ZA +1

1 Let Z; and Z3 be the blocks (or single vertices) of G — {u, v} as defined in Claim 4.0.3;
2 Define vertices u;, ug, vj,v;. and subcubic chains U;, V; for ¢, j € [2], as in the proof of Theorem 2.4;
3 Let (A(Us), A(U:)) = Scan(Us, e,) and (A(V;), A(V;)) = Scan(Vj, ev,) for 4, € [2];
4 if Z1 # Z5 then
5 Relabel vertices as necessary so that A(Uy) + A(V2) + A(UQ) + A(Vl) < 0;
6 Let Z =7, U ZyUY, where Y is the subcubic chain from Z; to Zs;
7 Let Fy, = Algo(Uy, ey, ,true), Fy, = Algo(Vz, ev,, true), Fy, = Algo(Us, ey, , false),
Fy, = Algo(Vi, ev,, false), and Fz = Algo(Z + u) v, u)v), true);
8 return F = (Fy, —ey,) U (Fv, — ev,) U Fy, U Fy, U (Fz — ujv)) + {u, v} + {uru, uwv, vva };
9 else
10 Relabel vertices as necessary so that A(Uy) + A(V;) + A(Ug) + A(V;;_i) <0 for: € [2];
11 Let Fz = Subroutine(Z1,u}, v}, v5);
12 Relabel so that ujv) € Fz;
13 Let Fy, = Algo(Uy, ey, , true), Fy, = Algo(Vz, ev,, true), Fy, = Algo(U_g,eUZ,false), and
Fv, = Algo(Vi, ev,, false);
14 return F = (Fz — ujvh) U (Fy, —eu,) U (Fy, —ev,) U Fu, U Fy, + {u, v} + {u1u, uv, vua };

Proposition 6.6. Suppose Algo is correct on all inputs of size less than n = n(G). Then
EC(G, e, —1) is correct and takes fargo(n — 1) 4+ O(n) time for all inputs of size less than
or equal to n.

Proof. The proof of correctness follows the same structure of Section 4. The existence
of Z; and Z, follows from Claim 4.0.3, and they can be determined from the block
structure of G — {u,v} in linear time. As A(U;) = fﬁ(Ui) and A(V;) = fﬁ(Vi) for
i € [2], the relabeling on lines 5 and 10 are always possible. Furthermore, regardless of
whether Z, # Z5 or Z, = Z5, we have

o exc(F)—2 = (exc(Fy,) —2) + (exc(Fy,) — 2) + exc(Fy, ) + exc(Fy, ) + (exc(Fz) — 2),
e n(G) =n(Uy) +n(Va) + n(Usz) + n(V1) + n(Z + ujvh) — 2, and
o n2(G) = na(Uh) + n2(Va) + n2(Uz) + n2 (Vi) + na(Z + ujvh) + 2.

By induction, we have exc(Fy,) — 2 < M + A(Uy), exc(Fy,) — 2 <

”(72)-27&(72) + A(Vz)7 eXC(FU2) < n(Uiz)-ZM(Uiz) + ﬁ(Uz), and eXC(Fvl) < H(W)an(vﬂ +

~

A(V1). We argue now that in both cases we have

n(Z + ujvh) + no(Z + ujvh)

exc(Fz) —2 < 1

~1. (15)

If Zy, = Zs, this follows from Proposition 6.5. If Z; # Zs, then (Z + u)vh, ujv}) is the
closure of a subcubic chain with at least two blocks, namely Z; and Z5. By induction on
its chain-blocks, we have

n(Z + ujvh) + no(Z + ujvh)
4

exc(Fz) —2 < + A(Z + ujvh, ujvh)
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n(Z + ujvh) + no(Z + ujvh)
- 4

-1

and (15) holds in both cases. Thus,

exc(F) — 2 = (exc(Fy,) — 2) + (exc(Fy,) — 2) + exc(Fy,) + exc(Fy, ) + (exc(Fz) — 2)
< n(G) + n2(G)
- 4
n(G) +na(G)
4

+ AU + A(V2) + A(U2) + AV) + AZ + urvh, ujuy)
< —1.

For the time complexity, note that we only call Algo and Subroutine on inputs whose
sizes sum to less than n. As the remaining lines require O(n) time by Proposition 6.2,

we have that the entire algorithm requires faig0(n — 1) + O(n) time. O

We now present the final case for EC.

Algorithm 7: EC(G, e, —3).

Input : A subcubic graph G and e = uv € E(G) with G — e is simple and 2-connected, and
A(G,e) = —3 (i.e. (Gu, fu) is a rooted 9-chain)
Output: F € £(G, e) w1th exc(F) < W +1
Let C1 and Cy denote the chains of (Gu, fu) with common endpoints f, = {u1,uz} and v € V(C1);
Let z; € V(C2) be the neighbor of u,; for i € [2];
Write Cl = ’U.leoBl PPN ek_lBkekuz;
Let £ € [k] be the unique index such that v € V(By);
Let v’ denote the endpoint of e,_; in By, and let v’’ denote the endpoint of e, in By;
Let D; and Ds denote the chains of C; with end points {u;, v’} and {v"', us} respectively;
For ¢ € [2], let (A(D;), A(Dl)) = Scan(D;, ep,);
Relabel if necessary so that A(D1) + A(DQ) < 0;
Let F» = Algo(Cq, ec,, true), Fp.1 = Algo(D1, ep,, true), Fp » = Algo(Ds, ep,, false), and
Fy = Algo(By + v'v, v v, true);
return
= (F2 —ec,) U(Fp,1 —ep,) UFp2 U (Fr —v'v) + {u,ur,uz} + {eo, er—1, u1T1, uv, uusz, usxa };

LI == B NECCR TR

—
o

Proposition 6.7. Suppose Algo is correct for all inputs of size less than n = n(G). Then
EC(G,e,—32) is correct and takes faigo(n — 1)+ O(n) time for all inputs of size less than
or equal to n.

Proof. We first analyze the correctness of the returned even cover F. By induction, we
have that exc(Fy) < M + A(Cs) + 2, exc(Fp1) < M + A(Dy) + 2,
exc(Fpa) < 7L(D72)++(D2 +A(D2), and exc(Fy) < n(Betv! ”H"Q(BHU v) +3. As exc(F) —

2 = (exc(Fy) —2) + (exc(Fp1) —2) +exc(Fp 2) + (exc(Fy) — 2), n(G) = n(C’g) +n(Dy) +
n(Dg) +n(By +v'v) + 3, and n2(G) = na(Ca) +n2(D1) +n2(Da) +no(Be +v'v) — 1, we
have

exc(F) — 2 = (exc(Fz) — 2) + (exc(Fp,1) — 2) + exc(Fp,2) + (exc(Fr) — 2)

gﬂghfﬁg—%+Aww+Awn+ﬁwﬂ+AwHw%VW
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< n(G) +na2(G) 3
— 4 27
since A(C3), A(Bg + v'v,v'v) < —5 and A(Dq) + K(Dg) < 0. Thus exc(F) satisfies our

desired bound.

1
2

For the time analysis, as we only call Algo on inputs whose sizes sum to less than n,
line 9 takes at most fa1g,(n) time. Furthermore, by Proposition 6.2, the remaining lines
require O(n) time. Thus, EC(G, e, —32) takes fugo(n — 1) + O(n) time. O

To summarize, we have the following.
Corollary 6.8. Algo is correct and takes O(n?) time.

Proof. We show inductively that we can take faigo(n) = O(n?). First note that lines 1-5
take constant time. Line 6 takes linear time to check, and if executed, lines 7-12 take
O(n) + X1 fuago(n(B7)) < O(n) + S, O(n(B;)?) = O(n?).

Line 13 take linear time by Proposition 6.2, and in lines 14-17, we execute exactly one
of EC(G, e, A) and EC(G, e), which takes fago(n — 1) + O(n) time by Propositions 6.3,
6.4, 6.6, and 6.7. It follows that we can take faigo(n) = O(n?). O

Corollary 6.9. Given a simple 2-connected subcubic graph G, we can find an even cover
F of G with exc(F) < M + 1 in quadratic time.

Proof. Pick an arbitrary edge e € E(G). Run Algo(G, e, true) and Algo(G, e, false). One
n(G)an(G) +1. O

of the returned even covers will have excess at most
Let us now complete the proof of Theorem 1.1, restated here for the reader’s conve-

nience.

Theorem 1.1. Let G be a 2-connected simple subcubic graph. Then tsp(G) < w—

1. Moreover, a TSP walk of length at most w — 1 can be found in O(n(G)?)

time.

Proof. By Corollary 6.9, we can find an even cover F of G with exc(F) < M +1
in quadratic time. Then by Proposition 1.2, we can convert F to a TSP walk of length
exc(F) -2+ n(G) < w — 1 in linear time. O

If the input graph G is cubic (i.e. no(G) = 0), then Theorem 1.1 finds a TSP walk of

% — 1 in quadratic time. Since every TSP walk trivially has length

length at most
at least n(G), this gives a %—approximation algorithm for TSP walks in 2-connected
cubic graphs. For general subcubic graphs, Theorem 1.1 finds a TSP walk of length at
most %n(G) which trivially yields a %—approximation algorithm. The bound gets better
for subcubic graphs with fewer vertices of degree 2; for example, if ny(G) < %n(G)7

then Theorem 1.1 yields a TSP walk of length at most %n(G). We suspect that refining
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the ideas developed in this paper could lead to another %—approximation algorithm for
subcubic graphs, matching the current best ratio by Momke and Svensson [17], and
possibly beyond.
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