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Abstract Aharoni and Howard and, independently, Huang et al. (2012) proposed the following rainbow

version of the Erdős matching conjecture: For positive integers n, k and m with n ! km, if each of the families

F1, . . . , Fm ⊆
([n]

k

)
has size more than max{

(n
k

)
−

(n−m+1
k

)
,
(km−1

k

)
}, then there exist pairwise disjoint subsets

e1, . . . , em such that ei ∈ Fi for all i ∈ [m]. We prove that there exists an absolute constant n0 such that this

rainbow version holds for k = 3 and n ! n0. We convert this rainbow matching problem to a matching problem

on a special hypergraph H. We then combine several existing techniques on matchings in uniform hypergraphs:

Find an absorbing matching M in H; use a randomization process of Alon et al. (2012) to find an almost regular

subgraph of H − V (M); find an almost perfect matching in H − V (M). To complete the process, we also need

to prove a new result on matchings in 3-uniform hypergraphs, which can be viewed as a stability version of a

result of !Luczak and Mieczkowska (2014) and might be of independent interest.
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1 Introduction

For a positive integer k and a set V , let [k] := {1, . . . , k} and

(
V

k

)
:= {A ⊆ V : |A| = k}.

A hypergraph H consists of a vertex set V (H) and an edge set E(H) ⊆ 2V (H). A hypergraph H is
k-uniform if all its edges have size k and we call it a k-graph for short. Throughout this paper, we often
identify E(H) with H when there is no confusion and, in particular, denote by |H| the number of edges
in H. Given a set T of edges in H, we use V (T ) to define

⋃
e∈T e. Given a vertex subset S ⊆ V (H) in H,

we use H[S] to denote the subgraph of H induced by S, and let H − S = H[V (H) \ S].
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A matching in a hypergraph H is a set of pairwise disjoint edges in H. We use ν(H) to define the
maximum size of a matching in H. Let F = {F1, . . . , Fm} be a family of hypergraphs on the same
vertex set. A set of m pairwise disjoint edges is called a rainbow matching for F if each edge is from a
different Fi. If such a matching exists, then we also say that F admits a rainbow matching.

A classical problem in extremal set theory asks for the maximum number of edges in n-vertex k-
graphs H with ν(H) < m. Let n, k and m be positive integers with n ! km. The k-graphs

S(n,m, k) :=

(
[n]

k

)∖(
[n]\[m− 1]

k

)

and D(n,m, k) :=
([km−1]

k

)
on the same vertex set [n] do not have matchings of size m. Erdős [6]

conjectured in 1965 that among all the k-graphs with no matching of size m, S(n,m, k) or D(n,m, k)
has the maximum number of edges: Any n-vertex k-graph H with ν(H) < m contains at most

f(n,m, k) := max

{(
n

k

)
−
(
n−m+ 1

k

)
,

(
km− 1

k

)}

edges. This is often referred to as the Erdős matching conjecture in the literature, and there has been
extensive research on this conjecture (see, for example, [3, 5, 8–11,13,22]). In particular, the special case
for k = 3 was settled for large n by "Luczak and Mieczkowska [22] and completely resolved by Frankl [9].

The following analogous conjecture, known as the rainbow matching conjecture, was made by Aharoni
and Howard [1] and, independently, by Huang et al. [15]. For related topics on rainbow type problems,
we refer the interested readers to [16,18,20, 23].

Conjecture 1.1 (See [1,15]). Let n, k and m be positive integers with n ! km. Let F = {F1, . . . , Fm}
be a family of k-graphs on the same vertex set [n] such that |Fi| > f(n,m, k) for all i ∈ [m]. Then F
admits a rainbow matching.

The case k = 2 of this conjecture is in fact a direct consequence of an earlier result of Akiyama and
Frankl [2] (which was restated in [7]). The following was obtained by Huang et al. [15].

Theorem 1.2 (See [15, Theorem 3.3]). Conjecture 1.1 holds when n > 3k2m.

Keller and Lifshitz [17] proved that Conjecture 1.1 holds when n ! f(m)k for some large constant
f(m) which only depends on m, and this was further improved to n = Ω(m logm)k by Frankl and
Kupavskii [12]. Both proofs use the junta method. Very recently, Lu et al. [19] showed that Conjecture 1.1
holds when n ! 2km and n is sufficiently large.

The following is our main result, which proves Conjecture 1.1 for k = 3 and sufficiently large n.

Theorem 1.3. There exists an absolute constant n0 such that the following holds for all n ! n0. For
any positive integers n and m with n ! 3m, let F = {F1, . . . , Fm} be a family of 3-graphs on the same
vertex set [n] such that |Fi| > f(n,m, 3) for all i ∈ [m]. Then F admits a rainbow matching.

Our proof of Theorem 1.3 uses some new ideas and combines different techniques from Alon et al. [3],
"Luczak and Mieczkowska [22], and Lu et al. [21]. (For a high level description of our proof, we refer
the readers to Section 2 and/or Section 7.) In the process, we prove a stability result on 3-graphs (see
Lemma 4.2) that plays a crucial role in our proof and might be of independent interest: If the number of
edges in an n-vertex 3-graph H with ν(H) < m is close to f(n,m, 3), then H must be close to S(n,m, 3)
or D(n,m, 3).

The rest of the paper is organized as follows. In Section 2, we introduce additional notation, and state
and/or prove a few lemmas for later use. In Section 3, we deal with the families F in which most 3-graphs
are close to the same 3-graph, i.e., S(n,m, 3) or D(n,m, 3). To deal with the remaining families, we need
the above mentioned stability result for matchings in 3-graphs, which is done in Section 4. In Section 5,
we show that there exists an absolute constant c > 0 such that Theorem 1.3 holds for m > (1 − c)n/3.
The proof of Theorem 1.3 for m " (1− c)n/3 is completed in Section 6. Finally, we complete the proof
of Theorem 1.3 in Section 7.
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2 Previous results and lemmas

In this section, we define saturated families and stable hypergraphs, and state several lemmas that we
will use frequently. We begin with some notation. Suppose that H is a hypergraph and U and T are
subsets of V (H). Let

NH(T ) := {A : A ⊆ V (H) \ T and A ∪ T ∈ E(H)}

be the neighborhood of T in H, and let dH(T ) := |NH(T )|. We write dH(v) for dH({v}). Let

∆(H) := max
v∈V (H)

dH(v) and ∆2(H) := max
T∈(V (H)

2 )
dH(T ).

In the case T ⊆ U , we often identify dH[U ](T ) with dU (T ) when there is no confusion.
It will be helpful to consider “maximal” counterexamples to Conjecture 1.1. Let n, k and m be positive

integers with n ! km and let F = {F1, . . . , Fm} be a family of k-graphs on the same vertex set [n]. We
say that F is saturated, if F does not admit a rainbow matching, but for every F ∈ F and e /∈ F , the
new family F(e, F ) := (F\{F})∪ {F ∪ {e}} admits a rainbow matching. The following lemma says that
the vertex degrees of every k-graph in a saturated family are typically small.

Lemma 2.1. Let n, k and m be positive integers with n ! km. Let F = {F1, . . . , Fm} be a saturated
family of k-graphs on the same vertex set [n]. Then for each v ∈ [n] and each i ∈ [m],

dFi(v) "
(
n− 1

k − 1

)
−

(
n− 1− k(m− 1)

k − 1

)
or dFi(v) =

(
n− 1

k − 1

)
.

Proof. Suppose dFi(v) <
(n−1
k−1

)
, where v ∈ [n] and i ∈ [m]. Then there exists e ∈

([n]
k

)
\ Fi such that

v ∈ e. Since F is saturated, the family F(e, Fi) admits a rainbow matching, say M ∪ {e}, with M being
a rainbow matching for the family F \ {Fi}.

If

dFi(v) >

(
n− 1

k − 1

)
−
(
n− 1− k(m− 1)

k − 1

)
=

∣∣∣∣

(
[n]\{v}
k − 1

)∖(
[n]\({v} ∪ V (M))

k − 1

)∣∣∣∣ ,

then there exists an edge f ∈ Fi such that v ∈ f and f ∩V (M) = ∅. Now M ∪{f} is a rainbow matching
for F , which leads to a contradiction. So dFi(v) "

(n−1
k−1

)
−
(n−1−k(m−1)

k−1

)
.

We will remove vertices of degree
(n−1
k−1

)
and use Lemma 2.1 to produce the saturated family F = {F1,

. . . , Fm} of k-graphs such that for each v ∈ V (Fi) and each i ∈ [m],

dFi(v) "
(
n− 1

k − 1

)
−
(
n− 1− k(m− 1)

k − 1

)
.

Next, we define stable hypergraphs. Let n and k be positive integers with n ! k. Let e = {a1, . . . , ak}
and f = {b1, . . . , bk} be members of

([n]
k

)
with a1 < a2 < · · · < ak and b1 < b2 < · · · < bk. We write

e " f if ai " bi for all 1 " i " k, and e < f if e " f and e '= f .
A k-graph F ⊆

([n]
k

)
is said to be stable if e < f ∈ F implies e ∈ F . A family F of k-graphs on the

same vertex set [n] is stable if each k-graph in F is stable.
The following result of Huang et al. [15] will be used frequently, which enables us to work with stable

families when proving Conjecture 1.1.

Lemma 2.2 (See [15, Lemma 2.1]). Let n, k and m be positive integers with n ! km. If the family
{F1, . . . , Fm} of k-graphs with V (Fi) = [n] for all i ∈ [m] does not admit a rainbow matching, then there
exists a stable family {F ′

1, . . . , F
′
m} of k-graphs with |Fi| = |F ′

i | and V (F ′
i ) = [n] for all i ∈ [m] which still

preserves this property.

Corollary 2.3. Let n, k and m be positive integers with n ! km. Let F = {F1, . . . , Fm} be a family
of k-graphs on the vertex set [n] that does not admit a rainbow matching. Then there exists a family
F ′ = {F ′

1, . . . , F
′
m} of k-graphs on the same vertex set [n] such that F ′ is both stable and saturated and

|F ′
i | ! |Fi| for i ∈ [m].
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Proof. Let F∗ = {F ∗
1 , . . . , F

∗
m} be a family of k-graphs on the same vertex set [n] such that F∗ admits

no rainbow matching, |F ∗
i | ! |Fi| for i ∈ [m], and subject to these,

∑
i∈[m] |F ∗

i | is maximum.

Then F∗ is saturated. Now applying Lemma 2.2 to F∗, we obtain a stable family F ′ = {F ′
1, . . . , F

′
m}

of k-graphs on the vertex set [n] such that F ′ admits no rainbow matching, and |F ′
i | = |F ∗

i | for i ∈ [m].
By the choice of F∗, we see that F ′ is also saturated.

We now describe an operation that converts a rainbow matching problem to a matching problem on
a single hypergraph. Let n, k, m and r be non-negative integers with r = (n/k) − m and m ! 1. Let
F = {F1, . . . , Fm} be a family of k-graphs on the same vertex set [n], and let V = {v1, . . . , vm} and
U = {u1, . . . , ur} be two disjoint sets such that (V ∪ U) ∩ [n] = ∅. We use H(F) to define the (k + 1)-
graph with the vertex set [n] ∪ V and the edge set

⋃m
i=1{e ∪ {vi} : e ∈ Fi}, and use H∗(F) to define the

(k + 1)-graph with the vertex set [n] ∪ V ∪ U and the edge set

E(H(F)) ∪
r⋃

i=1

{
e ∪ {ui} : e ∈

(
[n]

k

)}
.

If F1 = · · · = Fm = S(n,m, k) (resp. F1 = · · · = Fm = D(n,m, k)), then we write H(F) as HS(n,m, k)
(resp. HD(n,m, k)).

It is easy to see that F admits a rainbow matching if and only if H(F) has a matching of size m, which
is also if and only if H∗(F) has a matching of size m+r. This allows us to access existing approaches and
tools invented for matching problems. For example, we take the approach by considering whether or not
the hypergraphs H(F) in question are close to the extremal configurations HS(n,m, k) and HD(n,m, k).
We will see in Section 3 that if H(F) is close to HD(n,m, k) and F is stable, then F admits a rainbow
matching.

Here, we give an easy lemma concerning a case where H(F) is not close to HS(n,m, k), which will be
used along with Lemma 2.1. Let H1 and H2 be two k-graphs on the same vertex set V and let ε be some
positive real number; we say that H2 is ε-close to H1 if |E(H1) \ E(H2)| " ε|V |k.
Lemma 2.4. For any given integer k ! 3, let ε and c be real numbers such that 0 < ε * c * 11). Let
n and m be integers such that n/3k2 " m " (1 − c)n/k. Let F = {F1, . . . , Fm} be a family of k-graphs
on the vertex set [n]. If for every i ∈ [m] and v ∈ [n],

dFi(v) "
(
n− 1

k − 1

)
−
(
n− k(m− 1)− 1

k − 1

)
,

then H(F) is not ε-close to HS(n,m, k).

Proof. We note that S(n,m, k) has m− 1 vertices of degree
(n−1
k−1

)
. Since for every i ∈ [m] and v ∈ [n],

dFi(v) "
(
n− 1

k − 1

)
−
(
n− k(m− 1)− 1

k − 1

)
,

we have

|E(HS(n,m, k)) \ E(H(F))| ! m · (m− 1) ·
(
n− k(m− 1)− 1

k − 1

)
· 1
k
>

n2

10k5

(
cn

k − 1

)
> ε(n+m)k+1,

where the second inequality is due to n/3k2 " m " (1 − c)n/k and the third inequality follows from
ε * c. This shows that H(F) is not ε-close to HS(n,m, k).

To deal with the case where H(F) is not close to HD(n,m, 3), we first find a small matching M in
H∗(F) such that M can “absorb” small vertex sets and H∗(F)− V (M) has an almost perfect matching.
When F is stable, the matching M can be found very easily by the following lemma and its proof.

1) Here and throughout the rest of the paper, the notation a % b means that a is sufficiently small compared with b which
need satisfy finitely many inequalities in the proof.
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Lemma 2.5. Let k be a fixed positive integer and let 0 < γ′ * γ * c * 1 be real numbers. Let n
and m be positive integers with n/3k2 " m " (1 − c)n/k. Let F = {F1, . . . , Fm} be a stable family of
k-graphs such that V (Fi) = [n] and |Fi| > f(n,m, k) for all i ∈ [m]. Then for sufficiently large n, H∗(F)
has a matching M with |M | " γn such that for any set S ⊆ V (H∗(F)) \ V (M) with |S| " γ′n and
k|S ∩ (V ∪ U)| = |S ∩ [n]|, H∗(F)[V (M) ∪ S] has a perfect matching.

Proof. Recall that V = {v1, . . . , vm} and U = {u1, . . . , ur}, where r = (n/k) − m. Fix an integer t
satisfying γ′n < t < γn. Then t < γn " (cn/k) " (n/k) −m = r. Let s = +n/3k2, − 1.

By Theorem 1.2 (viewing all the k-graphs as the same k-graph), since |Fi| > f(n,m, k) ! f(n, s, k) for
all i ∈ [m], every Fi has a matching of size s. Since Fi is stable, Fi[[s]] is a complete k-graph. Hence,

(i) for any i1, i2, . . . , ik " kt " kγn < s and j ∈ [m], we have {vj , i1, i2, . . . , ik} ∈ H∗(F).

From the definition of H∗(F), we have

(ii) for any i1, i2, . . . , ik ∈ [n] and j ∈ [r], {uj , i1, i2, . . . , ik} ∈ H∗(F).

Since t < r, we may choose a matching M of size t in H∗(F) with V (M) = {u1, . . . , ut} ∪ [kt]. Note
that |M | = t " γn. We claim that this M is the desired matching. To see this, consider any subset S
with S∩V (M) = ∅, |S| " γ′n and k|S∩ (V ∪U)| = |S∩ [n]|. Let t′ = |S∩ (V ∪U)|. So t′ " γ′n < t. Then
by (i) and (ii), there is a perfect matching M1 in H∗(F)[S∩ (V ∪U)∪ [kt′]] . By (ii), there exists a perfect
matching M2 in H∗(F)[(V (M)∪S)\V (M1)]. So M1∪M2 is a perfect matching in H∗(F)[V (M)∪S].

For the “absorbing” matching M in H∗(F) in Lemma 2.5, we also want H∗(F) − V (M) to have an
almost perfect matching. For this we need to use the following result of Frankl and Rödl [14].

Theorem 2.6 (See [14]). For every integer k ! 2 and any real number σ > 0, there exist τ = τ(k,σ)
and d0 = d0(k,σ) such that for every integer n ! D ! d0 the following holds: Every n-vertex k-graph H
with

(1− τ)D < ∆1(H) < (1 + τ)D

and ∆2(H) < τD contains a matching covering all but at most σn vertices.

In order to obtain a k-graph H satisfying Theorem 2.6, we use the approach from [3] by conducting
two rounds of randomization on H∗(F)− V (M). We summarize part of the proof in [3] (more precisely,
their proof of Claim 4.1) as a lemma. A fractional matching in a k-graph H is a function w : E(H) →
[0, 1] such that for any v ∈ V (H),

∑
{e∈E(H):v∈e} w(e) " 1. A fractional matching is called perfect if∑

e∈E(H) w(e) = |V (H)|/k.
Lemma 2.7 (See [3], retained from their proof of Claim 4.1). Let k ! 3 and H be a k-graph on at
most 2n vertices. Suppose that there are subsets Ri ⊆ V (H) for i = 1, . . . , n1.1 satisfying the following:

(a) every vertex v ∈ V (H) satisfies that |{i : v ∈ Ri}| = (1 + o(1))n0.2,

(b) every pair {u, v} ⊆ V (H) is contained in at most two sets Ri,

(c) every edge e ∈ H is contained in at most one set Ri, and

(d) for every i = 1, . . . , n1.1, Ri has a perfect fractional matching wi.

Then H has a spanning subgraph H ′ such that

dH′(v) = (1 + o(1))n0.2

for all v ∈ V (H ′) and ∆2(H ′) " n0.1.

We will also need to control the independence number of random subgraphs of H∗(F) − V (M). The
intuition is that when H(F) is not close to HD(n,m, k) or HS(n,m, k), H∗(F) − V (M) does not have
very large independence number. The following lemma in [21] was proved by Lu et al. using the container
method.

Lemma 2.8 (See [21, Lemma 5.4]). Let d, ε′ and α be positive real numbers and let k and n be positive
integers. Let H be an n-vertex k-graph such that e(H) ! dnk and e(H[S]) ! ε′e(H) for all S ⊆ V (H)
with |S| > αn. Let R ⊆ V (H) be obtained by taking each vertex of H uniformly at random with probability
n−0.9. Then for any positive real number γ * α, the size of maximum independent sets in H[R] is at
most (α+ γ)n0.1 with probability at least 1− (nO(1)e−Ω(n0.1)).
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We need an inequality on the function f(n,m, k) proved by Frankl [9].

Lemma 2.9 (See [9, Proposition 5.1]). Let n, m and k be positive integers with n ! km− 1. Then

f(n,m, k) ! f(n− 1,m− 1, k) +

(
n− 1

k − 1

)
.

We conclude this section with the well-known Chernoff inequality.

Lemma 2.10 (Chernoff inequality [4]). Suppose that X1, . . . , Xn are independent random variables
taking values in {0, 1}. Let X =

∑n
i=1 Xi and µ = E(X). Then for any 0 < δ " 1,

P[X ! (1 + δ)u] " e−δ2u/3 and P[X " (1− δ)u] " e−δ2u/3. (2.1)

In particular, if X ∼ Bin(n, p) and λ < 3
2np, then

P([|X − np|] ! λ) " e−Ω(λ2/np). (2.2)

3 Extremal configuration HD(n,m,3)

From Lemmas 2.1 and 2.4, we see that if F is a saturated family of k-graphs on the vertex set [n] and
H(F) is close to the extremal configuration HS(n,m, k), then there exist F ∈ F and v ∈ [n] such that
dF (v) =

(n−1
k−1

)
. Such vertices v can be removed from all the k-graphs in F \ {F} to obtain a smaller

family F ′, so that if F ′ admits a rainbow matching, then F admits a rainbow matching.

In this section, we consider the case where H(F) is close to HD(n,m, 3) and F is stable.

Lemma 3.1. Let ε and c be real numbers such that 0 < ε * c * 1. Let n and m be positive integers
such that n/27 " m " (1− c)n/3. Let F = {F1, . . . , Fm} be a stable family of 3-graphs on the vertex set
[n] such that |Fi| > f(n,m, 3) for all i ∈ [m]. If H(F) is ε-close to HD(n,m, 3), then F admits a rainbow
matching.

Proof. Let b = 6ε1/6n. If Fi is
√
ε-close to D(n,m, 3), then Fi contains a complete subgraph of size

3m− b; for, otherwise, as Fi is stable, we have

|E(D(n,m, 3)) \ E(Fi)| !
(
b

3

)
>

√
εn3,

which leads to a contradiction.

We claim that for any i ∈ [m] and j ∈ {0, . . . , b}, {2j + 1, 2j + 2, 3m − j} ∈ Fi. To prove this claim
we fix i ∈ [m]. Suppose for a contradiction that there exists an integer t with 0 " t " b such that
{2t + 1, 2t + 2, 3m − t} /∈ Fi. Since |Fi| >

(3m−1
3

)
and Fi is stable, we have {1, 2, 3m} ∈ Fi. So t ! 1.

We now count the edges in Fi: Let q1 be the number of edges of Fi in [3m− 1], and q2 be the number of
edges of Fi not contained in [3m − 1]. Since Fi is stable and {2t + 1, 2t + 2, 3m − t} /∈ Fi, we see that
{a, b, c} /∈ Fi when 2t+ 2 " a < b < 3m− t " c " 3m− 1. So

q1 "
(
3m− 1

3

)
− t

(
3m− 3t− 3

2

)
.

Since {2t+ 1, 2t+ 2, 3m− t} /∈ Fi, we have that for any e ∈ Fi with e ∩ ([n] \ [3m− 1]) '= ∅, e ∩ [2t] '= ∅.
This shows q2 " 2t(n− 3m+ 1)n. First suppose that n " 7m/2. Then we have

|Fi| "
(
3m− 1

3

)
− t

(
3m− 3t− 3

2

)
+ 2tn(n− 3m+ 1)

"
(
3m− 1

3

)
− t

[(
3m− 3t− 3

2

)
− 7m(m/2 + 1)

]
<

(
3m− 1

3

)
,
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where the second inequality holds since n " 7m/2, and the last inequality holds since t " b = 6ε1/6n * m,
which leads to a contradiction. So we may assume n > 7m/2. Let m = αn. Then 1/27 " α < 2/7. We
assert that (

n

3

)
−
(
n−m+ 1

3

)
>

(
3m− 1

3

)
+ 2tn2.

To see this, let f(x) = 1− (1− x)3 − (3x)3, and then

6

n3

((
n

3

)
−
(
n−m+ 1

3

)
−

(
3m− 1

3

))
= f(α) + o(1).

Since f ′(x) = 3(1− 2x− 26x2) is decreasing in [1/27, 2/7] with f ′(1/27) > 0 and f ′(2/7) < 0, we have

f(α) ! min{f(1/27), f(2/7)} = f(2/7) =
2

343

for 1/27 " α < 2/7. This shows that

(
n

3

)
−
(
n−m+ 1

3

)
−

(
3m− 1

3

)
=

f(α)

6
n3 + o(n3) ! 2tn2,

as asserted. Then it follows that

|Fi| "
(
3m− 1

3

)
− t

(
3m− 3t− 3

2

)
+ 2tn(n− 3m+ 1) <

(
3m− 1

3

)
+ 2tn2 <

(
n

3

)
−
(
n−m+ 1

3

)
,

which leads to a contradiction as |Fi| > f(n,m, 3). This finishes the proof of the claim.
Recall V = {v1, . . . , vm} from the definition of H(F). By the above claim,

M1 := {{vi, 2i− 1, 2i, 3m− i+ 1} : i ∈ [b]}

is a matching in H(F). Without loss of generality, let F1, . . . , Fa be all the k-graphs in F which are
not

√
ε-close to D(n,m, 3). Since H(F) is ε-close to HD(n,m, 3), we have a " √

εn < b. Then for any
j ∈ [m]\[b], since Fj is

√
ε-close to D(n,m, 3), Fj contains a complete subgraph with size at least 3m− b.

Hence we have {2j − 1, 2j, 3m − j + 1} ∈ Fj . So M2 := {{vj , 2j − 1, 2j, 3m − j + 1} : b < j " m} is a
matching in H(F) which is disjoint from M1. Then M1 ∪M2 forms a matching of size m in H(F). So F
admits a rainbow matching, completing the proof of Lemma 3.1.

4 A stability lemma

In this section, we prove a result for stable 3-graphs, which may be viewed as a stability version of the
following result of "Luczak and Mieczkowska proved in [22].

Theorem 4.1 (See [22]). There exists a positive integer n1 such that for integers m and n with n ! n1

and 1 " m " n/3, if H is an n-vertex 3-graph with e(H) > f(n,m, 3), then ν(H) ! m.

Building on the proof in [22], we prove the following lemma.

Lemma 4.2. For any real number ε > 0, there exists a positive integer n1(ε) such that the following
holds. Let m and n be integers with n ! n1(ε) and 1 " m " n/3, and let H be a stable 3-graph on the
vertex set [n]. If e(H) > f(n,m, 3)− ε4n3 and ν(H) < m, then H is ε-close to S(n,m, 3) or D(n,m, 3).

Proof. Suppose that e(H) > f(n,m, 3)− ε4n3 and s := ν(H) < m. Let M = {(i#, j#, k#) : ) ∈ [s]} be a
largest matching in H and the partition V (M) = I ∪ J ∪K such that every edge (i, j, k) ∈ E(M) with
i < j < k satisfies i ∈ I, j ∈ J and k ∈ K. Since H is stable, we may choose V (M) to be [3s].

Let V ′ = [n]\[3s]. For x ∈ [3s], let e(x) denote the edge in M containing x. Let

F1 =

{
{v} ∈

(
[3s]

1

)
: dV ′(v) ! 20n

}
, F2 =

{
{v, w} ∈

(
[3s]

2

)
: e(v) '= e(w) and dV ′(v, w) ! 20

}
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and

F3 =

{
{u, v, w} ∈

(
[3s]

3

)
: e(u), e(v) and e(w) are pairwise distinct

}
.

Let H∗ = ([3s], F ) be the hypergraph with the vertex set [3s] and the edge set F = M ∪ F1 ∪ F2 ∪ F3.
Call an edge e ∈ H traceable if e ∩ [3s] ∈ F , and untraceable otherwise. Since M is a maximum

matching in H, V ′ is independent in H. So the number of untraceable edges of H is bounded from above
by (

3s

1

)
· 20n+

((
s

2

)(
3

1

)(
3

1

)
× 19 +

(
s

1

)(
3

2

)
n

)
+

(
s

1

)(
3

2

)(
3s− 3

1

)
" 32n2 = o(n3),

where we use s < m " n/3. We point out that those edges (there being o(n3) of them) will be negligible
in the following proof.

Let T be a triple of edges from M . We say that T is bad if V (T ) contains three pairwise disjoint edges
of H∗ whose union intersects I in at most 2 vertices, and good otherwise. For each i ∈ [3], let fi(T )
denote the number of edges of Fi contained in V (T ). Note that f3(T ) " 27. The following two claims
are explicit in [22].

Claim 1. There exist no three pairwise disjoint bad triples (of edges in M). Hence, there exist at most
six edges in M such that each bad triple contains one of these edges.

Claim 2. Let T be a good triple.
(i) If f3(T ) ! 24, then f1(T ) = f2(T ) = 0.
(ii) If f3(T ) = 20, then f1(T ) " 1 and f2(T ) " 12.
(iii) If f3(T ) " 19, then f1(T ) " 3 and f2(T ) " 15. Moreover, the only triples T for which f3(T ) = 19,

f2(T ) = 15 and f1(T ) = 3 are those in which each edge of H∗ contained in V (T ) intersects I.
(iv) If f3(T ) = 21, then f1(T ) " 1 and f2(T ) " 10.
(v) If 22 " f3(T ) " 23, then f1(T ) = 0 and f2(T ) " 7.

We remove exactly six edges from M such that the resulting matching M ′ only contains good triples.
Since H has at most 18n2 edges intersecting V (M\M ′) and 32n2 untraceable edges, we have

e(H) " |F1|
(
n− 3s

2

)
+ |F2|(n− 3s) + |F3|+ 50n2.

To bound |Fi|, let us consider the summation of fi(T ) over all T ∈
(M ′

3

)
. Since each edge from Fi is

counted exactly
((s−6)−i

3−i

)
times in this sum, we have

|Fi|
(
(s− 6)− i

3− i

)
=

∑

T∈(M
′

3 )

fi(T ).

Therefore,

e(H) "
∑

T∈(M
′

3 )

(
f1(T )

(n−3s
2

)
(s−7

2

) + f2(T )
n− 3s

s− 8
+ f3(T )

)
+ 50n2

"
∑

T∈(M
′

3 )

(
f1(T )

(n− 3s)2

s2
+ f2(T )

n− 3s

s
+ f3(T )

)
+O(n2).

Here, the last inequality is trivial when s " 15, and it holds when s > 15 because the difference between
the above two summations is at most

∑

T∈(M
′

3 )

(
f1(T )

15(n− 3s)2

s(s2 − 15s)
+ f2(T )

8(n− 3s)

s(s− 8)

)
"

(
s− 6

3

)(
45(n− 3s)2

s(s2 − 15s)
+

120(n− 3s)

s(s− 8)

)
= O(n2),

where 3s < n, f1(T ) " 3 and f2(T ) " 15 (from Claim 2).
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To further bound e(H), we partition good triples T depending on f3(T ) and f1(T ). Let

Ti =

{
T ∈

(
M ′

3

)
: f3(T ) = i

}

for i ∈ [27] and

X =

{
T ∈

(
M ′

3

)
: f1(T ) = 3

}
.

Consider any T ∈ X, and then T is a good triple2). Since f1(T ) = 3, the three edges of F1 contained in
V (T ) are precisely the three vertices in V (T ) ∩ I, and each edge of H∗ contained in V (T ) intersects I.
Since H is stable and V (M) = [3s], by using the definition of F1, it is not hard to see that X ⊆ T19.

Define

x1 =
18∑

i=1

|Ti|+ |T19 \X|, x2 = |T20|, x3 = |T21|, x4 = |T22|+ |T23|, x5 =
26∑

i=24

|Ti|, x = |X|

and y = |T27|. So
5∑

i=1

xi + x+ y =

(
s− 6

3

)
.

From now on, we let t = (n − 3s)/s. By Claim 2 and the fact X ⊆ T19, we can derive from the above
upper bound on e(H) that

e(H) " (3x+ 2x1 + x2 + x3)t
2 + (15x+ 15x1 + 12x2 + 10x3 + 7x4)t

+ (19x+ 19x1 + 20x2 + 21x3 + 23x4 + 26x5 + 27y) +O(n2).

For convenience, we write

ft(x1, x2, x3, x4, x5, x, y) =
5∑

i=1

αi(t) · xi + β1(t) · x+ β2(t) · y,

where

α1(t) = 2t2 + 15t+ 19, α2(t) = t2 + 12t+ 20, α3(t) = t2 + 10t+ 21,

α4(t) = 7t+ 23, α5(t) = 26, β1(t) = 3t2 + 15t+ 19 and β2(t) = 27.

Then it follows that

e(H) " ft(x1, x2, x3, x4, x5, x, y) +O(n2).

Next, we derive properties of the functions αi(t) and βj(t).

Claim 3. For any t ! 0, max{β1(t),β2(t)} ! max{α1(t),α2(t),α3(t),α4(t),α5(t)}+ 0.2.

Proof. We have β2(t) = 27. It is easy to see that for each i ∈ [5], the functions αi(t), β1(t) − αi(t)
and β1(t) are increasing for t ! 0. Note that β1(0.5) = 27.25, α2(0.5) = 26.25, α3(0.5) = 26.25 and
α4(0.5) = 26.5, and then max{β1(t), 27} ! αi(t) + 0.2 for t ! 0 and i = 2, 3, 4. Since β1(t) − α1(t) = t2

and α1(
√
0.2) < 27− 0.2, we see max{β1(t), 27} ! α1(t) + 0.2 for all t ! 0.

Since

β1(t)

(
s− 6

3

)
" 1

2
(n− 3s)2s+

5

2
(n− 3s)s2 +

19

6
s3 =

1

6
n3 − 1

6
(n− s)3,

we see

max{β1(t),β2(t)}
(
s− 6

3

)
" max

{(
n

3

)
−
(
n− s+ 1

3

)
,

(
3s− 1

3

)}
+O(n2) = f(n, s, 3) +O(n2).

2) Since T is good, the union of any three disjoint edges of H∗ in V (T ) must contain the three vertices in V (T ) ∩ I.
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By Claim 3 and the fact that
∑5

i=1 xi + x+ y =
(s−6

3

)
, we have

ft(x1, x2, x3, x4, x5, x, y)

" (max{β1(t),β2(t)}− 0.2)
5∑

i=1

xi + β1(t)x+ β2(t)y

" max{β1(t),β2(t)}
(
s− 6

3

)
− 0.2

5∑

i=1

xi " f(n, s, 3)− 0.2
5∑

i=1

xi +O(n2). (4.1)

Let ∪X (resp. ∪T27) denote the set of edges each of which belongs to some triple in X (resp. in T27).
Now we show the following claim.

Claim 4. s > m− εn/4, and x >
(s−6

3

)
− 10ε4n3 −

(εn/24
3

)
or y >

(s−6
3

)
− 10ε4n3 −

(εn/12
3

)
.

Proof. If s " m− εn/4, then by (4.1) we have

e(H) " ft(x1, x2, x3, x4, x5, x, y) +O(n2) " f(n, s, 3) +O(n2)

" f(n,m, 3)−
(
ε/4n

3

)
+O(n2) " f(n,m, 3)− ε4n3,

which leads to a contradiction. So s > m− εn/4. First we see that x+y >
(s−6

3

)
−10ε4n3; for, otherwise,∑5

i=1 xi ! 10ε4n3, which together with (4.1) implies

e(H) " ft(x1, x2, x3, x4, x5, x, y) +O(n2) " f(n,m, 3)− 2ε4n3 +O(n2) " f(n,m, 3)− ε4n3,

which leads to a contradiction. Now suppose that x >
(εn/12

3

)
and y >

(εn/24
3

)
. Then | ∪ X| > εn/12

and |∪ T27| > εn/24. For any edge e = (i, j, k) ∈ ∪X with i < j < k, by the previous discussion,
we have i ∈ F1. For any edge e = (i, j, k) ∈ ∪T27 with i < j < k, by Claim 2 we see i /∈ F1. Thus
(∪X) ∩ (∪T27) = ∅. The triples T = {e1, e2, e3} with e1 ∈ ∪X and e2, e3 ∈ ∪T27 cannot satisfy both
f3(T ) = 27 and f1(T ) = 3. This shows

x+ y <

(
s− 6

3

)
− | ∪X|

(
| ∪ T27|

2

)
"

(
s− 6

3

)
− εn

12

(
εn/24

2

)
,

contradicting that x+ y >
(s−6

3

)
− 10ε4n3. Hence, we have that either x "

(εn/12
3

)
or y "

(εn/24
3

)
.

Suppose

x >

(
s− 6

3

)
− 10ε4n3 −

(
εn/24

3

)
.

So x >
(s−6

3

)
−

(εn/12
3

)
and thus | ∪X| > s − 6 − εn/12. Recall that for any T ∈ X, T is a good triple,

and hence each edge of H∗ contained in V (T ) intersects I. Hence any traceable edge which intersects
V (∪X) must also intersect I. Thus, the number of edges of H not intersecting I is at most

|V (M ′) \ V (∪X)|
(
n

2

)
+ 50n2 " εn

4

(
n

2

)
+ 50n2 " ε

4
n3.

As |I| = s " m− 1,

|E(S(n,m, 3))\E(H)| = |E(H)\E(S(n,m, 3))|+ e(S(n,m, 3))− e(H) " ε

4
n3 + ε4n3 < εn3.

So in this case, we see that H is ε-close to S(n,m, 3).

By Claim 4, it remains to consider

y >

(
s− 6

3

)
− 10ε4n3 −

(
εn/12

3

)
.
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We claim that there exists a complete 3-graph K on more than 3m− 3εn/2 vertices and V (K) ⊆ V (M ′).
Suppose to the contrary that V (M ′) does not contain such a complete 3-graph K. Since

|V (M ′)|− (3m− 3εn/2) = 3(s− 6)− 3m+ 3εn/2 >
εn

2

and H is stable, V (M ′) contains an independent set of size εn
2 , say A. Note that if T = {e1, e2, e3} with

ei ∩ A '= ∅ for all i ∈ [3], then f3(T ) < 27. Since there are at least |A|/3 ! εn/6 edges in M ′ which
intersect with A, we see that y "

(s−6
3

)
−
(εn/6

3

)
, which leads to a contradiction.

Then

|E(D(n,m, 3))\E(H)| " |E(D(n,m, 3))\E(K)| " 3

2
εn

(
n

2

)
< εn3,

i.e., H is ε-close to D(n,m, 3). This finishes the proof of Lemma 4.2.

5 Almost perfect rainbow matchings

In this section, we prove a lemma about almost perfect rainbow matchings that we will need. In fact,
this result holds for families of k-graphs, for any k ! 3.

Lemma 5.1. For any given integer k ! 3, there exist positive real numbers c and n2 such that the
following holds. Let n and m be integers with n ! km and n ! n2, and let F = {F1, . . . , Fm} be a stable
family of k-graphs on the same vertex set [n] such that |Fi| >

(km−1
k

)
for each i ∈ [m]. If m > (1− c)n/k,

then F admits a rainbow matching.

Proof. We choose c′ = c′(k) and c = c(k) small enough such that 0 < c * c′ * 1. Let n be sufficiently
large and n/k ! m > (1 − c)n/k. Suppose to the contrary that |Fi| >

(km−1
k

)
for each i ∈ [m] and F

does not admit a rainbow matching.
By Corollary 2.3, we may additionally assume that F is saturated. Let Ui be the vertex set of a largest

complete k-graph in Fi for i ∈ [m]. Since Fi is stable, we may choose Ui = [|Ui|] such that [n] \ Ui is an
independent set in Fi. For each i ∈ [m], we have |Ui| > (1− c′)km; for, otherwise, we have the following
contradiction for some i ∈ [m]:

|Fi| "
(
n

k

)
−
(
c′km

k

)
"

(
n

k

)
− (cn+ 1)

(
n− 1

k − 1

)
"

(
n

k

)
− (n− km+ 1)

(
n− 1

k − 1

)
<

(
km− 1

k

)
,

where the second inequality holds since c * c′ * 1 and m > (1− c)n/k, the third inequality holds since
n− km < cn, and the last inequality holds since

(
n

k

)
−

(
km− 1

k

)
=

n−km+1∑

i=1

(
n− i

k − 1

)
< (n− km+ 1)

(
n− 1

k − 1

)
.

Let U =
⋂m

i=1 Ui. By the above paragraph, we see that |U | ! (1− c′)km. If |U | ! km, then it is clear
that F admits a rainbow matching. So we may assume that Um = U ⊆ [km − 1]. Because Um is the
vertex set of a largest complete k-subgraph of Fm and since Fm is stable and |Fm| >

(km−1
k

)
, there exists

some k-set e /∈ Fm such that |e ∩ U | = k − 1 and km ∈ e. Since F is saturated, there exists a rainbow
matching M in F \Fm such that M ∪ {e} is a rainbow matching in F(e, Fm). Since Fi is stable for each
i ∈ [m], we may assume that V (M) ∪ e = [km]. Let M ′ = {e′ ∈ M : e′ '⊆ U}.
Claim 5. (a) |M ′| < c′km,

(b) each edge of Fm is contained in U or intersects an edge of M ′, and
(c) for any v ∈ V (M) \ U , dFm[U ](v) " c′k2m

( |U |
k−2

)
.

Proof. To prove (a), just observe that |M ′| " |V (M) \ U | = (km− 1)− |U | < c′km.
Suppose that (b) fails, i.e., there exists an edge f ∈ Fm such that f\U '= ∅ and f ∩ V (M ′) = ∅. Note

that f ∩ (U\V (M ′)) '= ∅, as [n] \ U is independent in Fm. In particular, |f ∩ (U\V (M ′))| " k − 1. Let
|M ′| = m − t for some t ! 1. Recall that U ∪ V (M ′) = V (M) = [km − 1]. Hence |U\V (M ′)| = kt − 1,
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and thus U\(V (M ′) ∪ f) induces a common complete k-graph of size at least k(t − 1) in all Fi. Then
we see that M ′ ∪ {f} together with a matching of size t− 1 in U\(V (M ′) ∪ f) form a rainbow matching
for F . So (b) holds.

Now we prove (c). For any v ∈ V (M) \ U ⊆ [km], by the maximality of U , there exists f ∈
([n]

k

)
\ Fm

such that v ∈ f and |f ∩U | = k− 1. So there exists a rainbow matching N in F \Fm such that N ∪ {f}
is a rainbow matching in F ′(f, Fm). Since Fi is stable for i ∈ [m], we may assume that V (N)∪ f = [km].
Let N ′ = {e′ ∈ N : e′ '⊆ U}. By applying (b) to N ′, every edge of Fm containing v intersects V (N ′).
Since

V (N ′) " k|N ′| " k(km− |U |) " c′k2m,

there are at most c′k2m
( |U |
k−2

)
edges e′ in Fm containing v such that e′ ⊆ U ∪ {v}. Hence (c) holds. This

proves the claim.

Note that |e∩U | = k− 1 and V (M)∪U = [km− 1]. Let q1 be the number of edges of Fm contained in
[km− 1], and q2 be the number of edges of Fm with at least one vertex in [n] \ [km− 1]. By (c), we have

q1 "
(
km− 1

k

)
− |V (M) \ U |

(
|U |
k − 1

)
+ |V (M) \ U | · c′k2m

(
|U |
k − 2

)
.

By (b), we see q2 " |V (M ′)| · (n− km+ 1)
(n−2
k−2

)
. So we have

|Fm| "
(
km− 1

k

)
− |V (M) \ U |

[(
|U |
k − 1

)
+ c′k2m

(
|U |
k − 2

)]
+ |V (M ′)| (n− km+ 1)

(
n− 2

k − 2

)

"
(
km− 1

k

)
− |V (M) \ U |

[(
|U |
k − 1

)
+ c′k2m

(
|U |
k − 2

)]
+ k|V (M) \ U |(cn+ 1)

(
n− 2

k − 2

)

=

(
km− 1

k

)
− |V (M) \ U | ·

[(
|U |
k − 1

)
− c′k2m

(
|U |
k − 2

)
− k(cn+ 1)

(
n− 2

k − 2

)]

<

(
km− 1

k

)
,

where the second inequality holds since n − km < cn and |M ′| " |V (M) \ U |, and the last inequality
holds since c′ and c are small enough and |U | > (1 − c′)km > (1 − c′)(1 − c)n. This is a contradiction,
finishing the proof of Lemma 5.1.

6 Non-extremal configurations

Note that if there exist F ∈ F and v ∈ [n] such that dF (v) =
(n−1
k−1

)
, then v can be removed from all

the k-graphs in F \ {F} to obtain a smaller family F ′ so that F ′ admits a rainbow matching if and only
if F admits a rainbow matching. Hence, if such vertex does not exist in a saturated family F , then from
Lemma 2.1, we see that dF (v) "

(n−1
k−1

)
−

(n−k(m−1)−1
k−1

)
for all v ∈ F and F ∈ F . This leads us to the

following result.

Lemma 6.1. Given real numbers 0 < ε * c * 1, let n ! n(ε, c) be a sufficiently large integer and m
be an integer such that n/27 < m < (1− c)n/3. Let F = {F1, . . . , Fm} be a stable family of 3-graphs on
the vertex set [n] such that for every i ∈ [m], |Fi| > f(n,m, 3) and

dFi(v) "
(
n− 1

2

)
−
(
n− 3(m− 1)− 1

2

)

for each v ∈ [n]. If H(F) is ε-close to neither HS(n,m, 3) nor HD(n,m, 3), then F admits a rainbow
matching.

Proof. Given 0 < ε * c * 1, let n′ and m′ be integers such that n′ is sufficiently large and n′/27 <
m′ < (1 − c)n′/3. Let F = {F1, . . . , Fm′} be a family of 3-graphs on the vertex set [n′] such that
|Fi| > f(n′,m′, 3) and

dFi(v) "
(
n′ − 1

2

)
−

(
n′ − 1− 3(m′ − 1)

2

)
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for i ∈ [m′] and v ∈ [n′]. Suppose that H(F) is not ε-close to HS(n′,m′, 3) or HD(n′,m′, 3). Our ultimate
goal is to find a rainbow matching in F .

Let n′ = 3m′ + 3r′ + s, where 0 " s < 3. Recall the definitions of H(F) and H∗(F) such that
V (H(F)) = [n′] ∪ V ′ and V (H∗(F)) = [n′] ∪ V ′ ∪ U ′, where |V ′| = m′ and |U ′| = r′. By Lemma 2.5,
for 0 < γ′ * γ * ε * c * 1, there exists a matching Ma in H∗(F) with |Ma| " γn′ such that for any
S ⊆ V (H∗(F))\V (Ma) with |S| " γ′n′ and 3|S ∩ (V ′ ∪U ′)| = |S ∩ [n′]|, H∗(F)[V (Ma)∪S] has a perfect
matching. In the rest of the proof, without loss of generality, we use the following notation:

H = H∗(F)− V (Ma), [n] = [n′] \ V (Ma),

V = V ′ \ V (Ma) = {v1, . . . , vm}, U = U ′ \ V (Ma) = {u1, . . . , ur}.

Then n = 3m+3r+ s. By using the above property of the matching Ma, it now suffices for us to find an
almost perfect matching in H. To find this almost perfect matching, our plan is to show that there exists
an almost regular subgraph of H with bounded maximum co-degree so that Theorem 2.6 can be applied.
To that end, in what follows we will use the two-round randomization technique developed in [3].

Let R be chosen from V (H) by taking each vertex independently of probability n−0.9. We take n1.1

independent copies of R and denote them by Ri for 1 " i " n1.1. For S ⊆ V (H), denote YS = |{i : S
⊆ Ri}|. First we have the following claim.

Claim A. With probability 1− o(1), the following hold:
(i) for every v ∈ V (H), Y{v} = (1 + o(1))n0.2,
(ii) every pair {u, v} ⊆ V (H) is contained in at most two sets Ri, and
(iii) every edge e ∈ H is contained in at most one set Ri.

Proof. Note that YS ∼ Bin(n1.1, n−0.9|S|) for any S ⊆ V (H). Thus, E[Y{v}] = n0.2 for every v ∈ V (H).

By (2.2) in Lemma 2.10, we have P(|Y{v}−n0.2| > n0.15) " e−Ω(n0.1). By the union bound, we see that (i)
holds. To prove (ii) and (iii), let

Z2 =

∣∣∣∣

{
{u, v} ∈

(
V (H)

2

)
: Y{u,v} ! 3

}∣∣∣∣ and Z3 =

∣∣∣∣

{
S ∈

(
V (H)

3

)
: YS ! 2

}∣∣∣∣ .

Then

E[Z2] =

(
|V (H)|

2

)
P(Y{u,v} ! 3) "

(
n

2

)
(n1.1)3(n−1.8)3 " 4n−0.1

and

E[Z3] "
(
n

3

)
(n1.1)2(n−2.7)2 " 8n−0.2.

By Markov’s inequality, we have

P(Z2 = 0) > 1− 4n−0.1 and P(Z3 = 0) > 1− 8n−0.2.

That implies that (ii) and (iii) hold with probability at least 1− 4n−0.1 and 1− 8n−0.2, respectively.

Next, we want to prove that there exists a perfect (or, rather, maximum) fractional matching in
each H[Ri]. To do so, we define a maximal subset R′i ⊆ Ri that satisfies R′i ∩ [n] = 3|R′i ∩ (V ∪ U)| as
follows. If |Ri ∩ [n]| ! 3|Ri ∩ (V ∪U)|, we take a subset of Ri denoted by R′i, which is chosen from Ri by
deleting |Ri∩ [n]|−3|Ri∩(V∪U))| vertices in Ri∩ [n] independently and uniformly at random. Otherwise
|Ri ∩ [n]| < 3|Ri ∩ (V ∪ U)|, we take a subset of Ri denoted by R′i by the following step: First we delete
at most 3 vertices (chosen independently and uniformly at random) in Ri ∩ [n] so that the number ) of
the remaining vertices is a multiple of 3. Then we delete |Ri ∩ (V ∪ U)| − )/3 vertices in Ri ∩ (V ∪ U))
independently and uniformly at random.

For S ⊆ V (H), define Y ′
S = |{i : S ⊆ R′i}|. Note that E(|Ri ∩ [n]|) = n0.1, E(|Ri ∩ (V ∪ U)|) = n0.1/3

and E(|Ri ∩ V|) = n−0.9m. For each i, let Ai be the event ||Ri ∩ [n]| − n0.1| < n0.095, Bi be the event
||Ri ∩ (V ∪ U)|− n0.1/3| < n0.095, and Ci be the event ||Ri ∩ V|− n−0.9m| < n0.095.

Claim B. With probability 1− o(1), the following hold:
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(i)
∧

i(Ai ∧Bi ∧ Ci) holds,

(ii) for every v ∈ V (H), Y ′
{v} = (1 + o(1))n0.2,

(iii) every pair {u, v} ⊆ V (H) is contained in at most two sets R′i, and

(iv) every edge e ∈ H is contained in at most one set R′i.

Proof. Since R′i ⊆ Ri, it is clear from Claim A that (iii) and (iv) hold with probability 1− o(1). Next,
we consider (i). By (2.2) in Lemma 2.10 (with λ = n0.095), for each 1 " i " n1.1, we have

P(Ai) " e−Ω(n0.09), P(Bi) " e−Ω(3n0.09) = e−Ω(n0.09) and P(Ci) " e−Ω( n
mn0.09) = e−Ω(n0.09).

Thus by the union bound, P(
∧

i(Ai ∧Bi ∧ Ci)) = 1− o(1), proving (i).

Assuming Ai ∧Bi ∧ Ci, we see

|Ri \R′i| < max{|Ri ∩ [n]|− 3|Ri ∩ (V ∪ U)|, |Ri ∩ (V ∪ U)|− (|Ri ∩ [n]|/3)+ 3} < 4n0.095.

Then by the choice of R′i, for all v ∈ V (H), the probability P({v ∈ Ri \R′i | (Ai ∧Bi ∧Ci) ∧ (v ∈ Ri)})
is at most

max

{
|Ri \R′i|
|Ri ∩ [n]| ,

|Ri \R′i|
|Ri ∩ (V ∪ U)|

}
" |Ri \R′i|

|Ri ∩ (V ∪ U)| <
4n0.095

n0.1/3− n0.095
< 13n−0.005.

Using coupling and applying (2.2) in Lemma 2.10 to Bin(|Yv|, 13n−0.005) with λ = 3n0.195, we have

P
({

Y{v} − Y ′
{v} > 16n0.195

∣∣∣∣
∧

i

(Ai ∧Bi ∧ Ci) ∧ (Y{v} = (1 + o(1))n0.2)

})
" e−Ω(n0.195).

Note that with probability 1 − o(1),
∧

i(Ai ∧ Bi ∧ Ci) and Y{v} = (1 + o(1))n0.2 hold for all v ∈ V (H).
By the union bound, we can derive that 0 " Y{v} − Y ′

{v} " 16n0.195 = o(n0.2) for all v ∈ V (H) with
probability 1− o(1). Hence (ii) holds with probability 1− o(1). This proves Claim B.

Let ni = |R′i ∩ [n]| and mi = |R′i ∩ V|. Using Claim B(i), we see that with probability 1 − o(1),
mi = (1 + o(1))mn−0.9 = Θ(n0.1) = Θ(ni) for all 1 " i " n1.1.

Claim C. With probability 1− o(1), the following hold for all 1 " i " n1.1:

(a) H[R′i \ U ] is not ε4/4-close to HS(ni,mi, 3) or HD(ni,mi, 3), and

(b) there exists a perfect fractional matching in H[R′i].

Proof. For each T ∈
(V (H)

!2

)
, let

Degi(T ) :=

∣∣∣∣NH(T ) ∩
(

R′i

4− |T |

)∣∣∣∣.

By the definition of H, we have that

• for any vj ∈ V , dH(vj) ! f(n′,m′, 3)− (γn′)
(n′

2

)
! f(n,m, 3)− γn3, and

• for any T = {vj , u} with vj ∈ V and u ∈ [n],

dH(T ) = dFj (u) "
(
n′ − 1

2

)
−
(
n′ − 1− 3(m′ − 1)

2

)
"

(
n− 1

2

)
−

(
n− 1− 3(m− 1)

2

)
+ γn2.

Assume that
∧

i(Ai ∧ Bi ∧ Ci) holds. Then ni = (1 + o(1))n0.1 and mi = (1 + o(1))mn−0.9. Since

Ri \R′i = o(ni), for each T ∈
(V (R′i)

t

)
with t ∈ [2], we have

E[Degi(T )] = (1 + o(1))dH(T )(n−0.9)4−t.

Thus for any v ∈ V ∩Ri,

E[Degi(v)] ! (1 + o(1))(f(n,m, 3)− γn3)(n−0.9)3 ! f(ni,mi, 3)− 2γn3
i ,
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and for any T = {u, v} with v ∈ V and u ∈ [n], E[Degi(T )] is at most

(1 + o(1))

[(
n− 1

2

)
−

(
n− 1− 3(m− 1)

2

)
+ γn2

]
(n−0.9)2 "

(
ni − 1

2

)
−
(
ni − 1− 3(mi − 1)

2

)
+ 2γn2

i .

We apply Janson’s inequality (see[4, Theorem 8.7.2]) to bound the deviation of Degi(T ) for |T | " 2.
Write Degi(T ) =

∑
e∈NH(T ) Xe, where Xe = 1 if e ⊆ R′i and Xe = 0 otherwise. Let t = |T | ∈ {1, 2} and

p = n−0.9. Then

∆∗ =
∑

ei∩ej '=∅,ei,ej∈(V (H)
4−t )

P(Xei = Xej = 1)

"
4−t∑

#=1

p2(4−t)−#

(
n− t

4− t

)(
4− t

)

)(
n− 4

4− t− )

)
= O(n0.1(2(4−t)−1)).

By Janson’s inequality, for v ∈ V ∩Ri,

P(Degi(v) " (1− γ)E[Degi(v)]) " e−γ2E[Degi(v)]/(2+∆∗/E[Degi(v)]) " e−Ω(n0.3/(2+n0.5/n0.3)) = e−Ω(n0.1),

and for the pair {v, u} with v ∈ V and u ∈ [n] (by considering the complement of H), we can have

P(Degi({v, u}) ! (1 + γ)E[Degi({v, u})]) " e−Ω(n0.1).

By the union bound, with probability 1− o(1) we derive from above that for all 1 " i " n1.1,
(1) for any v ∈ V ∩Ri, Degi(v) ! (1− γ)E[Degi(v)] ! f(ni,mi, 3)− 3γn3

i , and
(2) for any pair {u, vj} ⊆ R′i with vj ∈ V and u ∈ [n],

Degi({u, vj}) "
(
ni − 1

2

)
−
(
ni − 1− 3(mi − 1)

2

)
+ 3γn2

i "
(
ni − 1

2

)
− Ω(n2

i ),

which implies that Fj [R′i ∩ [n]] is not ε3/2-close to S(ni,mi, 3), since mi = (1 + o(1))mn0.9 and m <
(1− c)n/3.
This shows that H[R′i \ U ] is not ε4/4-close to HS(ni,mi, 3), where γ * ε.

Let V0 := {vi ∈ V : Fi[[n]] is not ε-close to D(n,m, 3)}. We claim that |V0| > εn. Otherwise |V0| " εn,
we have

|E(HD(n′,m′, 3)) \ E(H(F))| " εn

(
n

3

)
+ (m− εn)εn3 + γ(n′)4 " ε(n′)4,

which leads to a contradiction as H(F) is not ε-close to HD(n′,m′, 3). As |V0| > εn, with probability
1− o(1) we have (by using Lemma 2.10) that

(3) |R′i ∩ V0| ! εni
2 for all 1 " i " n1.1.

For vj ∈ R′i ∩ V0, we consider Fj [[n]]. Let G be the complement of Fj [[n]]. Then for any S ⊆ V (G)
with |S| > 3m− εn, we have e(G[S]) ! εe(G). Otherwise,

|E(D(n,m, 3))\E(Fj [[n]])| " εn

(
n

2

)
+ εe(G) < εn3,

contradicting vj ∈ V0. By Lemma 2.8, the maximum size of the complete 3-graph in Fj [Ri ∩ [n]] is no
more than (3m/n− ε+ γ)n0.1 " 3mi − εni/2 with probability at least 1− (nO(1)e−Ω(n0.1)). By assuming∧

i(Ai ∧ Bi ∧ Ci), this implies that Fj [R′i ∩ [n]] is not ε3/2-close to D(ni,mi, 3). By the union bound,
with probability 1− o(1) we have

(4) for all 1 " i " n1.1 and vj ∈ R′i ∩ V0, Fj [R′i ∩ [n]] is not ε3/2-closed to D(ni,mi, 3).
By (3) and (4), we see that with probability 1−o(1), H[R′i \U ] is not ε4/4-close to HD(ni,mi, 3), proving
Claim C(a).

It remains to show Claim C(b), i.e., to construct a perfect fractional matching wi in H[R′i] for each
1 " i " n1.1. Our main tool is the stability result, Lemma 4.2.
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Fix some 1 " i " n1.1. We write R′i ∩ [n] = {xi
1, . . . , x

i
ni
} with xi

1 < xi
2 < · · · < xi

ni
and define

[d]i := {xi
1, x

i
2, . . . , x

i
d} for any integer d. We now state two simple inequalities for later use:

f(x, y, 3) ! f(x, y − a, 3) +

(
a

3

)
and f(x, y, 3) ! f(x, y + a, 3)− 3ax2 (6.1)

hold for any positive integers x, y and a with a < y.

To construct a perfect fractional matching wi in H[R′i], first we consider vj ∈ R′i ∩ V0 and assign
weights to the edges of H[R′i] containing vj . Using (1), by (6.1) and the fact that γ * ε * 1, we have

|Fj [R
′i ∩ [n]]| = Degi(vj) ! f(ni,mi, 3)− 3γn3

i ! f(ni,mi + ε20ni, 3)− ε16n3
i .

By (2) and (4), Fj [R′i∩[n]] is not ε3/2-close to S(ni,mi, 3) or D(ni,mi, 3). Since |E(S(ni,mi+ε20ni, 3))\
E(S(ni,mi, 3))| " ε20n3

i and |E(D(ni,mi+ ε20ni, 3))\E(D(ni,mi, 3))| " 3ε20n3
i , we see that Fj [R′i∩ [n]]

is not ε4-close to S(ni,mi + ε20ni, 3) or D(ni,mi + ε20ni, 3). Then by Lemma 4.2 and the fact that Fj is
stable, Fj [R′i ∩ [n]] contains a matching Mj with V (Mj) = [3mi +3ε20ni]i. Now we assign weights wi(e)
to all the edges e of H[R′i] with vj ∈ e as follows: If e\vj ∈ Mj , then let wi(e) =

1
mi+ε20ni

, and otherwise
let wi(e) = 0.

Next, we consider vj ∈ R′i ∩ (V\V0). By (1) and (6.1), we have

|Fj [R
′i ∩ [n]]| ! f(ni,mi, 3)− 3γn3

i ! f(ni,mi − 6γ
1
3ni, 3).

By Theorem 4.1 and the fact that Fj is stable, Fj [R′i ∩ [n]] contains a matching Mj with V (Mj) =
[3mi − 18γ

1
3ni]i. Then we assign weights wi(e) to all the edges e of H[R′i] with vj ∈ e as follows: If

e \ vj ∈ Mj , then let wi(e) =
1

mi−6γ1/3ni
, and otherwise let wi(e) = 0.

Note that for every vj ∈ R′i∩V , we have defined weights wi(e) for all the edges e ∈ H[R′i] with vj ∈ e,
whose total weights equal one. In the remaining proof, we want to extend this function wi to the entire
H[R′i] to form a perfect fractional matching. We complete this in two steps.

First, we define a perfect fractional matching w (as the projection of wi) in the complete 3-graph K on
the vertex set R′i∩ [n]. Note that a function w : E(K) → [0, 1] is a perfect fractional matching if and only
if w(v) :=

∑
v∈f∈K w(f) = 1 holds for every v ∈ V (K). Initially, we define a function w′ : E(K) → [0, 1]

such that for each f ∈ E(K), w′(f) :=
∑

e wi(e) over all the edges e ∈ H[R′i] with f ⊆ e and |e∩V| = 1.
Since |V0| > εn and γ * ε, it follows from the above definitions on wi that for any v ∈ R′i ∩ [n],

w′(v) :=
∑

v∈f∈K

w′(f) " |V0|
mi + ε20ni

+
mi − |V0|

mi − 6γ
1
3ni

" εni

mi + ε20ni
+

mi − εni

mi − 6γ
1
3ni

< 1.

Since ε * c, we have 3mi + 3ε20ni < ni − 4. So there exists a vertex set {a1, a2, a3, a4} in K such that
w′(ai) = 0 for i ∈ [4]. Let K ′ be the 3-graph obtained from K by deleting vertices a1, a2, a3 and a4.
Starting with w := w′, we increase w by using the following iterations: (i) pick a vertex v in V (K ′)
with the maximum w(v)3); (ii) pick any edge f ∈ K ′ containing v and update w(f) ← w(f) + 1− w(v);
(iii) delete all the vertices u ∈ V (K ′) with w(u) = 1 (which must include the vertex v) from K ′; (iv) if
|V (K ′)| " 2, then terminate; otherwise go to (i) again. This must terminate in finitely many iterations
and when it terminates, we obtain a fractional matching w in K such that w(ai) = 0 for i ∈ [4] and
|V (K ′)| " 2. So there exist two vertices b1 and b2 in V (K) \ {a1, a2, a3, a4} such that for any vertex v in
V (K) \ {a1, a2, a3, a4, b1, b2}, w(v) = 1. We may suppose 1 ! w(b1) ! w(b2). Let

w(a1, a2, b1) = 1− w(b1), w(a1, a2, b2) =
w(b1)− w(b2)

2
, w(a3, a4, b2) = 1− w(b1) +

w(b1)− w(b2)

2

and

w(a1, a2, a3) = w(a1, a2, a4) = w(a1, a3, a4) = w(a2, a3, a4) =
w(b1) + w(b2)

6
.

3) Note that this maximum w(v) is strictly less than 1.
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It is easy to check that w is a perfect fractional matching in K.
Now we notice that ∑

f∈K

w′(f) =
∑

{e∈H[R′i]:|e∩V|=1}

wi(e) = |R′i ∩ V|

and ∑

f∈K

w(f) =
|R′i ∩ [n]|

3
= |R′i ∩ (V ∪ U)|.

Moreover, the neighborhood of any uj ∈ R′i∩U in H[R′i] is the complete 3-graph K. So we can partition
the total weight

∑
f∈K(w(f) − w′(f)) = |R′i ∩ U| into |R′i ∩ U| copies of 1’s (say each is represented

by a set Ej of edges in K), and then for each uj ∈ R′i ∩ U , we assign the weight of each f ∈ Ej to
be wi(f ∪ {uj}). One can easily check that we obtain a perfect fractional matching wi in H[R′i]. This
completes the proof of Claim C.

From Claims B and C, we see that the sets R′i for 1 " i " n1.1 satisfy (a)–(d) in Lemma 2.7. Then by
Lemma 2.7, there exists a spanning subgraphH ′ ofH such that for each v ∈ V (H), dH′(v) = (1+o(1))n0.2

and ∆2(H ′) " n0.1. By Theorem 2.6, H contains a matching Mb such that S = V (H) \ V (Mb) contains
at most γ′n′ vertices. Since |S ∪ Ma ∪ Mb| = n′ = 3r′ + 3m′ + s where 0 " s " 2, we can delete at
most s elements from S to get a subset S′ such that 3|S′ ∩ (V ′ ∪ U ′)| = |S′ ∩ [n′]|. By the setting at
the beginning of the proof, Lemma 2.5 assures that H∗(F)[V (Ma) ∪ S′] has a perfect matching, which
together with Mb forms a matching in H∗(F) of size r′ + m′. Equivalently, this says that F admits a
rainbow matching, finishing the proof of Lemma 6.1.

7 Proof of Theorem 1.3

Let n be a sufficiently large integer. Let m be a positive integer with n ! 3m and let F = {F1, . . . , Fm}
be a family of 3-graphs on the same vertex set [n] such that |Fi| > f(n,m, 3) for each i ∈ [m]. Suppose to
the contrary that F does not admit a rainbow matching. In view of Lemma 2.2, we may assume that F
is stable. Then by Lemma 5.1, there exists an absolute constant c = c(3) > 0 such that m " (1− c)n/3.
By Theorem 1.2, m ! n/27. Hence,

n/27 " m " (1− c)n/3. (7.1)

We now apply the following algorithm. Initially, let F0 = F , n0 = n and m0 = m. We repeat the
following iterations. Suppose that we have defined Fi, which contains mi 3-graphs on the same vertex
set [ni].

Step 1. Applying Corollary 2.3 to Fi, we obtain a family Fi+1 of 3-graphs on the vertex set [ni] that
is both stable and saturated, and set ni+1 = ni and mi+1 = mi.

Step 2. If for any F ∈ Fi+1 and any v ∈ [ni+1], dF (v) <
(ni+1−1

2

)
, then set t := i+ 1 and output Ft,

nt and mt.

Step 3. If there exist F ∈ Fi+1 and v ∈ [ni+1] such that dF (v) =
(ni+1−1

2

)
, then set n′

i+1 = ni+1 − 1,
m′

i+1 = mi+1 − 1 and F ′
i+1 := {F ′ − v : F ′ ∈ Fi \ {F}}. Relabel the vertices if necessary so that all the

3-graphs in F ′
i+1 have the same vertex set [n′

i+1]. Set Fi := F ′
i+1, ni := n′

i+1, mi := m′
i+1 and go to

Step 1.

Let Ft be the resulting family of 3-graphs, which contains mt 3-graphs on the same vertex set [nt] and
admits no rainbow matching. By (7.1), we see that nt ! n − m > cn is sufficiently large. We also see
from Lemma 2.9 that |F | > f(nt,mt, 3) holds for any F ∈ Ft.

By definition, we see that Ft is stable and saturated such that for any F ∈ Ft and v ∈ Vt, dF (v) <(nt−1
2

)
. On the other hand, by Lemma 2.1, it further holds that

dF (v) "
(
nt − 1

2

)
−
(
nt − 1− 3(mt − 1)

2

)
for any F ∈ Ft and v ∈ Vt.
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Since nt is sufficiently large, using Lemma 5.1 and Theorem 1.2 again, we may assume that

nt/27 " mt " (1− c)nt/3.

Now we choose 0 < ε * c. Since Ft satisfies the above properties, by applying Lemmas 2.4, 3.1 and 6.1,
we can conclude that Ft admits a rainbow matching. This is a contradiction, completing the proof of
Theorem 1.3.
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J Combin Theory Ser A, 2012, 119: 1200–1215

4 Alon N, Spencer J. The Probabilistic Method, 3rd ed. Hoboken: John Wiley & Sons, 2000
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