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Abstract Aharoni and Howard and, independently, Huang et al. (2012) proposed the following rainbow

version of the Erdds matching conjecture: For positive integers n, k and m with n > km, if each of the families

F,...,Fn C ([Z]) has size more than max{ (Z) — ("72”+1), (k";;l)}, then there exist pairwise disjoint subsets
e1,...,em such that e; € F; for all ¢ € [m]. We prove that there exists an absolute constant ng such that this

rainbow version holds for £ = 3 and n > ng. We convert this rainbow matching problem to a matching problem
on a special hypergraph H. We then combine several existing techniques on matchings in uniform hypergraphs:
Find an absorbing matching M in H; use a randomization process of Alon et al. (2012) to find an almost regular
subgraph of H — V(M); find an almost perfect matching in H — V(M). To complete the process, we also need
to prove a new result on matchings in 3-uniform hypergraphs, which can be viewed as a stability version of a

result of Luczak and Mieczkowska (2014) and might be of independent interest.
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1 Introduction

For a positive integer k and a set V', let [k] := {1,...,k} and
(Z) ={ACV:|Al =k}

A hypergraph H consists of a vertex set V(H) and an edge set E(H) C 2V, A hypergraph H is
k-uniform if all its edges have size k and we call it a k-graph for short. Throughout this paper, we often
identify E(H) with H when there is no confusion and, in particular, denote by |H| the number of edges
in H. Given a set T of edges in H, we use V(T') to define | J ., e. Given a vertex subset S C V(H) in H,
we use H[S] to denote the subgraph of H induced by S, and let H — S = H[V(H) \ S].

* Corresponding author

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 math.scichina.com  link.springer.com



2424 Gao J et al. Sci China Math  November 2022 Vol. 65 No.11

A matching in a hypergraph H is a set of pairwise disjoint edges in H. We use v(H) to define the
maximum size of a matching in H. Let F = {Fy,...,F,,} be a family of hypergraphs on the same
vertex set. A set of m pairwise disjoint edges is called a rainbow matching for F if each edge is from a
different F;. If such a matching exists, then we also say that F admits a rainbow matching.

A classical problem in extremal set theory asks for the maximum number of edges in n-vertex k-
graphs H with v(H) < m. Let n, k and m be positive integers with n > km. The k-graphs

S(n,m, k) = ([Z]>\([nl\[7z - 1])

and D(n,m,k) = ([k";c_l]) on the same vertex set [n] do not have matchings of size m. Erdés [6]
conjectured in 1965 that among all the k-graphs with no matching of size m, S(n,m,k) or D(n,m,k)
has the maximum number of edges: Any n-vertex k-graph H with v(H) < m contains at most

sty =mac{ ()= () ()

edges. This is often referred to as the Erdds matching conjecture in the literature, and there has been
extensive research on this conjecture (see, for example, [3,5,8-11,13,22]). In particular, the special case
for k = 3 was settled for large n by Luczak and Mieczkowska [22] and completely resolved by Frankl [9].

The following analogous conjecture, known as the rainbow matching conjecture, was made by Aharoni
and Howard [1] and, independently, by Huang et al. [15]. For related topics on rainbow type problems,
we refer the interested readers to [16, 18, 20, 23].

Conjecture 1.1 (See [1,15]). Let n, k and m be positive integers with n > km. Let F = {Fy,..., F;,}
be a family of k-graphs on the same vertex set [n] such that |F;| > f(n,m, k) for all ¢ € [m]. Then F
admits a rainbow matching.

The case k = 2 of this conjecture is in fact a direct consequence of an earlier result of Akiyama and
Frankl [2] (which was restated in [7]). The following was obtained by Huang et al. [15].

Theorem 1.2 (See [15, Theorem 3.3]).  Conjecture 1.1 holds when n > 3k*m.

Keller and Lifshitz [17] proved that Conjecture 1.1 holds when n > f(m)k for some large constant
f(m) which only depends on m, and this was further improved to n = Q(mlogm)k by Frankl and
Kupavskii [12]. Both proofs use the junta method. Very recently, Lu et al. [19] showed that Conjecture 1.1
holds when n > 2km and n is sufficiently large.

The following is our main result, which proves Conjecture 1.1 for £ = 3 and sufficiently large n.

Theorem 1.3.  There exists an absolute constant ng such that the following holds for all n > ng. For
any positive integers n and m with n > 3m, let F = {F1,..., Fpn} be a family of 3-graphs on the same
vertex set [n] such that |F;| > f(n,m,3) for all i € [m]. Then F admits a rainbow matching.

Our proof of Theorem 1.3 uses some new ideas and combines different techniques from Alon et al. [3],
Luczak and Mieczkowska [22], and Lu et al. [21]. (For a high level description of our proof, we refer
the readers to Section 2 and/or Section 7.) In the process, we prove a stability result on 3-graphs (see
Lemma 4.2) that plays a crucial role in our proof and might be of independent interest: If the number of
edges in an n-vertex 3-graph H with v(H) < m is close to f(n,m,3), then H must be close to S(n,m,3)
or D(n,m,3).

The rest of the paper is organized as follows. In Section 2, we introduce additional notation, and state
and/or prove a few lemmas for later use. In Section 3, we deal with the families F in which most 3-graphs
are close to the same 3-graph, i.e., S(n,m,3) or D(n,m,3). To deal with the remaining families, we need
the above mentioned stability result for matchings in 3-graphs, which is done in Section 4. In Section 5,
we show that there exists an absolute constant ¢ > 0 such that Theorem 1.3 holds for m > (1 — ¢)n/3.
The proof of Theorem 1.3 for m < (1 — ¢)n/3 is completed in Section 6. Finally, we complete the proof
of Theorem 1.3 in Section 7.



Gao J et al. Sci China Math  November 2022 Vol. 65 No.11 2425

2 Previous results and lemmas

In this section, we define saturated families and stable hypergraphs, and state several lemmas that we
will use frequently. We begin with some notation. Suppose that H is a hypergraph and U and T are
subsets of V(H). Let

Ny(T)={A: ACV(H)\Tand AUT € E(H)}

be the neighborhood of T in H, and let dy(T) := |Ng(T)|. We write dg(v) for di({v}). Let

A(H) := Ug‘l/a&({) dip(v) and Aq(H):= Ter?ﬁié))dH(T).

In the case T' C U, we often identify dg¢)(T) with dy(T") when there is no confusion.

It will be helpful to consider “maximal” counterexamples to Conjecture 1.1. Let n, k and m be positive
integers with n > km and let F = {Fy,..., F,,} be a family of k-graphs on the same vertex set [n]. We
say that F is saturated, if 7 does not admit a rainbow matching, but for every F € F and e ¢ F, the
new family F(e, F) := (F\{F}) U{F U{e}} admits a rainbow matching. The following lemma says that
the vertex degrees of every k-graph in a saturated family are typically small.

Lemma 2.1.  Let n, k and m be positive integers with n > km. Let F = {Fy,...,Fy} be a saturated
family of k-graphs on the same vertex set [n]. Then for each v € [n] and each i € [m],

i< (7)) - ("TETY) e anw=(32)):

Proof.  Suppose dp, (v) < (Z:}), where v € [n] and ¢ € [m]. Then there exists e € ([Z]) \ F; such that
v € e. Since F is saturated, the family F(e, F;) admits a rainbow matching, say M U {e}, with M being
a rainbow matching for the family F \ {F;}.

) dp, (v) > (Z‘ i) _ (n -1 . f(;n - 1)) _ ’([rg\{?})\([n]\({z}u 1V(M)))

then there exists an edge f € F; such that v € f and fNV (M) = 0. Now M U{f} is a rainbow matching

)

for F, which leads to a contradiction. So dr,(v) < (}7]) — (”_17€k_(r_1)). O
We will remove vertices of degree (Zj) and use Lemma 2.1 to produce the saturated family F = {F},

.., F} of k-graphs such that for each v € V(F;) and each ¢ € [m)],

e )

Next, we define stable hypergraphs. Let n and k be positive integers with n > k. Let e = {a1,...,ar}
and f = {by,...,bx} be members of ([Z]) with a1 < as < -+ < ap and by < by < --- < b. We write
e fifa; <bforalll <i<k,ande< fife< fande# f.

A k-graph F C ([Z]) is said to be stable if e < f € F implies e € F. A family F of k-graphs on the
same vertex set [n] is stable if each k-graph in F is stable.

The following result of Huang et al. [15] will be used frequently, which enables us to work with stable
families when proving Conjecture 1.1.

Lemma 2.2 (See [15, Lemma 2.1]).  Let n, k and m be positive integers with n > km. If the family
{F1,...,Fpn} of k-graphs with V(F;) = [n] for all i € [m] does not admit a rainbow matching, then there
exists a stable family {Fy,..., F. } of k-graphs with |F;| = |F}| and V(F]) = [n] for all i € [m] which still
preserves this property.

Corollary 2.3. Let n, k and m be positive integers with n > km. Let F = {Fy,..., F,} be a family
of k-graphs on the vertex set [n] that does not admit a rainbow matching. Then there exists a family
F' =A{F|,...,F} of k-graphs on the same vertex set [n] such that F' is both stable and saturated and
|F!| > |F;| fori € [m].
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Proof.  Let F* = {Fy,...,F}} be a family of k-graphs on the same vertex set [n] such that 7* admits
no rainbow matching, |F;'| > |F;| for i € [m], and subject to these, 37, [F7] is maximum.

Then F* is saturated. Now applying Lemma 2.2 to F*, we obtain a stable family 7' = {F},..., F/,}
of k-graphs on the vertex set [n] such that 7' admits no rainbow matching, and |F/| = |F;| for i € [m)].
By the choice of F*, we see that F' is also saturated. O

We now describe an operation that converts a rainbow matching problem to a matching problem on
a single hypergraph. Let n, k, m and r be non-negative integers with r = |[n/k] —m and m > 1. Let
F = {Fi,...,F} be a family of k-graphs on the same vertex set [n], and let V = {v1,...,v,} and
U = {uy,...,u.} be two disjoint sets such that (V UU) N [n] = . We use H(F) to define the (k + 1)-
graph with the vertex set [n] UV and the edge set |J;~,{e U{v;} : e € F}}, and use H*(F) to define the
(k + 1)-graph with the vertex set [n] UV UU and the edge set

E(H(F))U U {eu {u}ee ([Z]> } .

i=1

IftF =---=F,=S8Mn,mk) (resp. F} =---=F,, = D(n,m,k)), then we write H(F) as Hg(n,m,k)
(resp. Hp(n,m,k)).

It is easy to see that F admits a rainbow matching if and only if H(F) has a matching of size m, which
is also if and only if H*(F) has a matching of size m+r. This allows us to access existing approaches and
tools invented for matching problems. For example, we take the approach by considering whether or not
the hypergraphs H(F) in question are close to the extremal configurations Hg(n,m, k) and Hp(n, m, k).
We will see in Section 3 that if H(F) is close to Hp(n,m, k) and F is stable, then F admits a rainbow
matching.

Here, we give an easy lemma concerning a case where H(F) is not close to Hg(n, m, k), which will be
used along with Lemma 2.1. Let H; and Hs be two k-graphs on the same vertex set V' and let € be some
positive real number; we say that Hs is e-close to H; if |E(H;) \ E(Hz)| < €|V|*.

Lemma 2.4.  For any given integer k > 3, let € and ¢ be real numbers such that 0 < € < ¢ < 1V, Let
n and m be integers such that n/3k*> < m < (1 —c)n/k. Let F = {Fy,...,Fy,} be a family of k-graphs
on the vertex set [n]. If for every i € [m] and v € [n],

n—1 n—kim-—1)—1
. < —
dFl(U)\(k—l) < k—1 >
then H(F) is not e-close to Hg(n,m, k).

Proof. ~ We note that S(n,m, k) has m — 1 vertices of degree (}_}). Since for every i € [m] and v € [n],

n—1 n—kim-—1)—1
) < —
dr,(v) < (k—l) < k—1 )
we have

n—kim-1)—1\ 1 n? cn &
E(H E(H >m- —1)- - > — +1
B m, )\ B > -1 ("7 s e () s e mp,
where the second inequality is due to n/3k* < m < (1 — ¢)n/k and the third inequality follows from
€ < c. This shows that H(F) is not e-close to Hg(n, m, k). O

To deal with the case where H(F) is not close to Hp(n,m,3), we first find a small matching M in
H*(F) such that M can “absorb” small vertex sets and H*(F) — V(M) has an almost perfect matching.
When F is stable, the matching M can be found very easily by the following lemma and its proof.

1) Here and throughout the rest of the paper, the notation a < b means that a is sufficiently small compared with b which
need satisfy finitely many inequalities in the proof.
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Lemma 2.5. Let k be a fized positive integer and let 0 < v < v < ¢ < 1 be real numbers. Let n
and m be positive integers with n/3k*> < m < (1 —c¢)n/k. Let F = {Fy,...,Fn} be a stable family of
k-graphs such that V(F;) = [n] and |F;| > f(n,m, k) for all i € [m]. Then for sufficiently large n, H*(F)
has a matching M with |M| < yn such that for any set S C V(H*(F)) \ V(M) with |S| < v'n and
ElISNn(Vul)|=1Snn]|, H*(F)[V(M)US] has a perfect matching.

Proof.  Recall that V = {v1,...,vn} and U = {us,...,u,}, where r = |n/k] —m. Fix an integer ¢
satisfying 4/'n < t < yn. Then t < yn < |en/k| < |n/k] —m =r. Let s = [n/3k%*] — 1.

By Theorem 1.2 (viewing all the k-graphs as the same k-graph), since |F;| > f(n,m,k) > f(n, s, k) for
all i € [m], every F; has a matching of size s. Since F; is stable, F;[[s]] is a complete k-graph. Hence,

(i) for any iy,49,...,4 < kt < kyn < s and j € [m], we have {vj,i1,12,... 9} € H*(F).

From the definition of H*(F), we have

(ii) for any i1,1s,...,9 € [n] and j € [r], {u;,41,%2,...,ix} € H*(F).

Since t < 7, we may choose a matching M of size t in H*(F) with V(M) = {u,...,u:} U [kt]. Note
that M| =t < yn. We claim that this M is the desired matching. To see this, consider any subset S
with SNV(M) =0, |S] < v'nand E[SN(VUU)| =|SN[n]|. Let t' = |SN(VUU)|. Sot' < v'n <t. Then
by (i) and (ii), there is a perfect matching M; in H*(F)[SN(VUU)U[kt']] . By (ii), there exists a perfect
matching My in H*(F)[(V(M)US)\V (M1)]. So M1 UM, is a perfect matching in H*(F)[V(M)US]. O

For the “absorbing” matching M in H*(F) in Lemma 2.5, we also want H*(F) — V(M) to have an
almost perfect matching. For this we need to use the following result of Frankl and Rodl [14].

Theorem 2.6 (See [14]).  For every integer k > 2 and any real number o > 0, there exist T = 7(k,0)
and dy = do(k, o) such that for every integer n > D > dy the following holds: Every n-vertex k-graph H
with

(1-7)D<Ay(H)<(1+7)D

and As(H) < 7D contains a matching covering all but at most on vertices.

In order to obtain a k-graph H satisfying Theorem 2.6, we use the approach from [3] by conducting
two rounds of randomization on H*(F) — V(M). We summarize part of the proof in [3] (more precisely,
their proof of Claim 4.1) as a lemma. A fractional matching in a k-graph H is a function w : E(H) —
[0,1] such that for any v € V(H), 3 (.cp(m)vee; w(€) < 1. A fractional matching is called perfect if
ZeeE(H) w(e) = |V (H)|/k.

Lemma 2.7 (See [3], retained from their proof of Claim 4.1). Let k > 3 and H be a k-graph on at
most 2n vertices. Suppose that there are subsets R* C V/(H) fori=1,...,n'! satisfying the following:

(a) every vertex v € V(H) satisfies that |{i : v € R'}| = (1 + o(1))n%2,

(b) every pair {u,v} C V(H) is contained in at most two sets R,

(c) every edge e € H is contained in at most one set R*, and

(d) for everyi=1,...,n't, R® has a perfect fractional matching w*.

Then H has a spanning subgraph H' such that

di (v) = (1 + o(1))n"?

for allv € V(H') and Ay (H') < n%1.

We will also need to control the independence number of random subgraphs of H*(F) — V(M). The
intuition is that when H(F) is not close to Hp(n,m, k) or Hs(n,m, k), H*(F) — V(M) does not have
very large independence number. The following lemma in [21] was proved by Lu et al. using the container
method.

Lemma 2.8 (See [21, Lemma 5.4]).  Let d, € and a be positive real numbers and let k and n be positive
integers. Let H be an n-vertex k-graph such that e(H) > dn* and e(H|[S]) > €'e(H) for all S C V(H)
with |S| > an. Let R C V(H) be obtained by taking each vertex of H uniformly at random with probability
n=%9. Then for any positive real number v < «, the size of mazimum independent sets in H[R)] is at
most (a +v)n®1 with probability at least 1 — (no(l)efﬂ(”o'l)),
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We need an inequality on the function f(n,m,k) proved by Frankl [9].
Lemma 2.9 (See [9, Proposition 5.1]).  Let n, m and k be positive integers with n > km — 1. Then

fnymyk) > fln—1,m—1,k) + (Z:i)

We conclude this section with the well-known Chernoff inequality.

Lemma 2.10 (Chernoff inequality [4]).  Suppose that Xi,...,X, are independent random variables
taking values in {0,1}. Let X =" | X; and p =E(X). Then for any 0 < § <1,

PX > (1+6)u] < e~ u/3 gnd PX < (1-96)u] < e /3, (2.1)
In particular, if X ~ Bin(n,p) and A < %np, then

P([|X — npl] > A) < e”HX/m2), (2.2)

3 Extremal configuration Hp(n,m,3)

From Lemmas 2.1 and 2.4, we see that if F is a saturated family of k-graphs on the vertex set [n] and
H(F) is close to the extremal configuration Hg(n,m, k), then there exist F' € F and v € [n] such that
dp(v) = (}71). Such vertices v can be removed from all the k-graphs in F \ {F} to obtain a smaller
family F’, so that if 7' admits a rainbow matching, then F admits a rainbow matching.

In this section, we consider the case where H(F) is close to Hp(n,m,3) and F is stable.

Lemma 3.1. Let € and ¢ be real numbers such that 0 < ¢ < ¢ < 1. Let n and m be positive integers
such that n/27 <m < (1 —¢)n/3. Let F = {F1,...,F,} be a stable family of 3-graphs on the vertex set
[n] such that |F;| > f(n,m,3) for alli € [m]. If H(F) is e-close to Hp(n,m,3), then F admits a rainbow
matching.

Proof. Let b = 6€'/%n. If F; is \/e-close to D(n,m,3), then F; contains a complete subgraph of size
3m — b; for, otherwise, as F; is stable, we have

B m )\ EE) > () > e,

which leads to a contradiction.

We claim that for any i € [m] and 5 € {0,...,b}, {25 + 1,25 +2,3m — j} € F;. To prove this claim
we fix ¢ € [m]. Suppose for a contradiction that there exists an integer ¢ with 0 < ¢ < b such that
{2t + 1,2t + 2,3m — t} ¢ F;. Since |F;| > (*"4") and F; is stable, we have {1,2,3m} € F;. Sot > 1.
We now count the edges in F;: Let ¢; be the number of edges of F; in [3m — 1], and g2 be the number of
edges of F; not contained in [3m — 1]. Since F; is stable and {2t + 1,2t 4+ 2,3m — t} ¢ F;, we see that
{a,b,c} ¢ F; when 2t +2<a<b<3m—-t<c<3m—1. So

< 3m—1 s 3m—3t—3
91 X 3 9 .

Since {2t + 1,2t +2,3m — t} ¢ F;, we have that for any e € F; with e N ([n] \ [3m — 1]) # 0, e N [2t] # 0.
This shows g2 < 2t(n — 3m + 1)n. First suppose that n < 7m/2. Then we have

1 —_ 3t —
|ﬂ|<(3””‘3 >—t<3m 23 3>+2tn(n—3m+1)

. (3m3— 1) , Kzz,m —2315— 3) _rim/a 4 1)] ) <3m3— 1)7
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where the second inequality holds since n < 7m/2, and the last inequality holds since t < b = 6e'/n < m,
which leads to a contradiction. So we may assume n > 7m/2. Let m = an. Then 1/27 < a < 2/7. We

assert that . 3 )
n n—m-+ m — 9
— 2tn”.
(3> ( 3 ) ~ ( 3 ) e

To see this, let f(z) =1 — (1 —2)® — (3z)3, and then

(0071 )-( ) o

Since f/(x) = 3(1 — 2x — 262?) is decreasing in [1/27,2/7] with f/(1/27) > 0 and f/(2/7) < 0, we have

2

fla) = min{£(1/27), F2/T)} = F/T) = 515

for 1/27 < a < 2/7. This shows that

R N

as asserted. Then it follows that

1 3t 1 —m1
F¢|<(3m3 >t<3m 23 3>+2tn(n3m+1)<(3m3 >+2m2<<’;)(” 7;” >

which leads to a contradiction as |F;| > f(n,m,3). This finishes the proof of the claim.
Recall V = {vy,...,v,,} from the definition of H(F). By the above claim,

My o= {{v;,2i — 1,2i,3m — i+ 1} : i € [b]}

is a matching in H(F). Without loss of generality, let F,..., F, be all the k-graphs in F which are
not y/e-close to D(n,m,3). Since H(F) is e-close to Hp(n, m,3), we have a < /en < b. Then for any
J € [m]\[b], since F} is \/e-close to D(n,m, 3), F; contains a complete subgraph with size at least 3m —b.
Hence we have {25 — 1,25,3m — j + 1} € Fj. So My := {{v;,2j —1,2§,3m —j+1}:b<j<m}isa
matching in H(F) which is disjoint from M;. Then M; U M, forms a matching of size m in H(F). So F
admits a rainbow matching, completing the proof of Lemma 3.1. O

4 A stability lemma

In this section, we prove a result for stable 3-graphs, which may be viewed as a stability version of the
following result of Luczak and Mieczkowska proved in [22].

Theorem 4.1 (See [22]).  There exists a positive integer ny such that for integers m and n with n > ny
and 1 <m < n/3, if H is an n-vertex 3-graph with e(H) > f(n,m,3), then v(H) = m.

Building on the proof in [22], we prove the following lemma.

Lemma 4.2.  For any real number ¢ > 0, there exists a positive integer ni(e) such that the following
holds. Let m and n be integers with n > ni(e) and 1 < m < n/3, and let H be a stable 3-graph on the
vertex set [n]. If e(H) > f(n,m,3) — e*n® and v(H) < m, then H is e-close to S(n,m,3) or D(n,m,3).
Proof.  Suppose that e(H) > f(n,m,3) — e¢*n® and s := v(H) < m. Let M = {(ig, jo, ke) : £ € [s]} be a
largest matching in H and the partition V(M) = I U J U K such that every edge (i,7,k) € E(M) with
i< j<ksatisfiesi € I,j € J and k € K. Since H is stable, we may choose V(M) to be [3s].

Let V' = [n]\[3s]. For x € [3s], let e(x) denote the edge in M containing x. Let

F = {{v} € <[315}> Cdy (v) = 20n}, Fy = {{U,w} € ([3;]) ce(v) # e(w) and dy (v, w) > 20}
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and
Py = {{u,v,w} € ([?;s]) :e(u),e(v) and e(w) are pairwise distinct} .

Let H* = ([3s], F') be the hypergraph with the vertex set [3s] and the edge set F = M U F} U Fo U F3.
Call an edge e € H traceable if e N [3s] € F, and untraceable otherwise. Since M is a maximum
matching in H, V' is independent in H. So the number of untraceable edges of H is bounded from above

") QO OO (O e

where we use s < m < n/3. We point out that those edges (there being o(n?) of them) will be negligible
in the following proof.

Let T be a triple of edges from M. We say that T is bad if V(T') contains three pairwise disjoint edges
of H* whose union intersects I in at most 2 vertices, and good otherwise. For each i € [3], let f;(T)
denote the number of edges of F; contained in V(T'). Note that f5(7) < 27. The following two claims
are explicit in [22].

Claim 1. There exist no three pairwise disjoint bad triples (of edges in M). Hence, there exist at most
six edges in M such that each bad triple contains one of these edges.

Claim 2. Let T be a good triple.

(i) If f3(T) > 24, then f1(T) = fo(T) = 0.

(i) If f3(T) =20, then f1(T) <1 and fo(T) < 12.

(iil) If f3(T") < 19, then f1(T) < 3 and f2(T) < 15. Moreover, the only triples T for which f3(T) = 19,
f2(T) =15 and f1(T) = 3 are those in which each edge of H* contained in V(T) intersects I.

(iv) If f5(T) = 21, then f1(T) < 1 and f2(T) < 10.

(v) If 22 < f3(T) < 23, then f1(T) =0 and fo(T) < 7.

We remove exactly six edges from M such that the resulting matching M’ only contains good triples.

Since H has at most 18n? edges intersecting V (M\M') and 32n? untraceable edges, we have

n — 3s

e <1m1 ("

) + |Fy|(n — 3s) + | F3] + 50n°.

To bound |F;|, let us consider the summation of f;(T) over all T € (A?{/). Since each edge from Fj is
counted exactly ((552—1) times in this sum, we have

Therefore,

n—3s
e(H) < Z <f1(T) ((327)) + fz(T)z:?;; + f3(T)) +50n
Te(™) 2

<> (f1<T>(";235)+f2(T>”;33+f3(T))+O<n2)-

Te(’y)

Here, the last inequality is trivial when s < 15, and it holds when s > 15 because the difference between
the above two summations is at most

15(n — 3s)? 8(n — 3s) 5—6Y) [45(n —3s)%>  120(n — 3s) B )
TZ(A:/H) <f1(T)S(S2—158)+f2(T)3(5_8)> < < 3 )<8(82 ~15s) + (5= 8) > = 0(n”),

3

where 3s < n, f1(T) < 3 and fo(T) < 15 (from Claim 2).
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To further bound e(H), we partition good triples T' depending on f3(7") and f1 (7). Let

n{re (M) =)
x={re (M) nm-s).

Consider any 7' € X, and then T is a good triple?). Since fi(T) = 3, the three edges of F} contained in

V(T) are precisely the three vertices in V(T') N I, and each edge of H* contained in V(T) intersects I.

Since H is stable and V(M) = [3s], by using the definition of F}, it is not hard to see that X C Tio.
Define

for ¢ € [27] and

18 26
$1=Z|Ti|+\T19\X|, z2 = [Tzo|, x3=|To1], m4=|T2a|+ [T2s], 5= Z 73|, = =|X]
i=1 =24

and y = |Ta7|. So
5
Swratu=("y"
i=1 2 3/

From now on, we let ¢ = (n — 3s)/s. By Claim 2 and the fact X C Tjg9, we can derive from the above
upper bound on e(H) that

e(H) < (3z 4 221 + @2 + x3)t% + (162 + 1521 + 1225 + 1023 + Ta4)t
(H) < ( )
+ (192 + 1921 + 2072 + 21z3 + 2334 + 2675 + 27y) + O(n?).

For convenience, we write

5
felwr, 9, 5,20, 35, 2,9) = ai(t) - mi + Bu(t) -+ Ba(t) - v,
i=1

where

ar(t) =262 + 15t + 19,  ao(t) =t + 12t +20, as(t) = t* + 10t + 21,
ay(t) =Tt +23, as(t) =26, Bi(t) =3t +15t+19 and [a(t) = 27.

Then it follows that
e(H) < fi(xy, m2, 23, 24, T35, 7, y) + O(n?).
Next, we derive properties of the functions «;(t) and §;(t).
Claim 3. For any ¢ > 0, max{S1(t), 82(¢)} > max{ai(t), az(t), as(t), as(t), as(t)} + 0.2
Proof. ~ 'We have (5(t) = 27. It is easy to see that for each ¢ € [5], the functions a;(t), f1(t) — a;(t)

and [i(t) are increasing for ¢ > 0. Note that £1(0.5) = 27.25, @2(0.5) = 26.25, a3(0.5) = 26.25 and
a4(0.5) = 26.5, and then max{B31(¢),27} > a;(t) + 0.2 for t > 0 and i = 2,3,4. Since S1(t) — a1 (t) = t?

and a1 (v/0.2) < 27 — 0.2, we see max{f1(¢),27} > a1 (t) + 0.2 for all ¢ > 0. O
Since 6 1 5 19 1 1
B1(t) <S ; ) < i(n —3s)%s + E(n —3s)s + ESB = gng - g(n —5)3,
we see

w0520 (* ) ) <ma{ (5) = (73T (M) b ot = s + 00,

2) Since T is good, the union of any three disjoint edges of H* in V(T') must contain the three vertices in V(T') N 1.
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By Claim 3 and the fact that Zi’:l Titrty= (356), we have

ft(mtha (E3,.’L’4,$57$,y)

< (max{By(t), B2(t)} — 0.2) > " wi + Bi(t)x + Ba(t)y

i=1

s—6 5 5
< max{ﬂl(t),ﬂg(t)}< 5 > - O.Qin < fn,s,3) — 0.22% +0(n?). (4.1)

Let UX (resp. UTa7) denote the set of edges each of which belongs to some triple in X (resp. in Tb7).
Now we show the following claim.

Claim 4. s>m —en/4, and © > (sgﬁ) — 10e*n? — (5"424) ory > (356) — 10e*n? — (6"412).
Proof. If s < m —en/4, then by (4.1) we have

6<H) < ft(x1,$27$3,$4,l‘5,$,y> + O(nQ) < f(’l’L, 873) + O(nQ)

< fln,m,3) - (6/4”

3"+ 0w < flam3) - e,

which leads to a contradiction. So s > m —en/4. First we see that ©+y > (556) — 10e*n3; for, otherwise,
Zle x; > 10e*n3, which together with (4.1) implies

G(H) < ft(xlax27$3yz4ax5axay) + O(nz) < f(nama?’) - 26477’3 + O(nz) < f(n7m73) - €4n3a

which leads to a contradiction. Now suppose that = > (5”412) and y > (6"424). Then | U X| > en/12
and |U Ta7| > en/24. For any edge e = (i,j,k) € UX with ¢ < j < k, by the previous discussion,
we have ¢ € Fy. For any edge e = (4,j,k) € UTyr with i < j < k, by Claim 2 we see i ¢ F;. Thus
(UX) N (UTyy) = 0. The triples T = {e1,e2,e3} with e; € UX and ey, e3 € UTy; cannot satisfy both

f3(T) =27 and f1(T) = 3. This shows

s—6 | U Tor| s—6 en (en/24
- < - 15 ’
x+y<( 3 > |UX|( 2 3 2\ 2

contradicting that x +y > (556) — 10€e*n3. Hence, we have that either z < (6"412) ory < (6”424). O

- 24
x> (S 3 6) —10e*n® — <€né )

So x > (556) - (mém) and thus | U X| > s — 6 — en/12. Recall that for any T' € X, T is a good triple,
and hence each edge of H* contained in V(T') intersects I. Hence any traceable edge which intersects
V(UX) must also intersect I. Thus, the number of edges of H not intersecting I is at most

Suppose

V(M) \ V(UX)] (;l) +50n < % (Z) +50n* < £n3.

As|[I|=s<m—1,
|E(S(n,m,3)\E(H)| = |[E(H)\E(S(n,m,3))| +e(S(n,m,3)) —e(H) < in?’ +e*nd < end.

So in this case, we see that H is e-close to S(n,m,3).
By Claim 4, it remains to consider
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We claim that there exists a complete 3-graph K on more than 3m — 3en/2 vertices and V(K) C V(M').
Suppose to the contrary that V(M’) does not contain such a complete 3-graph K. Since

V(M) — (3m — 3en/2) = 3(s — 6) — 3m + 3en/2 > %

and H is stable, V(M’) contains an independent set of size 5, say A. Note that if "= {ey, €2, e3} with
eiNA# D for all i € [3], then f3(T) < 27. Since there are at least |A|/3 > en/6 edges in M’ which
intersect with A, we see that y < (556) — (6”3/6), which leads to a contradiction.

Then

[B(D(n,m. 8))\E(H)| < |E(D(n,m,3))\E(K)| < Sen (’;) < e,

i.e., H is e-close to D(n,m,3). This finishes the proof of Lemma 4.2. O

5 Almost perfect rainbow matchings

In this section, we prove a lemma about almost perfect rainbow matchings that we will need. In fact,
this result holds for families of k-graphs, for any k > 3.

Lemma 5.1.  For any given integer k > 3, there exist positive real numbers ¢ and no such that the
following holds. Let n and m be integers with n > km and n = ng, and let F = {F,..., F,} be a stable
family of k-graphs on the same vertex set [n] such that |F;| > (kn;c_l) for each i € [m]. If m > (1—c)n/k,
then F admits a rainbow matching.

Proof.  'We choose ¢/ = ¢/(k) and ¢ = ¢(k) small enough such that 0 < ¢ < ¢/ < 1. Let n be sufficiently
large and n/k > m > (1 — ¢)n/k. Suppose to the contrary that |F;| > (k"“,‘gl) for each i € [m] and F
does not admit a rainbow matching.

By Corollary 2.3, we may additionally assume that F is saturated. Let U; be the vertex set of a largest
complete k-graph in F; for i € [m]. Since F; is stable, we may choose U; = [|U;]] such that [n] \ U; is an
independent set in F;. For each i € [m], we have |U;| > (1 — ¢/)km; for, otherwise, we have the following
contradiction for some i € [m]:

15| < (Z) ~ <C’/Zm) < (Z) - (cn—}—l)(Z:i) < (Z) _ (n_km“)(Z:D ) (k:mk— 1)’

where the second inequality holds since ¢ < ¢ < 1 and m > (1 — ¢)n/k, the third inequality holds since
n — km < cn, and the last inequality holds since

(n> - (km1> 7"*’“2"5“ <nz> § (nkm+1)(n1)
k k 2o k-1 k—1)

Let U = (-, U;. By the above paragraph, we see that |U| > (1 — ¢/)km. If [U| > km, then it is clear
that F admits a rainbow matching. So we may assume that U,, = U C [km — 1]. Because U,, is the
vertex set of a largest complete k-subgraph of F,, and since F,, is stable and |F,,| > (k"li_l), there exists
some k-set e ¢ F,, such that |eNU| =k — 1 and km € e. Since F is saturated, there exists a rainbow
matching M in F \ F,,, such that M U {e} is a rainbow matching in F(e, F,). Since F; is stable for each
i € [m], we may assume that V(M) Ue = [km]. Let M/ ={e’ € M : ¢/ Z U}.

Claim 5. (a) |[M'| < dkm,

(b) each edge of F,, is contained in U or intersects an edge of M’, and

(c) for any v € V(M) \ U, dp,,)(v) < c’kgm(,{[[j‘z).

Proof.  To prove (a), just observe that |[M'| < |[V(M)\U|= (km — 1) — |U| < km.

Suppose that (b) fails, i.e., there exists an edge f € F}, such that f\U # () and f NV (M’) = 0. Note
that f N (U\V(M")) # 0, as [n] \ U is independent in F,,. In particular, |f N (U\V(M'))| < k — 1. Let
|M’| = m —t for some t > 1. Recall that U UV (M') = V(M) = [km — 1]. Hence [U\V(M')| = kt — 1,
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and thus U\(V(M') U f) induces a common complete k-graph of size at least k(t — 1) in all ;. Then
we see that M’ U {f} together with a matching of size t — 1 in U\(V(M’) U f) form a rainbow matching
for F. So (b) holds.

Now we prove (c¢). For any v € V(M) \ U C [km], by the maximality of U, there exists f € ([Z]) \ Fin
such that v € f and |f NU| =k — 1. So there exists a rainbow matching N in F \ F;,, such that N U {f}
is a rainbow matching in F'(f, Fy,,). Since F; is stable for ¢ € [m], we may assume that V(N)U f = [km)].
Let N' = {e’ € N : ¢ € U}. By applying (b) to N’, every edge of F,, containing v intersects V(N').
Since

V(N') < kIN'| < k(km — |U]) < k?*m,
there are at most c’k:Qm(k“i‘Q) edges e’ in F,;, containing v such that ¢’ C U U {v}. Hence (¢) holds. This
proves the claim. O

Note that |eNU|=k—1and V(M)UU = [km — 1]. Let ¢; be the number of edges of F,, contained in

[km — 1], and g2 be the number of edges of F,,, with at least one vertex in [n] \ [km — 1]. By (c), we have

w< (") - wanvor(7)) s vanoraen ().

By (b), we see go < |V(M')| - (n — km +1)(}~2). So we have

r < () = wanu () e () | vanie—km o (; 5)
< (kmk_ 1) — V(M) \ U] Klﬁl) +c’k2m<k|?2>] + k|[V(M)\ Ul(cn + 1)(7;:;)
_ <’“mk 1) VDU - [(k“i'l) - c'k2m<k|€2) ~ k(en+ 1)<Z_§>}
1)

where the second inequality holds since n — km < en and |M'| < |V(M) \ U|, and the last inequality
holds since ¢ and ¢ are small enough and |U| > (1 — ¢/)km > (1 — ¢/)(1 — ¢)n. This is a contradiction,
finishing the proof of Lemma 5.1. O

6 Non-extremal configurations

Note that if there exist F € F and v € [n] such that dp(v) = (}7}), then v can be removed from all
the k-graphs in F \ {F} to obtain a smaller family 7’ so that 7' admits a rainbow matching if and only
if 7 admits a rainbow matching. Hence, if such vertex does not exist in a saturated family F, then from
Lemma 2.1, we see that dp(v) < ("_1) - (”_k(]z”__ll)_l) for all v € F and F' € F. This leads us to the

k—1
following result.

Lemma 6.1.  Given real numbers 0 < e € ¢ < 1, let n > n(e,c) be a sufficiently large integer and m
be an integer such that n/27 < m < (1 —c)n/3. Let F = {Fy,...,F,,} be a stable family of 3-graphs on
the vertex set [n] such that for every i € [m], |F;| > f(n,m,3) and

dp,(v) < ("; 1) _ (” - 3(m2— 1) — 1)

for each v € [n]. If H(F) is e-close to neither Hg(n,m,3) nor Hp(n,m,3), then F admits a rainbow
matching.

Proof.  Given 0 < € < ¢ < 1, let n’ and m’ be integers such that n’ is sufficiently large and n’/27 <
m' < (1 —-¢)n'/3. Let F = {Fy,...,Fy,} be a family of 3-graphs on the vertex set [n'] such that

|F;| > f(n',m/,3) and
n —1 n' —1-3(m' —1)
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for i € [m'] and v € [n']. Suppose that H(F) is not e-close to Hg(n',m’,3) or Hp(n',m’,3). Our ultimate
goal is to find a rainbow matching in F.

Let n' = 3m/ + 3" + s, where 0 < s < 3. Recall the definitions of H(F) and H*(F) such that
V(H(F)) = [n]UV and V(H*(F)) = [']UV UU’, where |V'| = m’ and || = ’. By Lemma 2.5,
for 0 < v/ € 7 € € € ¢ < 1, there exists a matching M, in H*(F) with |M,| < yn’ such that for any
S CV(H*(F))\V(M,) with |S] <+'n’ and 3|SN (V' uld)| = |SN[n]|, H*(F)[V(M,) U S| has a perfect
matching. In the rest of the proof, without loss of generality, we use the following notation:

H=H(F)-V(M,), [n]=[n]\V (M),
V=V \V(M,)={v1,...,om}, U=U\V(M,)={u,...,u}.

Then n = 3m + 3r + s. By using the above property of the matching M,, it now suffices for us to find an
almost perfect matching in H. To find this almost perfect matching, our plan is to show that there exists
an almost regular subgraph of H with bounded maximum co-degree so that Theorem 2.6 can be applied.
To that end, in what follows we will use the two-round randomization technique developed in [3].

Let R be chosen from V(H) by taking each vertex independently of probability n=%%. We take n'-!
independent copies of R and denote them by R’ for 1 < i < n''l. For S C V(H), denote Y5 = |{i : S
C R'}|. First we have the following claim.

Claim A. With probability 1 — o(1), the following hold:

(i) for every v € V(H), Yy = (1 + o(1))n2,

(ii) every pair {u,v} C V(H) is contained in at most two sets R, and

(iii) every edge e € H is contained in at most one set R'.
Proof.  Note that Ys ~ Bin(n't,n=995) for any S C V/(H). Thus, E[Y,}] = n®? for every v € V(H).
By (2.2) in Lemma 2.10, we have P(|Y(,; —n%2| > n%1%) < e=2"""). By the union bound, we see that (i)
holds. To prove (ii) and (iii), let

Zs = H{“’”} e (”f)) S >3H and 7y = HSE (V(Sm) Vs 22}‘.

Then
E[ZQ] — <|V(2‘H)|>]P)(Y{u,v} 2 3) < <;L> (n1~1)3(n—1‘8)3 < 47’L_0'1

and

By Markov’s inequality, we have
P(Zy=0)>1—4n" %" and P(Z3=0)>1-8n "2

That implies that (ii) and (iii) hold with probability at least 1 —4n~°1 and 1 — 80702 respectively. [

Next, we want to prove that there exists a perfect (or, rather, maximum) fractional matching in
each H[R']. To do so, we define a maximal subset R"* C R’ that satisfies R'* N [n] = 3|R" N (VY UU)| as
follows. If |[R' N [n]| = 3|R N (VUU)|, we take a subset of R' denoted by R’*, which is chosen from R! by
deleting |R'N[n]| —3| RN (VUU))| vertices in R*N[n] independently and uniformly at random. Otherwise
|REN [n]| < 3|REN (Y UU)|, we take a subset of R® denoted by R’ by the following step: First we delete
at most 3 vertices (chosen independently and uniformly at random) in R’ N [n] so that the number ¢ of
the remaining vertices is a multiple of 3. Then we delete |R* N (V UU)| — £/3 vertices in R' N (V UU))
independently and uniformly at random.

For S C V(H), define Y/ = |{i : S C R'"}|. Note that E(|R* N [n]|) = n®!, E(|R'n (VY UU)|) = n"'/3
and E(|R N V|) = n=%m. For each i, let A; be the event ||R* N [n]| — n%t| < n%9 B, be the event
[|REN (Y ulU)| —nt/3] < n®99 and C; be the event ||R' NV| —n=%9m| < n0-095,

Claim B. With probability 1 — o(1), the following hold:
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(i) A\;(A; A B; A C;) holds,
(ii) for every v € V(H), Y{,, = (1 + o(1))n%2
(iii) every pair {u,v} C V(H) is contained in at most two sets R", and
(iv) every edge e € H is contained in at most one set R”.
Proof.  Since R"* C R!, it is clear from Claim A that (iii) and (iv) hold with probability 1 —o(1). Next,
we consider (i). By (2.2) in Lemma 2.10 (with A = n%0%9%), for each 1 < i < n'!, we have

1,009

]P’(/TZ) < efQ(no.og)’ P(E) < eiQ(3no.09) _ eiQ(no.og) and P(a) < 679(7" ) _ eiﬂ(no.og)'

Thus by the union bound, P(A\;(A; A B; A C;)) =1 —o(1), proving (i).
Assuming A; A B; A C;, we see

IR\ R"| < max{|R' N [n]| — 3|R* N (VUU)|, |[R"n (YUU)| - ||R N [n]|/3] + 3} < 4n"0%.

Then by the choice of R't, for all v € V/(H), the probability P({v € R*\ R" | (4; A B; AC;) A (v € RY)})
is at most

|Ri \ R/z| |Rz \ R/i| |Rz \ R/i‘ 4n0.095 0.005
- : < : 1 R
max{mm W TR nwuw [ STRAmOU)| < w013 —nooms < 13"

Using coupling and applying (2.2) in Lemma 2.10 to Bin(|Y,]|, 13n7%9%%) with A = 3n%195 we have

/\(Ai ANBi NCi) AN (Yiy = (1 + 0(1))n042)}> < o RUn®1)

i

]P’({Y{v} — Y,y > 1601

Note that with probability 1 — o(1), A;(A; A B; A C;) and Y,y = (1 + o(1))n°2 hold for all v € V(H).
By the union bound, we can derive that 0 < Yi,3 — Y{’U} < 160219 = o(n%2) for all v € V(H) with
probability 1 — o(1). Hence (ii) holds with probability 1 — o(1). This proves Claim B. O
Let n; = |R"* N [n]| and m; = |[R* N V|. Using Claim B(i), we see that with probability 1 — o(1),
m; = (14 0(1))mn=%9 = 0(n°1) = O(n;) for all 1 <i < ntl.
Claim C. With probability 1 — o(1), the following hold for all 1 <14 < n'!:
(a) H[R'"\ U] is not €*/4-close to Hg(n;,m;,3) or Hp(n;, m;,3), and
(b) there exists a perfect fractional matching in H[R'?].
Proof.  For each T € (Vg;)), let

Deg(T) := ‘NH(T) N (4 RTT|> ’

By the definition of H, we have that
e for any v; € V, du(vj) = f(n',m/,3) — (yn)(5) = f(n,m,3) — yn®, and
e for any 7' = {v;,u} with v; € V and u € [n],

() =dr < (") = () < () - ()

Assume that A,;(4; A B; A C;) holds. Then n; = (14 o(1))n! and m; = (14 o(1))mn=%9. Since
R\ R"" = o(n;), for each T € (V(f”')) with ¢ € [2], we have

E[Deg'(T)] = (1 + o(1))du (T)(n~*)*".
Thus for any v € V N RY,

E[Deg’ (v)] = (1 +o(1))(f(n,m,3) —yn®)(n~*)? > f(n;,my, 3) — 2yn,



Gao J et al. Sci China Math  November 2022 Vol. 65 No.11 2437

and for any T = {u,v} with v € V and u € [n], E[Deg’(T)] is at most

(1+ o(1)) Kn ) 1) - (n - —s(m N 1)> + ynﬂ(n—o-g)? < ("2_ 1) - (” -1 _S(mi - 1)) + 2yn2.

We apply Janson’s inequality (see[4, Theorem 8.7.2]) to bound the deviation of Deg'(T) for |T| < 2.
Write Deg'(T)) = 2 eeNy () Xes Where X =1if e C R'" and X, = 0 otherwise. Let t = |T| € {1,2} and
p=n"99 Then

A= > P(X., = X, = 1)

eiﬂej;éﬂ,ei,eje(‘g(ﬁ))

4—t
—t\ [4—t n—4
< 204—t)—e (T _ 0.1(2(4—t)—1)y.
\;p (4—t ¢ Jlasiog) =00 )

By Janson’s inequality, for v € VN RY,
P(Degi(v) < (1 — ~)E[Deg (v)]) < e~ EIPe’ 0}/ (2+A" /EIDex’ (0)])  q=0n®/(24n® /%)) _ (=0n"),
and for the pair {v,u} with v € V and u € [n] (by considering the complement of H), we can have

P(Deg’ ({v,u}) > (1 +7)E[Deg’ ({v, u})]) < e~ "),

1.1

9

By the union bound, with probability 1 — o(1) we derive from above that for all 1 < i < n
(1) for any v € VN RY, Deg'(v) = (1 — v)E[Deg' (v)] > f(ni,m;,3) — 3yn3, and
(2) for any pair {u,v;} € R with v; € V and u € [n],

Deg! ({u,v;}) < (""2_ 1) - (" e dme ”) +39n? < (”"2_ 1) —Qm?),

which implies that F;[R'* N [n]] is not €3/2-close to S(n;,m;,3), since m; = (1 + o(1))mn®? and m <
(1 —-¢)n/3.
This shows that H[R'* \ U] is not e*/4-close to Hg(n;, m;,3), where v < e.

Let Vo := {v; € V: F;[[n]] is not e-close to D(n,m,3)}. We claim that [Vy| > en. Otherwise |Vy| < en,
we have

E(Hp (o', m,3)) \ E(H(F)) < en (”

3) + (m — en)en® +y(n)* < e(n)4,

which leads to a contradiction as H(F) is not e-close to Hp(n',m’,3). As |Vy| > en, with probability
1 —o(1) we have (by using Lemma 2.10) that

(3) [R"NVy| = % for all 1 < i < ntt.

For v; € R"" NV, we consider Fj[[n]]. Let G be the complement of Fj[[n]]. Then for any S C V(G)

with |S| > 3m — en, we have e(G[S]) > ee(G). Otherwise,

E(D(n, m, 3)\E(F [[n]])] < en (”

2) + ee(G) < en?,

contradicting v; € V. By Lemma 2.8, the maximum size of the complete 3-graph in F;[R’ N [n]] is no
more than (3m/n — e +v)n%! < 3m; — en; /2 with probability at least 1 — (n®Me=2n""). By assuming
A, (A; A B; A C;), this implies that F;[R'* N [n]] is not €/2-close to D(n;,m;,3). By the union bound,
with probability 1 — o(1) we have

(4) for all 1 <i < n'! and v; € R""NVy, F;[R" N [n]] is not €3/2-closed to D(n;, m;,3).
By (3) and (4), we see that with probability 1—o(1), H[R'*\U] is not €*/4-close to Hp(n;,m;,3), proving
Claim C(a).

It remains to show Claim C(b), i.e., to construct a perfect fractional matching w; in H[R"] for each
1 < i< n't Our main tool is the stability result, Lemma 4.2.
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Fix some 1 < i < n*'. We write RN [n] = {z%,... 2} } with 2} < 2} < --- < 2%, and define
[d]; := {xi,ab,... 24} for any integer d. We now state two simple inequalities for later use:
Fad) > fla - a3+ (5) ad fa3) > foy+a.3) - sar (6.1)

hold for any positive integers z, y and a with a < y.
To construct a perfect fractional matching w; in H[R"], first we consider v; € R NV and assign
weights to the edges of H[R'?] containing v;. Using (1), by (6.1) and the fact that v < e < 1, we have

|F5[R'" N [n]]] = Deg’(v;) > f(ni,mq, 3) — 3ynd > f(ni,m; +€°n;,3) — ¢'5nd.

By (2) and (4), Fj[R"*N[n]] is not €3 /2-close to S(n;, m;,3) or D(n;, m;, 3). Since |E(S(n;, m;+€e*°n;, 3))\
E(S(niy,mi, 3))| < €902 and |E(D(ni, m;+€°n;, 3)) \ E(D(ni, mi, 3))| < 3¢2n3, we see that F}[R"*N[n]]
is not e*-close to S(n;, m; +€2“n;,3) or D(n;, m; + €2°n;,3). Then by Lemma 4.2 and the fact that F} is
stable, F;[R* N [n]] contains a matching M; with V(M;) = [3m; + 3¢2“n;];. Now we assign weights w; (e)
to all the edges e of H[R'"] with v; € e as follows: If e\ v; € M;, then let w;(e) = and otherwise
let w;(e) = 0.

Next, we consider v; € RN (V\Vp). By (1) and (6.1), we have

1
mi+e2n;’

B[R [n]]| = f(niymi,3) — 3ynd = f(ng,mi — 6v%n;,3).

By Theorem 4.1 and the fact that Fj is stable, F;[R'* N [n]] contains a matching M; with V(M) =
[3m; — 18y3n;];. Then we assign weights w;(e) to all the edges e of H[R'] with v; € e as follows: If
e\ vj € M;, then let w;(e) = m,

Note that for every v; € R* NV, we have defined weights w;(e) for all the edges e € H[R""] with v; € e,
whose total weights equal one. In the remaining proof, we want to extend this function w; to the entire
HI[R"] to form a perfect fractional matching. We complete this in two steps.

and otherwise let w;(e) = 0.

First, we define a perfect fractional matching w (as the projection of w;) in the complete 3-graph K on
the vertex set R’*N[n]. Note that a function w : E(K) — [0, 1] is a perfect fractional matching if and only
if w(v) == 3", e w(f) =1 holds for every v € V(K). Initially, we define a function v’ : E(K) — [0,1]
such that for each f € E(K), w/'(f) := )., wi(e) over all the edges e € H[R'"| with f C e and [eNV| = 1.
Since [Vy| > en and v < ¢, it follows from the above definitions on w; that for any v € R N [n],

Vi mi — |V €n; m; — en;
w'(v) = Z w'(f) < _ | Olzo -+ | ;0| S — Z20 -+ <L
veEfEK m; +€¥n;  m; —6y3n;  Mi+ €N my; — 6y3ny,

Since € < ¢, we have 3m; + 3¢2%n; < n; — 4. So there exists a vertex set {a1,as,as,as} in K such that
w'(a;) = 0 for i € [4]. Let K’ be the 3-graph obtained from K by deleting vertices aq, aq, a3z and ay.
Starting with w := w’, we increase w by using the following iterations: (i) pick a vertex v in V(K')
with the maximum w(v)?); (ii) pick any edge f € K’ containing v and update w(f) < w(f) + 1 — w(v);
(iii) delete all the vertices u € V(K') with w(u) = 1 (which must include the vertex v) from K’; (iv) if
|[V(K')| < 2, then terminate; otherwise go to (i) again. This must terminate in finitely many iterations
and when it terminates, we obtain a fractional matching w in K such that w(a;) = 0 for ¢ € [4] and
|[V(K')| < 2. So there exist two vertices by and by in V(K) \ {a1, a2, as,as} such that for any vertex v in
V(K)\ {a1,a2,as3,a4,b1,b2}, w(v) = 1. We may suppose 1 > w(by) > w(bs). Let

w(by) —w(b2)
2 b

w(br) —w(b2)

w(ar,as,b1) =1—w(b), wlai,az,b)= 3

w(as, aq,b0) =1 —w(by) +

and
w(by) + w(b
w(al,amas) = w(al,a2,a4) = w(alaa33a4) = w(ag,ag,a4) = M

6

3) Note that this maximum w(v) is strictly less than 1.
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It is easy to check that w is a perfect fractional matching in K.

Now we notice that
> w'(f) = Y. wile)=|R"nNV
FeEK {e€H[R']:|enV|=1}
and R
7 m X
§:7U07::L4T;Bﬂl:|R”O(VLMQL
fekK
Moreover, the neighborhood of any u; € R’ ‘NU in H[R'] is the complete 3-graph K. So we can partition
the total weight >_ . - (w(f) —w'(f)) = |R"" N U| into |R'* NU| copies of 1’s (say each is represented
by a set E; of edges in K), and then for each u; € R"* NU, we assign the weight of each f € Ej to
be w;(f U {u;}). One can easily check that we obtain a perfect fractional matching w; in H[R'"]. This
completes the proof of Claim C. 0

From Claims B and C, we see that the sets R for 1 < < n'! satisfy (a)—(d) in Lemma 2.7. Then by
Lemma 2.7, there exists a spanning subgraph H’ of H such that for each v € V/(H), dg/(v) = (1+0(1))n%2
and Ay(H') < n%!. By Theorem 2.6, H contains a matching M, such that S = V(H) \ V(M,) contains
at most y'n’ vertices. Since |SU M, U M,| = n' = 3" +3m/ + s where 0 < s < 2, we can delete at
most s elements from S to get a subset S” such that 3|8’ N (V' UU’)| = |S' N [n']|. By the setting at
the beginning of the proof, Lemma 2.5 assures that H*(F)[V(M,) U S’] has a perfect matching, which
together with M, forms a matching in H*(F) of size v’ + m’. Equivalently, this says that F admits a
rainbow matching, finishing the proof of Lemma 6.1. O

7 Proof of Theorem 1.3

Let n be a sufficiently large integer. Let m be a positive integer with n > 3m and let F = {F,..., Fy}
be a family of 3-graphs on the same vertex set [n] such that |F;| > f(n,m,3) for each ¢ € [m]. Suppose to
the contrary that F does not admit a rainbow matching. In view of Lemma 2.2, we may assume that F
is stable. Then by Lemma 5.1, there exists an absolute constant ¢ = ¢(3) > 0 such that m < (1 — ¢)n/3.
By Theorem 1.2, m > n/27. Hence,

n/27 < m < (1 —¢)n/3. (7.1)

We now apply the following algorithm. Initially, let 7y = F, ng = n and mg = m. We repeat the
following iterations. Suppose that we have defined F;, which contains m; 3-graphs on the same vertex
set [n;].

Step 1.  Applying Corollary 2.3 to F;, we obtain a family F;,; of 3-graphs on the vertex set [n;] that
is both stable and saturated, and set n;+1 = n; and m;+1 = m;.

Step 2. If for any F € F;11 and any v € [n;41], dp(v) < ("“’2171), then set t := 7 + 1 and output F,

ng and my.

Step 3.  If there exist F' € F;11 and v € [n;41] such that dp(v) = (””21_1), then set nj, ; =n;11 — 1,
mi = mip1 — 1and Fj = {F —v: F" € F; \ {F}}. Relabel the vertices if necessary so that all the
3-graphs in Fj,; have the same vertex set [nj,,]. Set F; := Fj,,, n; := nj,,, m; := mj,; and go to
Step 1.

Let F; be the resulting family of 3-graphs, which contains m; 3-graphs on the same vertex set [n;] and
admits no rainbow matching. By (7.1), we see that n; > n —m > cn is sufficiently large. We also see
from Lemma 2.9 that |F| > f(n;, m;,3) holds for any F € F,.

By definition, we see that F; is stable and saturated such that for any F' € F; and v € V;, dp(v) <
("gl). On the other hand, by Lemma 2.1, it further holds that

1 1 3(my 1
dp(v) < (nt2 > - <nt g(mt )> forany '€ 7, and v e V.
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Since ny is sufficiently large, using Lemma 5.1 and Theorem 1.2 again, we may assume that
ne /27 <my < (1 —c)ne/3.

Now we choose 0 < € < ¢. Since JF; satisfies the above properties, by applying Lemmas 2.4, 3.1 and 6.1,
we can conclude that F; admits a rainbow matching. This is a contradiction, completing the proof of
Theorem 1.3. O
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