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We prove that every simple 2-connected subcubic graph on 
n vertices with n2 vertices of degree 2 has a TSP walk of 
length at most 5n+n2

4 − 1, confirming a conjecture of Dvořák, 
Král’, and Mohar. This bound is best possible; there are 
infinitely many subcubic and cubic graphs whose minimum 
TSP walks have lengths 5n+n2

4 − 1 and 5n
4 − 2 respectively. 

We characterize the extremal subcubic examples meeting 
this bound. We also give a quadratic-time combinatorial 
algorithm for finding such a TSP walk. In particular, we 
obtain a 5

4 -approximation algorithm for the graphic TSP on 
simple cubic graphs, improving on the previously best known 
approximation ratio of 9

7 .
© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The famous Traveling Salesperson Problem (TSP) asks for a spanning cycle of mini-
mum length in an edge-weighted complete graph. It is not possible to approximate the 
TSP within any constant factor of the optimum unless P = NP ; otherwise, one could 
solve the Hamiltonian cycle problem, one of Karp’s original NP-complete problems [13]. 
An important special case which admits a constant factor approximation is the metric 
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TSP in which the edge weights form a metric, a natural assumption for many applica-
tions. A further specialization of the metric TSP is the graphic TSP in which the edge 
weights form the distance function in some underlying connected graph G on the same 
vertex set. This is equivalent to finding a spanning closed walk (a TSP walk) in G with 
the minimum number of edges. Let us denote this minimum length by tsp(G).

The graphic TSP still contains the Hamiltonian cycle problem, and is thus NP-hard to 
solve exactly. On the other hand, Christofides [5] and independently Serdyukov [20,21]
gave a 3

2 -approximation for the metric TSP in 1976 and 1978 respectively. For many 
years, this had remained the best approximation ratio for any nontrivial special case of 
the metric TSP. The first improvement to this ratio was made in 2005 by Gamarnik, 
Lewenstein, and Sviridenko [9] who gave a (3

2 − 5
389 )-approximation algorithm for the 

special case of the graphic TSP on 3-connected cubic graphs (a graph is cubic if all 
of its vertices have degree 3). Following this result, Gharan, Saberi, and Singh [10]
gave a (3

2 − ε)-approximation algorithm for the general graphic TSP. Then Mömke and 
Svensson [17] gave a novel approach for a 1.461-approximation algorithm for the graphic 
TSP, which was shown to be in fact a 13

9 -approximation by Mucha [18]. Later, Sebő and 
Vygen [19] presented a new algorithm for an improved 7

5 -approximation for the graphic 
TSP. For the metric TSP, the 3

2 ratio was only very recently improved by Karlin, Klein, 
and Gharan [12] to (3

2 − ε) for some constant ε > 10−36.
A further special case of the graphic TSP, namely on subcubic graphs, has received 

significant attention (a graph is subcubic if all of its vertices have degree at most 3). 
Subcubic and cubic graphs are among the simplest classes of graphs which retain the 
inapproximability of the metric TSP; the general metric and graphic TSPs are NP-
hard to approximate within a 123

122 and 185
184 -factor of the optimum respectively [14,16]. 

Even when restricted to subcubic and cubic graphs, it remains NP-hard to approximate 
within a 685

684 and 1153
1152 -factor respectively [15]. Furthermore, subcubic graphs are known 

to exhibit the worst-case behavior in the well-known “4
3 -integrality gap conjecture” from 

the 80’s (see [11]), which asserts that the standard “subtour elimination” linear program 
relaxation for the metric TSP has an integrality gap of 4

3 . This 4
3 -integrality gap can be 

asymptotically realized by a family of subcubic graphs (e.g. [2]).
Note that a polynomial-time constructive proof of the 4

3 -integrality gap would yield 
a 4

3 -approximation algorithm. Motivated by this, Aggarwal, Garg, and Gupta [1] gave a 
4
3 -approximation for 3-connected cubic graphs. This approximation ratio was extended 
to 2-connected cubic graphs by Boyd et al. [3], and to 2-connected subcubic graphs by 
Mömke and Svensson [17]. The 4

3 ratio was then slightly improved for cubic graphs to 
(4
3 − 1

61326 ) by Correa, Larreé, and Soto [7] and independently to (4
3 − 1

8754 ) by Zuylen 
[22], which was further improved to 1.3 by Candráková and Lukot’ka [4], and later to 9

7
by Dvořák, Král’, and Mohar [8].

Let G be a simple 2-connected subcubic graph. We write n(G) to denote the number 
of vertices in G, and n2(G) to denote the number of degree 2 vertices in G. Dvořák, Král’, 
and Mohar [8] showed that G has a TSP walk of length at most 9n(G)+2n2(G)

7 − 1. They 
also constructed infinitely many subcubic (respectively, cubic) graphs whose minimum 
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TSP walks have lengths 5n(G)+n2(G)
4 − 1 (respectively, 5n(G)

4 − 2), and conjectured that 
5n(G)+n2(G)

4 − 1 is the right bound. In this paper, we prove this conjecture.

Theorem 1.1. Let G be a 2-connected simple subcubic graph. Then tsp(G) ≤ 5n(G)+n2(G)
4 −

1. Moreover, a TSP walk of length at most 5n(G)+n2(G)
4 − 1 can be found in O(n(G)2)

time.

In particular, we obtain a 5
4 -approximation algorithm for the graphic TSP on simple 

cubic graphs. We remark that our algorithm is purely combinatorial and deterministic. 
We also characterize the extremal examples of Theorem 1.1; that is, the 2-connected 
simple subcubic graphs G such that tsp(G) = 5n(G)+n2(G)

4 − 1 (see Theorem 5.5). As 
pointed out by Dvořák et al. [8], Theorem 1.1 is false for non-simple graphs. This can be 
seen from the graph obtained from three internally disjoint paths between two vertices, 
each of length 2k + 1, by the addition of parallel edges so that it becomes cubic.

As in [8], rather than working with Eulerian multigraphs obtained from spanning 
connected subgraphs by adding multiple edges (as often done in the literature), we 
consider spanning subgraphs F of G in which every vertex has degree 0 or 2. That is, F
is a spanning subgraph consisting of vertex-disjoint cycles and isolated vertices. We call 
such a subgraph F an even cover of G. Let c(F ) denote the number of cycles in F and 
i(F ) denote the number of isolated vertices in F . Define the excess of F to be

exc(F ) = 2c(F ) + i(F ).

For a graph G, let E(G) denote the set of even covers of G, and define the excess of G as

exc(G) = min
F∈E(G)

exc(F ).

For example, consider the graph Θ which consists of three internally disjoint paths 
between two vertices, each path with k vertices of degree 2. It is easy to see that an even 
cover consisting of a cycle and k isolated vertices obtains the minimum excess. Thus for 
k ≥ 1,

exc(Θ) = 2 + k ≤ (3k + 2) + 3k
4 + 1 = n(Θ) + n2(Θ)

4 + 1,

with equality when k = 1 (in which case Θ ∼= K2,3).
It is observed in [8] that if G is a subcubic graph, then there is an exact relation 

between tsp(G) and exc(G):

Proposition 1.2 (Dvořák et al. [8]). Let G be a subcubic graph. Then

tsp(G) = exc(G) − 2 + n(G). (1)
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Moreover, an even cover F ∈ E(G) can be converted into a TSP walk in G of length 
exc(F ) − 2 + n(G) in linear time.

Thus, to prove Theorem 1.1, it suffices to show that

exc(G) ≤ n(G) + n2(G)
4 + 1, (2)

and that an even cover F of G satisfying this bound can be found in quadratic time. 
Indeed, we will see that (2) follows from a more technical result (Theorem 2.4) that 
bounds exc(F ) − n(G)+n2(G)

4 for certain sets of even covers F of G. In Section 2, we 
develop our key definitions and state Theorem 2.4. In Section 3, we provide some technical 
lemmas on the structure of the extremal graphs for Theorem 2.4, which we call θ-chains. 
We complete the proof of Theorem 2.4 in Section 4. In Section 5, we characterize extremal 
graphs for Theorem 1.1. In Section 6, we outline a quadratic-time algorithm that finds 
an even cover F in simple 2-connected subcubic graphs G with exc(F ) ≤ n(G)+n2(G)

4 +1.
We end this section with some notation. For a positive integer k, let [k] = {1, . . . , k}. 

If G and H are graphs, we write G ∪ H (respectively, G ∩ H) to denote the graph 
with vertex set V (G) ∪ V (H) (respectively, V (G) ∩ V (H)) and edge set E(G) ∪ E(H)
(respectively, E(G) ∩E(H)). Let G be a graph. If S is a set of vertices or a set of edges, 
we let G − S denote the subgraph of G obtained by deleting elements of S as well as 
edges incident with a vertex in S. When S = {s} is a singleton, we simply write G − s. 
For a collection of 2-element subsets of V (G), we write G + S for the graph with vertex 
set V (G) and edge set E(G) ∪ S. However, for x, y ∈ V (G) we use G + xy to denote 
the graph obtained from G by adding a (possibly parallel) edge between x and y. For 
a subgraph H ⊆ G and a set S ⊆ V (G), we let H + S denote the subgraph of G such 
that V (H + S) = V (H) ∪ S and E(H + S) = E(H). For S ⊆ V (G), we use N(S) to 
denote the neighborhood of S in G. If S = {s} is a singleton, we simply write N(s). 
When |N(S)| ∈ {1, 2}, suppressing S means deleting S and adding a (possibly loop or 
parallel) edge between the vertices of N(S). When S = {s} is a singleton, suppressing s
means suppressing {s}.

2. Subcubic chains

In order to help with induction, we consider even covers which contain or avoid a 
specified edge. Let G be a graph and let e ∈ E(G). We write E(G, e) to denote the set 
of even covers of G containing e, and Ê(G, e) to denote the set of even covers of G not 
containing e. Define

exc(G, e) := min
F∈E(G,e)

exc(F ) − 2

êxc(G, e) := min
F∈Ê(G,e)

exc(F )
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Fig. 1. A subcubic chain.

Clearly, we have exc(G) = min{exc(G, e) + 2, êxc(G, e)} for any edge e ∈ E(G). The 
“−2” in the definition of exc(G, e) leads to a natural interpretation of the quantities 
δ(G, e) and δ̂(G, e) defined below, and also results in simpler calculations as it accounts 
for the fact that the cycle C of F containing e will often only be used as a path C − e

as part of a larger cycle (see Propositions 2.1 and 2.2).
To prove (2), it will be convenient to define the following parameters for a graph G

and an edge e ∈ E(G):

δ(G, e) := exc(G, e) − n(G) + n2(G)
4 ,

δ̂(G, e) := êxc(G, e) − n(G) + n2(G)
4 .

Note that if every vertex of G has degree 2 or 3 (for instance, if G is subcubic and 
2-connected), then δ(G, e) and δ̂(G, e) are always half-integral since n(G) + n2(G) =
(n(G) − n2(G)) + 2n2(G) where (n(G) − n2(G)) is the number of vertices of odd degree 
in G, which is always even.

A subcubic chain C is a simple connected subcubic graph, written as an alternat-
ing sequence C = xe0B1e1B2 . . . Bkeky for some nonnegative integer k, satisfying the 
following properties (see Fig. 1):

• {e0, . . . , ek} is the set of cut-edges of C,
• {B0, B1, . . . , Bk, Bk+1} is the set of connected components of C−{e0, . . . , ek}, where 

V (B0) = {x} and V (Bk+1) = {y},
• Bi is either a single vertex or 2-connected for all i ∈ [k], and
• each ei has one endpoint in Bi and one endpoint in Bi+1 for all i = 0, . . . , k.

We say that C has end points x, y and has end edges e0 and ek. A subcubic chain is 
trivial if k = 0 (that is, C is an edge xy), and nontrivial otherwise.

Let C = xe0B1e1B2 . . . Bkeky be a nontrivial subcubic chain. For i ∈ [k], let xi denote 
the endpoint of ei−1 in Bi and let yi denote the endpoint of ei in Bi. (Note that xi )= yi
when n(Bi) )= 1, as C is subcubic.) We define Bi = Bi + ei where ei = xiyi, and 
C = C − {x, y} + eC where eC = x1yk. We call each (Bi, ei) a chain-block of C, and C
the closure of C. Note that the closure of a nontrivial subcubic chain C is a subcubic 
graph with no cut-vertex such that C − eC is simple. If C is a trivial subcubic chain, we 
define exc(C, eC) = êxc(C, eC) = δ(C, eC) = δ̂(C, eC) = 0.
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Proposition 2.1. Let C = xe0B1e1B2 . . . Bkeky be a subcubic chain, and let {(Bi, ei) : i ∈
[k]} denote the chain-blocks of C. Then

• exc(C, eC) =
∑k

i=1 exc(Bi, ei),
• êxc(C, eC) =

∑k
i=1 êxc(Bi, ei),

• δ(C, eC) =
∑k

i=1 δ(Bi, ei), and
• δ̂(C, eC) =

∑k
i=1 δ̂(Bi, ei).

Proof. If C is trivial then the proposition is true by definition (an empty sum is defined 
to be 0), so we may assume that C is nontrivial. Note that a cycle in C contains eC if 
and only if it contains all of e1, . . . , ek−1. This gives a natural bijective correspondence 
between even covers F ∈ E(C, eC) and tuples of even covers (F1, . . . , Fk) where Fi ∈
E(Bi, ei) for each i ∈ [k]. Indeed, this correspondence is obtained by “splitting” the cycle 
D of F containing eC into k cycles, (D ∩Bi) + ei for i ∈ [k]. With this correspondence, 
we have exc(F ) = 2 +

∑k
i=1(exc(Fi) − 2). Hence,

exc(C, eC) = min
F∈E(C,eC)

exc(F ) − 2

=
k∑

i=1
min

Fi∈E(Bi,ei)
(exc(Fi) − 2)

=
k∑

i=1
exc(Bi, ei).

Since n(C) =
∑k

i=1 n(Bi) and n2(C) =
∑k

i=1 n2(Bi), this also implies δ(C, eC) =∑k
i=1 δ(Bi, ei).
Similarly, there is a natural bijective correspondence between even covers F ∈

Ê(C, eC) and tuples (F1, . . . , Fk) where Fi ∈ Ê(Bi, ei) for each i ∈ [k]. That is, Fi is 
the restriction of F on Bi for all i ∈ [k]. Moreover, exc(F ) =

∑k
i=1 exc(Fi). Hence,

êxc(C, eC) = min
F∈Ê(C,eC)

exc(F )

=
k∑

i=1
min

Fi∈Ê(Bi,ei)
exc(Fi)

=
k∑

i=1
êxc(Bi, ei).

This similarly gives δ̂(C, eC) =
∑k

i=1 δ̂(Bi, ei). !

The parameters δ(C, eC) and δ̂(C, eC) can be interpreted as the “difference” in the δ
or δ̂ of the overall graph G made by the presence of the subcubic chain C compared to 
a trivial chain (a single edge). This is formalized in the next proposition.



76 M.C. Wigal et al. / Journal of Combinatorial Theory, Series B 158 (2023) 70–104

Let G be a graph containing a nontrivial subcubic chain C = xe0B1 . . . Bkeky such 
that C − {x, y} is a connected component of G − {e0, ek}. In this case, we say that C is 
a subcubic chain of G. If C is a subcubic chain of G, we write G/C to denote the graph 
obtained by suppressing V (C) \ {x, y}, and write eG/C to denote the resulting edge. We 
say that G/C is obtained from G by suppressing C. A cycle in G containing the edge e0
(hence all of {e0, . . . , ek}) is said to be a cycle through C, and an even cover through C
is an even cover of G containing a cycle through C.

Proposition 2.2. Let C be a subcubic chain of a graph G, and let e be a cut-edge of C. 
Then δ(G, e) = δ(G/C, eG/C) + δ(C, eC) and δ̂(G, e) = δ̂(G/C, eG/C) + δ̂(C, eC).

Proof. Given an even cover F ∈ E(G, e), e is contained in some cycle D in F . By splitting 
D into two cycles (D∩G/C) +eG/C and (D∩C) +eC , we obtain from F two even covers 
F ′ ∈ E(G/C, eG/C) and FC ∈ E(C, eC) satisfying exc(F ) = exc(F ′) + exc(FC) − 2. This 
bijective correspondence gives

exc(G, e) = min
F∈E(G,e)

exc(F ) − 2

= min
F ′∈E(G/C,eG/C)

(exc(F ′) − 2) + min
FC∈E(C,eC)

(exc(FC) − 2)

= exc(G/C, eG/C) + exc(C, eC).

Similarly, for any even cover F ∈ Ê(G, e), its restriction on G/C is in Ê(G/C, eG/C) and 
its restriction on C is in Ê(C, eC); and we have êxc(G, e) = êxc(G/C, eG/C) +êxc(C, eC).

Since n(G) = n(G/C) +n(C) and n2(G) = n2(G/C) +n2(C), the proposition follows 
from the definitions of δ and δ̂. !

We will show in Theorem 2.4 that δ(G, e) + δ̂(G, e) ≤ 0 for every 2-connected subcubic 
graph G and every edge e ∈ E(G) for which G − e is simple. If δ(G, e) + δ̂(G, e) = 0, 
then we say that (G, e) is tight. A subcubic chain C is tight if its closure (C, eC) is tight.

The next proposition states that a subcubic chain is tight if and only if all of its 
chain-blocks are tight.

Proposition 2.3. Let C = xe0B1e1B2 . . . Bkeky be a subcubic chain, and assume 
δ(Bi, ei) + δ̂(Bi, ei) ≤ 0 for all i. Then δ(C, eC) + δ̂(C, eC) ≤ 0, with equality if and 
only if δ(Bi, ei) + δ̂(Bi, ei) = 0 for all i ∈ [k].

Proof. Since δ(Bi, ei) + δ̂(Bi, ei) ≤ 0 for all i, we have by Proposition 2.1,

δ(C, eC) =
k∑

j=1
δ(Bi, ei) ≤

k∑

j=1
(−δ̂(Bi, ei)) = −δ̂(C, eC).
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Fig. 2. A rooted θ-chain.

Fig. 3. A minimal θ-chain.

Hence, δ(C, eC) + δ̂(C, eC) ≤ 0, with equality if and only if δ(Bi, ei) + δ̂(Bi, ei) = 0 for 
all i. !

We say that a subcubic chain C is minimal if it is tight and δ(C, eC) = −1
2 , and that 

C is near-minimal if it is tight and δ(C, eC) ∈ {−1
2 , −1}. Two subcubic chains C1 and 

C2 are balanced if δ(C1, eC1) = δ(C2, eC2).
A θ-chain is a graph G that is the union of three internally disjoint subcubic chains 

C1, C2, C3 with common endpoints. We call C1, C2, C3 the chains of G. Note that the 
choices of the three chains C1, C2, C3 may not be unique (consider the graph obtained 
from two disjoint 4-cycles by adding two edges joining them so that the endpoints of the 
two edges are nonadjacent in each 4-cycle). A rooted θ-chain is a pair (G, e) where G is a 
graph and e = uv ∈ E(G) such that G −e is the union of two internally disjoint subcubic 
chains C1, C2 with common endpoints {u, v}. We call C1, C2 the chains of (G, e). See 
Fig. 2.

A (rooted) θ-chain is balanced if all pairs of its chains are balanced, tight if the closures 
of its chains are all tight, and (near) minimal if all of its chains are (near) minimal. Note 
that a (near) minimal (rooted) θ-chain is also balanced and tight by definition. See Fig. 3.

We can now state our main result, which immediately implies (2). For inductive 
purposes, we allow the graph G to be a loop e on a single vertex and we also allow one 
edge of G − e to be parallel to e. In all cases however, G − e is a simple subcubic graph.

Theorem 2.4. Let G be a 2-connected subcubic graph and let e = uv be an edge of G such 
that G − e is simple. Then the following statements hold:



78 M.C. Wigal et al. / Journal of Combinatorial Theory, Series B 158 (2023) 70–104

(T1) δ(G, e) ≤ −1
2 , with equality if and only if either G is a loop or (G, e) is a balanced 

tight rooted θ-chain.
(T2) If G − e is 2-connected, then δ̂(G, e) ≤ 3

2 , with equality if and only if G − e is a 
minimal θ-chain.

(T3) If δ(G, e) = −1, then either
(a) G ∼= K4, or
(b) e has a parallel edge, and suppressing {u, v} to an edge e′ results in a graph G′

such that either G′ is a loop or (G′, e′) is a near-minimal rooted θ-chain, or
(c) there exists e′ ∈ E(G) such that {e, e′} is a 2-edge-cut in G, and suppressing 

either subcubic chain C of G with end edges e, e′ yields either a loop or a 
balanced tight rooted θ-chain (G/C, eG/C), or

(d) (G, e) is a rooted θ-chain such that mini∈[2]
(
δ(Ci, eCi) + δ̂(C3−i, eC3−i)

)
=

−1
2 .

(T4) δ(G, e) + δ̂(G, e) ≤ 0.

One immediate consequence of Theorem 2.4 is that if C is a subcubic chain, then 
δ(C, eC) ≤ −1

2 unless C is trivial, in which case δ(C, eC) = 0 by definition. In particular, 
δ(G, e) ≤ −1

2 for every nonempty 2-connected subcubic graph G and e ∈ E(G) such that 
G − e is simple. Hence, if C is a minimal subcubic chain, then by Proposition 2.1, it has 
exactly one chain-block (B, eB), and this chain-block satisfies δ(B, eB) = −1

2 .

3. Properties of θ-chains

In this section, we derive useful properties of balanced, tight, or minimal θ-chains 
assuming Theorem 2.4 for smaller graphs. We begin by proving statements (T1) and
(T3) of Theorem 2.4, assuming Theorem 2.4 for smaller graphs, for the special case 
where (G, e) is a rooted θ-chain (equivalently, G is simple and {u, v} forms a cut in G). 
The proof is a relatively straightforward but illustrative demonstration of our techniques.

Lemma 3.1. Let (G, e) be a simple rooted θ-chain, and let C1, C2 denote the two chains 
of (G, e). Assume that Theorem 2.4 holds for graphs with fewer than n(G) vertices. Then

(i) δ(G, e) = −1
2 + mini∈[2]

(
δ(Ci, eCi) + δ̂(C3−i, eC3−i)

)
≤ −1

2 , with equality if and 
only if (G, e) is a balanced tight rooted θ-chain,

(ii) δ̂(G, e) ≤ 3
2 + δ(C1, eC1) + δ(C2, eC2) ≤ 1

2 ,
(iii) (δ(G, e), ̂δ(G, e)) = (−1

2 , 
1
2 ) if and only if (G, e) is a minimal rooted θ-chain, and

(iv) if δ(G, e) = −1 then mini∈[2]
(
δ(Ci, eCi) + δ̂(C3−i, eC3−i)

)
= −1

2 .

Proof. An even cover F ∈ E(G, e) corresponds to a pair (F1, F2) where Fi ∈ E(Ci)
for each i ∈ [2] and Fi ∈ E(Ci, eCi) for exactly one i ∈ [2]. This correspondence gives 
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exc(F ) = exc(F1) + exc(F2). Since n(G) = n(C1) + n(C2) + 2 and n2(G) = n2(C1) +
n2(C2), we have

exc(G, e) = min
F∈E(G,e)

exc(F ) − 2

= min
i∈[2]

(
min

Fi∈E(Ci,eCi )
(exc(Fi) − 2) + min

F3−i∈Ê(C3−i,eC3−i )
exc(F3−i)

)

= min
i∈[2]

(
exc(Ci, eCi) + êxc(C3−i, eC3−i)

)

= min
i∈[2]

(
n(Ci) + n2(Ci)

4 + δ(Ci, eCi) + n(C3−i) + n2(C3−i)
4 + δ̂(C3−i, eC3−i)

)

= min
i∈[2]

(
n(G) + n2(G)

4 − 1
2 + δ(Ci, eCi) + δ(C3−i, eC3−i)

)
.

Therefore,

δ(G, e) = −1
2 + min

i∈[2]

(
δ(Ci, eCi) + δ̂(C3−i, eC3−i)

)
, (3)

whence for i ∈ [2],

δ(G, e) ≤ −1
2 + δ(Ci, eCi) + δ̂(C3−i, eC3−i). (4)

By assumption, Theorem 2.4 holds for (Ci, eCi); so δ(Ci, eCi) + δ̂(Ci, eCi) ≤ 0 for each 
i ∈ [2]. Adding the two inequalities of (4) gives

2δ(G, e) ≤ −1 +
∑

i∈[2]

(
δ(Ci, eCi) + δ̂(Ci, eCi)

)
≤ −1.

Hence,

δ(G, e) ≤ −1
2 . (5)

Moreover, δ(G, e) = −1
2 if and only if all of the above inequalities are tight, which means 

(C1, eC1) and (C2, eC2) are tight, and

0 = δ(C1, eC1) + δ̂(C2, eC2) = δ(C1, eC1) − δ(C2, eC2).

In other words, C1, C2 are balanced. Together with (3) and (5), this proves (i).
If Fi ∈ E(Ci, eCi) for each i ∈ [2] then, by merging the cycles in Fi containing eCi for 

i ∈ [2], we obtain an even cover F ∈ Ê(G, e) with exc(F ) = exc(F1) + exc(F2) − 2. So
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êxc(G, e) ≤ min
F∈Ê(G,e)

exc(F )

≤ min
F1∈E(C1,eC1 )

exc(F1) + min
F2∈E(C2,eC2 )

(exc(F2) − 2)

= (exc(C1, eC1) + 2) + exc(C2, eC2)

= n(C1) + n2(C1)
4 + δ(C1, eC1) + n(C2) + n2(C2)

4 + δ(C2, eC2) + 2

= n(G) + n2(G)
4 + 3

2 + δ(C1, eC1) + δ(C2, eC2).

Hence,

δ̂(G, e) ≤ 3
2 + δ(C1, eC1) + δ(C2, eC2).

Since G is simple, each Ci is a nontrivial chain; so δ(Ci, eCi) ≤ −1
2 by the assumption 

that Theorem 2.4 holds for (Ci, eCi). This gives δ̂(G, e) ≤ 1
2 and proves (ii).

To prove (iii), suppose (δ(G, e), ̂δ(G, e)) = (−1
2 , 

1
2 ). Then δ(C1, eC1) +δ(C2, eC2) = −1

by (ii). Since δ(Ci, eCi) ≤ −1
2 for i ∈ [2] (by assumption), δ(Ci, eCi) = −1

2 for each i ∈ [2]. 
Moreover, each (Ci, eCi) is tight (by (i)), so (G, e) is a minimal rooted θ-chain.

Finally, note that (iv) follows from (i). !

The next lemma says that given a choice of adding an edge uv1 or uv2 to a 2-connected 
subcubic graph Z, the two quantities δ(Z + uv1, uv1) and δ(Z + uv2, uv2) cannot both 
be large.

Lemma 3.2. Let Z be a 2-connected simple subcubic graph and let u, v1, v2 be three distinct 
vertices of degree 2 in Z. Assume Theorem 2.4 holds for graphs with at most n(Z)
vertices. Then δ(Z + uv1, uv1) + δ(Z + uv2, uv2) ≤ −2.

Proof. By the assumption that Theorem 2.4 holds for graphs with at most n(Z) vertices, 
we have δ(Z+uvi, uvi) ≤ −1

2 for each i ∈ [2], with equality if and only if (Z+uvi, uvi) is 
a balanced tight rooted θ-chain. If both δ(Z +uv1, uv1) ≤ −1 and δ(Z +uv2, uv2) ≤ −1, 
then there is nothing to prove. So we may assume by symmetry that δ(Z+uv1, uv1) = −1

2 ; 
thus (Z + uv1, uv1) is a balanced tight rooted θ-chain. Note that it suffices to show that 
δ(Z + uv2, uv2) ≤ −3

2 .
Let C1, C2 denote the two chains of (Z + uv1, uv1). Let us assume without loss of 

generality that v2 ∈ V (C1). Write C1 = v1e0B1e1B2 . . . Bkeku (where k ≥ 1) and write 
its chain-blocks (Bi, ei) for all i ∈ [k]. Since C1, C2 are balanced, we have δ(C1, eC1) =
δ(C2, eC2), and since they are both tight, we have δ(Ci, eCi) + δ̂(Ci, eCi) = 0 for i ∈ [2]. 
So by Proposition 2.3 and the assumption that Theorem 2.4 holds for each (Bi, ei), we 
have
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δ(Bi, ei) + δ̂(Bi, ei) = 0 for all i ∈ [k]. (6)

Let % ∈ [k] be the unique index such that v2 ∈ B". (Note % is well defined as Z is subcubic 
and v2 has degree 2 in Z.) Let v′ denote the vertex of B" incident with e"−1.

Then there is an even cover F ∈ E(Z+uv2, uv2) obtained from a tuple (F ′, F1, . . . , Fk)
where F ′ ∈ E(C2, eC2), Fi ∈ E(Bi, ei) for each i ∈ [% − 1], F" ∈ E(B" + v′v2, v′v2), 
and Fj ∈ Ê(Bj , ej) for each j = % + 1, . . . , k. This gives exc(F ) − 2 = (exc(F ′) −
2) +

∑"
i=1(exc(Fi) − 2) +

∑k
j="+1 exc(Fj). Moreover, since n(B" + v′v2) = n(B") and 

n2(B" + v′v2) = n2(B"), we have

n(Z + uv2) = 2 + n(C2) +
"−1∑

i=1
n(Bi) + n(B" + v′v2) +

k∑

j="+1
n(Bj),

n2(Z + uv2) = n2(C2) +
"−1∑

i=1
n2(Bi) + n2(B" + v′v2) +

k∑

j="+1
n2(Bj).

This gives

exc(Z + uv2, uv2) ≤ exc(C2, eC2) +
"−1∑

i=1
exc(Bi, ei)

+ exc(B" + v′v2, v
′v2) +

k∑

j="+1
êxc(Bj , ej)

= n(Z + uv2) + n2(Z + uv2)
4 − 1

2 + δ(C2, eC2) +
"−1∑

i=1
δ(Bi, ei)

+ δ(B" + v′v2, v
′v2) +

k∑

j="+1
δ̂(Bj , ej),

whence

δ(Z + uv2, uv2) ≤ −1
2 + δ(C2, eC2) +

"−1∑

i=1
δ(Bi, ei) + δ(B" + v′v2, v

′v2)

+
k∑

j="+1
δ̂(Bj , e

j).

Note that êxc(B", e") = êxc(B" + v′v2, v′v2) since both quantities are equal to the 
minimum excess of an even cover of B". This implies δ̂(B", e") = δ̂(B" + v′v2, v′v2). 
Using (6) and that δ(B" + v′v2, v′v2) + δ̂(B" + v′v2, v′v2) ≤ 0 as Theorem 2.4 holds for 
(B" + v′v2, v′v2) (by assumption), we have
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δ(Z + uv2, uv2) ≤ −1
2 + δ(C2, eC2) +

"−1∑

i=1

(
− δ̂(Bi, ei)

)

+
(
− δ̂(B" + v′v2, v

′v2)
)

+
k∑

j="+1
δ̂(Bj , ej)

= −1
2 + δ(C2, eC2) +

"−1∑

i=1

(
− δ̂(Bi, ei)

)
+
(
− δ̂(B", e")

)
+

k∑

j="+1
δ̂(Bj , ej)

= −1
2 + δ(C2, eC2) +

k∑

j=1
δ̂(Bj , ej) − 2

"∑

j=1
δ̂(Bi, ei)

= −1
2 + δ(C2, eC2) + δ̂(C1, eC1) − 2

"∑

j=1
δ̂(Bj , ej) (by Proposition 2.1)

= −1
2 − 2

"∑

j=1
δ̂(Bj , ej) (as C1 and C2 are balanced and tight)

≤ −3
2 ,

since −δ̂(Bj , ej) = δ(Bj , ej) ≤ −1/2 for all j ∈ [k] by (6) and the assumption that 
Theorem 2.4 holds for (Bj , ej). !

We can now prove the following lemma for θ-chains.

Lemma 3.3. Let G be a subcubic graph with e = uv ∈ E(G) such that G −e is simple and 
2-connected. Assume that Theorem 2.4 holds for graphs with fewer than n(G) vertices. 
Let Gu be the graph obtained from G − e by suppressing u into an edge fu, and assume 
that (Gu, fu) is a rooted θ-chain. Then

(i) δ̂(G, e) ≤ 3
2 , with equality if and only if G − e is a minimal θ-chain whose three 

minimal chains can be chosen to have common endpoints N(u) \ {v},
(ii) δ(G, e) ≤ −3

2 , and
(iii) (δ(G, e), ̂δ(G, e)) = (−3

2 , 
3
2 ) if and only if G − e is a minimal θ-chain and e joins 

two nonadjacent vertices of a 4-cycle in G − e.

Proof. Let N(u) \ {v} = {x, y}, the set of endpoints of fu. Let C1, C2 denote the two 
chains of (Gu, fu) with common endpoints {x, y}, and let C3 denote the subcubic chain 
x(xu)u(uy)y. Note that n(G) = 2 +

∑3
i=1 n(Ci), n2(G) = −2 +

∑3
i=1 n2(Ci) (since the 

Ci’s do not account for the edge e), and C3 is a loop. Let i1, i2, i3 be a permutation of 
[3] such that δ(Ci1 , eCi1

) ≤ δ(Ci2 , eCi2
) ≤ δ(Ci3 , eCi3

).
Consider a triple (F1, F2, F3) such that Fi1 ∈ E(Ci1 , eCi1

), Fi2 ∈ E(Ci2 , eCi2
), and 

Fi3 ∈ Ê(Ci3 , eCi3
). Let F ∈ Ê(G, e) be obtained from F1 ∪F2 ∪F3 by merging the cycles 
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in Fi1 , Fi2 through eCi1
, eCi2

. Then exc(F ) −2 = (exc(Fi1) −2) +(exc(Fi2) −2) +exc(Fi3); 
so

êxc(G, e) − 2 = exc(Ci1 , eCi1
) + exc(Ci2 , eCi2

) + êxc(Ci3 , eCi3
)

= n(G) + n2(G)
4 + δ(Ci1 , eCi1

) + δ(Ci2 , eCi2
) + δ̂(Ci3 , eCi3

).

Since Theorem 2.4 holds for (Ci, eCi) for each i ∈ [3] (by assumption), we have 
δ̂(Ci3 , eCi3

) ≤ −δ(Ci3 , eCi3
) ≤ −δ(Ci2 , eCi2

) and δ(Ci, eCi) ≤ −1
2 for i ∈ [3], which 

gives

êxc(G, e) − 2 ≤ n(G) + n2(G)
4 + δ(Ci1 , eCi1

) ≤ n(G) + n2(G)
4 − 1

2 .

Therefore, êxc(G, e) ≤ n(G)+n2(G)
4 + 3

2 , and δ̂(G, e) ≤ 3
2 .

Suppose δ̂(G, e) = 3
2 . Then the above inequalities hold with equality. Hence, −1

2 =
δ(Ci1 , eCi1

) = δ(Ci2 , eCi2
) = δ(Ci3 , eCi3

). Since Theorem 2.4 holds for all (Ci, eCi) (by 
assumption), (Ci, eCi) is tight (hence minimal) for all i ∈ [3]. Therefore, G − e is a 
minimal θ-chain with its three chains having common endpoints N(u) \ {v}.

Now suppose G − e is a minimal θ-chain with the three minimal chains C1, C2, C3
with common endpoints N(u) \ {v}. Let F ∈ Ê(G, e). If F contains a cycle through two 
of C1, C2, C3, then the above argument shows exc(F ) = n(G)+n2(G)

4 + 3
2 . So we just need 

to show that if F does not contain a cycle through any of C1, C2, C3, then exc(F ) ≥
n(G)+n2(G)

4 + 3
2 . Indeed, such F when restricted to (Ci, eCi) for i ∈ [3] gives a triple 

(F1, F2, F3) such that Fi ∈ Ê(Ci, eCi) for each i ∈ [3], and exc(F ) = 2 +
∑3

i=1 exc(Fi)
(since the two vertices of N(u) \ {v} are isolated in F ). So

exc(F ) ≥ 2 +
3∑

i=1
êxc(Ci, eCi)

= 2 +
3∑

i=1

(
n(Ci) + n2(Ci)

4 + δ̂(Ci, eCi)
)

= n(G) + n2(G)
4 + 2 +

3∑

i=1
δ̂(Ci, eCi)

= n(G) + n2(G)
4 + 7

2 .

The last equality holds since δ̂(Ci, eCi) = 1
2 for each i ∈ [3], completing the proof of (i).

We now prove (ii) and (iii). Let us assume without loss of generality that v ∈ V (C1), 
and write C1 = xe0B1e1B2 . . . Bkeky with chain-blocks (Bi, ei). Let % ∈ [k] denote the 
unique index such that v ∈ V (B"). By symmetry, we may assume that 

∑"−1
i=1 δ(Bi, ei) ≤
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∑k
j="+1 δ(Bj , ej). Then, by the assumption that Theorem 2.4 holds for each (Bj , ej), we 

have

k∑

j="+1
δ̂(Bj , ej) ≤

k∑

j="+1
(−δ(Bj , ej)) ≤ −

(
"−1∑

i=1
δ(Bi, ei)

)
. (7)

Consider the tuple of even covers (F1, . . . , Fk, F 2), where Fi ∈ E(Bi, ei) for i ∈ [% −1], 
F" ∈ E(B" + x′v, x′v) where x′ is the endpoint of e"−1 in B", Fj ∈ Ê(Bj , eBj ) for 
j = % + 1, . . . , k, and F 2 ∈ E(C2, eC2). This corresponds to an even cover F ∈ E(G, e)
containing a cycle through all of xe0B1 . . . B"−1e"−1, e, uy, and C2, such that

exc(F ) − 2 =
"−1∑

i=1
(exc(Fi) − 2) + (exc(F") − 2) +

k∑

j="+1
exc(Fj) + (exc(F 2) − 2).

Since

n(G) =
"−1∑

i=1
n(Bi) + n(B" + x′v) +

k∑

j="+1
n(Bj) + n(C2) + 3, and

n2(G) =
"−1∑

i=1
n2(Bi) + n2(B" + x′v) +

k∑

j="+1
n2(Bj) + n2(C2) − 1,

we have

exc(G, e) ≤
"−1∑

i=1
exc(Bi, ei) + exc(B" + x′v, x′v) +

k∑

j="+1
êxc(Bj , ej) + exc(C2, eC2)

= n(G) + n2(G)
4 − 1

2 +
(

"−1∑

i=1
δ(Bi, ei)

)
+ δ(B" + x′v, x′v)

+




k∑

j="+1
δ̂(Bj , ej)



 + δ(C2, eC2)

≤ n(G) + n2(G)
4 − 1

2 + δ(B" + x′v, x′v) + δ(C2, eC2) (by (7))

≤ n(G) + n2(G)
4 − 3

2 ,

where the last inequality follows as by our assumption Theorem 2.4 holds for (B" +
x′v, x′v) and (C2, eC2). Hence δ(G, e) ≤ −3

2 and (ii) holds.
To prove (iii), suppose (δ(G, e), ̂δ(G, e)) = (−3

2 , 
3
2 ). Then equality holds above, so we 

have δ(B" + x′v, x′v) = δ(C2, eC2) = −1
2 . Moreover, C1 and C2 are minimal chains (by 

(i)), which implies k = % = 1 and δ(B", e") = δ(C1, eC1) = −1
2 (by Proposition 2.1). 
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So δ(B", e") + δ(B" + x′v, x′v) = −1. Now B" is a single vertex; otherwise, by applying 
Lemma 3.2 to B", x′, the other endpoint y′ of e", and v, we obtain δ(B", e") + δ(B" +
x′v, x′v) = δ(B" +x′y′, x′y′) +δ(B" +x′v, x′v) ≤ −2, a contradiction. Therefore, we have 
B" = {x′} = {v}, and e joins two nonadjacent vertices of the 4-cycle xvyux. !

We conclude this section with a lemma bounding δ̂(G, e), which proves statement (T2)
of Theorem 2.4, assuming Theorem 2.4 for smaller graphs.

Lemma 3.4. Let G be a 2-connected subcubic graph with e = uv ∈ E(G) such that G − e

is simple and 2-connected. Assume that Theorem 2.4 holds for graphs with fewer than 
n(G) vertices. Then δ̂(G, e) ≤ 3

2 , with equality if and only if (Gu, fu) is a minimal rooted 
θ-chain, where Gu is the graph obtained from G − e by suppressing u into an edge fu.

Proof. Since G − e is 2-connected, both u and v have degrees 3. Define Gu, fu as stated 
in the lemma. We claim that

δ̂(G, e) = min{δ(Gu, fu) + 2, δ̂(Gu, fu) + 1}. (8)

Indeed, there is a bijective correspondence between Ê(G, e) and E(Gu) obtained as fol-
lows. If F ∈ Ê(G, e) contains a cycle through u, then we obtain Fu ∈ E(Gu, fu) by 
suppressing u in F , and we have exc(F ) = exc(Fu). Otherwise, if u is an isolated 
vertex in F , then we obtain Fu ∈ Ê(Gu, fu) by removing u from F , and we have 
exc(F ) = exc(Fu) + 1. Since n(G) + n2(G) = n(Gu) + n2(Gu), (8) follows from the 
definitions of δ, ̂δ.

It follows from (8) that δ̂(G, e) ≤ δ(Gu, fu) + 2 ≤ 3
2 by the assumption that The-

orem 2.4 holds for (Gu, fu). Moreover, δ̂(G, e) = 3
2 if and only if δ(Gu, fu) = −1

2
and δ̂(Gu, fu) = 1

2 , which is equivalent to (Gu, fu) being a minimal rooted θ-chain 
by Lemma 3.1. !

4. Proof of Theorem 2.4

We proceed by induction on n(G). Note that (T4) is implied by (T1) and (T2): If 
δ(G, e) ≤ −1 and δ̂(G, e) ≤ 1, then (T4) holds. Otherwise, we have δ(G, e) = −1

2 or 
δ̂(G, e) = 3

2 . In the former case, (T4) follows from (T1) and Lemma 3.1; in the latter 
case, (T4) follows from (T2) and Lemma 3.3. Also note that Lemmas 3.3 and 3.4 imply
(T2). Therefore, it suffices to prove (T1) and (T3).

If G −{u, v} is disconnected, then (T1) and (T3) both hold by Lemma 3.1. So we may 
assume that G − {u, v} is connected. It now suffices to show that δ(G, e) ≤ −1 and that 
if equality holds, then one of the outcomes of (T3) holds.

Claim 4.0.1. We may assume that G is simple.
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Proof. Since G −e is simple, if G is not simple, then there is exactly one edge e∗ parallel 
with e. Let G′ be the graph obtained from G by suppressing {u, v} to an edge e′.

Then n(G) = n(G′) + 2 and n2(G) = n2(G′). By the inductive hypothesis, we have 
δ(G′, e′) ≤ −1

2 . But every even cover F ′ ∈ E(G′, e′) gives an even cover F ∈ E(G, e) with 
the same excess, so

δ(G, e) = min
F∈E(G,e)

exc(F ) − 2 − n(G) + n2(G)
4

≤ min
F ′∈E(G′,e′)

exc(F ′) − 2 − n(G′) + n2(G′) + 2
4

= δ(G′, e′) − 1
2

≤ −1.

Now suppose δ(G, e) = −1. Then both inequalities above are tight; in particular, 
we have δ(G′, e′) = −1

2 , and by the inductive hypothesis, G′ is a loop or (G′, e′) is a 
balanced tight rooted θ-chain. If G′ is a loop then (G, e) satisfies (b) of (T3). So assume 
that (G′, e′) is a balanced tight rooted θ-chain, and let C1, C2 denote the two chains of 
(G′, e′).

Then a pair of even covers F1, F2 where Fi ∈ E(Ci, eCi) for each i ∈ [2] gives an even 
cover F ∈ E(G, e) by combining the two cycles of Fi through eCi and adding the cycle 
with edge set {e, e∗}, with

exc(F ) − 2 = (exc(F1) − 2) + (exc(F2) − 2) + 2.

Since n(G) = n(C1) + n(C2) + 4 and n2(G) = n2(C1) + n2(C2), we have

exc(G, e) ≤ exc(C1, eC1) + exc(C2, eC2) + 2

= n(G) + n2(G)
4 + 1 + δ(C1, eC1) + δ(C1, eC1),

so δ(G, e) ≤ 1 + δ(C1, eC1) + δ(C2, eC2). Thus, we have δ(Ci, eCi) ∈ {−1
2 , −1} for each 

i ∈ [2]; in other words, (G′, e′) is a near-minimal rooted θ-chain. So (G, e) satisfies (b) 
of (T3). !

Claim 4.0.2. We may assume that e is not in any 2-edge-cut of G.

Proof. Suppose there is an edge e′ such that {e, e′} is a 2-edge-cut of G. Let C be 
a subcubic chain of G with end edges e, e′. By Proposition 2.2 and by the inductive 
hypothesis applied to (G/C, eG/C) and (C, eC), we have

δ(G, e) = δ(G/C, eG/C) + δ(C, eC) ≤ −1.
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Fig. 4. Z1 %= Z2.

Moreover, if δ(G, e) = −1, then δ(G/C, eG/C) = δ(C, eC) = −1
2 , so (G/C, eG/C) and 

(C, eC) are loops or balanced tight rooted θ-chains and (c) of (T3) holds for (G, e). !

By Claim 4.0.2, let u1, u2 denote the two neighbors of u distinct from v, and let v1, v2
denote the two neighbors of v distinct from u. Moreover, there exist two disjoint paths 
P1, P2 from {u1, u2} to {v1, v2} in G − {u, v}. We may assume without loss of generality 
that the set of endpoints of Pi is {ui, vi}, i ∈ [2].

Let S denote the set of all cut edges in G − {u, v}. Then each component of G −
{u, v} − S is either an isolated vertex or 2-connected.

Claim 4.0.3. For each i ∈ [2], there is a unique component Zi of G − {u, v} − S, such 
that there are three paths in G − {u, v} from Zi to {ui, vi, u3−i}, pairwise disjoint except 
possibly at their endpoints in Zi, and there are three paths in G − {u, v} from Zi to 
{ui, vi, v3−i}, pairwise disjoint except possibly at their endpoints in Zi. See Figs. 4 and 
5.

Proof. By symmetry, it suffices to prove the claim for i = 1. First, we show that there is 
a unique component Z1 of G − {u, v} − S such that there are three paths in G − {u, v}
from Z1 to {u1, v1, u2}, pairwise disjoint except possibly at their endpoints in Z1. Indeed, 
if there were two distinct such components Z, Z ′, they are by definition separated by a 
cut-edge s ∈ S of G − {u, v}. But G − {u, v} − s has exactly two connected components, 
one of which contains at least two of {u1, v1, u2}, so one of Z, Z ′ is separated from two 
vertices of {u1, v1, u2} by a cut-edge, contradicting the assumptions on Z, Z ′.

Similarly, there is a unique connected component Z ′
1 of G −{u, v} −S such that there 

are three paths in G − {u, v} from Z ′
1 to {u1, v1, v2}, pairwise disjoint except possibly at 

their endpoints in Z ′
1. We now show that Z1 = Z ′

1. Otherwise, there is a cut edge s of 
G − {u, v} separating Z1 from Z ′

1. Then the two connected components of G − {u, v} − s
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Fig. 5. Z1 = Z2.

each contain exactly one of {u1, v1} and exactly one of {u2, v2}. But this implies that 
{e, s} is a 2-edge-cut in G, contradicting Claim 4.0.2. !

There are two cases to consider: either Z1 )= Z2 or Z1 = Z2. For i ∈ [2], let u′
i

(respectively, v′i) denote the vertex of Zi that is the endpoint of a (possibly trivial) path 
in G −{u, v} from ui (respectively, vi) to Zi that is internally disjoint from Z1∪Z2. Note 
that u′

i and v′i are uniquely determined. For i ∈ [2], let Ui denote the unique (possibly 
trivial) subcubic chain of G − {v, u3−i} with endpoints {u, u′

i}, and let Vi denote the 
unique subcubic chain of G − {u, v3−i} with endpoints {v, v′i}.

Case 1: Z1 )= Z2.
There is a cut-edge separating Z1 and Z2 in G −{u, v} and there is a unique subcubic 

chain Y of G − {u, v} with an endpoint zi ∈ Zi for each i ∈ [2], internally disjoint from 
Z1 ∪Z2. Then G is the union of U1, U2, V1, V2, Z1, Z2, Y , and the edge e = uv. We have, 
for i, j ∈ [2],

n(G) = n(U1) + n(U2) + n(V1) + n(V2) + n(Z1 + u′
iz1) + n(Z2 + v′jz2) + n(Y ) + 2,

n2(G) = n2(U1) + n2(U2) + n2(V1) + n2(V2) + n2(Z1 + u′
iz1)

+ n2(Z2 + v′jz2) + n2(Y ) − 2.

Suppose F ∈ E(G, e) goes through U1, Y , and V2. Then there is a correspondence 
between F and the tuple (FU1 , FZ1 , FY , FZ2 , FV2 , FU2 , FV1), where

• FU1 ∈ E(U1, eU1), FZ1 ∈ E(Z1 + u′
1z1, u′

1z1), FY ∈ E(Y , eY ), FZ2 ∈ E(Z2 +
v′2z2, v′2z2), FV2 ∈ E(V2, eV2), and

• FU2 ∈ Ê(U2, eU2), FV1 ∈ Ê(V1, eV1).

This gives

exc(G, e) ≤ exc(U1, eU1) + exc(Z1 + u′
1z1, u

′
1z1) + exc(Y , eY ) + exc(Z2 + v′2z2, v

′
2z2)

+ exc(V2, eV2) + êxc(U2, eU2) + êxc(V1, eV1)



M.C. Wigal et al. / Journal of Combinatorial Theory, Series B 158 (2023) 70–104 89

= n(G) + n2(G)
4 + δ(U1, eU1) + δ(Z1 + u′

1z1, u
′
1z1) + δ(Y , eY )

+ δ(Z2 + v′2z2, v
′
2z2) + δ(V2, eV2) + δ̂(U2, eU2) + δ̂(V1, eV1),

hence

δ(G, e) ≤ δ(U1, eU1) + δ(Z1 + u′
1z1, u

′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2)

+ δ(V2, eV2) + δ̂(U2, eU2) + δ̂(V1, eV1).
(9)

Similarly, by considering an even cover in E(G, e) through U2, Y , and V1, we obtain

δ(G, e) ≤ δ(U2, eU2) + δ(Z2 + u′
2z2, u

′
2z2) + δ(Y , eY ) + δ(Z1 + v′1z1, v

′
1z1)

+ δ(V1, eV1) + δ̂(U1, eU1) + δ̂(V2, eV2).
(10)

Now suppose δ(G, e) ≥ −1. Then

−1 ≤ δ(U1, eU1) + δ(Z1 + u′
1z1, u

′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2) + δ(V2, eV2)

+ δ̂(U2, eU2) + δ̂(V1, eV1)
(by (9))

≤ −
(
δ̂(U1, eU1) + δ̂(V2, eV2) + δ(U2, eU2) + δ(V1, eV1)

)
(by inductive hypothesis)

+ δ(Z1 + u′
1z1, u

′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2)

= −
(
δ̂(U1, eU1) + δ̂(V2, eV2) + δ(U2, eU2) + δ(V1, eV1)

)

−
(
δ(Z2 + u′

2z2, u
′
2z2) + δ(Y , eY ) + δ(Z1 + v′1z1, v

′
1z1)

)

+
(
δ(Z2 + u′

2z2, u
′
2z2) + δ(Y , eY ) + δ(Z1 + v′1z1, v

′
1z1)

)

+ δ(Z1 + u′
1z1, u

′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2)

≤ 1 + δ(Z1 + u′
1z1, u

′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2) (by (10))

+ δ(Z2 + u′
2z2, u

′
2z2) + δ(Y , eY ) + δ(Z1 + v′1z1, v

′
1z1).

This gives

−2 ≤ δ(Z1 + u′
1z1, u

′
1z1) + δ(Z2 + v′2z2, v

′
2z2) + δ(Z2 + u′

2z2, u
′
2z2)

+ δ(Z1 + v′1z1, v
′
1z1) + 2δ(Y , eY )

≤ −2,

since by inductive hypothesis, the all terms are each at most −1
2 except δ(Y , eY ) = 0

when Y is a trivial chain. Hence, δ(G, e) = −1,

δ(Z1 + u′
1z1, u

′
1z1) = δ(Z2 + v′2z2, v

′
2z2) = δ(Z1 + u′

2z2, u
′
2z2)

= δ(Z1 + v′1z1, v
′
1z1) = −1

2 ,
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and δ(Y , eY ) = 0 (i.e., Y is a trivial chain). By Lemma 3.2, Z1 and Z2 are single vertices. 
So for i, j ∈ [2], δ(Zi + u′

jzi, u
′
jzi) = δ(Zi + v′jzi, v

′
jzi) = −1

2 . Hence, from (9) and (10), 
and by the inductive hypothesis, we have

δ(Ui, eUi) = δ(Vj , eVj ) = 0

for each i, j ∈ [2], so Ui, Vj are all trivial chains as well. This proves that G ∼= K4, 
satisfying (a) of (T3).

Case 2: Z1 = Z2.
Let Z := Z1 = Z2. Then u′

1, u
′
2, v

′
1, v

′
2 are distinct vertices (since G is subcubic and Z

is 2-connected), and G is the union of U1, U2, V1, V2, Z, and the edge e. Note that

n(G) = n(U1) + n(U2) + n(V1) + n(V2) + n(Z + u′
iv

′
j) + 2

n2(G) = n2(U1) + n2(U2) + n2(V1) + n2(V2) + n2(Z + u′
iv

′
j) − 2.

For i, j ∈ [2], let F ∈ E(G, e) be an even cover through Ui and Vj . This corresponds 
to a tuple (FU1 , FU2 , FV1 , FV2 , FZ) where

• FUi ∈ E(Ui, eUi), FVj ∈ E(Vj , eVj ), FZ ∈ E(Z + u′
iv

′
j , u

′
iv

′
j), and

• FU3−i ∈ Ê(U3−i, eU3−i), FV3−j ∈ Ê(V3−j , eV3−j ),

which gives

exc(G, e) ≤ exc(Ui, eUi) + exc(Vj , eVj ) + exc(Z + u′
iv

′
j , u

′
iv

′
j)

+ êxc(U3−i, eU3−i) + êxc(V3−j , eV3−j )

= n(G) + n2(G)
4 + δ(Ui, eUi) + δ(Vj , eVj ) + δ(Z + u′

iv
′
j , u

′
iv

′
j)

+ δ̂(U3−i, eU3−i) + δ̂(V3−j , eV3−j ).

Hence, for all i, j ∈ [2],

δ(G, e) ≤ δ(Ui, eUi) + δ(Vj , eVj ) + δ(Z + u′
iv

′
j , u

′
iv

′
j) + δ̂(U3−i, eU3−i) + δ̂(V3−j , eV3−j )

(11)

We now show that δ(G, e) ≤ −3
2 , which completes the proof of Theorem 2.4. Suppose 

to the contrary that δ(G, e) ≥ −1. Then by (11) and the inductive hypothesis,

−1 ≤ δ(Ui, eUi) + δ(Vj , eVj ) + δ̂(U3−i, eU3−i) + δ̂(V3−j , eV3−j ) + δ(Z + u′
iv

′
j , u

′
iv

′
j)

(by (11))
≤ −

(
δ̂(Ui, eUi) + δ̂(Vj , eVj ) + δ(U3−i, eU3−i) + δ(V3−j , eV3−j )

)
(by (T4))

+ δ(Z + u′
iv

′
j , u

′
iv

′
j)
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= −
(
δ̂(Ui, eUi) + δ̂(Vj , eVj ) + δ(Z + u′

3−iv
′
3−j , u

′
3−iv

′
3−j) + δ(U3−i, eU3−i)

+ δ(V3−j , eV3−j )
)

+ δ(Z + u′
iv

′
j , u

′
iv

′
j) + δ(Z + u′

3−iv
′
3−j , u

′
3−iv

′
3−j)

≤ 1 + δ(Z + u′
iv

′
j , u

′
iv

′
j) + δ(Z + u′

3−iv
′
3−j , u

′
3−iv

′
3−j). (by (11))

Hence for i, j ∈ [2],

−2 ≤ δ(Z + u′
iv

′
j , u

′
iv

′
j) + δ(Z + u′

3−iv
′
3−i, u

′
3−jv

′
3−j) (12)

On the other hand, applying Lemma 3.2 to u′
i, v

′
1, v

′
2 and v′j , u

′
1, u

′
2, we have for all 

i, j ∈ [2]

δ(Z + u′
iv

′
1, u

′
iv

′
1) + δ(Z + u′

iv
′
2, u

′
iv

′
2) ≤ −2 and

δ(Z + u′
1v

′
j , u

′
1v

′
j) + δ(Z + u′

2v
′
j , u

′
2v

′
j) ≤ −2.

(13)

Now, setting i = j = 1 and setting i = 1 and j = 2 in (12), we have

−4 ≤ δ(Z + u′
1v

′
1, u

′
1v

′
1) + δ(Z + u′

2v
′
2, u

′
2v

′
2) + δ(Z + u′

1v
′
2, u

′
1v

′
2) + δ(Z + u′

2v
′
1, u

′
2v

′
1).

On the other hand, setting i = 1 and i = 2 in the first inequality of (13), we have

δ(Z + u′
1v

′
1, u

′
1v

′
1) + δ(Z + u′

1v
′
2, u

′
1v

′
2) + δ(Z + u′

2v
′
1, u

′
2v

′
1) + δ(Z + u′

2v
′
2, u

′
2v

′
2) ≤ −4.

We thus have equality everywhere. In particular, δ(G, e) = −1 and we have equality in 
(12) and (13), which implies that for all i, j ∈ [2],

δ(Z + u′
iv

′
j , u

′
iv

′
j) = −1. (14)

Since Z + u′
iv

′
j has at least two vertices of degree 2 (namely u′

3−i and v′3−j), it is 
not isomorphic to K4. Moreover, since Z is 2-connected, u′

iv
′
j is not contained in any 

2-edge-cut in Z + u′
iv

′
j . So each (Z + u′

iv
′
j , u

′
iv

′
j) satisfies (b) or (d) of (T3).

We claim that u′
iv

′
j /∈ E(Z) for all i, j ∈ [2] (hence (Z+u′

iv
′
j , u

′
iv

′
j) satisfies (d) of (T3)). 

For, suppose without loss of generality that u′
1v

′
1 ∈ E(Z). By the inductive hypothesis, 

(b) of (T3) holds for (Z+u′
1v

′
1, u

′
1v

′
1), so suppressing {u′

1, v
′
1} in Z to an edge e′ results in 

a graph Z ′ such that (Z ′, e′) is a near-minimal rooted θ-chain. Let C1, C2 denote the two 
chains of (Z ′, e′). Assume without loss of generality that v′2 ∈ V (C1). Since v′2 has degree 
2 in Z, it is in the interior of C1, and this implies that Z − {u′

1, v
′
2} is connected and 

v′2u
′
1 /∈ E(Z). Then (Z+u′

1v
′
2, u

′
1v

′
2) satisfies (d) of (T3), which implies that Z−{u′

1, v
′
2}

is disconnected, a contradiction.
It follows that (Z + u′

iv
′
j , u

′
iv

′
j) satisfy (d) of (T3) for all i, j ∈ [2], so (Z + u′

iv
′
j , u

′
iv

′
j)

is a rooted θ-chain for all i, j ∈ [2]. Consider the rooted θ-chain (Z + u′
1v

′
1, u

′
1v

′
1). Since 

(Z + u′
1v

′
2, u

′
1v

′
2) (respectively, (Z + u′

2v
′
1, u

′
2v

′
1)) is a rooted θ-chain, {v′2} (respectively, 

{u′
2}) is a block in one of the chains of (Z + u′

1v
′
1, u

′
1v

′
1). Let C1 denote the subcubic 
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chain of Z with end points {u′
1, v

′
1} not containing v′2, and let C2 denote the subcubic 

chain of Z with end points {u′
1, v

′
2} not containing v′1. Let D denote the subcubic chain 

of Z with end points {v′1, v′2} not containing u′
1.

Then for j ∈ [2], n(Z+u′
1v

′
j) = n(C1) +n(C2) +n(D) +3 and n2(Z+u′

1v
′
j) = n2(C1) +

n2(C2) +n2(D) +1. Thus for each j ∈ [2], by forming an even cover in E(Z +u′
1v

′
j , u

′
1v

′
j)

using even covers from Ê(Cj , eCj ), E(D, eD), and E(C3−j , eC3−j ), we obtain

δ(Z + u′
1v

′
j , u

′
1v

′
j) ≤ −1 + δ̂(Cj , eCj ) + δ(D, eD) + δ(C3−j , eC3−j ).

Adding these two inequalities and using (14), we have

0 ≤ δ(C1, eC1) + δ̂(C1, eC1) + 2δ(D, eD) + δ(C2, eC2) + δ̂(C2, eC2)
≤ 2δ(D, eD)

by (T4) applied to (Ci, eCi). It follows that D is a trivial chain, and v′1v
′
2 ∈ E(Z).

By symmetry, u′
1u

′
2 ∈ E(Z). Thus, {u′

1u
′
2, v1v′2} is a 2-edge-cut in Z. Let D1, D2 denote 

the connected components of Z − {u′
1u

′
2, v

′
1v

′
2} and (by relabeling u′

1, u
′
2 if necessary) 

assume u′
i, v

′
i ∈ V (Di) for i ∈ [2]. Then for i, j ∈ [2], n(Z + u′

iv
′
j , u

′
iv

′
j) = n(D1, eD1) +

n(D2, eD2) +4 and n2(Z+u′
iv

′
j , u

′
iv

′
j) = n2(D1, eD1) +n2(D2, eD2) +2. Thus, by forming 

an even cover in E(Z+u′
iv

′
j , u

′
iv

′
j) using even covers from E(Dk, eDk) and Ê(D3−k, eD3−k)

for k ∈ [2], we get

δ(Z + u′
iv

′
j , u

′
iv

′
j) ≤ −3

2 + δ(Dk, eDk) + δ̂(D3−k, eD3−k)

Adding these two inequalities and using (14) and (T4), we have

1 ≤ δ(D1, eD1) + δ̂(D1, eD1) + δ(D2, eD2) + δ̂(D2, eD2) ≤ 0,

a contradiction. This completes the proof of Theorem 2.4.

5. Extremal examples

In this section, we give a structural characterization of the extremal examples of 
Theorem 1.1. Recall that for a subcubic graph G and any edge e ∈ E(G), we have

exc(G) = min{exc(G, e) + 2, êxc(G, e)}

= n(G) + n2(G)
4 + min{δ(G, e) + 2, δ̂(G, e)}.

So if either δ(G, e) ≤ −3
2 or δ̂(G, e) ≤ 1

2 for any edge e ∈ E(G), then exc(G) ≤
n(G)+n2(G)

4 + 1
2 . It follows that exc(G) = n(G)+n2(G)

4 + 1 (equivalently, tsp(G) =
5n(G)+n2(G)

4 − 1) if and only if (δ(G, e), ̂δ(G, e)) = (−1, 1) for all e ∈ E(G).
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v −→ D

Fig. 6. The '-operation.

Proposition 5.1. Let G be a simple 2-connected subcubic graph and let e be an edge of G. 
Then (δ(G, e), ̂δ(G, e)) = (−1, 1) if and only if either G ∼= K4 or G is a minimal θ-chain.

Proof. Suppose (δ(G, e), ̂δ(G, e)) = (−1, 1). Since δ(G, e) = −1, one of the four outcomes 
of (T3) holds. If G ∼= K4 then we are done. Since G is simple, (b) of (T3) cannot occur. 
Moreover, (d) of (T3) does not hold; otherwise, (G, e) is a simple rooted θ-chain and, by 
Lemma 3.1 (ii), δ̂(G, e) ≤ 3

2 + δ(C1, eC1) + δ(C2, eC2) ≤ 1/2, a contradiction.
Thus (c) of (T3) holds: there exists e′ ∈ E(G) such that {e, e′} is a 2-edge-cut in 

G and suppressing either subcubic chain C of G with end edges e, e′ yields a loop or a 
balanced tight rooted θ-chain (G/C, eG/C). Let C be a subcubic chain of G with end 
edges e, e′. Then by Proposition 2.2 and (T4),

−1 = δ(G, e) = δ(G/C, eG/C) + δ(C, eC) ≤ −
(
δ̂(G/C, eG/C) + δ̂(C, eC)

)

= −δ̂(G, e) = −1.

This implies that (δ(G/C, eG/C), ̂δ(G/C, eG/C)) = (δ(C, eC), ̂δ(C, eC)) = (−1
2 , 

1
2 ), and 

thus (C, eC) and (G/C, eG/C) are minimal rooted θ-chains (by Lemma 3.1 (iii)). There-
fore, by definition, G is a minimal θ-chain (since it is the internally disjoint union of C
and the two chains of (G/C, eG/C), all of which are minimal). !

To give an alternate structural characterization of minimal (rooted) θ-chains, we now 
describe an operation introduced in [8]. Let H be a graph and v ∈ V (H) be a vertex 
of degree 2. A *-operation on H at v deletes v from H, adds a 4-cycle D disjoint from 
H − v, and adds a matching between the neighbors of v and two nonadjacent vertices in 
D. See Fig. 6. We say that a graph is H-constructible if it can be obtained from H by 
repeated *-operations.

It is observed in [8] that after each *-operation, the excess of the new graph increases by 
1 and the new quantity n(G)+n2(G)

4 also increases by 1. We will consider K2,3-constructible 
graphs and K−

4 -constructible graphs, where K−
4 is the graph obtained from the complete 

graph K4 by removing an edge. Note that exc(K2,3) = n(K2,3)+n2(K2,3)
4 + 1; thus, if G is 

K2,3-constructible then exc(G) = n(G)+n2(G)
4 + 1.

Proposition 5.2 (Dvořák et al. [8]). Let G be a simple 2-connected subcubic graph. If 
G ∼= K4 or G is K2,3-constructible, then (δ(G, e), ̂δ(G, e)) = (−1, 1).
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We show that the converse of Proposition 5.2 is also true, thereby giving a structural 
characterization of the extremal graphs for Theorem 1.1. First, we have an observation 
similar to Proposition 5.2. The center of K−

4 is the edge whose endpoints both have 
degree 3.

Proposition 5.3. Let (G, e) be a simple minimal rooted θ-chain. Then G is K−
4 -

constructible, with the edge e corresponding to the center of K−
4 .

Proof. By (T1) and Lemma 3.1 (iii), (δ(G, e), ̂δ(G, e)) = (−1
2 , 

1
2 ). Let C1 and C2 be 

the chains of (G, e). By the definition of a minimal rooted θ-chain, for each i ∈ [2], we 
have (δ(Ci, eCi), ̂δ(Ci, eCi)) = (−1

2 , 
1
2 ), so (Ci, eCi) is either a loop or a minimal rooted 

θ-chain by ((T1)) and Lemma 3.1. If (Ci, eCi) is not a loop, then by induction, it is 
K−

4 -constructible with eCi corresponding to the center of K−
4 . It follows that (G, e) is 

K−
4 -constructible with e corresponding to the center of K−

4 . !

Proposition 5.4. Let G be a simple minimal θ-chain. Then G is K2,3-constructible.

Proof. By definition, there exists a choice of three chains C1, C2, C3 of G with com-
mon endpoints such that G is the internally disjoint union C1 ∪ C2 ∪ C3, and we have 
(δ(Ci, eCi), ̂δ(Ci, eCi)) = (−1

2 , 
1
2 ) for each i ∈ [3]. If G ∼= K2,3, then we are done. So we 

may assume without loss of generality that (C1, eC1) is not a loop. Then it is a minimal 
rooted θ-chain by Lemma 3.1, and by Proposition 5.3, it is K−

4 -constructible with the 
edge eC1 corresponding to the center of K−

4 . On the other hand, (G/C1, eG/C1) is by 
definition a minimal rooted θ-chain, so it is also K−

4 -constructible by Proposition 5.3, 
with eG/C corresponding to the center of K−

4 . It follows that G is K2,3-constructible. !

We thus have the following characterization of the extremal examples of Theorem 1.1.

Theorem 5.5. Let G be a simple 2-connected subcubic graph. Then exc(G) ≤ n(G)+n2(G)
4 +

1, with equality if and only if either G ∼= K4 or G is K2,3-constructible.

Proof. Let e ∈ E(G). If δ(G, e) ≤ −3
2 or δ̂(G, e) ≤ 1

2 , then exc(G) ≤ n(G)+n2(G)
4 + 1

2 . 
Otherwise, we have (δ(G, e), ̂δ(G, e)) = (−1, 1), or equivalently, exc(G) = n(G)+n2(G)

4 +1. 
Now if G ∼= K4 or G is K2,3-constructible, then (δ(G, e), ̂δ(G, e)) = (−1, 1) by Propo-
sition 5.2. Conversely, if (δ(G, e), ̂δ(G, e)) = (−1, 1), then by Propositions 5.1 and 5.4, 
either G ∼= K4 or G is K2,3-constructible. !

6. Algorithm

We now provide an algorithm for finding a TSP walk of length at most 5n(G)+n2(G)
4 −1

in any simple 2-connected subcubic graph G. This is achieved by following the proof of 
Theorem 2.4 to construct an even cover F of G with exc(F ) ≤ n(G)+n2(G)

4 + 1. As noted 
by Dvořák et al. [8], modifying this even cover to our desired TSP walk takes linear time.
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In the proof of Theorem 2.4, we often have a choice of routing a cycle through certain 
subcubic chains and not through others. For each such chain C, we “save” δ(C, eC) by 
going through C and incur a “cost” δ̂(C, eC) by not going through C. The key idea 
of Theorem 2.4 is that these costs and savings are (at worst) balanced, i.e. δ(C, eC) +
δ̂(C, eC) ≤ 0. Of course, for a given subcubic graph G and an edge e, we cannot efficiently 
compute δ(G, e) and δ̂(G, e) exactly (unless P=NP). Instead, we compute “worst-case” 
estimates

(∆(G, e), ∆̂(G, e)) ∈
{
(−1

2 ,
1
2 ), (−1, 1), (−3

2 ,
3
2)
}

such that (δ(G, e), ̂δ(G, e)) ≤ (∆(G, e), ∆̂(G, e)) (coordinate-wise).
The natural approach would be to determine exactly when δ(G, e) = −1

2 or δ̂(G, e) =
3
2 using our characterization of the extremal examples in Theorem 2.4, and assign 
(∆(G, e), ∆̂(G, e)) = (−1

2 , 
1
2 ) or (−3

2 , 
3
2 ) respectively (and assign (−1, 1) in all other 

cases). To check whether (G, e) is a minimal rooted θ-chain (for example), we would 
need to first check that it is a rooted θ-chain (which takes linear time) and then recur-
sively check that each of its two chains are also minimal, taking quadratic time overall. 
This approach would result in a cubic algorithm to produce the desired even covers.

It turns out that a much simpler linear-time estimate is sufficient, and yields a 
quadratic-time algorithm to find the desired even covers. Indeed, by Lemma 3.1, if 
(G, e) is a rooted θ-chain (regardless of whether it is tight or balanced), then we have 
(δ(G, e), ̂δ(G, e)) ≤ (−1

2 , 
1
2 ). And by Lemma 3.3, if G − e is simple and 2-connected and 

(Gu, fu) is a rooted θ-chain (where Gu is obtained from G −e by suppressing an endpoint 
u to an edge fu), then we have (δ(G, e), ̂δ(G, e)) ≤ (−3

2 , 
3
2 ).

We thus define an algorithm Scan(G, e) to estimate (δ(G, e), ̂δ(G, e)) as follows. If G
is a loop or G − e is 2-connected, Scan(G, e) will assign

(∆(G, e), ∆̂(G, e)) =






(−1
2 ,

1
2) if (G, e) is a loop or a rooted θ-chain,

(−3
2 ,

3
2) if (Gu, fu) is a rooted θ-chain,

(−1, 1) otherwise.

If G −e is not 2-connected (and it is not a loop), then (G, e) can be written as the closure 
(C, eC) of a subcubic chain C = xe0B1e1 · · · ek−1Bkeky such that k ≥ 2 (if k = 1, then 
G − e = C− eC is 2-connected or an isolated vertex). In this case, our estimate on (G, e)
will be the sum of the estimates of the chain-blocks (Bi, eBi) of C:

(∆(G, e), ∆̂(G, e)) =
k∑

i=1
(∆(Bi, eBi), ∆̂(Bi, eBi)).

For the remainder of this section, given a 2-connected subcubic graph G and an edge 
e = uv ∈ E(G) such that G − e is simple and has no cut-vertex, we let u1, u2 denote the 
two neighbors of u not equal to v, and denote by Gu the graph obtained by deleting e
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and suppressing u to an edge fu = u1u2. Note that computing Gu and fu takes constant 
time. To resolve ambiguities in the choice of the vertex u in the edge e = uv (in the case 
where ∆̂(G, e) = 3

2 ), we fix a linear ordering ≤ of the vertices throughout, and assume 
that u ≤ v.

Proposition 6.1. Let G be a subcubic graph and let e = uv ∈ E(G) such that G − e is 
simple. Then δ(G, e) ≤ ∆(G, e) and δ̂(G, e) ≤ ∆̂(G, e).

Proof. First suppose G is a loop or G −e is 2-connected. If (G, e) is a loop or a rooted θ-
chain, then by Lemma 3.1, (δ(G, e), ̂δ(G, e)) ≤ (−1

2 , 
1
2 ) = (∆(G, e), ∆̂(G, e)). If (Gu, fu)

is a rooted θ-chain, then by Lemma 3.3, (δ(G, e), ̂δ(G, e)) ≤ (−3
2 , 

3
2 ) = (∆(G, e), ∆̂(G, e)). 

Otherwise, by Theorem 2.4, we have (δ(G, e), ̂δ(G, e)) ≤ (−1, 1) = (∆(G, e), ∆̂(G, e)).
Now suppose G −e is not 2-connected. Then we can write (G, e) as the closure (C, eC)

of a subcubic chain C = xe0B1e1 · · · ek−1Bkeky where k ≥ 2. By Proposition 2.1 and by 
induction, we have

(δ(C, eC), δ̂(C, eC)) =
k∑

i=1
(δ(Bi, eBi), δ̂(Bi, eBi)) ≤

k∑

i=1
(∆(Bi, eBi), ∆̂(Bi, eBi))

= (∆(G, e), ∆̂(G, e)). !

Checking whether (G, e) is a rooted θ-chain is equivalent to checking whether G −{u, v}
is disconnected, which can be done in linear time. More generally, we can determine the 
block structure of graphs with a depth first search (DFS) in O(n(G) + |E(G)|) time (e.g. 
[6]), which is O(n(G)) when G is subcubic.

Algorithm 1: Scan(G, e).
Input : A loop or a 2-connected subcubic graph G and e = uv ∈ E(G) such that G − e is simple
Output : A half integral vector (∆(G, e), ∆̂(G, e)) ∈ {(− 1

2 , 12 ), (−1, 1), (− 3
2 , 32 )}.

1 if G − e has a cut-vertex then
2 Write (G, e) as the closure (C, eC) of a subcubic chain C = xe0B1e1 · · · ek−1Bkeky;
3 return

∑k
i=1 Scan(Bi, eBi

);
4 if G − {u, v} is disconnected or G is a loop then
5 return (− 1

2 , 12 );
6 else if Gu − {u1, u2} is disconnected then
7 return (− 3

2 , 32 );
8 else
9 return (−1, 1);

Proposition 6.2. Scan(G, e) can be computed in O(n(G)) time.

Proof. If Scan(G, e) returns on lines 5, 7, or 9, then it performs at most three depth first 
searches, thus requiring O(n(G)) time. Now suppose Scan(G, e) returns on line 3; that 
is, (G, e) is the closure of a subcubic chain C = xe0B1e1 · · · ek−1Bkeky where k ≥ 2. For 
all i ∈ [k], Bi − eBi is either 2-connected or a single vertex, so Scan(Bi, eBi) will not 
execute line 2. Thus Scan(G, e) requires a depth first search on an input of size n(G) on 
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line 1 and at most three depth first searches for each Bi, i ∈ [k]. As 
∑k

i=1 n(Bi) < n(G), 
we have that in all cases, Scan(G, e) requires O(n(G)) time. !

We will define two algorithms EC(G, e) and ÊC(G, e) which will return an even cover 
F in E(G, e) and Ê(G, e) respectively such that exc(F ) ≤ n(G)+n2(G)

4 + ∆(G, e) + 2
and exc(F ) ≤ n(G)+n2(G)

4 + ∆̂(G, e) respectively. For convenience, we wrap these two 
algorithms in a main algorithm Algo with preprocessing to handle the base case (where 
(G, e) is a loop) and the case where G − e is not 2-connected.

Algorithm 2: Algo(G, e, flag).
Input : A loop or a 2-connected subcubic graph G and e ∈ E(G) such that G − e is simple, and a 

binary input flag
Output : F ∈ E(G, e) such that exc(F ) ≤ n(G)+n2(G)

4 + ∆(G, e) + 2 (if flag == true) or F ∈ Ê(G, e)
such that exc(F ) ≤ n(G)+n2(G)

4 + ∆̂(G, e) (if flag == false)
1 if G is a loop then
2 if flag == true then
3 return F = G;
4 else
5 return F = G − e;
6 if G − e is not 2-connected then
7 Write (G, e) as the closure (C, eC) of a subcubic chain C = xe0B1e1B2 . . . ek−1Bkeky;
8 Let Fi = Algo(Bi, eBi

, flag) for all i ∈ [k];
9 if flag == true then

10 return F =
⋃k

i=1(Fi − eBi
) + e + {ei : i ∈ [k − 1]};

11 else
12 return F =

⋃k
i=1 Fi;

13 Let (∆, ∆̂) = Scan(G, e);
14 if flag == true then
15 return F = EC(G, e, ∆);
16 else
17 return F = ÊC(G, e);

For the remainder of the section, we let fAlgo : N → N denote a superadditive function 
(i.e. fAlgo(n1) + fAlgo(n2) ≤ fAlgo(n1 + n2) for all n1, n2 ∈ N) such that Algo(G, e, flag)
takes at most fAlgo(n) steps on inputs of size at most n. We will show in the end that 
we can take fAlgo(n) = O(n2).

We now give the algorithm ÊC(G, e) used in line 17 of Algo(G, e, flag), which produces 
an even cover F ∈ Ê(G, e) with exc(F ) ≤ n(G)+n2(G)

4 + ∆̂(G, e). Recall that (Gu, fu) is 
obtained from G and e = uv by deleting e and suppressing u to an edge fu = u1u2.

Algorithm 3: ÊC(G, e).
Input : A subcubic graph G and e = uv ∈ E(G) such that G − e is simple and 2-connected
Output : An even cover F ∈ Ê(G, e) with exc(F ) ≤ n(G)+n2(G)

4 + ∆̂(G, e) where 
∆̂(G, e) = Scan(G, e)2

1 Let F ′ = Algo(Gu, fu, true);
2 return F = (F ′ − fu) + {u} + {u1u, uu2};

Proposition 6.3. Suppose Algo is correct on inputs of size less than n. Then ÊC is correct 
and takes fAlgo(n − 1) + O(1) time for all inputs of size less than or equal to n.
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Proof. We clearly have F ∈ Ê(G, e). We claim that ∆(Gu, fu) +2 ≤ ∆̂(G, e). If ∆̂(G, e) =
3
2 , there is nothing to prove (since ∆ ≤ −1

2 ). If ∆̂(G, e) = 1, then (Gu, fu) is not a rooted 
θ-chain, so ∆(Gu, fu) ≤ −1. Finally, suppose ∆̂(G, e) = 1

2 . Then (G, e) is a rooted θ-
chain. This implies that (Gu, fu) is the closure (C, eC) of a subcubic chain C with at 
least three blocks, so ∆(Gu, fu) = ∆(C, eC) ≤ −3

2 . It follows that

exc(F ) = exc(F ′) ≤ n(G) + n2(G)
4 + ∆(Gu, fu) + 2 ≤ n(G) + n2(G)

4 + ∆̂(G, e).

For the time complexity, note that Algo is called only once on (Gu, fu), which takes 
fAlgo(n(Gu)) = fAlgo(n − 1) time. The remaining lines require constant time, thus ÊC
runs in fAlgo(n − 1) + O(1) time. !

We now give the algorithm EC(G, e, ∆) in line 15 of Algo, which produces an even cover 
F ∈ E(G, e) such that exc(F ) ≤ n(G)+n2(G)

4 + ∆(G, e) + 2. For clarity of presentation, 
we split the algorithm into three cases depending on the value ∆. We first describe the 
case ∆ = −1

2 .

Algorithm 4: EC(G, e, −1
2 ).

Input : A subcubic graph G and e = uv ∈ E(G) such that G − e is simple and 2-connected, and 
∆(G, e) = − 1

2 (i.e. (G, e) is a rooted θ-chain)
Output : An even cover F ∈ E(G, e) with exc(F ) ≤ n(G)+n2(G)

4 + 3
2

1 Determine the subcubic chains C1 and C2 of (G, e) with a DFS;
2 Let (∆(C1), ∆̂(C1)) = Scan(C1, eC1 ) and let (∆(C2), ∆̂(C2)) = Scan(C2, eC2 );
3 Relabel if necessary so that ∆(C1) + ∆̂(C2) ≤ 0;
4 Let F1 = Algo(C1, eC1 , true) and F2 = Algo(C2, eC2 , false);
5 Let v′ be the neighbor of v in C1 and let u′ be the neighbor of u in C1;
6 return F = (F1 − eC1 ) ∪ F2 + {u, v} + {u′u, uv, vv′};

Proposition 6.4. Suppose Algo is correct on inputs of size less than n = n(G). Then 
EC(G, e, −1

2) is correct and takes fAlgo(n −1) +O(n) time for all input graphs of size less 
than or equal to n.

Proof. For correctness, first note that the relabeling step on line 3 is always possible as 
∆(Ci) = −∆̂(Ci) for i ∈ [2]. Since n(G) = n(C1) +n(C2) + 2, n2(G) = n2(C1) +n2(C2), 
and exc(F ) = exc(F1) + exc(F2), we have

exc(F ) = exc(F1) + exc(F2)

≤ n(C1) + n2(C1)
4 + ∆(C1) + 2 + n(C2) + n2(C2)

4 + ∆̂(C2)

≤ n(G) + n2(G)
4 + 3

2 .

For the time complexity, line 1 requires O(n) time. By Proposition 6.2, line 2 re-
quires O(n(C1)) + O(n(C2)) = O(n) time. By induction, line 4 takes fAlgo(n(C1)) +
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fAlgo(n(C2)) ≤ fAlgo(n − 1) time. Thus, in total, EC(G, e, −1
2 ) takes fAlgo(n − 1) + O(n)

time of inputs of size n. !

Before we handle the analysis of EC(G, e, −1), we first give an important subroutine 
which is an algorithmic version of Lemma 3.2.

Algorithm 5: Subroutine(Z, u, v1, v2).
Input : A simple 2-connected subcubic graph Z and distinct vertices u, v1, v2 of degree 2 in Z
Output : F ∈ E(Z + uvi, uvi) for some i ∈ [2] with exc(F ) ≤ n(Z+uvi)+n2(Z+uvi)

4 + 1
1 For each i ∈ [2], let (∆i, ∆̂i) = Scan(Z + uvi, uvi);
2 if ∆i ≤ −1 for some i ∈ [2] then
3 return F = Algo(Z + uvi, uvi, true);
4 Let Ci,1, Ci,2 denote the two subcubic chains of (Z + uvi, uvi), i ∈ [2];
5 Let (∆(Ci,j), ∆̂(Ci,j)) = Scan(Ci,j , eCi,j

) for i, j ∈ [2];
6 Relabel if necessary so that ∆(C1,1) + ∆̂(C1,2) ≤ − 1

2 ;
7 Let F1 = Algo(C1,1, eC1,1 , true) and F2 = Algo(C1,2, eC1,2 , false);
8 Let u′ be the neighbor of u in C1,1 and v′ be the neighbor of v1 in C1,1;
9 return F = (F1 − eC1,1 ) ∪ F2 + {u, v} + {u′u, uv1, v1v

′};

Proposition 6.5. Suppose Algo is correct for all inputs of size less than or equal to n =
n(Z). Then Subroutine is correct and takes fAlgo(n) + O(n) time for all inputs of size 
less than or equal to n.

Proof. We first analyze correctness. If we return on line 3, by correctness of Algo, we 
have exc(F ) ≤ n(Z+uvi)+n2(Z+uvi)

4 + 1. So assume ∆i = ∆(Z + uvi, uvi) = −1
2 for both 

i ∈ [2]. Thus both (Z + uvi, uvi) are rooted θ-chains, which implies that v3−i is a trivial 
block in one of the chains Ci,1 and Ci,2. This then implies that ∆(Ci,1) )= ∆(Ci,2) for 
some i ∈ [2]. Thus the relabeling step on line 6 is always possible.

Now consider the even cover F returned on line 9. As n(Z+uv1) = n(C1,1) +n(C1,2) +2, 
n2(Z + uv1) = n2(C1,1) + n2(C1,2), and ∆(C1,1) + ∆̂(C1,2) ≤ −1

2 , we have

exc(F ) = exc(F1) + exc(F2)

≤ n(C1,1) + n2(C1,1)
4 + ∆(C1,1) + 2 + n(C1,2) + n2(C1,2)

4 + ∆̂(C1,2)

≤ n(Z + uv1) + n2(Z + uv1)
4 + ∆(C1,1) + ∆̂(C1,2) + 3

2

≤ n(Z + uv1) + n2(Z + uv1)
4 + 1.

For the time complexity, as n(C1,1) + n(C1,2) < n, lines 3 and 7 both take at most 
fAlgo(n) time. Furthermore, by Proposition 6.2, the remaining lines require O(n) time. 
Since we call exactly one of line 3 or 7, Subroutine(Z, u, v1, v2) takes fAlgo(n) + O(n)
time. !

We are now ready to present EC(G, e, −1).
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Algorithm 6: EC(G, e, −1).
Input : A subcubic graph G and e = uv ∈ E(G) such that G − e is simple and 2-connected, and 

∆(G, e) = −1.
Output : F ∈ E(G, e) with exc(F ) ≤ n(G)+n2(G)

4 + 1
1 Let Z1 and Z2 be the blocks (or single vertices) of G − {u, v} as defined in Claim 4.0.3;
2 Define vertices ui, u′

i, vj , v′
j and subcubic chains Ui, Vj for i, j ∈ [2], as in the proof of Theorem 2.4;

3 Let (∆(Ui), ∆̂(Ui)) = Scan(Ui, eUi
) and (∆(Vj), ∆̂(Vj)) = Scan(Vj , eVj

) for i, j ∈ [2];
4 if Z1 %= Z2 then
5 Relabel vertices as necessary so that ∆(U1) + ∆(V2) + ∆̂(U2) + ∆̂(V1) ≤ 0;
6 Let Z = Z1 ∪ Z2 ∪ Y , where Y is the subcubic chain from Z1 to Z2;
7 Let FU1 = Algo(U1, eU1 , true), FV2 = Algo(V2, eV2 , true), FU2 = Algo(U2, eU2 , false), 

FV2 = Algo(V1, eV1 , false), and FZ = Algo(Z + u′
1v

′
2, u′

1v
′
2, true);

8 return F = (FU1 − eU1 ) ∪ (FV2 − eV2 ) ∪ FU2 ∪ FV1 ∪ (FZ − u′
1v

′
2) + {u, v} + {u1u, uv, vv2};

9 else
10 Relabel vertices as necessary so that ∆(U1) + ∆(Vi) + ∆̂(U2) + ∆̂(V3−i) ≤ 0 for i ∈ [2];
11 Let FZ = Subroutine(Z1, u′

1, v′
1, v′

2);
12 Relabel so that u′

1v
′
2 ∈ FZ ;

13 Let FU1 = Algo(U1, eU1 , true), FV2 = Algo(V2, eV2 , true), FU2 = Algo(U2, eU2 , false), and 
FV1 = Algo(V1, eV1 , false);

14 return F = (FZ − u′
1v

′
2) ∪ (FU1 − eU1 ) ∪ (FV2 − eV2 ) ∪ FU2 ∪ FV1 + {u, v} + {u1u, uv, vv2};

Proposition 6.6. Suppose Algo is correct on all inputs of size less than n = n(G). Then 
ÊC(G, e, −1) is correct and takes fAlgo(n − 1) +O(n) time for all inputs of size less than 
or equal to n.

Proof. The proof of correctness follows the same structure of Section 4. The existence 
of Z1 and Z2 follows from Claim 4.0.3, and they can be determined from the block 
structure of G − {u, v} in linear time. As ∆(Ui) = −∆̂(Ui) and ∆(Vi) = −∆̂(Vi) for 
i ∈ [2], the relabeling on lines 5 and 10 are always possible. Furthermore, regardless of 
whether Z1 )= Z2 or Z1 = Z2, we have

• exc(F ) − 2 = (exc(FU1) − 2) + (exc(FV2) − 2) + exc(FU2) + exc(FV1) + (exc(FZ) − 2),
• n(G) = n(U1) + n(V2) + n(U2) + n(V1) + n(Z + u′

1v
′
2) − 2, and

• n2(G) = n2(U1) + n2(V2) + n2(U2) + n2(V1) + n2(Z + u′
1v

′
2) + 2.

By induction, we have exc(FU1) − 2 ≤ n(U1)+n2(U1)
4 + ∆(U1), exc(FV2) − 2 ≤

n(V2)+n2(V2)
4 + ∆(V2), exc(FU2) ≤ n(U2)+n2(U2)

4 + ∆̂(U2), and exc(FV1) ≤ n(V1)+n2(V1)
4 +

∆̂(V1). We argue now that in both cases we have

exc(FZ) − 2 ≤ n(Z + u′
1v

′
2) + n2(Z + u′

1v
′
2)

4 − 1. (15)

If Z1 = Z2, this follows from Proposition 6.5. If Z1 )= Z2, then (Z + u′
1v

′
2, u

′
1v

′
2) is the 

closure of a subcubic chain with at least two blocks, namely Z1 and Z2. By induction on 
its chain-blocks, we have

exc(FZ) − 2 ≤ n(Z + u′
1v

′
2) + n2(Z + u′

1v
′
2)

4 + ∆(Z + u′
1v

′
2, u

′
1v

′
2)
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≤ n(Z + u′
1v

′
2) + n2(Z + u′

1v
′
2)

4 − 1

and (15) holds in both cases. Thus,

exc(F ) − 2 = (exc(FU1) − 2) + (exc(FV2) − 2) + exc(FU2) + exc(FV1) + (exc(FZ) − 2)

≤ n(G) + n2(G)
4 + ∆(U1) + ∆(V2) + ∆̂(U2) + ∆̂(V1) + ∆(Z + u1v

′
2, u

′
1v

′
2)

≤ n(G) + n2(G)
4 − 1.

For the time complexity, note that we only call Algo and Subroutine on inputs whose 
sizes sum to less than n. As the remaining lines require O(n) time by Proposition 6.2, 
we have that the entire algorithm requires fAlgo(n − 1) + O(n) time. !

We now present the final case for EC.

Algorithm 7: EC(G, e, −3
2 ).

Input : A subcubic graph G and e = uv ∈ E(G) with G − e is simple and 2-connected, and 
∆(G, e) = − 3

2 (i.e. (Gu, fu) is a rooted θ-chain)
Output : F ∈ E(G, e) with exc(F ) ≤ n(G)+n2(G)

4 + 1
2

1 Let C1 and C2 denote the chains of (Gu, fu) with common endpoints fu = {u1, u2} and v ∈ V (C1);
2 Let xi ∈ V (C2) be the neighbor of ui for i ∈ [2];
3 Write C1 = u1e0B1 . . . ek−1Bkeku2;
4 Let " ∈ [k] be the unique index such that v ∈ V (B!);
5 Let v′ denote the endpoint of e!−1 in B!, and let v′′ denote the endpoint of e! in B!;
6 Let D1 and D2 denote the chains of C1 with end points {u1, v′} and {v′′, u2} respectively;
7 For i ∈ [2], let (∆(Di), ∆̂(Di)) = Scan(Di, eDi

);
8 Relabel if necessary so that ∆(D1) + ∆̂(D2) ≤ 0;
9 Let F2 = Algo(C2, eC2 , true), FD,1 = Algo(D1, eD1 , true), FD,2 = Algo(D2, eD2 , false), and 

F! = Algo(B! + v′v, v′v, true);
10 return

F = (F2 − eC2 ) ∪ (FD,1 − eD1 ) ∪ FD,2 ∪ (F! − v′v) + {u, u1, u2} + {e0, e!−1, u1x1, uv, uu2, u2x2};

Proposition 6.7. Suppose Algo is correct for all inputs of size less than n = n(G). Then 
EC(G, e, −3

2 ) is correct and takes fAlgo(n − 1) +O(n) time for all inputs of size less than 
or equal to n.

Proof. We first analyze the correctness of the returned even cover F . By induction, we 
have that exc(F2) ≤ n(C2)+n2(C2)

4 + ∆(C2) + 2, exc(FD,1) ≤ n(D1)+n2(D1)
4 + ∆(D1) + 2, 

exc(FD,2) ≤ n(D2)+n2(D2)
4 +∆̂(D2), and exc(F") ≤ n(B!+v′v)+n2(B!+v′v)

4 + 3
2 . As exc(F ) −

2 = (exc(F2) −2) +(exc(FD,1) −2) +exc(FD,2) +(exc(F") −2), n(G) = n(C2) +n(D1) +
n(D2) +n(B" + v′v) + 3, and n2(G) = n2(C2) +n2(D1) +n2(D2) +n2(B" + v′v) − 1, we 
have

exc(F ) − 2 = (exc(F2) − 2) + (exc(FD,1) − 2) + exc(FD,2) + (exc(F") − 2)

≤ n(G) + n2(G)
4 − 1

2 + ∆(C2) + ∆(D1) + ∆̂(D2) + ∆(B" + v′v, v′v)
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≤ n(G) + n2(G)
4 − 3

2 ,

since ∆(C2), ∆(B" + v′v, v′v) ≤ −1
2 and ∆(D1) + ∆̂(D2) ≤ 0. Thus exc(F ) satisfies our 

desired bound.
For the time analysis, as we only call Algo on inputs whose sizes sum to less than n, 

line 9 takes at most fAlgo(n) time. Furthermore, by Proposition 6.2, the remaining lines 
require O(n) time. Thus, EC(G, e, −3

2 ) takes fAlgo(n − 1) + O(n) time. !

To summarize, we have the following.

Corollary 6.8. Algo is correct and takes O(n2) time.

Proof. We show inductively that we can take fAlgo(n) = O(n2). First note that lines 1-5 
take constant time. Line 6 takes linear time to check, and if executed, lines 7-12 take 
O(n) +

∑k
i=1 fAlgo(n(Bi)) ≤ O(n) +

∑k
i=1 O(n(Bi)2) = O(n2).

Line 13 take linear time by Proposition 6.2, and in lines 14-17, we execute exactly one 
of EC(G, e, ∆) and ÊC(G, e), which takes fAlgo(n − 1) + O(n) time by Propositions 6.3, 
6.4, 6.6, and 6.7. It follows that we can take fAlgo(n) = O(n2). !

Corollary 6.9. Given a simple 2-connected subcubic graph G, we can find an even cover 
F of G with exc(F ) ≤ n(G)+n2(G)

4 + 1 in quadratic time.

Proof. Pick an arbitrary edge e ∈ E(G). Run Algo(G, e, true) and Algo(G, e, false). One 
of the returned even covers will have excess at most n(G)+n2(G)

4 + 1. !

Let us now complete the proof of Theorem 1.1, restated here for the reader’s conve-
nience.

Theorem 1.1. Let G be a 2-connected simple subcubic graph. Then tsp(G) ≤ 5n(G)+n2(G)
4 −

1. Moreover, a TSP walk of length at most 5n(G)+n2(G)
4 − 1 can be found in O(n(G)2)

time.

Proof. By Corollary 6.9, we can find an even cover F of G with exc(F ) ≤ n(G)+n2(G)
4 +1

in quadratic time. Then by Proposition 1.2, we can convert F to a TSP walk of length 
exc(F ) − 2 + n(G) ≤ 5n(G)+n2(G)

4 − 1 in linear time. !

If the input graph G is cubic (i.e. n2(G) = 0), then Theorem 1.1 finds a TSP walk of 
length at most 5n(G)

4 − 1 in quadratic time. Since every TSP walk trivially has length 
at least n(G), this gives a 5

4 -approximation algorithm for TSP walks in 2-connected 
cubic graphs. For general subcubic graphs, Theorem 1.1 finds a TSP walk of length at 
most 3

2n(G) which trivially yields a 3
2 -approximation algorithm. The bound gets better 

for subcubic graphs with fewer vertices of degree 2; for example, if n2(G) ≤ 1
3n(G), 

then Theorem 1.1 yields a TSP walk of length at most 4
3n(G). We suspect that refining 
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the ideas developed in this paper could lead to another 4
3 -approximation algorithm for 

subcubic graphs, matching the current best ratio by Mömke and Svensson [17], and 
possibly beyond.
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