RAINBOW PERFECT MATCHINGS FOR 4-UNIFORM HYPERGRAPHS*

HONGLIANG LU†, YAN WANG‡, AND XINGXING YU§

Abstract. Let n be a sufficiently large integer with $n \equiv 0 \pmod{4}$, and let $F_i \subseteq {n \choose 4}$, where $i \in [n/4]$. We show that if each vertex of F_i is contained in more than ${n-1 \choose 3} - {3n/4 \choose 3}$ edges, then $\{F_1, \ldots, F_{n/4}\}$ admits a rainbow matching, i.e., a set of n/4 edges consisting of one edge from each F_i . This generalizes a deep result of Khan J. Combin. Theory Ser. B, 116 (2016), pp. 333–366. on perfect matchings in 4-uniform hypergraphs.

Key words. rainbow matching, perfect matching, hypergraph, absorbing method

AMS subject classifications. 05C65, 05C70, 05C35

DOI. 10.1137/21M1442383

1. Introduction. A hypergraph is a family of subsets (called edges) of a nonempty set whose elements are the vertices of the hypergraph. For a hypergraph H, we use V(H) to denote its vertex set and E(H) to denote its edge set and let e(H) := |E(H)|. We say that a hypergraph H is k-uniform for some positive integer k if all edges of H have the same size k. A k-uniform hypergraph is also known as a k-graph.

A matching in a hypergraph H is a set of pairwise disjoint edges of H. Finding maximum matchings in k-graphs is NP-hard for $k \geq 3$; see [21]. Hence, it is of interest to find tight sufficient conditions for the existence of a large matching in k-graphs. The most well-known open problem in this area is the following conjecture made by Erdős [9] in 1965: For positive integers k, n, t, if H is a k-graph of order n and $e(H) > \max\{\binom{kt-1}{k}, \binom{n}{k} - \binom{n-t+1}{k}\}$, then H has a matching of size t. This bound on e(H) is tight because of the complete k-graph on kt-1 vertices and the k-graph on n vertices in which every edge intersects a fixed set of t-1 vertices. There have been recent activities on this conjecture; see [5, 6, 10, 11, 12, 13, 18, 32].

One type of condition that has been used to ensure the existence of large matchings is the so-called Dirac-type conditions, which involve degrees of sets of vertices. Our work in this paper falls into this category. For convenience, let $[k] := \{1, \ldots, k\}$ for any positive integer k, and let $\binom{S}{k} := \{T \subseteq S : |T| = k\}$ for any set S and positive integer k. Let S be a S-graph. For any S containing S for any integer S denoted by S by S denoted by S denoted by S denotes the minimum S denotes of S. Hence, S denotes the minimum S denotes of S denotes of S denotes the minimum S denotes of S deno

^{*}Received by the editors August 25, 2021; accepted for publication (in revised form) February 20, 2022; published electronically July 14, 2022.

https://doi.org/10.1137/21M1442383

Funding: The first author was partially supported by the National Natural Science Foundation of China under grant 11871391. The second author was partially supported by Shanghai Frontier Science Center of Modern Analysis. The third author was partially supported by NSF grant DMS-1954134.

[†]School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China (luhongliang@mail.xjtu.edu.cn).

[‡]School of Mathematical Sciences, CMA-Shanghai, Shanghai Jiao Tong University, Shanghai 200240, China (yan.w@sjtu.edu.cn).

[§]School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 USA (yu@math.gatech.edu).

mum vertex degree of H. For $x \in V(H)$, we define the neighborhood of x to be $N_H(x) := \{e \in \binom{V(H)\setminus\{x\}}{k-1} : e \cup \{x\} \in E(H)\}$. When there is no confusion, we also use $N_H(x)$ to denote the (k-1)-graph with vertex set $V(H)\setminus\{x\}$ and edge set $N_H(x)$.

For integers n, k, s, d satisfying $0 \le d \le k-1$, $n \equiv 0 \pmod k$, and $0 \le s \le n/k$, $m_d^s(k,n)$ denotes the minimum integer m such that every k-graph H on n vertices with $\delta_d(H) \ge m$ has a matching of size s. Rödl, Ruciński, and Szemerédi [36] determined $m_{k-1}^{n/k}(k,n)$ for large n, which has motivated a large amount of work; see [16, 17, 26, 27, 28, 38]. For instance, Treglown and Zhao [38] extended this result by determining $m_d^{n/k}(k,n)$ for all $d \ge k/2$. On the other hand, it seems more difficult to determine $m_d^{n/k}(k,n)$ when d < k/2. Kühn, Osthus, and Treglown [28] and, independently, Khan [26] determined $m_1^{n/3}(3,n)$. Khan [27] further determined $m_1^{n/4}(4,n)$. The main work in this paper is to prove a more general result which implies Khan's result and uses different techniques.

Let $\mathcal{F} = \{F_1, \ldots, F_t\}$ be a family of hypergraphs. A set of t pairwise disjoint edges, one from each F_i , is called a rainbow matching for \mathcal{F} . (In this case, we also say that \mathcal{F} or $\{F_1, \ldots, F_t\}$ admits a rainbow matching.) There has been a lot of interest in studying rainbow versions of matching problems; see [1, 2, 3, 4, 12, 18, 19, 20, 24, 25, 31, 33, 35]. For instance, Aharoni and Howard [3] made the following conjecture, which first appeared in Huang, Loh, and Sudakov [18]: Let t be a positive integer and $\mathcal{F} = \{F_1, \ldots, F_t\}$ such that, for $i \in [t]$, $F_i \subseteq {[n] \choose k}$ and $e(F_i) > \{{kt-1 \choose k}, {n \choose k} - {n-t+1 \choose k}\}$; then \mathcal{F} admits a rainbow matching. Huang, Loh, and Sudakov [18] showed that this conjecture holds for $n > 3k^2t$. Frankl and Kupavskii [12] improved this lower bound to $n \ge 12tk \log(e^2t)$, which was further improved by Lu, Wang, and Yu [30] to $n \ge 2kt$. Keevash et al. [22, 23] independently verified this conjecture for n > Ckt for some (large and unspecified) constant C. Recently, Kupavskii [29] gave the concrete dependencies on the parameters by showing the conjecture holds for n > 3ekt with $t > 10^7$.

For 3-graphs, Lu, Yu, and Yuan [31] proved that, for sufficiently large n with $n \equiv 0 \pmod{3}$, if $\delta_1(F_i) > \binom{n-1}{2} - \binom{2n/3}{2}$ for $i \in [n/3]$, then \mathcal{F} has a rainbow matching. This implies the result of Kühn, Osthus, and Treglown [28] and Khan [27] on perfect matchings in 3-graphs.

In this paper, we prove the following result on rainbow matchings in 4-graphs, which gives Khan's result [27] on perfect matchings in 4-graphs as a special case.

THEOREM 1.1. Let n be a sufficiently large integer with $n \equiv 0 \pmod{4}$. Let $\mathcal{F} = \{F_1, \ldots, F_{n/4}\}$ such that $F_1, \ldots, F_{n/4}$ are 4-graphs on a common vertex set of cardinality n, and for $i \in [n/4]$, $\delta_1(F_i) > \binom{n-1}{3} - \binom{3n/4}{3}$. Then \mathcal{F} admits a rainbow matching.

The bound on $\delta_1(F_i)$ in Theorem 1.1 is sharp. To see this, let k, m, n be positive integers such that $k \geq 2$ and $2 \leq m < n/k$. Let $H_k(n, m)$ be a k-graph such that

$$V(H_k(n,m)) = [n],$$

$$E(H_k(n,m)) = \left\{ e \in \binom{[n]}{k} : e \cap [m] \neq \emptyset \text{ and } e \cap ([n] \setminus [m]) \neq \emptyset \right\},$$

and let $H_k^*(n,m)$ be a k-graph such that

$$V(H_k^*(n,m)) = [n],$$

$$E(H_k^*(n,m)) = \left\{ e \in {[n] \choose k} : e \cap [m] \neq \emptyset \right\}.$$

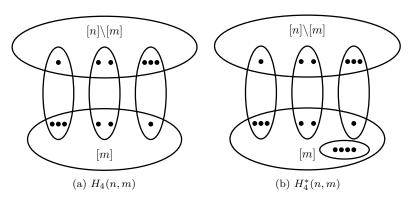


Fig. 1. Illustrations of $H_k(n,m)$ and $H_k^*(n,m)$ when k=4

Figure 1 illustrations of $H_k(n,m)$ and $H_k^*(n,m)$ when k=4. Then $\delta_1(H_k(n,m))=\delta_1(H_k^*(n,m))=\binom{n-1}{k-1}-\binom{n-1-m}{k-1}$. Observe that neither $H_k(n,m)$ nor $H_k^*(n,m)$ has no matching of size m+1. It follows that when $n\equiv 0\pmod k$, we have $\delta_1(H_k(n,n/k-1))=\binom{n-1}{k-1}-\binom{n-n/k}{k-1}$, and $\{H_k(n,n/k-1),\ldots,H_k(n,n/k-1)\}$ admits no rainbow matching.

Let $\mathcal{F} = \{F_1, \dots, F_{n/4}\}$ as defined in Theorem 1.1. Note that $V(\mathcal{F}) = [n]$. We prove Theorem 1.1 by working with a 5-graph $H(\mathcal{F})$ obtained from \mathcal{F} : The vertex set of $H(\mathcal{F})$ is $[n] \cup \{x_1, \dots, x_{n/4}\}$, and the edge set of $H(\mathcal{F})$ is $\bigcup_{i=1}^{n/4} \{e \cup \{x_i\} : e \in E(F_i)\}$. Clearly, \mathcal{F} admits a rainbow matching if and only if $H(\mathcal{F})$ has a perfect matching.

For convenience, we say that a (k+1)-graph H is (1,k)-partite if there exists a partition of V(H) into sets V_1, V_2 (called partition classes) such that, for any $e \in E(H)$, $|e \cap V_1| = 1$ and $|e \cap V_2| = k$. A (1,k)-partite (k+1)-graph with partition classes V_1, V_2 is balanced if $k|V_1| = |V_2|$. Thus, for instance, $H(\mathcal{F})$ above is a balanced (1,4)-partite 5-graph with partition classes X, [n].

More generally, let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be a family of n-vertex k-graphs on a common vertex set V and let $X = \{x_1, \ldots, x_m\}$ be a set disjoint from V. We use $\mathcal{H}_{n,m}^k(\mathcal{F})$ to represent the balanced (1,k)-partite (k+1)-graph with partition classes X,V and edge set $\bigcup_{i=1}^m \{e \cup \{x_i\} : e \in E(F_i)\}$. If $F_i = H_k(n,m)$ (or $H_k^*(n,m)$) for all $i \in [m]$, then we write $\mathcal{H}_k(n,m)$ (or $\mathcal{H}_k^*(n,m)$) for $\mathcal{H}_{n,m}^k(\mathcal{F})$ (or $\mathcal{H}_k^*(n,m)$). Now Theorem 1.1 is a direct consequence of the following result.

THEOREM 1.2. Let n be an integer such that $n \equiv 0 \pmod{4}$ and n is sufficiently large. Let H be a balanced (1,4)-partite 5-graph with partition classes X, [n] such that $\delta_1(N_H(x)) > {n-1 \choose 3} - {3n/4 \choose 3}$ for all $x \in X$. Then H admits a perfect matching.

Our proof of Theorem 1.2 is divided into two parts by considering whether H is close to $\mathcal{H}_4(n, n/4)$ or not. For any real $\varepsilon > 0$ and two k-graphs H_1, H_2 on the same vertex set V, we say that H_2 is ε -close to H_1 if there exists an isomorphic copy H'_2 of H_2 with $V(H'_2) = V$ such that $|E(H_1) \setminus E(H'_2)| < \varepsilon |V(H_1)|^k$.

We show the following lemma when H is close to $\mathcal{H}_4(n, n/4)$. In fact, we are able to prove the following lemma for (1, k)-partite (k + 1)-graphs that are close to $\mathcal{H}_k(n, n/k)$ for all $k \geq 2$.

LEMMA 1.3. Let $k \geq 3$ be an integer, $0 < \varepsilon < (10k)^{-6}$, and let n be an integer with $n \equiv 0 \pmod{k}$ and $n \geq 20k^2$. Let H be a balanced (1,k)-partite (k+1)-graph with partition classes X, [n] and $V(H) = V(\mathcal{H}_k(n,n/k))$. If H is ε -close to $\mathcal{H}_k(n,n/k)$ and $\delta_1(N_H(x)) > \binom{n-1}{k-1} - \binom{n-n/k}{k-1}$ for all $x \in X$, then H has a perfect matching.

When H is not close to $\mathcal{H}_4(n, n/4)$, we prove the following.

LEMMA 1.4. Let $0 < \varepsilon \ll 1$, and let n be a sufficiently large integer with $n \equiv 0 \pmod{4}$. Let H be a balanced (1,4)-partite 5-graph with partition classes X, [n] and $V(H) = V(\mathcal{H}_4(n,n/4))$. If H is not ε -close to $\mathcal{H}_4(n,n/4)$ and $\delta_1(N_H(x)) > {n-1 \choose 3} - {3n/4 \choose 3}$ for all $x \in X$, then H has a perfect matching.

It is easy to see that Theorem 1.2 follows immediately from Lemmas 1.3 and 1.4.

In section 2, we prove Lemma 1.3. To prove Lemma 1.4, we will need to find a small "absorbing" matching in H, and this part is done in section 3. In section 4, we show that if H is not close to $\mathcal{H}_4(n, n/4)$, then we can find a subgraph of H that is almost regular (in terms of vertex degree) and has maximum 2-degree bounded above by $n^{0.1}$. We make use of a recent stability result of Gao et al. [15] for 3-graphs (see Lemma 4.2) and another result there on almost regular spanning subgraphs. We then complete the proof using a result of Pippenger and Spencer [34].

2. Hypergraphs close to $\mathcal{H}_k(n, n/k)$. In this section, we prove Lemma 1.3 for the case when $H_{n,n/k}^k(\mathcal{F})$ is ε -close to $\mathcal{H}_k(n, n/k)$ for some sufficiently small ε .

We first prove Lemma 1.3 for those balanced (1,k)-partite (k+1)-graphs H in which, for each vertex $v \in V(H)$, most edges of H containing v also belong to $\mathcal{H}_k(n,n/k)$. More precisely, given $\alpha > 0$ and two (k+1)-graphs H_1, H_2 on the same vertex set, a vertex $v \in V(H_1)$ is α -bad with respect to H_2 if $|N_{H_2}(v) \setminus N_{H_1}(v)| > \alpha |V(H_1)|^k$. (A vertex $v \in V(H_1)$ is α -good with respect to H_2 if it is not α -bad with respect to H_2 .) So if v is α -good with respect to H_2 , then all but at most $\alpha |V(H_1)|^k$ of the edges containing v in H_2 , also lie in H_1 .

LEMMA 2.1. Let $k \geq 2$ be an integer, $0 < \alpha < (10^k k^k (k+1)!)^{-1}$, and let n be an integer with $1/n \ll \alpha$ and $n \equiv 0 \pmod{k}$. If H is a balanced (1,k)-partite (k+1)-graph on the same vertex set as $\mathcal{H}_k(n,n/k)$ and every vertex of H is α -good with respect to $\mathcal{H}_k(n,n/k)$, then H has a perfect matching.

Proof. Let X, [n] denote the partition classes of H, and let W = [n/k] and $U = [n] \setminus W$. Let M denote a matching in H such that $|e \cap X| = |e \cap W| = 1$ for each $e \in M$, and subject to this, |M| is maximum. Let $U' = U \setminus V(M), W' = W \setminus V(M)$, and $X' = X \setminus V(M)$. We may assume |M| < n/k; for otherwise, the assertion of the lemma is true.

Note that $|M| \ge n/2k$. Suppose |M| < n/2k. Then $|U'|/(k-1) = |W'| = |X'| \ge n/2k$. By the maximality of |M|, H has no edge contained in $X' \cup W' \cup U'$ containing exactly one vertex from X' and exactly one vertex from W'. Hence, for any $u \in U'$, we have

$$\begin{split} &|N_{\mathcal{H}_k(n,n/k)}(u) \setminus N_H(u)| \\ &\geq |X'||W'| \binom{|U'|}{k-2} \\ &\geq (n/2k)(n/2k)((k-1)n/2k-k+3)^{k-2}/(k-2)! \quad (\text{since } n \geq 20k^2) \\ &\geq \frac{n^k}{4k^25^{k-2}(k-2)!} \quad (\text{since } k \geq 2) \\ &> \alpha \left(\frac{(k+1)n}{k}\right)^k = \alpha |V(H)|^k \quad (\text{since } \alpha < k^k/(4k^25^{k-2}(k-2)!(k+1)^k)). \end{split}$$

Thus, u is not α -good with respect to $\mathcal{H}_k(n,n/k)$, a contradiction.

Fix $x \in X'$, $u_1, \ldots, u_{k-1} \in U'$, and $w \in W'$. Write $S = \{x, w, u_1, \ldots, u_{k-1}\}$. If there exists distinct $e_1, \ldots, e_k \in M$ such that $H[S \cup (\bigcup_{i=1}^k e_i)]$ has a matching M' of size k+1 such that, for any $f \in M'$, $|f \cap X| = 1 = |f \cap W|$, then $(M \setminus \{e_i : i \in [k]\}) \cup M'$ contradicts the choice of M. So such M' does not exist for any choice of distinct $e_1, \ldots, e_k \in M$. This implies that there exists a (k+1)-subset f of V(H) such that $f \subseteq S \cup (\bigcup_{i=1}^k e_i)$, $|f \cap X'| = 1 = |f \cap W'|$, $|f \cap e_i| = 1$ for $i \in [k]$, but $f \notin E(H)$.

Hence there exists $v \in S$ such that

$$|N_{\mathcal{H}_k(n,n/k)}(v) \setminus N_H(v)| > \frac{1}{k+1} {n/2k \choose k} > \frac{(n/2k-k+1)^k}{(k+1)!} > \frac{(n/3k)^k}{(k+1)!} > \alpha n^k$$

since n > 6k(k-1) and $\alpha < (3^k k^k (k+1)!)^{-1}$. This is a contradiction.

To achieve the goal of this section, we need Lemma 2.1 from [31].

LEMMA 2.2 (see Lu, Yu, and Yuan [31]). Let n, t, k be positive integers such that $n > 2k^4t$. For $i \in [t]$, let $G_i \subseteq {[n] \choose k}$ such that $\delta_1(G_i) > {n-1 \choose k-1} - {n-t \choose k-1}$. Then $\{G_1, \ldots, G_t\}$ admits a rainbow matching.

Proof of Lemma 1.3. Let W = [n/k] and $U = [n] \setminus [n/k]$ be the partition classes of $H_k(n, [n/k])$ in $\mathcal{H}_k(n, n/k)$. Let B denote the set of $\sqrt{\varepsilon}$ -bad vertices in H with respect to $\mathcal{H}_k(n, n/k)$. Since H is ε -close to $\mathcal{H}_k(n, n/k)$, we have $|B| \leq 2(k+1)\sqrt{\varepsilon}n$; otherwise,

$$|E(\mathcal{H}_k(n, n/k)) \setminus E(H)| \ge \frac{1}{k+1} \sum_{v \in V(H)} |N_{\mathcal{H}_k(n, n/k)}(v) \setminus N_H(v)|$$

$$> 2(k+1)\sqrt{\varepsilon}n \cdot \frac{1}{k+1} \sqrt{\varepsilon}|V(H)|^k \ge \varepsilon |V(H)|^{k+1},$$

a contradiction.

Let $U^b = U \cap B$, $X^b = X \cap B$ and $W^b = W \cap B$. Let $W^g = W \setminus W^b$. For convenience, write $q = |X^b|$ and $r = q + |W^b|$. Moreover, let x_1, \ldots, x_r be distinct such that $X^b = \{x_1, \ldots, x_q\}$, let $W' \subseteq W^g$ be a set of size n/k-r, and let $G_i = N_H(x_i)-W'$ for $i \in [r]$. Then, for $i \in [r]$,

$$\delta_{1}(G_{i}) \geq \delta_{1}(N_{H}(x_{i})) - \left(\binom{n-1}{k-1} - \binom{n-|W'|-1}{k-1}\right)$$

$$> \binom{n-|W'|-1}{k-1} - \binom{n-n/k}{k-1}$$

$$= \binom{n-n/k+r-1}{k-1} - \binom{n-n/k}{k-1}.$$

Thus, by Lemma 2.2 (with n - n/k + r as n and r as t), $\{G_1, \ldots, G_r\}$ admits a rainbow matching, say $M_0 = \{e_i \in E(G_i) : i \in [r]\}$. Now $M'_0 = \{e_i \cup \{x_i\} : i \in [r]\}$ is a matching in H covering X^b . (Note this is the only place in this proof that requires the degree condition in the statement.)

Let $H_1 = H - V(M'_0)$. Since $r \leq |B| \leq 2(k+1)\sqrt{\varepsilon}n$ and $\varepsilon < (10k)^{-6}$, every vertex in $X \setminus V(M'_0)$ is $\varepsilon^{1/3}$ -good with respect to $\mathcal{H}_k(n, n/k) - V(M'_0)$. Choose η such that $0 < \varepsilon \ll \eta \ll 1/k$, and let

$$B' := \{ v \in B \setminus V(M'_0) : |\{ e \in E(H) : v \in e \text{ and } |e \cap W^g| = 1 \}| \ge \eta n^k \}.$$

Since $|B'| \leq |B| \leq 2(k+1)\sqrt{\varepsilon}n$ and $\varepsilon \ll \eta$, we may greedily pick a matching M_1 in $H - V(M'_0)$ such that $B' \subseteq V(M_1)$ and every edge in M_1 contains at least one vertex from B' and exactly one vertex from W^g .

Now consider $H_2 = H_1 - V(M_1)$. Note that, since $n > 20k^2$,

$$\delta_1(H_2) \ge \delta_1(H) - (k+1)|M_0' \cup M_1|n^{k-1}$$

$$> \frac{n}{k} \left(\binom{n-1}{k-1} - \binom{n-n/k}{k-1} \right) - 2(k+1)^2 \sqrt{\varepsilon} n^k.$$

Thus, for each $v \in B \setminus V(M'_0 \cup M_1)$, the number of edges of H_2 containing v and no vertex of W^g is at least

$$\delta_{1}(H_{2}) - \eta n^{k} - \sum_{i=2}^{k-1} \frac{n}{k} \binom{|W^{g}|}{i} \binom{n - |W^{g}| - 1 - k|M'_{0} \cup M_{1}|}{k - 1 - i}$$

$$\geq \frac{n}{k} \left(\binom{n-1}{k-1} - \binom{n-n/k}{k-1} \right) - 2(k+1)^{2} \sqrt{\varepsilon} n^{k} - \eta n^{k}$$

$$- \frac{n}{k} \sum_{i=2}^{k-1} \binom{n/k}{i} \binom{n-n/k-1}{k-1-i}$$

$$\geq \frac{n}{k} \left(\binom{n-1}{k-1} - \binom{n-n/k}{k-1} \right) - 2(k+1)^{2} \sqrt{\varepsilon} n^{k} - \eta n^{k}$$

$$- \frac{n}{k} \left(\binom{n-1}{k-1} - \binom{n-n/k-1}{k-1} - \binom{n/k-1}{k-1} - \binom{n/k}{k-2} \right)$$

$$= \frac{n}{k} \left(\frac{n}{k} - 1 \right) \binom{n-n/k-1}{k-2} - 2(k+1)^{2} \sqrt{\varepsilon} n^{k} - \eta n^{k}$$

$$\geq \eta n^{k} \quad \text{(since } \varepsilon \ll \eta \ll 1/k).$$

Hence, we may greedily pick a matching M_2 in H_2 such that every edge in M_2 contains at least one vertex from $B \setminus V(M'_0 \cup M_1)$ and no vertex from W^g .

It is easy to see that $|M_0' \cup M_1 \cup M_2| \leq 2(k+1)\sqrt{\varepsilon}n$. Hence, every vertex of $H_2 - V(M_2)$ is $\varepsilon^{1/4}$ -good with respect to $\mathcal{H}_k(n, n/k) - V(M_0' \cup M_1 \cup M_2)$. Thus for every vertex $u \in U \setminus V(M_0' \cup M_1 \cup M_2)$, the number of edges containing u and exactly two vertices of $W \setminus V(M_0' \cup M_1 \cup M_2)$ as well as avoiding $V(M_0' \cup M_1 \cup M_2)$ is at least

$$\frac{n}{k} \binom{n/k}{2} \binom{n-n/k-1}{k-3} - \varepsilon^{1/4} \left(n + \frac{n}{k}\right)^k - (k+1)|M_0' \cup M_1 \cup M_2|n^{k-1} > \eta n^k.$$

Thus we may greedily pick a matching M'_2 such that $|M'_2| = |M_2|$ and every edge of M'_2 contains exactly two vertices from W^g .

Put $M:=M_0'\cup M_1\cup M_2\cup M_2'$ and m:=|M|. Let $H_3:=H-V(M)=H_2-V(M_2\cup M_2')$. One can see that every vertex of H_3 is $\varepsilon^{1/5}$ -good with respect to $\mathcal{H}_k(n-km,n/k-m)=\mathcal{H}_k(n,m)-V(M)$. By Lemma 2.1, H_3 contains a perfect matching, say M_3 . Now $M_3\cup M$ is a perfect matching in H.

3. Absorbing matching. To deal with balanced (1, k)-partite (k + 1)-graphs that are not close to $\mathcal{H}_k(n, n/k)$, we need to find a small matching that can "absorb" small sets of vertices. To find such a matching, we need to use the Chernoff inequality to bound deviations; see [7].

LEMMA 3.1 (Chernoff inequality for small deviation). Let $X = \sum_{i=1}^{n} X_i$, where each random variable X_i has Bernoulli distribution with expectation p_i . For $\alpha \leq 3/2$,

$$\mathbb{P}(|X - \mathbb{E}X| \ge \alpha \mathbb{E}X) \le 2e^{-\frac{\alpha^2}{3}\mathbb{E}X}.$$

In particular, when $X \sim Bi(n, p)$ and $\lambda < \frac{3}{2}np$, then

$$\mathbb{P}(|X - np| \ge \lambda) \le e^{-\Omega(\lambda^2/(np))}$$
.

We now prove a (1, k)-partite version of the absorption lemma for (1, 3)-partite 4-graphs proved in [31]. Our proof follows along the same lines as in [31]. Let H be a (1, k)-partite (k + 1)-graph with partition classes X, [n]. A set $S \subseteq V(H)$ is called balanced if $|S \cap [n]| = k|S \cap X|$.

LEMMA 3.2. Let $k \geq 3$ be an integer and 0 < b < 1/k be a constant. There exists an integer $n_1 = n_1(k,b)$ such that the following holds for any integer $n \geq n_1$: Let H be a (1,k)-partite (k+1)-graph with partition classes X, [n] such that |X| = n/k and $\delta_1(N_H(x)) > (1/2+b)\binom{n-1}{k-1}$ for $x \in X$. Then for any c satisfying $0 < c < \min\{(\frac{k^k cn}{6b^k(k!)^k})^2, (2k^3(k+1)c^2)^{-10}\}$, there exists a matching M in H such that $|M| \leq 2kcn$ and, for any balanced subset $S \subseteq V(H)$ with $|S| \leq (k+1)c^{1.5}n/2$, $H[V(M) \cup S]$ has a perfect matching.

Proof. For balanced $R \in \binom{V(H)}{k+1}$ and balanced $Q \in \binom{V(H)}{k(k+1)}$, we say that Q is R-absorbing if both H[Q] and $H[Q \cup R]$ have perfect matchings. For each balanced $R \in \binom{V(H)}{k+1}$, let $\mathcal{L}(R)$ denote the collection of all R-absorbing sets in H.

Claim 1. For each balanced $R \in \binom{V(H)}{k+1}$, $|\mathcal{L}(R)| \ge b^k \binom{n}{k}^{k+1} / (2(k^2!))$.

Let $R \in \binom{V(H)}{k+1}$ be a fixed balanced set, and let $R \cap X = \{x\}$. Note that the number of edges in H containing x and intersecting $R \setminus \{x\}$ is at most $k\binom{n}{k-1}$. Thus, since $\delta_1(N_H(x)) > (1/2+b)\binom{n-1}{k-1}$, the number of edges $e \in E(H)$ with $e \cap R = \{x\}$ is at least

$$\frac{n(1/2+b)\binom{n-1}{k-1}}{k} - k\binom{n}{k-1} \ge \frac{1}{2}\binom{n}{k}.$$

Fix a choice of $e \in E(H)$ with $e \cap R = \{x\}$, and write $R \setminus \{x\} = \{u_1, \dots, u_k\}$ and $e \setminus \{x\} = \{v_1, \dots, v_k\}$. Let $W_0 = e \setminus \{x\}$. For each pair $\{u_j, v_j\}$ in order $j = 1, 2, \dots, k$, we choose a k-set U_j disjoint from $W_{j-1} \cup R$ such that both $U_j \cup \{u_j\}$ and $U_j \cup \{v_j\}$ are edges in H and let $W_j := U_j \cup W_{j-1}$. If W_k is defined, then W_k gives an absorbing k(k+1)-set for R.

Note that for $j \in [k]$ there are k+1+jk vertices in $W_{j-1} \cup R$. Thus, the number of edges in H containing u_j (respectively, v_j) and another vertex in $W_{j-1} \cup R$ is at most $(k+1+jk)\binom{n}{k-2}\frac{n}{k} < (k+1)n\binom{n}{k-2}$. Since $\delta_1(N_H(x)) > (1/2+b)\binom{n-1}{k-1}$ for $x \in X$, the number of sets U_j for which $U_j \cap (W_{j-1} \cup R) = \emptyset$ and both $U_j \cup \{u_j\}$ and $U_j \cup \{v_j\}$ are edges in H is at least

$$\frac{n}{k} \left(2(1/2+b) \binom{n-1}{k-1} - \binom{n-1}{k-1} \right) - 2(k+1)n \binom{n}{k-2}$$

$$= 2b \binom{n}{k} - 2(k+1)n \binom{n}{k-2}$$

$$> b \binom{n}{k}$$

because n is sufficiently large.

To summarize, the number of W_k defined above from e is at least $(b\binom{n}{k})^k$. Hence, there are at least $\frac{1}{2}\binom{n}{k}(b\binom{n}{k})^k$ absorbing, ordered k(k+1)-sets for R, with at most $(k^2!)$ of them corresponding to a single R-absorbing set. Therefore,

$$\mathcal{L}(R) \geq \frac{\frac{1}{2} \binom{n}{k} (b \binom{n}{k})^k}{k^2!} = \frac{b^k \binom{n}{k}^{k+1}}{2(k^2!)}.$$

This completes the proof of Claim 1.

Now, let c be a fixed constant with $0 < c < \min\{(\frac{b^k k^k}{6(k!)^k})^2, (2k^3(k+1)c^2)^{-10}\}$, and choose a family \mathcal{G} of balanced k(k+1)-sets of V(H) by selecting each of the $\binom{n/k}{k}\binom{n}{k^2}$ balanced k(k+1)-subsets of V(H) independently with probability

$$p := \frac{cn}{\binom{n/k}{k}\binom{n}{k^2}}.$$

Then $\mathbb{E}(|\mathcal{G}|) = cn$ and $\mathbb{E}(|\mathcal{L}(R) \cap \mathcal{G}|) = p|\mathcal{L}(R)| \ge b^k \binom{n}{k}^{k+1} cn/(2(k^2!)\binom{n/k}{k}\binom{n}{k^2})$. It follows from Lemma 3.1 that, with probability 1 - o(1),

$$(3.1) |\mathcal{G}| \le 2cn$$

and, for all balanced (k+1)-sets R,

(3.2)
$$|\mathcal{L}(R) \cap \mathcal{G}| \ge p|\mathcal{L}(R)|/2 \ge \frac{b^k k^k cn}{6(k!)^k} \ge c^{1.5} n.$$

Furthermore, the expected number of intersecting pairs of k(k+1)-sets in \mathcal{G} is at most

$$\binom{n/k}{k} \binom{n}{k^2} k(k+1) \left(\binom{n/k-1}{k-1} \binom{n}{k^2} + \binom{n/k}{k} \binom{n-1}{k^2-1} \right) p^2 \le 2k^3(k+1)c^2n$$

$$\le c^{1.9}n.$$

Thus, using Markov's inequality, we derive that with probability at least 1/2

(3.3) \mathcal{G} contains at most $2c^{1.9}n$ intersecting pairs of k(k+1)-sets.

Hence, there exists a family \mathcal{G} satisfying (3.1), (3.2), and (3.3). Delete one k(k+1)set from each intersecting pair in such a family \mathcal{G} , and remove all nonabsorbing k(k+1)-sets from \mathcal{G} . The resulting family, call it \mathcal{G}' , consists of pairwise disjoint balanced, absorbing k(k+1)-sets and satisfies

$$|\mathcal{L}(R) \cap \mathcal{G}'| \ge c^{1.5} n/2$$

for all balanced (k+1)-sets R.

Since \mathcal{G}' consists only of absorbing k(k+1)-sets, $H[V(\mathcal{G}')]$ has a perfect matching, say M. By (3.1), $|M| \leq 2kcn$. For a balanced set $S \subseteq V(H)$ of size $|S| \leq (k+1)c^{1.5}n/2$, we partition S into balanced (k+1)-sets R_1, \ldots, R_t , where $t \leq c^{1.5}n/2$. Since $|\mathcal{L}(R_i) \cap \mathcal{G}'| \geq c^{1.5}n/2$, there is distinct absorbing k(k+1)-set Q_1, \ldots, Q_t in \mathcal{G}' such that Q_i is an R_i -absorbing set for $i \in [t]$. Now $\mathcal{H}[V(M) \cup S]$ has a perfect matching which consists of a perfect matching from each $H[Q_i \cup R_i]$.

4. Fractional perfect matchings. To deal with hypergraphs that are not close to $\mathcal{H}_4(n, n/4)$, we need to control the independence number of those hypergraphs. This is done in the same way as in [31] by applying the hypergraph container result in [8, 37].

First, we need the following lemma, which is more general and slightly stronger than Lemma 4.2 in [31] but with a very similar proof. Let H be a hypergraph, $\lambda > 0$ be a real number, and \mathcal{A} be a family of subsets of V(H). We say that H is (\mathcal{A}, λ) -dense if $e(H[A]) \geq \lambda e(H)$ for every $A \in \mathcal{A}$.

Lemma 4.1. Let ε be a constant such that $0 < \varepsilon \ll 1$, and let n, k be integers such that $k \geq 3$ and $n \geq 40k^2/\varepsilon$. Let $a_1 = \varepsilon/(8k), a_2 = \varepsilon/(8k^3)$, and $a_3 < \varepsilon/(2^k \cdot k! \cdot 8k)$. Let H be a (1,k)-partite (k+1)-graph with vertex partition classes X, [n] with |X| = n/k. Suppose $d_H(\{x,v\}) \geq \binom{n-1}{k-1} - \binom{n-n/k}{k-1} - a_3n^{k-1}$ for any $x \in X$ and $v \in [n]$ and $|E(\mathcal{H}_k(n,n/k)) \setminus E(\mathcal{H}_0)| \geq \varepsilon e(\mathcal{H}_k(n,n/k))$ for any isomorphic copy \mathcal{H}_0 of H with $V(\mathcal{H}_0) = V(\mathcal{H}_k(n,n/k))$. Then H is (\mathcal{A},a_1) -dense, where $\mathcal{A} = \{A \subseteq V(H) : |A \cap X| \geq (1/k - a_1)n$ and $|A \cap [n]| \geq (1 - 1/k - a_2)n\}$.

Proof. We prove this by way of contradiction. Suppose that there exists $A \subseteq V(H)$ such that $|A \cap X| \ge (1/k - a_1)n$, $|A \cap [n]| \ge (1 - 1/k - a_2)n$, and $e(H[A]) \le a_1e(H)$. Without loss of generality, we may choose A such that $|A \cap X| = (1/k - a_1)n$ and $|A \cap [n]| = (1 - 1/k - a_2)n$. Let $U \subseteq [n]$ such that $A \cap [n] \subseteq U$ and |U| = n - n/k. Let $A_1 = A \cap X$, $A_2 = X \setminus A$, $B_1 = A \cap [n]$, and $B_2 = U \setminus A$. Relabel the vertices of H in [n] if necessary so that $U = [n] \setminus [n/k]$.

Let H_0 denote the isomorphic copy of H with the same partition classes X, [n] as $\mathcal{H}_k(n, n/k)$. We derive a contradiction by showing that $|E(\mathcal{H}_k(n, n/k)) \setminus E(H_0)| < \varepsilon e(\mathcal{H}_k(n, n/k))$. Note that

$$e(\mathcal{H}_k(n, n/k)) = \frac{n}{k} \left(\binom{n}{k} - \binom{n - n/k}{k} - \binom{n/k}{k} \right) \ge \frac{n}{k} \binom{n}{k} / k$$

and, further

$$(4.1) \quad e(\mathcal{H}_k(n, n/k)) \ge \frac{n}{k} \binom{n}{k} / k = \frac{n^2}{k^3} \binom{n-1}{k-1} > \frac{n^2}{k^3} \binom{n-n/k}{k-1} > \frac{n^3}{k^4} \binom{n-n/k}{k-2}.$$

Also, since n > 2k,

$$(4.2) e(\mathcal{H}_k(n,n/k)) \ge \frac{n}{k} \binom{n}{k} / k > \frac{n^{k+1}}{2^k \cdot k! \cdot k^2}.$$

Consider $x \in A_1$ and $v \in [n] \setminus [n/k]$. Let $E_{H_0}(B_1, \{x, v\}) = \{e \in E(H_0) : \{x, v\} \subseteq e \subseteq B_1 \cup \{x, v\}\}$. Note that, for $v \in B_1$, we have

$$\begin{split} &|\{e \in E(H_0): \{x,v\} \subseteq e \text{ and } e \cap [n/k] \neq \emptyset\}|\\ &\geq d_{H_0}(\{x,v\})\\ &-|\{e \in E(H_0-[n/k]): \{x,v\} \subseteq e \text{ and } e \cap B_2 \neq \emptyset\}| - |E_{H_0}(B_1,\{x,v\})|\\ &\geq \left(\binom{n-1}{k-1} - \binom{n-n/k}{k-1} - a_3 n^{k-1}\right) - a_2 n \binom{n-n/k}{k-2} - |E_{H_0}(B_1,\{x,v\})|. \end{split}$$

For $v \in B_2$, we have

$$\begin{aligned} & |\{e \in E(H_0) : \{x, v\} \subseteq e \text{ and } e \cap [n/k] \neq \emptyset\}| \\ & \geq d_{H_0}(\{x, v\}) - |\{e \in E(H_0 - [n/k]) : \{x, v\} \subseteq e\}| \\ & \geq \left(\binom{n-1}{k-1} - \binom{n-n/k}{k-1} - a_3 n^{k-1} \right) - \binom{n-n/k}{k-1}. \end{aligned}$$

So we have

$$\sum_{x \in A_1} \sum_{v \in [n] \setminus [n/k]} |\{e \in E(H_0), : \{x, v\} \subseteq e \text{ and } e \cap [n/k] \neq \emptyset\}|$$

$$\geq \sum_{x \in A_1} \sum_{v \in B_1} \left(\binom{n-1}{k-1} - \binom{n-n/k}{k-1} - a_2 n \binom{n-n/k}{k-2} - |E_{H_0}(B_1, \{x, v\})| \right)$$

$$\sum_{x \in A_1} \sum_{v \in B_2} \left(\binom{n-1}{k-1} - \binom{n-n/k}{k-1} - a_3 n^{k-1} - \binom{n-n/k}{k-1} \right)$$

$$\geq \sum_{x \in A_1} \sum_{v \in [n] \setminus [n/k]} \left(\binom{n-1}{k-1} - \binom{n-n/k}{k-1} - a_3 n^{k-1} - a_2 n \binom{n-n/k}{k-2} \right)$$

$$- \sum_{x \in A_1} \sum_{v \in B_2} \binom{n-n/k}{k-1} - \sum_{x \in A_1} \sum_{v \in B_1} |E_{H_0}(B_1, \{x, v\})|$$

$$= \sum_{x \in A_1} \sum_{v \in [n] \setminus [n/k]} \left(\binom{n-1}{k-1} - \binom{n-n/k}{k-1} - a_3 n^{k-1} - a_2 n \binom{n-n/k}{k-2} \right)$$

$$(4.3) \quad -|A_1||B_2| \binom{n-n/k}{k-1} - |E(H_0[A])|.$$

Note that

$$a_{2} \frac{n^{3}}{k^{2}} \binom{n - n/k}{k - 2} - |A_{1}||B_{2}| \binom{n - n/k}{k - 1} > a_{2} \frac{n^{2}}{k} \left(\frac{n}{k} \binom{n - n/k}{k - 2} - \binom{n - n/k}{k - 1} \right)$$
$$> a_{2} \frac{n^{2}}{k} \left(\frac{n}{k} \binom{n - n/k - 1}{k - 2} - \binom{n - n/k}{k - 1} \right)$$
$$= 0$$

That is,

(4.4)
$$a_2 \frac{n^3}{k^2} \binom{n - n/k}{k - 2} - |A_1| |B_2| \binom{n - n/k}{k - 1} > 0.$$

Therefore, we have

$$\begin{split} &|E(\mathcal{H}_{k}(n,n/k))\setminus E(H_{0})|\\ &=\sum_{x\in A_{1}}|\{e\in E(\mathcal{H}_{k}(n,n/k))\setminus E(H_{0}):x\in e\}|\\ &+\sum_{x\in A_{2}}|\{e\in E(\mathcal{H}_{k}(n,n/k))\setminus E(H_{0}):x\in e\}|\\ &\leq \sum_{x\in A_{1}}\sum_{v\in [n]\setminus [n/k]}|\{e\in E(\mathcal{H}_{k}(n,n/k))\setminus E(H_{0}):\{x,v\}\subseteq e\}|+|A_{2}|\cdot e(H_{k}(n,n/k))\\ &\leq \sum_{x\in A_{1}}\sum_{v\in [n]\setminus [n/k]}\left(\binom{n-1}{k-1}-\binom{n-n/k}{k-1}\right)\\ &-|\{e\in E(H_{0}):\{x,v\}\subseteq e\text{ and }e\cap [n/k]\neq\emptyset\}|)\\ &+|A_{2}|\cdot e(H_{k}(n,n/k)) \end{split}$$

$$\leq \sum_{x \in A_1} \sum_{v \in [n] \setminus [n/k]} \left(a_3 n^{k-1} + a_2 n \binom{n-n/k}{k-2} \right) + |A_1| |B_2| \binom{n-n/k}{k-1} + |E(H_0[A])|$$

$$+ (a_1 n) \cdot e(\mathcal{H}_k(n, n/k)) / (n/k) \quad \text{(by (4.3))}$$

$$\leq \frac{n}{k} \left(n - \frac{n}{k} \right) \left(a_3 n^{k-1} + a_2 n \binom{n-n/k}{k-2} \right) + |A_1| |B_2| \binom{n-n/k}{k-1}$$

$$+ a_1 e(H_0) + k a_1 \cdot e(\mathcal{H}_k(n, n/k))$$

$$< \frac{n^2}{k} \left(a_3 n^{k-1} + a_2 n \binom{n-n/k}{k-2} \right) + a_1 e(H_0) + k a_1 \cdot e(\mathcal{H}_k(n, n/k)) \quad \text{(by (4.4))}$$

$$< a_1 e(H_0) + \left(2^k \cdot k! \cdot k a_3 + k^3 a_2 + k a_1 \right) \cdot e(\mathcal{H}_k(n, n/k)) \quad \text{(by (4.1) and (4.2))}$$

$$\leq a_1 \frac{n}{k} \binom{n}{k} + \left(2^k \cdot k! \cdot k a_3 + k^3 a_2 + k a_1 \right) \cdot e(\mathcal{H}_k(n, n/k))$$

$$\leq (k a_1 + 2^k \cdot k! \cdot k a_3 + k^3 a_2 + k a_1) \cdot e(\mathcal{H}_k(n, n/k)) \quad \text{(by (4.2))}$$

$$\leq \varepsilon \cdot e(\mathcal{H}_k(n, n/k)),$$

a contradiction.

To prove a fractional matching lemma, we need a recent result of Gao et al. [15] on Erdős' matching conjecture for stable graphs. For a hypergraph H, let $\nu(H)$ denote the size of maximum matching in H. Luczak and Mieczkowska [32] proved that there exists a positive integer n_1 such that, for integers m, n with $n \geq n_1$ and $1 \leq m \leq n/3$, if H is an n-vertex 3-graph with $e(H) > \max\{\binom{n}{3} - \binom{n-m+1}{3}, \binom{3m-1}{3}\}$, then $\nu(H) \geq m$. The result of Gao et al. [15] may be viewed as a stability version of this Luczak–Mieczkowska result.

For sets $e = \{u_1, \ldots, u_k\} \subseteq [n]$ and $f = \{v_1, \ldots, v_k\} \subseteq [n]$ with $u_i < u_{i+1}$ and $v_i < v_{i+1}$ for $i \in [k-1]$, we write $e \le f$ if $u_i \le v_i$ for all $i \in [k]$. A hypergraph H with V(H) = [n] and $E(H) \subseteq {[n] \choose k}$ is said to be *stable* if, for any $e, f \in {[n] \choose k}$ with $e \le f$, $e \in E(H)$ implies $f \in E(H)$. The following is a special case (when m = 3n/4) of Lemma 4.2 in [15]. Note that one of the extremal configurations of Lemma 4.2 in [15], namely, $\mathcal{D}(n, m, 3)$ (the 3-graph with vertex set [n] and edge set ${[3n/4-1] \choose 3}$), does not occur here.

LEMMA 4.2 (see Gao et al. [15]). For any $\eta > 0$ there exists $n_0 > 0$ with the following properties: Let n be an integer with $n \ge n_0$, and let H be a stable 3-graph on the vertex set [n]. If $e(H) > {n \choose 3} - {3n/4 \choose 3} - \eta^4 n^3$ and $\nu(H) < n/4$, then H is η -close to $H_3^*(n, n/4 - 1)$.

We will use perfect fractional matchings in a hypergraph H not close to $\mathcal{H}_4(n,n/4-1)$ to obtain an almost regular subgraph of H. A fractional matching in H is a function $f: E(H) \to \mathbb{R}^+$, where \mathbb{R}^+ is the set of nonnegative reals, such that $\sum_{v \in e} f(e) \leq 1$ for all $v \in V(H)$, and it is perfect if $\sum_{v \in e} f(e) = 1$ for all $v \in V(H)$. We write $\nu_f(H) = \max\{\sum_{e \in E(H)} f(e) : f \text{ is a fractional matching in } H\}$.

Lemma 4.3. For any $\varepsilon > 0$ there exist $0 < \rho \ll \varepsilon$ and $n_0 = n_0(\varepsilon)$ such that, for any integer n with $n \ge n_0$ and $n \equiv 0 \pmod 4$, the following holds: Let H be a balanced (1,4)-partite 5-graph with partition classes X, [n] such that $d_H(\{x,v\}) \ge \binom{n-1}{3} - \binom{3n/4}{3} - 3\rho n^3$ for any $x \in X$ and $v \in [n]$ and H contains no independent set S with $|S \cap X| \ge n/4 - \varepsilon n$ and $|S \cap [n]| \ge 3n/4 - \varepsilon n$; then H contains a fractional perfect matching.

Proof. Let $X = \{x_1, \dots, x_{n/4}\}$, and let $\omega : V(H) \to R^+$ be a minimum fractional vertex cover of H, that is, $\sum_{v \in e} \omega(v) \ge 1$ for all $e \in E(H)$, and subject to this,

 $\omega(H) := \sum_{v \in V(H)} \omega(v)$ is minimum. We may assume that the vertices in X and [n]are labeled such that $\omega(x_1) \geq \cdots \geq \omega(x_{n/4})$ and $\omega(1) \geq \cdots \geq \omega(n)$.

Let H' be the (1,4)-partite 5-graph with vertex set V(H) and edge set

$$E(H) \cup \left\{ e \in \binom{V(H)}{5} : |e \cap X| = 1 \text{ and } \sum_{v \in e} w(v) \ge 1 \right\}.$$

Thus, by definition, ω is also a vertex cover of H'. Moreover, since $E(H) \subseteq E(H')$, ω is also a minimum fractional vertex cover of H'. Hence, by linear programming duality, we have $\nu_f(H) = \omega(H) = \omega(H') = \nu_f(H')$. Therefore, it suffices to show that H' has a perfect matching. First, we show that H' is stable.

(1) Let $T_1 = \{x_{i_1}, i_2, i_3, i_4, i_5\}$ and $T_2 = \{x_{j_1}, j_2, j_3, j_4, j_5\}$ be balanced 5-element subsets of V(H), with $x_{i_1}, x_{j_1} \in X$ and $i_l \geq j_l$ for $l \in [5]$. Then $T_2 \in E(H')$ implies that $T_1 \in E(H')$.

Since $i_l \geq j_l$ for $l \in [5]$, we have $\omega(x_{i_1}) \geq \omega(x_{j_1})$ and $\omega(i_l) \geq \omega(j_l)$ for $2 \leq l \leq 5$. Note that $\sum_{v \in T_2} \omega(v) \geq 1$ as $T_2 \in E(H')$. Thus $\sum_{v \in T_1} \omega(v) \geq \sum_{v \in T_2} \omega(v) \geq 1$. Hence, $T_1 \in E(H')$ by the definition of H', which completes the proof of (1).

Let G be the 3-graph with vertex set [n-1] and edge set $N_H(\{x_{n/4},[n]\})$. We may assume that

(2) G has no matching of size n/4.

Suppose G has a matching of size n/4, say $M = \{e_1, \dots, e_{n/4}\}$. Partition $V(H) \setminus V(M)$ into 2-sets $f_1, \ldots, f_{n/4}$ such that $|f_i \cap X| = 1$ for all $i \in [n/4]$. By (1), $M \subseteq N_H(f_i)$. Thus $M' = \{e_i \cup f_i : i \in [n/4]\}$ is a perfect matching in H. So we may assume (2).

Since $d_H(\{x,v\}) \ge {n-1 \choose 3} - {3n/4 \choose 3} - 3\rho n^3$ for any $x \in X$ and $v \in [n], e(G) >$ $\binom{n-1}{3} - \binom{3n/4}{3} - 3\rho n^3$. Hence, by (2) and by Lemma 4.2, G is η -close to $H_3^*(n-1)$ 1, n/4-1) with respect to the partition $[n-1]\setminus [n/4-1], [n/4-1],$ where $\eta=(3\rho)^{1/4}$. Let $Y = [n/4 - \lceil \eta n \rceil]$. We claim that

(3) for every $y \in Y$, $d_G(y) \ge {n-1 \choose 2} - 4\sqrt{\eta}n^2$. Otherwise, since G is stable, $d_G(z) < {n-1 \choose 2} - 4\sqrt{\eta}n^2$ for $z \in Z := \lfloor n/4 - 1 \rfloor \backslash \lfloor n/4 - 1 \rfloor$ $\lceil \eta n \rceil$]. Hence,

$$|E(H_3^*(n-1, n/4-1)) \setminus E(G)| \ge \frac{1}{3} \sum_{z \in Z} \left(\binom{n-1}{2} - d_G(z) \right)$$
$$\ge \frac{1}{3} (\sqrt{\eta} n - 1) 4 \sqrt{\eta} n^2 > \eta (n-1)^3,$$

a contradiction which completes the proof of (3).

Since H contains no independent set S such that $|S \cap X| \ge n/4 - \varepsilon n$ and $|S \cap [n]| \ge n/4 - \varepsilon n$ $3n/4 - \varepsilon n$, we may greedily find a matching M_1 of size $\lceil \sqrt{\eta} n \rceil$ in H - Y.

Next we greedily construct a matching M_2 of size |Y| in $G - V(M_1)$ such that $|e \cap Y| = 1$ for all $e \in M_2$. For $y \in Y$, note that

$$|\{e \in E(G) : y \in e \text{ and } e \cap V(M_1) \neq \emptyset\}| \le 3|M_1|n < 3\lceil \sqrt{\eta}n\rceil n \le 4\lceil \sqrt{\eta}\rceil n^2$$
.

By (3), $d_G(1) - 4\sqrt{\eta}n^2 \ge {n-1 \choose 2} - 8\sqrt{\eta}n^2 > 0$; so there exists an edge $e_1 \in E(G) \setminus V(M_1)$ such that $|e_1 \cap Y| = 1$. Now suppose we have found a maximal matching $\{e_1, e_2, \ldots, e_r\}$ in $G - V(M_1)$ such that $|e_i \cap Y| = 1$ for all $i \in [r]$. If $r \geq |Y| = 1$ $[n/4 - [\sqrt{\eta}n]]$, then $\{e_1, \ldots, e_r\}$ gives the desired matching M_2 . So assume r < |Y|. Write $G_r := (G - V(M_1)) - (\bigcup_{i=1}^r e_i)$. Let $v \in Y \setminus (V(M_1) \cup (\bigcup_{i=1}^r e_i))$. Note that $|[n] \setminus (Y \cup V(M_1) \cup (\bigcup_{i=1}^r e_i))| > n/4$. Since $d_G(v) > \binom{n-1}{2} - 4\sqrt{\eta}n^2$, the number of edges e in G with $v \in e$ and $e \setminus \{v\} \subseteq [n] \setminus (Y \cup V(M_1) \cup (\bigcup_{i=1}^r e_i))$ is at least

$$\binom{|[n]\setminus (Y \cup V(M_1) \cup (\cup_{i=1}^r e_i))|}{2} - 4\sqrt{\eta}n^2 > \binom{n/4}{2} - 4\sqrt{\eta}n^2 > 0.$$

So there exists an edge e_{r+1} in G_r such that $|e_{r+1} \cap Y| = 1$, contradicting the maximality of r.

Let $M_2 = \{e_1, \ldots, e_{n/4-\lceil\sqrt{\eta}n\rceil}\}$. Note $V(H) \setminus (V(M_1) \cup V(M_2))$ contains $n/4 - \lceil\sqrt{\eta}n\rceil$ vertex-disjoint 2-set, say $f_1, \ldots, f_{n/4-\lceil\sqrt{\eta}n\rceil}$, such that $|f_i \cap X| = 1$ for $i \in [n/4-\lceil\sqrt{\eta}n\rceil]$. By (1), $M_2 \subseteq N_{H'}(f_i)$ for $i \in [n/4-\lceil\sqrt{\eta}n\rceil]$. Write $M_2' = \{f_i \cup e_i : i \in [n/4-\lceil\sqrt{\eta}n\rceil]\}$. Then $M_1 \cup M_2'$ is a perfect matching in H.

5. Random rounding. We need a result of Lu, Yu, and Yuan [31] on the independence number of a subgraph of a balanced (1, k)-partite (k+1)-graph induced by a random subset of vertices. It is Lemma 4.3 in [31] which is stated for (1, 3)-partite 4-graphs, but the same proof (which uses the hypergraph container result) also works for (1, k)-partite (k+1)-graphs.

LEMMA 5.1 (see Lu, Yu, and Yuan [31]). Let $l, \varepsilon', \alpha_1, \alpha_2$ be positive reals, let $\alpha > 0$ with $\alpha \ll \min\{\alpha_1, \alpha_2\}$, let k, n be positive integers, and let H be a (1, k)-partite (k+1)-graph with partition classes Q, P such that k|Q| = |P| = n, $e(H) \ge \ln^{k+1}$, and $e(H[F]) \ge \varepsilon' e(H)$ for all $F \subseteq V(H)$ with $|F \cap P| \ge \alpha_1 n$ and $|F \cap Q| \ge \alpha_2 n$. Let $R \subseteq V(H)$ be obtained by taking each vertex of H uniformly at random with probability $n^{-0.9}$. Then, with probability at least $1 - n^{O(1)} e^{-\Omega(n^{0.1})}$, every independent set J in H[R] satisfies $|J \cap P| \le (\alpha_1 + \alpha + o(1))n^{0.1}$ or $|J \cap Q| \le (\alpha_2 + \alpha + o(1))n^{0.1}$.

We also need Janson's inequality to provide an exponential upper bound for the lower tail of a sum of dependent zero-one random variables. See Theorem 8.7.2 in [7].

Lemma 5.2 (see Janson's inequality [7]). Let Γ be a finite set and $p_i \in [0,1]$ be a real for $i \in \Gamma$. Let Γ_p be a random subset of Γ such that the elements are chosen independently with $\mathbb{P}[i \in \Gamma_p] = p_i$ for $i \in \Gamma$. Let S be a family of subsets of Γ . For every $A \in S$, let $I_A = 1$ if $A \subseteq \Gamma_p$ and 0 otherwise. Define $X = \sum_{A \in S} I_A$, $\lambda = \mathbb{E}[X]$, and $\Delta = \frac{1}{2} \sum_{A \neq B} \sum_{A \cap B \neq \emptyset} \mathbb{E}[I_A I_B]$. Then, for $0 \leq t \leq \lambda$, we have

$$\mathbb{P}[X \leq \lambda - t] \leq \exp\left(-\frac{t^2}{2\lambda + 4\Delta}\right).$$

Now, we use the Chernoff bound and Janson's inequality to prove a result on several properties of certain random subgraphs.

LEMMA 5.3. Let n, k be integers such that $n \ge k \ge 3$, let H be a (1, k)-partite (k+1)-graph with partition classes A, B and k|A| = |B| = n, and let $A_3 \subseteq A$ and $A_4 \subseteq B$ with $|A_i| = n^{0.99}$ for i = 3, 4. Take $n^{1.1}$ independent copies of R, and denote them by R^i , $1 \le i \le n^{1.1}$, where R is chosen from V(H) by taking each vertex uniformly at random with probability $n^{-0.9}$ and then deleting $O(n^{0.06})$ vertices so that $|R| \in (k+1)\mathbb{Z}$ and $k|R \cap A| = |R \cap B|$. For each $S \subseteq V(H)$, let $Y_S := |\{i : S \subseteq R^i\}|$. Then, with probability at least 1 - o(1), all of the following statements hold:

- (i) $Y_{\{v\}} = (1 \pm n^{-0.01})n^{0.2}$ for all $v \in V(H)$.
- (ii) $Y_{\{u,v\}} \leq 2$ for all $\{u,v\} \subseteq V(H)$.
- (iii) $Y_e \leq 1$ for all $e \in E(H)$.

- (iv) For all $i = 1, ..., n^{1.1}$, we have $|R_i \cap A| = (1/k \pm o(n^{-0.04}))n^{0.1}$ and $|R_i \cap B| = (1/k \pm o(n^{-0.04}))n^{0.1}$ $(1 \pm o(n^{-0.04}))n^{0.1}$.
- (v) Suppose ρ is a constant with $0 < \rho < 1$ such that $d_H(\{x,v\}) \geq {n-1 \choose k-1}$ $\binom{n-n/k}{k-1} - \rho n^{k-1}$ for all $x \in A$ and $v \in B$. Then for $1 \le i \le n^{1.1}$ and for $x \in R_i \cap A \text{ and } v \in R_i \cap B, \text{ we have}$

$$d_{R_i}(\{x,v\}) > \binom{|R_i \cap B| - 1}{k-1} - \binom{|R_i \cap B| - |R_i \cap B|/k}{k-1} - 3\rho |R_i \cap B|^{k-1}.$$

(vi) $|R_i \cap A_j| = |A_j| n^{-0.9} \pm n^{0.06}$ for $1 < i < n^{1.1}$ and $j \in \{3, 4\}$.

Proof. For $1 \le i \le n^{1.1}$ and $j \in \{3,4\}$, $\mathbb{E}[|R_i \cap A|] = n^{0.1}/k$, $\mathbb{E}[|R_i \cap B|] = n^{0.1}$ and $\mathbb{E}[|R_i \cap A_j|] = n^{-0.9}|A_j|$. Recall the assumptions $|A_3| = |A_4| = n^{0.99}$. By Lemma 3.1, we have

$$\mathbb{P}\left(\left||R_{i}\cap A|-n^{0.1}/k\right| \geq n^{0.06}\right) \leq e^{-\Omega(n^{0.02})},$$

$$\mathbb{P}\left(\left||R_{i}\cap B|-n^{0.1}\right| \geq n^{0.06}\right) \leq e^{-\Omega(n^{0.02})}, \text{ and }$$

$$\mathbb{P}\left(\left||R_{i}\cap A_{j}|-|A_{j}|n^{-0.9}\right| \geq n^{0.06}\right) \leq e^{-\Omega(n^{0.03})}.$$

Hence, with probability at least $1 - O(n^{1.1})e^{-\Omega(n^{0.02})}$, (iv) and (vi) hold. For every $v \in V(H)$, $\mathbb{E}[Y_{\{v\}}] = n^{1.1} \cdot n^{-0.9} = n^{0.2}$. BvLemma 3.1 again,

$$\mathbb{P}\left(\left||Y_{\{v\}}| - n^{0.2}\right| \ge n^{0.19}\right) \le e^{-\Omega(n^{0.18})}.$$

Hence, with probability at least $1 - O(n)e^{-\Omega(n^{0.18})}$, (i) holds.

For positive integers p, q, let $Z_{p,q} = |S \in \binom{V(H)}{p}: Y_S \ge q|$. Then

$$\mathbb{E}[Z_{p,q}] \le \binom{n}{p} \binom{n^{1.1}}{q} (n^{-0.9})^{pq} \le n^{p+1.1q-0.9pq}.$$

So $\mathbb{E}[Z_{2,3}] \leq n^{-0.1}$ and $\mathbb{E}[Z_{k,2}] \leq n^{2.2-0.8k} \leq n^{-0.2}$ for $k \geq 3$. Hence by Markov's inequality, (ii) and (iii) hold with probability at least 1 - o(1).

Finally we show (v). Suppose for all $x \in A$ and $v \in B$, $d_H(\{x,v\}) \geq {n-1 \choose k-1}$ $\binom{n-n/k}{k-1} - \rho n^{k-1}$. We see that, for $1 \leq i \leq n^{1.1}$ and for $x \in R_i \cap A$ and $v \in R_i \cap B$,

$$\mathbb{E}\left[d_{R_{i}}(\{x,v\})\right] > \binom{n-1}{k-1}n^{-0.9(k-1)} - \binom{n-n/k}{k-1}n^{-0.9(k-1)} - \rho n^{k-1}n^{-0.9(k-1)} \\ > \binom{n^{0.1}-1}{k-1} - \binom{n^{0.1}-n^{0.1}/k}{k-1} - \rho n^{0.1(k-1)}.$$

By (iv), with probability at least $1 - O(n^{1.1})e^{-\Omega(n^{0.02})}$, for all $i = 1, \dots, n^{1.1}$, we have $|R_i \cap B| = (1 + o(n^{-0.04}))n^{0.1}.$ Thus for all $x \in R_i \cap A$ and $v \in R_i \cap B$,

$$\mathbb{E}\left[d_{R_{i}}(\{x,v\})\right] > \binom{|R_{i} \cap B|}{k-1} - \binom{|R_{i} \cap B| - |R_{i} \cap B|/k}{k-1} - 2\rho|R_{i} \cap B|^{k-1}.$$

We wish to apply Lemma 5.2 with $\Gamma = B$, $\Gamma_p = R_i \cap B$, and $S = \binom{N_H(\{x,v\}) \cap B}{k-1}$. We define

$$\Delta = \frac{1}{2} \sum_{b_1, b_2 \in S, b_1 \neq b_2, b_1 \cap b_2 \neq \emptyset} \mathbb{E}[I_{b_1} I_{b_2}] \le \frac{1}{2} |R_i \cap B|^{2k-3}$$

Thus,

$$\begin{split} & \mathbb{P}\left(d_{R_{i}}(\{x,v\}) \leq \binom{|R_{i}\cap B|}{k-1} - \binom{|R_{i}\cap B| - |R_{i}\cap B|/k}{k-1} - 3\rho|R_{i}\cap B|^{k-1}\right) \\ \leq & \mathbb{P}\left(d_{R_{i}}(\{x,v\}) \leq \mathbb{E}[d_{R_{i}}(\{x,v\})] - \rho|R_{i}\cap B|^{k-1}\right) \\ \leq & \exp(-\frac{(\rho|R_{i}\cap B|^{k-1})^{2}}{2\mathbb{E}(d_{R_{i}}(\{x,v\})) + 4\Delta}) \quad \text{(by Lemma 5.2)} \\ \leq & \exp(-\frac{\rho^{2}|R_{i}\cap B|^{2k-2}}{2\binom{|R_{i}\cap B|}{k-1} + 2|R_{i}\cap B|^{2k-3}}) \\ \leq & \exp(-\Omega(n^{0.1})). \end{split}$$

Therefore, with probability at least $1 - O(n^{1.1})e^{-\Omega(n^{0.1})}$, (v) holds.

By applying union bound, (i) - (vi) all hold with probability 1 - o(1).

Now we prove that when the hypergraph H in Theorem 1.2 is not close to $\mathcal{H}_4(n, n/4)$ then H contains an almost regular spanning subgraph.

LEMMA 5.4. Let $0 < \rho \ll \varepsilon \ll 1$ be reals and $n \equiv 0 \pmod{4}$ be sufficiently large. Let H be a balanced (1,4)-partite 5-graph with partition classes X, [n] such that |X| = n/4. Suppose that $d_H(\{x,v\}) > {n-1 \choose 3} - {3n/4 \choose 3} - \rho n^3$ for all $x \in X$ and $v \in [n]$. If H is not ε -close to $\mathcal{H}_4(n,n/4)$, then there exists a spanning subgraph H' of H such that the following conditions hold:

- (1) For all $x \in V(H')$, with at most $n^{0.99}$ exceptions, $d_{H'}(x) = (1 \pm n^{-0.01})n^{0.2}$;
- (2) For all $x \in V(H')$, $d_{H'}(x) < 2n^{0.2}$;
- (3) For any two distinct $x, y \in V(H'), d_{H'}(\{x, y\}) < n^{0.19}$.

Proof. Let $A_3\subseteq X$ and $A_4\subseteq [n]$ with $|A_i|=n^{0.99}$ for i=3,4. Let $R_1,\ldots,R_{n^{1.1}}$ be defined as in Lemma 5.3. By (iv) of Lemma 5.3, we have, for all $i=1,\ldots,n^{1.1}$,

$$|R_i \cap X| = (1/4 + o(n^{-0.04}))n^{0.1}$$
 and $|R_i \cap [n]| = (1 + o(n^{-0.04}))n^{0.1}$.

By (v) of Lemma 5.3, we have, for $1 \le i \le n^{1.1}$ and for $x \in X \cap R_i$ and $v \in [n] \cap R_i$,

$$d_{R_i}(\{x,v\}) > \binom{|R_i \cap [n]|}{3} - \binom{3|R_i \cap [n]|/4}{3} - 3\rho|R_i \cap [n]|^3.$$

By (iv) and (vi) of Lemma 5.3, we may choose $I_i \subseteq R_i \cap (A_3 \cup A_4)$ such that, for $i = 1, \ldots, n^{1.1}, R'_i := R_i \setminus I_i$ is balanced and $|R'_i| = (1 - o(1))|R_i|$.

Let $a_1 = \varepsilon/32$, $a_2 = \varepsilon/512$, and $a_3 < \varepsilon(2^4 \cdot 4! \cdot 32)^{-1}$. By applying Lemma 4.1 to H, a_1, a_2, a_3 , we see that H is (\mathcal{F}, a_1) -dense, where

$$\mathcal{F} = \{U \subset V(H) : |U \cap X| > (1/4 - a_1)n, |U \cap [n]| > (3/4 - a_2)n\}.$$

Now we apply Lemma 5.1 to H with $l = (3 \cdot 4^3 \cdot 4!)^{-1}$, $\alpha_1 = 1/4 - a_1$, $\alpha_2 = 3/4 - a_2$, and $\varepsilon' = a_1$. Therefore, with probability at least $1 - n^{O(1)} e^{-\Omega(n^{0.1})}$, for any independent set S of R_i' , $|S \cap R_i' \cap X| \le (1/4 - a_1 + o(1))n^{0.1}$ or $|S \cap R_i' \cap [n]| \le (3/4 - a_2 + o(1))n^{0.1}$.

By applying Lemma 4.3 to each $H[R'_i]$, we see that each $H[R'_i]$ contains a fractional perfect matching ω_i . Let $H^* = \bigcup_{i=1}^{n-1} R'_i$. We select a generalized binomial subgraph H' of H^* by letting V(H') = V(H) and independently choosing edge e from $E(H^*)$, with probability $\omega_{i_e}(e)$ if $e \subseteq R'_{i_e}$. (By (iii) of Lemma 5.3, for each $e \in E(H^*)$, i_e is uniquely defined.)

Note that, since w_i is a fractional perfect matching of $H[R'_i]$ for $1 \le i \le n^{1.1}$, $\sum_{e \ni v} w_i(e) \le 1$ for $v \in R'_i$. By (i) of Lemma 5.3 and by Lemma 3.1, $d_{H'}(v) = (1 \pm n^{-0.01})n^{0.2}$ for any vertex $v \in V(H) \setminus (\bigcup_{i=1}^{n^{1.1}} I_i)$, and $d_{H'}(v) \le (1 + n^{-0.01})n^{0.2} < 2n^{0.2}$ for vertex $v \in \bigcup_{i=1}^{n^{1.1}} I_i$. By (ii) of Lemma 5.3, $d_{H'}(\{x,y\}) \le 2 < n^{0.19}$ for any $\{x,y\} \in \binom{V(H)}{2}$. Therefore, H' is the desired hypergraph.

We also need the following lemma attributed to Pippenger and Spencer [34] (see Theorem 4.7.1 in [7]), which extends a result of Frankl and Rödl [14].

LEMMA 5.5 (see Pippenger and Spencer [34]). For every integer $k \geq 2$ and reals r > 1 and a > 0, there are $\gamma = \gamma(k, r, a) > 0$ and $d_0 = d_0(k, r, a)$ such that for every positive integer n and $D \geq d_0$ the following holds: Every k-uniform hypergraph H = (V, E) on a set V of n vertices in which all vertices have positive degrees and which satisfies the conditions that

- (1) for all vertices $x \in V$ but at most γn of them, $d(x) = (1 \pm \gamma)D$;
- (2) for all $x \in V$, d(x) < rD;
- (3) for any two distinct $x, y \in V$, $d(x, y) < \gamma D$ contains a matching of size at least (1 (k 1)a)(n/k).

6. Proof of Lemma 1.4.

Proof of Lemma 1.4. Let $0 < \rho' \ll \rho \ll \eta \ll \varepsilon \ll 1$. By Lemma 3.2, there exists a matching M_1 with $|M_1| \leq \rho n$ such that, for any balanced set S with $|S| \leq \rho' n$, $H[V(M_1) \cup S]$ has a perfect matching.

Let $H_1 = H - V(M_1)$. Then H_1 is not $(\varepsilon/2)$ -close to $\mathcal{H}_4(n-4|M_1|, n/4-|M_1|)$. Write $n_1 = |[n] \setminus V(M_1)|$. Furthermore, for all $x \in V(H_1) \cap X$ and $v \in V(H_1) \cap [n]$,

$$d_{H_1}(\{x,v\}) \geq \binom{n-1}{3} - \binom{3n/4}{3} - 4|M_1|n^2 > \binom{n_1-1}{3} - \binom{3n_1/4}{3} - 10\rho n_1^3.$$

By Lemma 5.4, H_1 has a spanning subgraph H'_1 such that the following conditions hold:

- (1) For all $x \in V(H'_1)$, with at most $n_1^{0.99}$ exceptions, $d_{H'_1}(x) = (1 \pm n_1^{-0.01})n_1^{0.2}$;
- (2) For all $x \in V(H'_1)$, $d_{H'_1}(x) < 2n_1^{0.2}$;
- (3) For any two distinct $x, y \in V(H'_1), d_{H'_1}(\{x, y\}) < n_1^{0.19}$.

By Lemma 5.5, H_1' has a matching, say M_2 , covering all but at most $\rho' n$ vertices. Write $S = V(H_1) \setminus V(M_2)$. Recall $H[V(M_1) \cup S]$ has a perfect matching M_1' . Now $M_1' \cup M_2$ gives the desired perfect matching.

Acknowledgments. We would like to thank the anonymous referees for their careful reading and useful suggestions.

REFERENCES

- [1] R. Aharoni and E. Berger, *Rainbow matchings in r-partite r-graphs*, Electron. J. Combin., 16 (2009), R119.
- [2] R. AHARONI AND D. HOWARD, A rainbow r-partite version of the Erdős-Ko-Rado theorem, Combin. Probab. Comput., 26 (2017), pp. 321–337.
- [3] R. Aharoni and D. Howard, Size Conditions for the Existence of Rainbow Matchings, preprint.
- [4] J. AKIYAMA AND P. FRANKL, On the size of graphs with complete-factors, J. Graph Theory, 9 (1985), pp. 197–201.
- [5] N. Alon, H. Huang, and B. Sudakov, Nonnegative k-sums, fractional covers, and probability of small deviations, J. Combin. Theory Ser. B, 102 (2012), pp. 784-796.

- [6] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Rucinski, and B. Sudakov, Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels, J. Combin. Theory Ser. A, 119 (2012), pp. 1200–1215.
- [7] N. Alon and J. Spencer, The Probabilistic Method, 4th ed., John Wiley and Sons, Hoboken, NJ, 2015.
- [8] J. BALOGH, R. MORRIS, AND W. SAMOTIJ, Independent sets in hypergraphs, J. Amer. Math. Soc., 28 (2015), pp. 669–709.
- [9] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 8 (1965), pp. 93–95.
- [10] P. FRANKL, Improved bounds for Erdős' matching conjecture, J. Combin. Theory Ser. A, 120 (2013), pp. 1068–1072.
- [11] P. Frankl, On the maximum number of edges in a hypergraph with given matching number, Discrete Appl. Math., 216 (2017), pp. 562–581.
- [12] P. Frankl and A. Kupavskii, Simple juntas for shifted families, Discrete Anal., 2020 (14), pp. 1–18.
- [13] P. FRANKL, T. ŁUCZAK, AND K. MIECZKOWSKA, On matchings in hypergraphs, Electron. J. Combin., 19 (2012), R42.
- [14] P. Frankl and V. Rödl, Near perfect coverings in graphs and hypergraphs, European J. Combin., 6 (1985), pp. 317–326.
- [15] J. GAO, H. Lu, J. MA, AND X. Yu, On the rainbow matching conjecture for 3-uniform hypergraphs, Sci. China Math., 2021, https://doi.org/10.1007/s11425-020-1890-4.
- [16] J. HAN, Y. KOHAYAKAWA, AND Y. PERSON, Near-perfect clique-factors in sparse pseudorandom graphs, Electron. Notes Discrete Math., 68 (2018), pp. 221–226.
- [17] J. HAN, On perfect matchings in k-complexes, Int. Math. Res. Not. IMRN, 11 (2021), pp. 8741–8762.
- [18] H. HUANG, P. LOH, AND B. SUDAKOV, The size of a hypergraph and its matching number, Combin. Probab. Comput., 21 (2012), pp. 442–450.
- [19] H. HUANG AND Y. ZHAO, Degree versions of the Erdős-Ko-Rado theorem and Erdős hypergraph matching conjecture, J. Combin. Theory Ser. A, 150 (2017), pp. 233–247.
- [20] F. JOOS AND J. KIM, On a rainbow version of Diracs theorem, Bull. Lond. Math. Soc., 52 (2020), pp. 498–504.
- [21] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations, R. E. Miller, J. W. Thatcher, and J. D. Bohlinger, eds., Springer, Boston, 1972, pp. 85–103.
- [22] P. KEEVASH, N. LIFSHITZ, E. LONG, AND D. MINZER, Hypercontractivity for Global Functions and Sharp Thresholds, preprint, arXiv:1906.05568, 2019, https://arxiv.org/abs/1906. 05568
- [23] P. KEEVASH, N. LIFSHITZ, E. LONG, AND D. MINZER, Global Hypercontractivity and Its Applications, preprint, arXiv:2103.04604, 2021, https://arxiv.org/abs/2103.04604.
- [24] S. KISELEV AND A. KUPAVSKII, Rainbow matchings in k-partite hypergraphs, Bull. Lond. Math. Soc., 53 (2021), pp. 360–369.
- [25] N. KELLER AND N. LIFSHITZ, The junta method for hypergraphs and the Erdős-Chvátal simplex conjecture, Adv. Math., 392 (2021), 107991.
- [26] I. Khan, Perfect matchings in 3-uniform hypergraphs with large vertex degree, SIAM J. Discrete Math., 27 (2013), pp. 1021–1039.
- [27] I. KHAN, Perfect matchings in 4-uniform hypergraphs, J. Combin. Theory Ser. B, 116 (2016), pp. 333–366.
- [28] D. KÜHN, D. OSTHUS, AND A. TREGLOWN, Matchings in 3-uniform hypergraphs, J. Combin. Theory Ser. B, 103 (2013), pp. 291–305.
- [29] A. KUPAVSKII, Rainbow Version of the Erdős Matching Conjecture via Concentration, preprint, arXiv:2104.08083, 2021, https://arxiv.org/abs/2104.08083.
- [30] H. Lu, Y. Wang, and X. Yu, A Better Bound on the Size of Rainbow Matchings, preprint. arXiv:2004.12561, 2020, https://arxiv.org/abs/2004.12561v3.
- [31] H. Lu, X. Yu, and X. Yuan, Rainbow matchings for 3-uniform hypergraphs, J. Combin. Theory Ser. A, 183 (2021), 105489.
- [32] T. LUCZAK AND K. MIECZKOWSKA, On Erdős extremal problem on matchings in hypergraphs, J. Combin. Theory Ser. A, 124 (2014), pp. 178–194.
- [33] M. MATSUMOTO AND N. TOKUSHIGE, The exact bound in the Erdős-Ko-Rado theorem for crossintersecting families, J. Combin. Theory Ser. A, 52 (1989), pp. 90–97.
- [34] N. PIPPENGER AND J. SPENCER, Asymptotic behaviour of the chromatic index for hypergraphs, J. Combin. Theory Ser. A, 51 (1989), pp. 24–42.

- [35] L. Pyber, A new generalization of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A, 43 (1986), pp. 85–90.
- [36] V. RÖDL, A. RUCIŃSKI, AND E. SZEMERÉDI, Perfect matchings in uniform hypergraphs with large minimum degree, European J. Combin., 27 (2006), pp. 1333–1349.
- [37] D. SAXTON AND A. THOMASON, Hypergraph containers, Invent. Math., 201 (2015), pp. 925–992.
- [38] A. Treglown and Y. Zhao, Exact minimum degree thresholds for perfect matchings in uniform hypergraphs II, J. Combin. Theory Ser. A, 120 (2013), pp. 1463–1482.