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HYPERGRAPHS⇤
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Abstract. Let n be a su�ciently large integer with n ⌘ 0 (mod 4), and let Fi ✓
�[n]

4

�
, where

i 2 [n/4]. We show that if each vertex of Fi is contained in more than
�n�1

3

�
�

�3n/4
3

�
edges, then

{F1, . . . , Fn/4} admits a rainbow matching, i.e., a set of n/4 edges consisting of one edge from each
Fi. This generalizes a deep result of Khan J. Combin. Theory Ser. B, 116 (2016), pp. 333–366. on
perfect matchings in 4-uniform hypergraphs.

Key words. rainbow matching, perfect matching, hypergraph, absorbing method

AMS subject classifications. 05C65, 05C70, 05C35

DOI. 10.1137/21M1442383

1. Introduction. A hypergraph is a family of subsets (called edges) of a nonempty
set whose elements are the vertices of the hypergraph. For a hypergraph H, we use
V (H) to denote its vertex set and E(H) to denote its edge set and let e(H) := |E(H)|.
We say that a hypergraph H is k-uniform for some positive integer k if all edges of
H have the same size k. A k-uniform hypergraph is also known as a k-graph.

A matching in a hypergraph H is a set of pairwise disjoint edges of H. Finding
maximum matchings in k-graphs is NP-hard for k � 3; see [21]. Hence, it is of interest
to find tight su�cient conditions for the existence of a large matching in k-graphs.
The most well-known open problem in this area is the following conjecture made
by Erdős [9] in 1965: For positive integers k, n, t, if H is a k-graph of order n and
e(H) > max{

�kt�1
k

�
,
�n
k

�
�
�n�t+1

k

�
}, then H has a matching of size t. This bound on

e(H) is tight because of the complete k-graph on kt� 1 vertices and the k-graph on
n vertices in which every edge intersects a fixed set of t� 1 vertices. There have been
recent activities on this conjecture; see [5, 6, 10, 11, 12, 13, 18, 32].

One type of condition that has been used to ensure the existence of large match-
ings is the so-called Dirac-type conditions, which involve degrees of sets of vertices.
Our work in this paper falls into this category. For convenience, let [k] := {1, . . . , k}
for any positive integer k, and let

�S
k

�
:= {T ✓ S : |T | = k} for any set S and

positive integer k. Let H be a k-graph. For any T ✓ V (H), the degree of T in
H, denoted by dH(T ), is the number of edges of H containing T . For any inte-
ger 0  l  k � 1, �l(H) := min{dH(T ) : T 2

�V (H)
l

�
} denotes the minimum

l-degree of H. Hence, �0(H) = e(H). Note that �1(H) is often called the mini-
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mum vertex degree of H. For x 2 V (H), we define the neighborhood of x to be
NH(x) := {e 2

�V (H)\{x}
k�1

�
: e[{x} 2 E(H)}. When there is no confusion, we also use

NH(x) to denote the (k � 1)-graph with vertex set V (H)\{x} and edge set NH(x).
For integers n, k, s, d satisfying 0  d  k � 1, n ⌘ 0 (mod k), and 0  s  n/k,

ms
d(k, n) denotes the minimum integerm such that every k-graphH on n vertices with

�d(H) � m has a matching of size s. Rödl, Ruciński, and Szemerédi [36] determined

mn/k
k�1(k, n) for large n, which has motivated a large amount of work; see [16, 17, 26,

27, 28, 38]. For instance, Treglown and Zhao [38] extended this result by determining

mn/k
d (k, n) for all d � k/2. On the other hand, it seems more di�cult to determine

mn/k
d (k, n) when d < k/2. Kühn, Osthus, and Treglown [28] and, independently,

Khan [26] determined mn/3
1 (3, n). Khan [27] further determined mn/4

1 (4, n). The
main work in this paper is to prove a more general result which implies Khan’s result
and uses di↵erent techniques.

Let F = {F1, . . . , Ft} be a family of hypergraphs. A set of t pairwise disjoint
edges, one from each Fi, is called a rainbow matching for F . (In this case, we also say
that F or {F1, . . . , Ft} admits a rainbow matching.) There has been a lot of interest
in studying rainbow versions of matching problems; see [1, 2, 3, 4, 12, 18, 19, 20, 24,
25, 31, 33, 35]. For instance, Aharoni and Howard [3] made the following conjecture,
which first appeared in Huang, Loh, and Sudakov [18]: Let t be a positive integer and
F = {F1, . . . , Ft} such that, for i 2 [t], Fi ✓

�[n]
k

�
and e(Fi) > {

�kt�1
k

�
,
�n
k

�
�
�n�t+1

k

�
};

then F admits a rainbow matching. Huang, Loh, and Sudakov [18] showed that
this conjecture holds for n > 3k2t. Frankl and Kupavskii [12] improved this lower
bound to n � 12tk log(e2t), which was further improved by Lu, Wang, and Yu [30] to
n � 2kt. Keevash et al. [22, 23] independently verified this conjecture for n > Ckt for
some (large and unspecified) constant C. Recently, Kupavskii [29] gave the concrete
dependencies on the parameters by showing the conjecture holds for n > 3ekt with
t > 107.

For 3-graphs, Lu, Yu, and Yuan [31] proved that, for su�ciently large n with n ⌘ 0
(mod 3), if �1(Fi) >

�n�1
2

�
�
�2n/3

2

�
for i 2 [n/3], then F has a rainbow matching.

This implies the result of Kühn, Osthus, and Treglown [28] and Khan [27] on perfect
matchings in 3-graphs.

In this paper, we prove the following result on rainbow matchings in 4-graphs,
which gives Khan’s result [27] on perfect matchings in 4-graphs as a special case.

Theorem 1.1. Let n be a su�ciently large integer with n ⌘ 0 (mod 4). Let
F = {F1, . . . , Fn/4} such that F1, . . . , Fn/4 are 4-graphs on a common vertex set of

cardinality n, and for i 2 [n/4], �1(Fi) >
�n�1

3

�
�
�3n/4

3

�
. Then F admits a rainbow

matching.

The bound on �1(Fi) in Theorem 1.1 is sharp. To see this, let k,m, n be positive
integers such that k � 2 and 2  m < n/k. Let Hk(n,m) be a k-graph such that

V (Hk(n,m)) = [n],

E(Hk(n,m)) =

⇢
e 2

✓
[n]

k

◆
: e \ [m] 6= ; and e \ ([n] \ [m]) 6= ;

�
,

and let H⇤

k(n,m) be a k-graph such that

V (H⇤

k(n,m)) = [n],

E(H⇤

k(n,m)) =

⇢
e 2

✓
[n]

k

◆
: e \ [m] 6= ;

�
.

D
ow

nl
oa

de
d 

08
/1

3/
23

 to
 1

43
.2

15
.1

6.
24

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RAINBOW PERFECT MATCHINGS FOR 4-GRAPHS 1647

[m]

[n]\[m]

(a) H4(n,m)

[m]

[n]\[m]

(b) H⇤

4 (n,m)

Figure 1: Illustrations of Hk(n,m) and H⇤

k(n,m) when k = 4

Theorem 1.1. Let n be a su�ciently large integer with n ⌘ 0 (mod 4). Let F = {F1, . . . , Fn/4}

such that F1, . . . , Fn/4 are 4-graphs on a common vertex set of cardinality n, and for

i 2 [n/4], �1(Fi) >
�n�1

3

�
�
�3n/4

3

�
. Then F admits a rainbow matching.

The bound on �1(Fi) in Theorem 1.1 is sharp. To see this, let k,m, n be positive integers,
such that k � 2 and 2  m < n/k. Let Hk(n,m) be a k-graph such that

V (Hk(n,m)) = [n],

E(Hk(n,m)) =

⇢
e 2

✓
[n]

k

◆
: e \ [m] 6= ; and e \ ([n] \ [m]) 6= ;

�
,

and let H⇤

k(n,m) be a k-graph such that

V (H⇤

k(n,m)) = [n],

E(H⇤

k(n,m)) =

⇢
e 2

✓
[n]

k

◆
: e \ [m] 6= ;

�
.

Then �1(Hk(n,m)) = �1(H⇤

k(n,m)) =
�n�1
k�1

�
�
�n�1�m

k�1

�
. Observe that neither Hk(n,m)

nor H⇤

k(n,m) has no matching of size m+ 1. It follows that when n ⌘ 0 (mod k), we have

�1(Hk(n, n/k � 1)) =
�n�1
k�1

�
�
�n�n/k

k�1

�
and {Hk(n, n/k � 1), . . . , Hk(n, n/k � 1)} admits no

rainbow matching.
Let F = {F1, . . . , Fn/4} as defined in Theorem 1.1. Note that V (F) = [n]. We prove

Theorem 1.1 by working with a 5-graph H(F) obtained from F : The vertex set of H(F)

is [n] [ {x1, . . . , xn/4} and the edge set of H(F) is
Sn/4

i=1{e [ {xi} : e 2 E(Fi)}. Clearly, F
admits a rainbow matching if and only if H(F) has a perfect matching.

For convenience, we say that a (k+1)-graph H is (1, k)-partite if there exists a partition
of V (H) into sets V1, V2 (called partition classes) such that for any e 2 E(H), |e \ V1| = 1
and |e \ V2| = k. A (1, k)-partite (k + 1)-graph with partition classes V1, V2 is balanced
if k|V1| = |V2|. Thus, for instance, H(F) above is a balanced (1,4)-partite 5-graph with
partition classes X, [n].
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�
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�
. Then F admits a rainbow matching.

The bound on �1(Fi) in Theorem 1.1 is sharp. To see this, let k,m, n be positive integers,
such that k � 2 and 2  m < n/k. Let Hk(n,m) be a k-graph such that

V (Hk(n,m)) = [n],

E(Hk(n,m)) =

⇢
e 2

✓
[n]

k

◆
: e \ [m] 6= ; and e \ ([n] \ [m]) 6= ;

�
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⇢
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✓
[n]

k

◆
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�
.
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�
�
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�
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i=1{e [ {xi} : e 2 E(Fi)}. Clearly, F
admits a rainbow matching if and only if H(F) has a perfect matching.

For convenience, we say that a (k+1)-graph H is (1, k)-partite if there exists a partition
of V (H) into sets V1, V2 (called partition classes) such that for any e 2 E(H), |e \ V1| = 1
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3

(b) H⇤
4 (n,m)

Fig. 1. Illustrations of Hk(n,m) and H⇤
k(n,m) when k = 4.

Figure 1 illustrations of Hk(n,m) and H⇤

k(n,m) when k = 4. Then �1(Hk(n,m))
= �1(H⇤

k(n,m)) =
�n�1
k�1

�
�
�n�1�m

k�1

�
. Observe that neither Hk(n,m) nor H⇤

k(n,m)
has no matching of size m + 1. It follows that when n ⌘ 0 (mod k), we have
�1(Hk(n, n/k � 1)) =

�n�1
k�1

�
�
�n�n/k

k�1

�
, and {Hk(n, n/k � 1), . . . , Hk(n, n/k � 1)}

admits no rainbow matching.
Let F = {F1, . . . , Fn/4} as defined in Theorem 1.1. Note that V (F) = [n]. We

prove Theorem 1.1 by working with a 5-graph H(F) obtained from F : The vertex set

of H(F) is [n][{x1, . . . , xn/4}, and the edge set of H(F) is
Sn/4

i=1{e[{xi} : e 2 E(Fi)}.
Clearly, F admits a rainbow matching if and only if H(F) has a perfect matching.

For convenience, we say that a (k + 1)-graph H is (1, k)-partite if there exists
a partition of V (H) into sets V1, V2 (called partition classes) such that, for any e 2

E(H), |e \ V1| = 1 and |e \ V2| = k. A (1, k)-partite (k + 1)-graph with partition
classes V1, V2 is balanced if k|V1| = |V2|. Thus, for instance, H(F) above is a balanced
(1,4)-partite 5-graph with partition classes X, [n].

More generally, let F = {F1, . . . , Fm} be a family of n-vertex k-graphs on a
common vertex set V and let X = {x1, . . . , xm} be a set disjoint from V . We use
H

k
n,m(F) to represent the balanced (1, k)-partite (k + 1)-graph with partition classes

X,V and edge set
Sm

i=1{e [ {xi} : e 2 E(Fi)}. If Fi = Hk(n,m) (or H⇤

k(n,m)) for
all i 2 [m], then we write Hk(n,m) (or H

⇤

k(n,m)) for H
k
n,m(F) (or H

⇤

k(n,m)). Now
Theorem 1.1 is a direct consequence of the following result.

Theorem 1.2. Let n be an integer such that n ⌘ 0 (mod 4) and n is su�ciently
large. Let H be a balanced (1, 4)-partite 5-graph with partition classes X, [n] such that
�1(NH(x)) >

�n�1
3

�
�
�3n/4

3

�
for all x 2 X. Then H admits a perfect matching.

Our proof of Theorem 1.2 is divided into two parts by considering whether H is
close to H4(n, n/4) or not. For any real " > 0 and two k-graphs H1, H2 on the same
vertex set V , we say that H2 is "-close to H1 if there exists an isomorphic copy H 0

2 of
H2 with V (H 0

2) = V such that |E(H1) \ E(H 0

2)| < "|V (H1)|k.
We show the following lemma when H is close to H4(n, n/4). In fact, we are

able to prove the following lemma for (1, k)-partite (k + 1)-graphs that are close to
Hk(n, n/k) for all k � 2.

Lemma 1.3. Let k � 3 be an integer, 0 < " < (10k)�6, and let n be an integer
with n ⌘ 0 (mod k) and n � 20k2. Let H be a balanced (1, k)-partite (k + 1)-graph
with partition classes X, [n] and V (H) = V (Hk(n, n/k)). If H is "-close to Hk(n, n/k)
and �1(NH(x)) >

�n�1
k�1

�
�
�n�n/k

k�1

�
for all x 2 X, then H has a perfect matching.
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When H is not close to H4(n, n/4), we prove the following.

Lemma 1.4. Let 0 < " ⌧ 1, and let n be a su�ciently large integer with n ⌘ 0
(mod 4). Let H be a balanced (1, 4)-partite 5-graph with partition classes X, [n] and
V (H) = V (H4(n, n/4)). If H is not "-close to H4(n, n/4) and �1(NH(x)) >

�n�1
3

�
��3n/4

3

�
for all x 2 X, then H has a perfect matching.

It is easy to see that Theorem 1.2 follows immediately from Lemmas 1.3 and 1.4.

In section 2, we prove Lemma 1.3. To prove Lemma 1.4, we will need to find a
small “absorbing” matching in H, and this part is done in section 3. In section 4, we
show that if H is not close to H4(n, n/4), then we can find a subgraph of H that is
almost regular (in terms of vertex degree) and has maximum 2-degree bounded above
by n0.1. We make use of a recent stability result of Gao et al. [15] for 3-graphs (see
Lemma 4.2) and another result there on almost regular spanning subgraphs. We then
complete the proof using a result of Pippenger and Spencer [34].

2. Hypergraphs close to Hk(n, n/k). In this section, we prove Lemma 1.3
for the case when Hk

n,n/k(F) is "-close to Hk(n, n/k) for some su�ciently small ".

We first prove Lemma 1.3 for those balanced (1, k)-partite (k + 1)-graphs H
in which, for each vertex v 2 V (H), most edges of H containing v also belong to
Hk(n, n/k). More precisely, given ↵ > 0 and two (k + 1)-graphs H1, H2 on the same
vertex set, a vertex v 2 V (H1) is ↵-bad with respect to H2 if |NH2

(v) \ NH1
(v)| >

↵|V (H1)|k. (A vertex v 2 V (H1) is ↵-good with respect to H2 if it is not ↵-bad with
respect to H2.) So if v is ↵-good with respect to H2, then all but at most ↵|V (H1)|k

of the edges containing v in H2, also lie in H1.

Lemma 2.1. Let k � 2 be an integer, 0 < ↵ < (10kkk(k + 1)!)�1, and let n be an
integer with 1/n ⌧ ↵ and n ⌘ 0 (mod k). If H is a balanced (1, k)-partite (k + 1)-
graph on the same vertex set as Hk(n, n/k) and every vertex of H is ↵-good with
respect to Hk(n, n/k), then H has a perfect matching.

Proof. Let X, [n] denote the partition classes of H, and let W = [n/k] and U =
[n] \ W . Let M denote a matching in H such that |e \ X| = |e \ W | = 1 for each
e 2 M , and subject to this, |M | is maximum. Let U 0 = U \ V (M),W 0 = W \ V (M),
and X 0 = X \ V (M). We may assume |M | < n/k; for otherwise, the assertion of the
lemma is true.

Note that |M | � n/2k. Suppose |M | < n/2k. Then |U 0
|/(k� 1) = |W 0

| = |X 0
| �

n/2k. By the maximality of |M |, H has no edge contained in X 0
[W 0

[U 0 containing
exactly one vertex from X 0 and exactly one vertex from W 0. Hence, for any u 2 U 0,
we have

|NHk(n,n/k)(u) \NH(u)|

� |X 0
||W 0

|

✓
|U 0

|

k � 2

◆

� (n/2k)(n/2k)((k � 1)n/2k � k + 3)k�2/(k � 2)! (since n � 20k2)

�
nk

4k25k�2(k � 2)!
(since k � 2)

> ↵

✓
(k + 1)n

k

◆k

= ↵|V (H)|k (since ↵ < kk/(4k25k�2(k � 2)!(k + 1)k)).

Thus, u is not ↵-good with respect to Hk(n, n/k), a contradiction.
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Fix x 2 X 0, u1, . . . , uk�1 2 U 0, and w 2 W 0. Write S = {x,w, u1, . . . , uk�1}. If
there exists distinct e1, . . . , ek 2 M such thatH[S[([k

i=1ei)] has a matchingM 0 of size
k+1 such that, for any f 2 M 0, |f \X| = 1 = |f \W |, then (M \ {ei : i 2 [k]})[M 0

contradicts the choice of M . So such M 0 does not exist for any choice of distinct
e1, . . . , ek 2 M . This implies that there exists a (k + 1)-subset f of V (H) such that

f ✓ S [ (
Sk

i=1 ei), |f \X 0
| = 1 = |f \W 0

|, |f \ ei| = 1 for i 2 [k], but f /2 E(H).
Hence there exists v 2 S such that

|NHk(n,n/k)(v) \NH(v)| >
1

k + 1

✓
n/2k

k

◆
>

(n/2k � k + 1)k

(k + 1)!
>

(n/3k)k

(k + 1)!
> ↵nk

since n > 6k(k � 1) and ↵ < (3kkk(k + 1)!)�1. This is a contradiction.

To achieve the goal of this section, we need Lemma 2.1 from [31].

Lemma 2.2 (see Lu, Yu, and Yuan [31]). Let n, t, k be positive integers such
that n > 2k4t. For i 2 [t], let Gi ✓

�[n]
k

�
such that �1(Gi) >

�n�1
k�1

�
�
�n�t
k�1

�
. Then

{G1, . . . , Gt} admits a rainbow matching.

Proof of Lemma 1.3. Let W = [n/k] and U = [n] \ [n/k] be the partition classes
of Hk(n, [n/k]) in Hk(n, n/k). Let B denote the set of

p
"-bad vertices in H with

respect to Hk(n, n/k). Since H is "-close to Hk(n, n/k), we have |B|  2(k + 1)
p
"n;

otherwise,

|E(Hk(n, n/k)) \ E(H)| �
1

k + 1

X

v2V (H)

|NHk(n,n/k)(v) \NH(v)|

> 2(k + 1)
p
"n ·

1

k + 1

p
"|V (H)|k � "|V (H)|k+1,

a contradiction.
Let U b = U \ B, Xb = X \ B and W b = W \ B. Let W g = W \ W b. For

convenience, write q = |Xb
| and r = q+|W b

|. Moreover, let x1, . . . , xr be distinct such
thatXb = {x1, . . . , xq}, letW 0

✓ W g be a set of size n/k�r, and letGi = NH(xi)�W
0

for i 2 [r]. Then, for i 2 [r],

�1(Gi) � �1(NH(xi))�

 ✓
n� 1

k � 1

◆
�

✓
n� |W

0
|� 1

k � 1

◆!

>

✓
n� |W

0
|� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆

=

✓
n� n/k + r � 1

k � 1

◆
�

✓
n� n/k

k � 1

◆
.

Thus, by Lemma 2.2 (with n � n/k + r as n and r as t), {G1, . . . , Gr} admits a
rainbow matching, say M0 = {ei 2 E(Gi) : i 2 [r]}. Now M 0

0 = {ei [ {xi} : i 2 [r]} is
a matching in H covering Xb. (Note this is the only place in this proof that requires
the degree condition in the statement.)

Let H1 = H � V (M 0

0). Since r  |B|  2(k + 1)
p
"n and " < (10k)�6, every

vertex in X \V (M 0

0) is "
1/3-good with respect to Hk(n, n/k)�V (M 0

0). Choose ⌘ such
that 0 < " ⌧ ⌘ ⌧ 1/k, and let

B0 := {v 2 B \ V (M 0

0) : |{e 2 E(H) : v 2 e and |e \W g
| = 1}| � ⌘nk

}.
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1650 HONGLIANG LU, YAN WANG, AND XINGXING YU

Since |B0
|  |B|  2(k + 1)

p
"n and " ⌧ ⌘, we may greedily pick a matching M1 in

H � V (M 0

0) such that B0
✓ V (M1) and every edge in M1 contains at least one vertex

from B0 and exactly one vertex from W g.
Now consider H2 = H1 � V (M1). Note that, since n > 20k2,

�1(H2) � �1(H)� (k + 1)|M 0

0 [M1|n
k�1

>
n

k

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆◆
� 2(k + 1)2

p
"nk.

Thus, for each v 2 B \ V (M 0

0 [M1), the number of edges of H2 containing v and no
vertex of W g is at least

�1(H2)� ⌘nk
�

k�1X

i=2

n

k

✓
|W g

|

i

◆✓
n� |W g

|� 1� k|M 0

0 [M1|

k � 1� i

◆

�
n

k

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆◆
� 2(k + 1)2

p
"nk

� ⌘nk

�
n

k

k�1X

i=2

✓
n/k

i

◆✓
n� n/k � 1

k � 1� i

◆

>
n

k

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆◆
� 2(k + 1)2

p
"nk

� ⌘nk

�
n

k

✓✓
n� 1

k � 1

◆
�

✓
n� n/k � 1

k � 1

◆
�

✓
n/k

1

◆✓
n� n/k � 1

k � 2

◆◆

=
n

k

⇣n
k
� 1
⌘✓n� n/k � 1

k � 2

◆
� 2(k + 1)2

p
"nk

� ⌘nk

> ⌘nk (since " ⌧ ⌘ ⌧ 1/k).

Hence, we may greedily pick a matching M2 in H2 such that every edge in M2

contains at least one vertex from B \ V (M 0

0 [M1) and no vertex from W g.
It is easy to see that |M 0

0 [ M1 [ M2|  2(k + 1)
p
"n. Hence, every vertex of

H2 � V (M2) is "1/4-good with respect to Hk(n, n/k)� V (M 0

0 [M1 [M2). Thus for
every vertex u 2 U \V (M 0

0[M1[M2), the number of edges containing u and exactly
two vertices of W \V (M 0

0 [M1 [M2) as well as avoiding V (M 0

0 [M1 [M2) is at least

n

k

✓
n/k

2

◆✓
n� n/k � 1

k � 3

◆
� "1/4

⇣
n+

n

k

⌘k
� (k + 1)|M 0

0 [M1 [M2|n
k�1 > ⌘nk.

Thus we may greedily pick a matching M 0

2 such that |M 0

2| = |M2| and every edge of
M 0

2 contains exactly two vertices from W g.
Put M := M 0

0 [ M1 [ M2 [ M 0

2 and m := |M |. Let H3 := H � V (M) =
H2 � V (M2 [M 0

2). One can see that every vertex of H3 is "1/5-good with respect to
Hk(n � km, n/k � m) = Hk(n,m) � V (M). By Lemma 2.1, H3 contains a perfect
matching, say M3. Now M3 [M is a perfect matching in H.

3. Absorbing matching. To deal with balanced (1, k)-partite (k + 1)-graphs
that are not close to Hk(n, n/k), we need to find a small matching that can “absorb”
small sets of vertices. To find such a matching, we need to use the Cherno↵ inequality
to bound deviations; see [7].
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RAINBOW PERFECT MATCHINGS FOR 4-GRAPHS 1651

Lemma 3.1 (Cherno↵ inequality for small deviation). Let X =
Pn

i=1 Xi, where
each random variable Xi has Bernoulli distribution with expectation pi. For ↵  3/2,

P(|X � EX| � ↵EX)  2e�
↵
2

3
EX .

In particular, when X ⇠ Bi(n, p) and � < 3
2np, then

P(|X � np| � �)  e�⌦(�2/(np)).

We now prove a (1, k)-partite version of the absorption lemma for (1, 3)-partite
4-graphs proved in [31]. Our proof follows along the same lines as in [31]. Let H be
a (1, k)-partite (k + 1)-graph with partition classes X, [n]. A set S ✓ V (H) is called
balanced if |S \ [n]| = k|S \X|.

Lemma 3.2. Let k � 3 be an integer and 0 < b < 1/k be a constant. There
exists an integer n1 = n1(k, b) such that the following holds for any integer n �

n1: Let H be a (1, k)-partite (k + 1)-graph with partition classes X, [n] such that
|X| = n/k and �1(NH(x)) > (1/2 + b)

�n�1
k�1

�
for x 2 X. Then for any c satisfying

0 < c < min{( kkcn
6bk(k!)k )

2, (2k3(k + 1)c2)�10
}, there exists a matching M in H such

that |M |  2kcn and, for any balanced subset S ✓ V (H) with |S|  (k + 1)c1.5n/2,
H[V (M) [ S] has a perfect matching.

Proof. For balanced R 2
�V (H)

k+1

�
and balanced Q 2

� V (H)
k(k+1)

�
, we say that Q is

R-absorbing if both H[Q] and H[Q [ R] have perfect matchings. For each balanced
R 2

�V (H)
k+1

�
, let L(R) denote the collection of all R-absorbing sets in H.

Claim 1. For each balanced R 2
�V (H)

k+1

�
, |L(R)| � bk

�n
k

�k+1
/(2(k2!)).

Let R 2
�V (H)

k+1

�
be a fixed balanced set, and let R\X = {x}. Note that the num-

ber of edges in H containing x and intersecting R\{x} is at most k
� n
k�1

�
. Thus, since

�1(NH(x)) > (1/2+b)
�n�1
k�1

�
, the number of edges e 2 E(H) with e\R = {x} is at least

n(1/2 + b)
�n�1
k�1

�

k
� k

✓
n

k � 1

◆
�

1

2

✓
n

k

◆
.

Fix a choice of e 2 E(H) with e\R = {x}, and write R \ {x} = {u1, . . . , uk} and
e\{x} = {v1, . . . , vk}. Let W0 = e\{x}. For each pair {uj , vj} in order j = 1, 2, . . . , k,
we choose a k-set Uj disjoint from Wj�1 [R such that both Uj [ {uj} and Uj [ {vj}
are edges in H and let Wj := Uj [Wj�1. If Wk is defined, then Wk gives an absorbing
k(k + 1)-set for R.

Note that for j 2 [k] there are k+1+ jk vertices in Wj�1 [R. Thus, the number
of edges in H containing uj (respectively, vj) and another vertex in Wj�1 [ R is at
most (k + 1 + jk)

� n
k�2

�
n
k < (k + 1)n

� n
k�2

�
. Since �1(NH(x)) > (1/2 + b)

�n�1
k�1

�
for

x 2 X, the number of sets Uj for which Uj \ (Wj�1 [R) = ; and both Uj [ {uj} and
Uj [ {vj} are edges in H is at least

n

k

✓
2(1/2 + b)

✓
n� 1

k � 1

◆
�

✓
n� 1

k � 1

◆◆
� 2(k + 1)n

✓
n

k � 2

◆

= 2b

✓
n

k

◆
� 2(k + 1)n

✓
n

k � 2

◆

> b

✓
n

k

◆

because n is su�ciently large.
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1652 HONGLIANG LU, YAN WANG, AND XINGXING YU

To summarize, the number of Wk defined above from e is at least
�
b
�n
k

��k
. Hence,

there are at least 1
2

�n
k

�
(b
�n
k

�
)k absorbing, ordered k(k + 1)-sets for R, with at most

(k2!) of them corresponding to a single R-absorbing set. Therefore,

L(R) �
1
2

�n
k

�
(b
�n
k

�
)k

k2!
=

bk
�n
k

�k+1

2(k2!)
.

This completes the proof of Claim 1.

Now, let c be a fixed constant with 0 < c < min{( bkkk

6(k!)k )
2, (2k3(k + 1)c2)�10

},

and choose a family G of balanced k(k + 1)-sets of V (H) by selecting each of the�n/k
k

�� n
k2

�
balanced k(k + 1)-subsets of V (H) independently with probability

p :=
cn

�n/k
k

�� n
k2

� .

Then E(|G|) = cn and E(|L(R) \ G|) = p|L(R)| � bk
�n
k

�k+1
cn/(2(k2!)

�n/k
k

�� n
k2

�
). It

follows from Lemma 3.1 that, with probability 1� o(1),

|G|  2cn(3.1)

and, for all balanced (k + 1)-sets R,

|L(R) \ G| � p|L(R)|/2 �
bkkkcn

6(k!)k
� c1.5n.(3.2)

Furthermore, the expected number of intersecting pairs of k(k+1)-sets in G is at most

✓
n/k

k

◆✓
n

k2

◆
k(k + 1)

✓✓
n/k � 1

k � 1

◆✓
n

k2

◆
+

✓
n/k

k

◆✓
n� 1

k2 � 1

◆◆
p2  2k3(k + 1)c2n

 c1.9n.

Thus, using Markov’s inequality, we derive that with probability at least 1/2

G contains at most 2c1.9n intersecting pairs of k(k + 1)-sets.(3.3)

Hence, there exists a family G satisfying (3.1), (3.2), and (3.3). Delete one k(k+1)-
set from each intersecting pair in such a family G, and remove all nonabsorbing
k(k + 1)-sets from G. The resulting family, call it G

0, consists of pairwise disjoint
balanced, absorbing k(k + 1)-sets and satisfies

|L(R) \ G
0
| � c1.5n/2

for all balanced (k + 1)-sets R.
Since G

0 consists only of absorbing k(k + 1)-sets, H[V (G0)] has a perfect match-
ing, say M . By (3.1), |M |  2kcn. For a balanced set S ✓ V (H) of size |S| 

(k+1)c1.5n/2, we partition S into balanced (k+1)-sets R1, . . . , Rt, where t  c1.5n/2.
Since |L(Ri) \ G

0
| � c1.5n/2, there is distinct absorbing k(k + 1)-set Q1, . . . , Qt in

G
0 such that Qi is an Ri-absorbing set for i 2 [t]. Now H[V (M) [ S] has a perfect

matching which consists of a perfect matching from each H[Qi [Ri].
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4. Fractional perfect matchings. To deal with hypergraphs that are not close
to H4(n, n/4), we need to control the independence number of those hypergraphs.
This is done in the same way as in [31] by applying the hypergraph container result
in [8, 37].

First, we need the following lemma, which is more general and slightly stronger
than Lemma 4.2 in [31] but with a very similar proof. Let H be a hypergraph, � > 0
be a real number, and A be a family of subsets of V (H). We say thatH is (A,�)-dense
if e(H[A]) � �e(H) for every A 2 A.

Lemma 4.1. Let " be a constant such that 0 < " ⌧ 1, and let n, k be integers such
that k � 3 and n � 40k2/". Let a1 = "/(8k), a2 = "/(8k3), and a3 < "/(2k ·k!·8k). Let
H be a (1, k)-partite (k+1)-graph with vertex partition classes X, [n] with |X| = n/k.
Suppose dH({x, v}) �

�n�1
k�1

�
�
�n�n/k

k�1

�
� a3nk�1 for any x 2 X and v 2 [n] and

|E(Hk(n, n/k)) \ E(H0)| � "e(Hk(n, n/k)) for any isomorphic copy H0 of H with
V (H0) = V (Hk(n, n/k)). Then H is (A, a1)-dense, where A = {A ✓ V (H) : |A\X| �

(1/k � a1)n and |A \ [n]| � (1� 1/k � a2)n}.

Proof. We prove this by way of contradiction. Suppose that there exists A ✓

V (H) such that |A \X| � (1/k � a1)n, |A \ [n]| � (1 � 1/k � a2)n, and e(H[A]) 
a1e(H). Without loss of generality, we may choose A such that |A\X| = (1/k�a1)n
and |A\ [n]| = (1�1/k�a2)n. Let U ✓ [n] such that A\ [n] ✓ U and |U | = n�n/k.
Let A1 = A \X, A2 = X \A, B1 = A \ [n], and B2 = U \A. Relabel the vertices of
H in [n] if necessary so that U = [n] \ [n/k].

Let H0 denote the isomorphic copy of H with the same partition classes X, [n] as
Hk(n, n/k). We derive a contradiction by showing that |E(Hk(n, n/k)) \ E(H0)| <
"e(Hk(n, n/k)). Note that

e(Hk(n, n/k)) =
n

k

✓✓
n

k

◆
�

✓
n� n/k

k

◆
�

✓
n/k

k

◆◆
�

n

k

✓
n

k

◆
/k

and, further,

e(Hk(n, n/k)) �
n

k

✓
n

k

◆
/k =

n2

k3

✓
n� 1

k � 1

◆
>

n2

k3

✓
n� n/k

k � 1

◆
>

n3

k4

✓
n� n/k

k � 2

◆
.(4.1)

Also, since n > 2k,

e(Hk(n, n/k)) �
n

k

✓
n

k

◆
/k >

nk+1

2k · k! · k2
.(4.2)

Consider x 2 A1 and v 2 [n]\ [n/k]. Let EH0
(B1, {x, v}) = {e 2 E(H0) : {x, v} ✓

e ✓ B1 [ {x, v}}. Note that, for v 2 B1, we have

|{e 2 E(H0) : {x, v} ✓ e and e \ [n/k] 6= ;}|

� dH0
({x, v})

�|{e 2 E(H0 � [n/k]) : {x, v} ✓ e and e \B2 6= ;}|� |EH0
(B1, {x, v})|

�

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆
� a3n

k�1

◆
� a2n

✓
n� n/k

k � 2

◆
� |EH0

(B1, {x, v})|.

For v 2 B2, we have

|{e 2 E(H0) : {x, v} ✓ e and e \ [n/k] 6= ;}|

� dH0
({x, v})� |{e 2 E(H0 � [n/k]) : {x, v} ✓ e}|

�

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆
� a3n

k�1

◆
�

✓
n� n/k

k � 1

◆
.
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So we have
X

x2A1

X

v2[n]\[n/k]

|{e 2 E(H0), : {x, v} ✓ e and e \ [n/k] 6= ;}|

�

X

x2A1

X

v2B1

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆
� a2n

✓
n� n/k

k � 2

◆
� |EH0

(B1, {x, v})|

◆

X

x2A1

X

v2B2

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆
� a3n

k�1
�

✓
n� n/k

k � 1

◆◆

�

X

x2A1

X

v2[n]\[n/k]

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆
� a3n

k�1
� a2n

✓
n� n/k

k � 2

◆◆

�

X

x2A1

X

v2B2

✓
n� n/k

k � 1

◆
�

X

x2A1

X

v2B1

|EH0
(B1, {x, v})|

=
X

x2A1

X

v2[n]\[n/k]

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆
� a3n

k�1
� a2n

✓
n� n/k

k � 2

◆◆

�|A1||B2|

✓
n� n/k

k � 1

◆
� |E(H0[A])|.(4.3)

Note that

a2
n3

k2

✓
n� n/k

k � 2

◆
� |A1||B2|

✓
n� n/k

k � 1

◆
> a2

n2

k

✓
n

k

✓
n� n/k

k � 2

◆
�

✓
n� n/k

k � 1

◆◆

> a2
n2

k

✓
n

k

✓
n� n/k � 1

k � 2

◆
�

✓
n� n/k

k � 1

◆◆

= 0

That is,

a2
n3

k2

✓
n� n/k

k � 2

◆
� |A1||B2|

✓
n� n/k

k � 1

◆
> 0.(4.4)

Therefore, we have

|E(Hk(n, n/k)) \ E(H0)|

=
X

x2A1

|{e 2 E(Hk(n, n/k)) \ E(H0) : x 2 e}|

+
X

x2A2

|{e 2 E(Hk(n, n/k)) \ E(H0) : x 2 e}|



X

x2A1

X

v2[n]\[n/k]

|{e 2 E(Hk(n, n/k)) \ E(H0) : {x, v} ✓ e}|+ |A2| · e(Hk(n, n/k))



X

x2A1

X

v2[n]\[n/k]

✓✓
n� 1

k � 1

◆
�

✓
n� n/k

k � 1

◆

�|{e 2 E(H0) : {x, v} ✓ e and e \ [n/k] 6= ;}|)

+|A2| · e(Hk(n, n/k))
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

X

x2A1

X

v2[n]\[n/k]

✓
a3n

k�1 + a2n

✓
n� n/k

k � 2

◆◆
+ |A1||B2|

✓
n� n/k

k � 1

◆
+ |E(H0[A])|

+(a1n) · e(Hk(n, n/k))/(n/k) (by (4.3))


n

k

⇣
n�

n

k

⌘✓
a3n

k�1 + a2n

✓
n� n/k

k � 2

◆◆
+ |A1||B2|

✓
n� n/k

k � 1

◆

+a1e(H0) + ka1 · e(Hk(n, n/k))

<
n2

k

✓
a3n

k�1 + a2n

✓
n� n/k

k � 2

◆◆
+ a1e(H0) + ka1 · e(Hk(n, n/k)) (by (4.4))

< a1e(H0) +
�
2k · k! · ka3 + k3a2 + ka1

�
· e(Hk(n, n/k)) (by (4.1) and (4.2))

 a1
n

k

✓
n

k

◆
+
�
2k · k! · ka3 + k3a2 + ka1

�
· e(Hk(n, n/k))


�
ka1 + 2k · k! · ka3 + k3a2 + ka1

�
· e(Hk(n, n/k)) (by (4.2))

 " · e(Hk(n, n/k)),

a contradiction.

To prove a fractional matching lemma, we need a recent result of Gao et al. [15]
on Erdős’ matching conjecture for stable graphs. For a hypergraph H, let ⌫(H)
denote the size of maximum matching in H.  Luczak and Mieczkowska [32] proved
that there exists a positive integer n1 such that, for integers m,n with n � n1 and
1  m  n/3, if H is an n-vertex 3-graph with e(H) > max{

�n
3

�
�
�n�m+1

3

�
,
�3m�1

3

�
},

then ⌫(H) � m. The result of Gao et al. [15] may be viewed as a stability version of
this  Luczak–Mieczkowska result.

For sets e = {u1, . . . , uk} ✓ [n] and f = {v1, . . . , vk} ✓ [n] with ui < ui+1 and
vi < vi+1 for i 2 [k � 1], we write e  f if ui  vi for all i 2 [k]. A hypergraph H
with V (H) = [n] and E(H) ✓

�[n]
k

�
is said to be stable if, for any e, f 2

�[n]
k

�
with

e  f , e 2 E(H) implies f 2 E(H). The following is a special case (when m = 3n/4)
of Lemma 4.2 in [15]. Note that one of the extremal configurations of Lemma 4.2
in [15], namely, D(n,m, 3) (the 3-graph with vertex set [n] and edge set

�
b3n/4�1c

3

�
),

does not occur here.

Lemma 4.2 (see Gao et al. [15]). For any ⌘ > 0 there exists n0 > 0 with the
following properties: Let n be an integer with n � n0, and let H be a stable 3-graph on
the vertex set [n]. If e(H) >

�n
3

�
�
�3n/4

3

�
� ⌘4n3 and ⌫(H) < n/4, then H is ⌘-close

to H⇤

3 (n, n/4� 1).

We will use perfect fractional matchings in a hypergraphH not close toH4(n, n/4�
1) to obtain an almost regular subgraph ofH. A fractional matching inH is a function
f : E(H) ! R+, where R+ is the set of nonnegative reals, such that

P
v2e f(e)  1

for all v 2 V (H), and it is perfect if
P

v2e f(e) = 1 for all v 2 V (H). We write
⌫f (H) = max{

P
e2E(H) f(e) : f is a fractional matching in H}.

Lemma 4.3. For any " > 0 there exist 0 < ⇢ ⌧ " and n0 = n0(") such that,
for any integer n with n � n0 and n ⌘ 0 (mod 4), the following holds: Let H be
a balanced (1, 4)-partite 5-graph with partition classes X, [n] such that dH({x, v}) ��n�1

3

�
�
�3n/4

3

�
� 3⇢n3 for any x 2 X and v 2 [n] and H contains no independent set

S with |S \X| � n/4 � "n and |S \ [n]| � 3n/4 � "n; then H contains a fractional
perfect matching.

Proof. Let X = {x1, . . . , xn/4}, and let ! : V (H) ! R+ be a minimum fractional
vertex cover of H, that is,

P
v2e !(v) � 1 for all e 2 E(H), and subject to this,
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1656 HONGLIANG LU, YAN WANG, AND XINGXING YU

!(H) :=
P

v2V (H) !(v) is minimum. We may assume that the vertices in X and [n]
are labeled such that !(x1) � · · · � !(xn/4) and !(1) � · · · � !(n).

Let H 0 be the (1, 4)-partite 5-graph with vertex set V (H) and edge set

E(H) [

(
e 2

✓
V (H)

5

◆
: |e \X| = 1 and

X

v2e

w(v) � 1

)
.

Thus, by definition, ! is also a vertex cover of H 0. Moreover, since E(H) ✓ E(H 0),
! is also a minimum fractional vertex cover of H 0. Hence, by linear programming
duality, we have ⌫f (H) = !(H) = !(H 0) = ⌫f (H 0). Therefore, it su�ces to show
that H 0 has a perfect matching. First, we show that H 0 is stable.

(1) Let T1 = {xi1 , i2, i3, i4, i5} and T2 = {xj1 , j2, j3, j4, j5} be balanced 5-element
subsets of V (H), with xi1 , xj1 2 X and il � jl for l 2 [5]. Then T2 2 E(H 0)
implies that T1 2 E(H 0).

Since il � jl for l 2 [5], we have !(xi1) � !(xj1) and !(il) � !(jl) for 2  l  5. Note
that

P
v2T2

!(v) � 1 as T2 2 E(H 0). Thus
P

v2T1
!(v) �

P
v2T2

!(v) � 1. Hence,
T1 2 E(H 0) by the definition of H 0, which completes the proof of (1).

Let G be the 3-graph with vertex set [n � 1] and edge set NH({xn/4, [n]}). We
may assume that

(2) G has no matching of size n/4.
SupposeG has a matching of size n/4, sayM = {e1, . . . , en/4}. Partition V (H)\V (M)
into 2-sets f1, . . . , fn/4 such that |fi \X| = 1 for all i 2 [n/4]. By (1), M ✓ NH(fi).
Thus M 0 = {ei [ fi : i 2 [n/4]} is a perfect matching in H. So we may assume (2).

Since dH({x, v}) �
�n�1

3

�
�
�3n/4

3

�
� 3⇢n3 for any x 2 X and v 2 [n], e(G) >�n�1

3

�
�
�3n/4

3

�
� 3⇢n3. Hence, by (2) and by Lemma 4.2, G is ⌘-close to H⇤

3 (n �

1, n/4�1) with respect to the partition [n�1]\ [n/4�1], [n/4�1], where ⌘ = (3⇢)1/4.
Let Y = [n/4� d⌘ne]. We claim that

(3) for every y 2 Y , dG(y) �
�n�1

2

�
� 4

p
⌘n2.

Otherwise, since G is stable, dG(z) <
�n�1

2

�
� 4

p
⌘n2 for z 2 Z := [n/4 � 1]\[n/4 �

d⌘ne]. Hence,

|E(H⇤

3 (n� 1, n/4� 1)) \ E(G)| �
1

3

X

z2Z

✓✓
n� 1

2

◆
� dG(z)

◆

�
1

3
(
p
⌘n� 1)4

p
⌘n2 > ⌘(n� 1)3,

a contradiction which completes the proof of (3).

Since H contains no independent set S such that |S\X| � n/4�"n and |S\[n]| �
3n/4� "n, we may greedily find a matching M1 of size d

p
⌘ne in H � Y .

Next we greedily construct a matching M2 of size |Y | in G � V (M1) such that
|e \ Y | = 1 for all e 2 M2. For y 2 Y , note that

|{e 2 E(G) : y 2 e and e \ V (M1) 6= ;}|  3|M1|n < 3d
p
⌘nen  4d

p
⌘en2.

By (3), dG(1) � 4
p
⌘n2

�
�n�1

2

�
� 8

p
⌘n2 > 0; so there exists an edge e1 2 E(G) \

V (M1) such that |e1 \ Y | = 1. Now suppose we have found a maximal matching
{e1, e2, . . . , er} in G � V (M1) such that |ei \ Y | = 1 for all i 2 [r]. If r � |Y | =
[n/4� d

p
⌘ne], then {e1, . . . , er} gives the desired matching M2. So assume r < |Y |.
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Write Gr := (G � V (M1)) � ([r
i=1ei). Let v 2 Y \(V (M1) [ ([r

i=1ei)). Note that
|[n]\(Y [ V (M1) [ ([r

i=1ei))| > n/4. Since dG(v) >
�n�1

2

�
� 4

p
⌘n2, the number of

edges e in G with v 2 e and e\{v} ✓ [n]\(Y [ V (M1) [ ([r
i=1ei)) is at least

✓
|[n]\(Y [ V (M1) [ ([r

i=1ei))|

2

◆
� 4

p
⌘n2 >

✓
n/4

2

◆
� 4

p
⌘n2 > 0.

So there exists an edge er+1 in Gr such that |er+1 \ Y | = 1, contradicting the maxi-
mality of r.

Let M2 = {e1, . . . , en/4�d
p
⌘ne}. Note V (H) \ (V (M1) [ V (M2)) contains n/4 �

d
p
⌘ne vertex-disjoint 2-set, say f1, . . . , fn/4�d

p
⌘ne, such that |fi \ X| = 1 for i 2

[n/4 � d
p
⌘ne]. By (1), M2 ✓ NH0(fi) for i 2 [n/4 � d

p
⌘ne]. Write M 0

2 = {fi [ ei :
i 2 [n/4� d

p
⌘ne]}. Then M1 [M 0

2 is a perfect matching in H.

5. Random rounding. We need a result of Lu, Yu, and Yuan [31] on the
independence number of a subgraph of a balanced (1, k)-partite (k+1)-graph induced
by a random subset of vertices. It is Lemma 4.3 in [31] which is stated for (1, 3)-partite
4-graphs, but the same proof (which uses the hypergraph container result) also works
for (1, k)-partite (k + 1)-graphs.

Lemma 5.1 (see Lu, Yu, and Yuan [31]). Let l, "0,↵1,↵2 be positive reals, let
↵ > 0 with ↵ ⌧ min{↵1,↵2}, let k, n be positive integers, and let H be a (1, k)-partite
(k + 1)-graph with partition classes Q,P such that k|Q| = |P | = n, e(H) � lnk+1,
and e(H[F ]) � "0e(H) for all F ✓ V (H) with |F \ P | � ↵1n and |F \ Q| � ↵2n.
Let R ✓ V (H) be obtained by taking each vertex of H uniformly at random with

probability n�0.9. Then, with probability at least 1�nO(1)e�⌦(n0.1), every independent
set J in H[R] satisfies |J \P |  (↵1 +↵+ o(1))n0.1 or |J \Q|  (↵2 +↵+ o(1))n0.1.

We also need Janson’s inequality to provide an exponential upper bound for the
lower tail of a sum of dependent zero-one random variables. See Theorem 8.7.2 in [7].

Lemma 5.2 (see Janson’s inequality [7]). Let � be a finite set and pi 2 [0, 1] be
a real for i 2 �. Let �p be a random subset of � such that the elements are chosen
independently with P[i 2 �p] = pi for i 2 �. Let S be a family of subsets of �. For
every A 2 S, let IA = 1 if A ✓ �p and 0 otherwise. Define X =

P
A2S IA, � = E[X],

and � = 1
2

P
A 6=B

P
A\B 6=;

E[IAIB ]. Then, for 0  t  �, we have

P[X  �� t]  exp

✓
�

t2

2�+ 4�

◆
.

Now, we use the Cherno↵ bound and Janson’s inequality to prove a result on
several properties of certain random subgraphs.

Lemma 5.3. Let n, k be integers such that n � k � 3, let H be a (1, k)-partite
(k + 1)-graph with partition classes A,B and k|A| = |B| = n, and let A3 ✓ A and
A4 ✓ B with |Ai| = n0.99 for i = 3, 4. Take n1.1 independent copies of R, and
denote them by Ri, 1  i  n1.1, where R is chosen from V (H) by taking each vertex
uniformly at random with probability n�0.9 and then deleting O(n0.06) vertices so that
|R| 2 (k+1)Z and k|R\A| = |R\B|. For each S ✓ V (H), let YS := |{i : S ✓ Ri

}|.
Then, with probability at least 1� o(1), all of the following statements hold:

(i) Y{v} = (1± n�0.01)n0.2 for all v 2 V (H).
(ii) Y{u,v}  2 for all {u, v} ✓ V (H).
(iii) Ye  1 for all e 2 E(H).
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1658 HONGLIANG LU, YAN WANG, AND XINGXING YU

(iv) For all i = 1, . . . , n1.1, we have |Ri\A| = (1/k±o(n�0.04))n0.1 and |Ri\B| =
(1± o(n�0.04))n0.1.

(v) Suppose ⇢ is a constant with 0 < ⇢ < 1 such that dH({x, v}) �
�n�1
k�1

�
�

�n�n/k
k�1

�
� ⇢nk�1 for all x 2 A and v 2 B. Then for 1  i  n1.1 and for

x 2 Ri \A and v 2 Ri \B, we have

dRi
({x, v}) >

✓
|Ri \B|� 1

k � 1

◆
�

✓
|Ri \B|� |Ri \B|/k

k � 1

◆
� 3⇢|Ri \B|

k�1.

(vi) |Ri \Aj | = |Aj |n�0.9
± n0.06 for 1  i  n1.1 and j 2 {3, 4}.

Proof. For 1  i  n1.1 and j 2 {3, 4}, E[|Ri\A|] = n0.1/k, E[|Ri\B|] = n0.1 and
E[|Ri \Aj |] = n�0.9

|Aj |. Recall the assumptions |A3| = |A4| = n0.99. By Lemma 3.1,
we have

P
���|Ri \A|� n0.1/k

�� � n0.06
�
 e�⌦(n0.02),

P
���|Ri \B|� n0.1

�� � n0.06
�
 e�⌦(n0.02), and

P
���|Ri \Aj |� |Aj |n�0.9

�� � n0.06
�
 e�⌦(n0.03).

Hence, with probability at least 1�O(n1.1)e�⌦(n0.02), (iv) and (vi) hold.
For every v 2 V (H), E[Y{v}] = n1.1

· n�0.9 = n0.2. By
Lemma 3.1 again,

P
���|Y{v}|� n0.2

�� � n0.19
�
 e�⌦(n0.18).

Hence, with probability at least 1�O(n)e�⌦(n0.18), (i) holds.
For positive integers p, q, let Zp,q = |S 2

�V (H)
p

�
: YS � q|. Then

E [Zp,q] 

✓
n

p

◆✓
n1.1

q

◆
(n�0.9)pq  np+1.1q�0.9pq.

So E[Z2,3]  n�0.1 and E[Zk,2]  n2.2�0.8k
 n�0.2 for k � 3. Hence by Markov’s

inequality, (ii) and (iii) hold with probability at least 1� o(1).
Finally we show (v). Suppose for all x 2 A and v 2 B, dH({x, v}) �

�n�1
k�1

�
�

�n�n/k
k�1

�
� ⇢nk�1. We see that, for 1  i  n1.1 and for x 2 Ri \ A and

v 2 Ri \B,

E [dRi
({x, v})] >

✓
n� 1

k � 1

◆
n�0.9(k�1)

�

✓
n� n/k

k � 1

◆
n�0.9(k�1)

� ⇢nk�1n�0.9(k�1)

>

✓
n0.1

� 1

k � 1

◆
�

✓
n0.1

� n0.1/k

k � 1

◆
� ⇢n0.1(k�1).

By (iv), with probability at least 1�O(n1.1)e�⌦(n0.02), for all i = 1, . . . , n1.1, we have
|Ri \ B| = (1 + o(n�0.04))n0.1. Thus for all x 2 Ri \ A and
v 2 Ri \B,

E [dRi
({x, v})] >

✓
|Ri \B|

k � 1

◆
�

✓
|Ri \B|� |Ri \B|/k

k � 1

◆
� 2⇢|Ri \B|

k�1.

We wish to apply Lemma 5.2 with � = B, �p = Ri \ B, and S =
�NH({x,v})\B

k�1

�
. We

define

� =
1

2

X

b1,b22S,b1 6=b2,b1\b2 6=;

E[Ib1Ib2 ] 
1

2
|Ri \B|

2k�3
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Thus,

P
✓
dRi

({x, v}) 

✓
|Ri \B|

k � 1

◆
�

✓
|Ri \B|� |Ri \B|/k

k � 1

◆
� 3⇢|Ri \B|

k�1

◆

P
�
dRi

({x, v})  E[dRi
({x, v})]� ⇢|Ri \B|

k�1
�

 exp(�
(⇢|Ri \B|

k�1)2

2E(dRi
({x, v})) + 4�

) (by Lemma 5.2)

 exp(�
⇢2|Ri \B|

2k�2

2
�
|Ri\B|

k�1

�
+ 2|Ri \B|2k�3

)

 exp(�⌦(n0.1)).

Therefore, with probability at least 1�O(n1.1)e�⌦(n0.1), (v) holds.
By applying union bound, (i) – (vi) all hold with probability 1� o(1).

Now we prove that when the hypergraph H in Theorem 1.2 is not close to
H4(n, n/4) then H contains an almost regular spanning subgraph.

Lemma 5.4. Let 0 < ⇢ ⌧ " ⌧ 1 be reals and n ⌘ 0 (mod 4) be su�ciently
large. Let H be a balanced (1, 4)-partite 5-graph with partition classes X, [n] such that
|X| = n/4. Suppose that dH({x, v}) >

�n�1
3

�
�
�3n/4

3

�
�⇢n3 for all x 2 X and v 2 [n].

If H is not "-close to H4(n, n/4), then there exists a spanning subgraph H 0 of H such
that the following conditions hold:

(1) For all x 2 V (H 0), with at most n0.99 exceptions, dH0(x) = (1± n�0.01)n0.2;
(2) For all x 2 V (H 0), dH0(x) < 2n0.2;
(3) For any two distinct x, y 2 V (H 0), dH0({x, y}) < n0.19.

Proof. Let A3 ✓ X and A4 ✓ [n] with |Ai| = n0.99 for i = 3, 4. Let R1, . . . , Rn1.1

be defined as in Lemma 5.3. By (iv) of Lemma 5.3 , we have, for all i = 1, . . . , n1.1,

|Ri \X| = (1/4 + o(n�0.04))n0.1 and |Ri \ [n]| = (1 + o(n�0.04))n0.1.

By (v) of Lemma 5.3, we have, for 1  i  n1.1 and for x 2 X \Ri and v 2 [n] \Ri,

dRi
({x, v}) >

✓
|Ri \ [n]|

3

◆
�

✓
3|Ri \ [n]|/4

3

◆
� 3⇢|Ri \ [n]|3.

By (iv) and (vi) of Lemma 5.3, we may choose Ii ✓ Ri \ (A3 [A4) such that, for
i = 1, . . . , n1.1, R0

i := Ri \ Ii is balanced and |R0

i| = (1� o(1))|Ri|.
Let a1 = "/32, a2 = "/512, and a3 < "(24 · 4! · 32)�1. By applying Lemma 4.1 to

H, a1, a2, a3, we see that H is (F , a1)-dense, where

F = {U ✓ V (H) : |U \X| � (1/4� a1)n, |U \ [n]| � (3/4� a2)n}.

Now we apply Lemma 5.1 to H with l = (3 · 43 · 4!)�1, ↵1 = 1/4 � a1, ↵2 =

3/4� a2, and "0 = a1. Therefore, with probability at least 1� nO(1)e�⌦(n0.1), for any
independent set S of R0

i, |S \ R0

i \ X|  (1/4 � a1 + o(1))n0.1 or |S \ R0

i \ [n]| 
(3/4� a2 + o(1))n0.1.

By applying Lemma 4.3 to each H[R0

i], we see that each H[R0

i] contains a frac-

tional perfect matching !i. Let H⇤ = [
n1.1

i=1R
0

i. We select a generalized binomial
subgraph H 0 of H⇤ by letting V (H 0) = V (H) and independently choosing edge e
from E(H⇤), with probability !ie(e) if e ✓ R0

ie . (By (iii) of Lemma 5.3, for each
e 2 E(H⇤), ie is uniquely defined.)
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Note that, since wi is a fractional perfect matching of H[R0

i] for 1  i  n1.1,P
e3v wi(e)  1 for v 2 R0

i. By (i) of Lemma 5.3 and by Lemma 3.1, dH0(v) = (1 ±

n�0.01)n0.2 for any vertex v 2 V (H)\([n1.1

i=1 Ii), and dH0(v)  (1 + n�0.01)n0.2 < 2n0.2

for vertex v 2 [
n1.1

i=1 Ii. By (ii) of Lemma 5.3, dH0({x, y})  2 < n0.19 for any

{x, y} 2
�V (H)

2

�
. Therefore, H 0 is the desired hypergraph.

We also need the following lemma attributed to Pippenger and Spencer [34] (see
Theorem 4.7.1 in [7]), which extends a result of Frankl and
Rödl [14].

Lemma 5.5 (see Pippenger and Spencer [34]). For every integer k � 2 and reals
r > 1 and a > 0, there are � = �(k, r, a) > 0 and d0 = d0(k, r, a) such that for
every positive integer n and D � d0 the following holds: Every k-uniform hypergraph
H = (V,E) on a set V of n vertices in which all vertices have positive degrees and
which satisfies the conditions that

(1) for all vertices x 2 V but at most �n of them, d(x) = (1± �)D;
(2) for all x 2 V , d(x) < rD;
(3) for any two distinct x, y 2 V , d(x, y) < �D

contains a matching of size at least (1� (k � 1)a)(n/k).

6. Proof of Lemma 1.4.

Proof of Lemma 1.4. Let 0 < ⇢0 ⌧ ⇢ ⌧ ⌘ ⌧ " ⌧ 1. By Lemma 3.2, there exists
a matching M1 with |M1|  ⇢n such that, for any balanced set S with |S|  ⇢0n,
H[V (M1) [ S] has a perfect matching.

Let H1 = H � V (M1). Then H1 is not ("/2)-close to H4(n� 4|M1|, n/4� |M1|).
Write n1 = |[n]\V (M1)|. Furthermore, for all x 2 V (H1) \X and v 2 V (H1) \ [n],

dH1
({x, v}) �

✓
n� 1

3

◆
�

✓
3n/4

3

◆
� 4|M1|n

2 >

✓
n1 � 1

3

◆
�

✓
3n1/4

3

◆
� 10⇢n3

1.

By Lemma 5.4, H1 has a spanning subgraph H 0

1 such that the following conditions
hold:

(1) For all x 2 V (H 0

1), with at most n0.99
1 exceptions, dH0

1
(x) = (1± n�0.01

1 )n0.2
1 ;

(2) For all x 2 V (H 0

1), dH0
1
(x) < 2n0.2

1 ;
(3) For any two distinct x, y 2 V (H 0

1), dH0
1
({x, y}) < n0.19

1 .
By Lemma 5.5, H 0

1 has a matching, say M2, covering all but at most ⇢0n vertices.
Write S = V (H1)\V (M2). Recall H[V (M1) [ S] has a perfect matching M 0

1. Now
M 0

1 [M2 gives the desired perfect matching.

Acknowledgments. We would like to thank the anonymous referees for their
careful reading and useful suggestions.

REFERENCES

[1] R. Aharoni and E. Berger, Rainbow matchings in r-partite r-graphs, Electron. J. Combin.,
16 (2009), R119.

[2] R. Aharoni and D. Howard, A rainbow r-partite version of the Erdős-Ko-Rado theorem,
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conjecture, Adv. Math., 392 (2021), 107991.

[26] I. Khan, Perfect matchings in 3-uniform hypergraphs with large vertex degree, SIAM J. Discrete
Math., 27 (2013), pp. 1021–1039.

[27] I. Khan, Perfect matchings in 4-uniform hypergraphs, J. Combin. Theory Ser. B, 116 (2016),
pp. 333–366.
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