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Abstract. Let n be a sufficiently large integer with n = 0 (mod 4), and let F; C ([Z]), where

i € [n/4]. We show that if each vertex of F; is contained in more than ("gl) — (3%/4) edges, then

{F1,..., Fn/4} admits a rainbow matching, i.e., a set of n/4 edges consisting of one edge from each
F;. This generalizes a deep result of Khan J. Combin. Theory Ser. B, 116 (2016), pp. 333-366. on
perfect matchings in 4-uniform hypergraphs.
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1. Introduction. A hypergraphis a family of subsets (called edges) of a nonempty
set whose elements are the vertices of the hypergraph. For a hypergraph H, we use
V(H) to denote its vertex set and E(H) to denote its edge set and let e(H) := |E(H)].
We say that a hypergraph H is k-uniform for some positive integer k if all edges of
H have the same size k. A k-uniform hypergraph is also known as a k-graph.

A matching in a hypergraph H is a set of pairwise disjoint edges of H. Finding
maximum matchings in k-graphs is NP-hard for k > 3; see [21]. Hence, it is of interest
to find tight sufficient conditions for the existence of a large matching in k-graphs.
The most well-known open problem in this area is the following conjecture made
by Erd6s [9] in 1965: For positive integers k,n,t, if H is a k-graph of order n and
e(H) > max{ (ktk_l), (%) = ("7}, then H has a matching of size t. This bound on
e(H) is tight because of the complete k-graph on kt — 1 vertices and the k-graph on
n vertices in which every edge intersects a fixed set of t — 1 vertices. There have been
recent activities on this conjecture; see [5, 6, 10, 11, 12, 13, 18, 32].

One type of condition that has been used to ensure the existence of large match-
ings is the so-called Dirac-type conditions, which involve degrees of sets of vertices.

Our work in this paper falls into this category. For convenience, let [k] := {1,...,k}
for any positive integer k, and let (i) = {T C S : |T| = k} for any set S and

positive integer k. Let H be a k-graph. For any T C V(H), the degree of T in
H, denoted by dgy(T), is the number of edges of H containing T. For any inte-
ger 0 <1 < k-1, §(H) = min{dyg(T) : T € (V(IH))} denotes the minimum
I-degree of H. Hence, 6g(H) = e(H). Note that 61(H) is often called the mini-
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mum vertex degree of H. For x € V(H), we define the neighborhood of z to be
Ny (z) :={ee€ (V(I]j)_\l{‘”}) :eU{z} € E(H)}. When there is no confusion, we also use
Ny (z) to denote the (k — 1)-graph with vertex set V(H)\{z} and edge set Ny (x).
For integers n, k, s,d satisfying 0 <d < k—1,n =0 (mod k), and 0 < s < n/k,
m(k,n) denotes the minimum integer m such that every k-graph H on n vertices with
d4(H) > m has a matching of size s. R6dl, Ruciriski, and Szemerédi [36] determined
mZikl(k, n) for large n, which has motivated a large amount of work; see [16, 17, 26,
27, 28, 38]. For instance, Treglown and Zhao [38] extended this result by determining

mz/k(k,n) for all d > k/2. On the other hand, it seems more difficult to determine
mZ/k(k,n) when d < k/2. Kiihn, Osthus, and Treglown [28] and, independently,

Khan [26] determined m?/g(i’)m). Khan [27] further determined m?/4(4,n). The
main work in this paper is to prove a more general result which implies Khan’s result
and uses different techniques.

Let F = {Fy,...,F;} be a family of hypergraphs. A set of ¢ pairwise disjoint
edges, one from each F}, is called a rainbow matching for F. (In this case, we also say
that F or {Fi,..., Fi} admits a rainbow matching.) There has been a lot of interest
in studying rainbow versions of matching problems; see [1, 2, 3, 4, 12, 18, 19, 20, 24,
25, 31, 33, 35]. For instance, Aharoni and Howard [3] made the following conjecture,
which first appeared in Huang, Loh, and Sudakov [18]: Let ¢ be a positive integer and
F={F,...,F} such that, for i € [t], F; C () and e(F) > {(*]), (1) — (")) };
then F admits a rainbow matching. Huang, Loh, and Sudakov [18] showed that
this conjecture holds for n > 3k?t. Frankl and Kupavskii [12] improved this lower
bound to n > 12tklog(e?t), which was further improved by Lu, Wang, and Yu [30] to
n > 2kt. Keevash et al. [22, 23] independently verified this conjecture for n > Ckt for
some (large and unspecified) constant C. Recently, Kupavskii [29] gave the concrete
dependencies on the parameters by showing the conjecture holds for n > 3ekt with
t>107.

For 3-graphs, Lu, Yu, and Yuan [31] proved that, for sufficiently large n withn =0
(mod 3), if 6 (F;) > (";1) - (2”2/3) for i € [n/3], then F has a rainbow matching.
This implies the result of Kiithn, Osthus, and Treglown [28] and Khan [27] on perfect
matchings in 3-graphs.

In this paper, we prove the following result on rainbow matchings in 4-graphs,
which gives Khan’s result [27] on perfect matchings in 4-graphs as a special case.

THEOREM 1.1. Let n be a sufficiently large integer with n = 0 (mod 4). Let
F = {F1,...,F,/1} such that F,..., F,, are 4-graphs on a common vertex set of

cardinality n, and for i € [n/4], 61(F;) > ("5') — (3%/4). Then F admits a rainbow
matching.

The bound on 01 (F;) in Theorem 1.1 is sharp. To see this, let k,m,n be positive
integers such that k > 2 and 2 < m < n/k. Let Hi(n,m) be a k-graph such that

V(Hi(n,m)) = [n,

E(Hp(n,m)) = {e S <[Z]> cen[m]# 0 and en([n]\ [m]) # Q]} ,
and let Hj(n,m) be a k-graph such that
V(Hi(n,m)) = [n],

EG&MJM)z{@E(ﬁD:eﬂWﬂ#ﬂ}.
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FiG. 1. Nlustrations of Hy(n,m) and H};(n,m) when k = 4.

Figure 1 illustrations of Hy(n,m) and Hj (n,m) when k = 4. Then 6, (Hy(n,m))
= 61 (Hy(n,m)) = (7=1) — ("'5™). Observe that neither Hy(n,m) nor Hj(n,m)
has no matching of size m + 1. It follows that when n = 0 (mod k), we have
01(Hg(n,n/k — 1)) = (Zj) - (";f{k), and {Hg(n,n/k —1),..., Hg(n,n/k — 1)}
admits no rainbow matching.

Let 7 = {F1,...,F, 4} as defined in Theorem 1.1. Note that V(F) = [n]. We
prove Theorem 1.1 by working with a 5-graph H(F) obtained from F: The vertex set
of H(F) is [n]Ju{z1,..., 2,4}, and the edge set of H(F) is U?:/il{eu{xi} re € E(F;)}.
Clearly, F admits a rainbow matching if and only if H(F) has a perfect matching.

For convenience, we say that a (k 4+ 1)-graph H is (1, k)-partite if there exists
a partition of V(H) into sets Vi, Vs (called partition classes) such that, for any e €
E(H), lenVi] =1 and l[enVa| = k. A (1, k)-partite (k + 1)-graph with partition
classes V1, Va is balanced if k|V1| = |Vz|. Thus, for instance, H(F) above is a balanced
(1,4)-partite 5-graph with partition classes X, [n].

More generally, let F = {Fi,...,F,} be a family of n-vertex k-graphs on a
common vertex set V and let X = {z1,...,2,,} be a set disjoint from V. We use
Hp . (F) to represent the balanced (1, k)-partite (k + 1)-graph with partition classes
X,V and edge set |J;-,{e U{x;} : e € E(F;)}. If F; = Hy(n,m) (or Hj(n,m)) for
all i € [m], then we write Hy(n,m) (or Hj(n,m)) for HE , (F) (or Hj(n,m)). Now
Theorem 1.1 is a direct consequence of the following result.

THEOREM 1.2. Let n be an integer such that n =0 (mod 4) and n is sufficiently
large. Let H be a balanced (1,4)-partite 5-graph with partition classes X, [n] such that

0 (Nu(x)) > (ngl) - (3%/4) for allx € X. Then H admits a perfect matching.

Our proof of Theorem 1.2 is divided into two parts by considering whether H is
close to H4(n,n/4) or not. For any real € > 0 and two k-graphs Hy, Hy on the same
vertex set V', we say that Hj is e-close to H; if there exists an isomorphic copy Hj of
H, with V(Hb) =V such that |E(H,) \ E(H})| < €|V (Hy)|.

We show the following lemma when H is close to Hy(n,n/4). In fact, we are
able to prove the following lemma for (1, k)-partite (k 4+ 1)-graphs that are close to
Hi(n,n/k) for all k > 2.

LEMMA 1.3. Let k > 3 be an integer, 0 < € < (10k)~C, and let n be an integer
with n = 0 (mod k) and n > 20k?. Let H be a balanced (1,k)-partite (k + 1)-graph
with partition classes X, [n] and V(H) = V(Hi(n,n/k)). If H is e-close to Hy(n,n/k)
and 01(Nyu(z)) > (7-1) — (",;f{k) for all x € X, then H has a perfect matching.
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When H is not close to H4(n,n/4), we prove the following.

LEMMA 1.4. Let 0 < € < 1, and let n be a sufficiently large integer with n = 0
(mod 4). Let H be a balanced (1,4)-partite 5-graph with partition classes X, [n] and
V(H) =V (Ha(n,n/4)). If H is not e-close to Ha(n,n/4) and 61(Ng(x)) > ("gl) -
(372/4) for all x € X, then H has a perfect matching.

It is easy to see that Theorem 1.2 follows immediately from Lemmas 1.3 and 1.4.

In section 2, we prove Lemma 1.3. To prove Lemma 1.4, we will need to find a
small “absorbing” matching in H, and this part is done in section 3. In section 4, we
show that if H is not close to Hy(n,n/4), then we can find a subgraph of H that is
almost regular (in terms of vertex degree) and has maximum 2-degree bounded above
by n%1. We make use of a recent stability result of Gao et al. [15] for 3-graphs (see
Lemma 4.2) and another result there on almost regular spanning subgraphs. We then
complete the proof using a result of Pippenger and Spencer [34].

2. Hypergraphs close to Hy(n,n/k). In this section, we prove Lemma 1.3
for the case when Hﬁ’n/k(]—') is e-close to Hy(n,n/k) for some sufficiently small .

We first prove Lemma 1.3 for those balanced (1,k)-partite (k + 1)-graphs H
in which, for each vertex v € V(H), most edges of H containing v also belong to
Hy(n,n/k). More precisely, given @ > 0 and two (k + 1)-graphs Hy, Ho on the same
vertex set, a vertex v € V(Hy) is a-bad with respect to Hy if [Ny, (v) \ Ng, (v)| >
alV(Hy)|*. (A vertex v € V(Hy) is a-good with respect to Hy if it is not a-bad with
respect to Ha.) So if v is a-good with respect to Ha, then all but at most oV (Hy)[*
of the edges containing v in Hs, also lie in H;.

LEMMA 2.1. Let k > 2 be an integer, 0 < a < (10Fk*(k + 1)!)71, and let n be an
integer with 1/n < a and n =0 (mod k). If H is a balanced (1, k)-partite (k + 1)-
graph on the same vertex set as Hi(n,n/k) and every vertex of H is a-good with
respect to Hy(n,n/k), then H has a perfect matching.

Proof. Let X, [n] denote the partition classes of H, and let W = [n/k] and U =
[n] \ W. Let M denote a matching in H such that |eN X| = [eNW| = 1 for each
e € M, and subject to this, |M| is maximum. Let U' = U\ V(M), W' =W \ V(M),
and X' = X \ V(M). We may assume |M| < n/k; for otherwise, the assertion of the
lemma is true.

Note that |M| > n/2k. Suppose |M| < n/2k. Then |U’'|/(k—1) = |[W'| =|X'| >
n/2k. By the maximality of |M|, H has no edge contained in X’ UW’'UU’ containing
exactly one vertex from X’ and exactly one vertex from W’. Hence, for any u € U’,
we have

INagy, iy (@) \ N (u)]

U/
> 1wl (7))

(n)2k)(n/2k)((k — 1)n/2k — k +3)=2/(k — 2)! (since n > 20k?)

nk

Ak25F=2(k — 2)!

Y

Y

(since k > 2)
o (BEDY Camnl (e @ < k0520 2006+ 1)

Thus, u is not a-good with respect to Hg(n,n/k), a contradiction.
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Fixx e X', up,...,up—1 € U, and w € W'. Write S = {z,w,uq,...,up_1}. If
there exists distinct ey, ..., ex € M such that H[SU(U_, ;)] has a matching M of size
k+1 such that, for any f € M', |fNX|=1=|fNW]|, then (M \{e; : 7 € [k]}) UM’
contradicts the choice of M. So such M’ does not exist for any choice of distinct
€1,...,ex € M. This implies that there exists a (k 4+ 1)-subset f of V(H) such that
FCSUUL e, [fNX|=1=|fOW'|, |f e =1 for i€ [k], but f ¢ E(H).

Hence there exists v € S such that

1 (n/2k (n/2k —k+1)* _ (n/3k)*
>I<:+1< k >> G+l (kr 1) > om”

[Nt (k) (V) \ Ne(v)]

since n > 6k(k — 1) and o < (3¥k*(k + 1)!)~!. This is a contradiction. |
To achieve the goal of this section, we need Lemma 2.1 from [31].

LEMMA 2.2 (see Lu, Yu, and Yuan [31]). Let n,t,k be positive integers such
that n > 2k*. For i € [t], let G; C ([Z]) such that §1(G;) > (Z:i) — (Z:f) Then
{G1,...,G¢} admits a rainbow matching.

Proof of Lemma 1.3. Let W = [n/k] and U = [n] \ [n/k] be the partition classes
of Hy(n,[n/k]) in Hi(n,n/k). Let B denote the set of \/e-bad vertices in H with
respect to Hy(n,n/k). Since H is e-close to Hy(n,n/k), we have |B| < 2(k 4 1)\/en;
otherwise,

1

|EHe(nn/K)\ EH)| 2 = Y I Nannsmy (0) \ N (v)]
veV (H)

> 2(k 4 1)v/en -

1
H)|* > e|V(H)|F
VAV = ev ),

a contradiction.

Let U =UNB, X’ =XNBand Wb = WNB. Let WI = W\ WP. For
convenience, write ¢ = | X°| and r = ¢g-+|W?|. Moreover, let 1, ..., x, be distinct such
that X = {x1,...,2,},let W' C W9 be aset of size n/k—r, and let Gy = Ny (z;)—W'
for ¢ € [r]. Then, for i € [r],

81(Gy) > 81 (Ner()) — <(Z_ 1) _ (n ]J:w_/l 1))
N <n— W' — 1) B (n—n/k)
k—1 k—1
_(n—n/k+r—1 n—n/k
()00
Thus, by Lemma 2.2 (with n — n/k 4+ r as n and r as t), {G1,...,G,} admits a
rainbow matching, say My = {e; € E(G;) : i € [r]}. Now M} = {e; U{x;} :i € [r]} is
a matching in H covering X°. (Note this is the only place in this proof that requires
the degree condition in the statement.)
Let Hy = H — V(M}). Since r < |B| < 2(k + 1)y/zn and ¢ < (10k)~°, every

vertex in X \ V(M) is '/3-good with respect to Hy(n,n/k) —V (M}). Choose 1 such
that 0 < e < n <« 1/k, and let

B :={ve B\V(M}):|{e € E(H):v € eand |enWI| =1} >nn"}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Since |B’| < |B| < 2(k + 1)y/en and ¢ < 1, we may greedily pick a matching M; in
H — V(M) such that B’ C V(M) and every edge in M; contains at least one vertex
from B’ and exactly one vertex from W9,

Now consider Hy = H; — V(Mj). Note that, since n > 20k2,

81(Hs) > 61(H) — (k +1)| Mg U My [n*~
[ e

Thus, for each v € B\ V(M{ U M), the number of edges of Hy containing v and no
vertex of W9 is at least

k—1
W9\ (n—|W9| -1 — k|MjU M|
Hy) — k—§ n(l 0
O1(Hz) = m o (z )( k—1—i

(D) - () e

% ’“Z‘:l (n/k;) (n —f{k:z 1)

=2

V

o

() () e
% ((Z - 1) (n —knikl— 1) B (n{k) (n —knikz— 1))
G () e
>k (since e < n < 1/k).

Hence, we may greedily pick a matching M> in Hy such that every edge in Ms
contains at least one vertex from B\ V(M) U M;) and no vertex from W9.

It is easy to see that |M{j U M; U Ms| < 2(k + 1)y/en. Hence, every vertex of
Hy — V(My) is £'/*-good with respect to Hy(n,n/k) — V (M} U M; U Ms). Thus for
every vertex u € U\ V(MU M; U Ms), the number of edges containing u and exactly
two vertices of W\ V(M) U M; U M,) as well as avoiding V(MU M; U M,) is at least

n(n/k\ (n—n/k—1 14 nyk / - .
k(?)( k—3 ) € (n+E) (k+1)[MyuU My U My[n®™ " > nn”.

Thus we may greedily pick a matching M) such that |M}| = |Ms| and every edge of
M} contains exactly two vertices from W9.

Put M := M, UM, UM, UM, and m := |M|. Let Hy == H — V(M) =
Hy — V(My U Mj). One can see that every vertex of Hj is €'/%-good with respect to
Hi(n — km,n/k —m) = Hp(n,m) — V(M). By Lemma 2.1, H3 contains a perfect
matching, say Ms3. Now M3 U M is a perfect matching in H. O

3. Absorbing matching. To deal with balanced (1, k)-partite (k + 1)-graphs
that are not close to Hy(n,n/k), we need to find a small matching that can “absorb”
small sets of vertices. To find such a matching, we need to use the Chernoff inequality
to bound deviations; see [7].
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LEMMA 3.1 (Chernoff inequality for small deviation). Let X = Y7 | X;, where
each random variable X; has Bernoulli distribution with expectation p;. For o < 3/2,

a2
P(|X —EX| > aEX) < 2¢~ 75X,
In particular, when X ~ Bi(n,p) and \ < %np, then
P(|X — np| > \) < e~/ (np)

We now prove a (1, k)-partite version of the absorption lemma for (1, 3)-partite
4-graphs proved in [31]. Our proof follows along the same lines as in [31]. Let H be
a (1, k)-partite (k + 1)-graph with partition classes X, [n]. A set S C V(H) is called
balanced if |S N [n]| = k|S N X]|.

LEMMA 3.2. Let k > 3 be an integer and 0 < b < 1/k be a constant. There
exists an integer ny = nq(k,b) such that the following holds for any integer n >
ny: Let H be a (1,k)-partite (k + 1)-graph with partition classes X, [n] such that
| X| = n/k and 61(Nu(z)) > (1/2+b)(}2]) for @ € X. Then for any c satisfying

0<ec< mm{(ﬁ) , (2k3(k + 1)c?) =10}, there exists a matching M in H such
that |[M| < 2ken and, for any balanced subset S C V(H) with |S| < (k + 1)c'5n/2,

H[V(M)US] has a perfect matching.

Proof. For balanced R € (‘;C(ﬁ)) and balanced @ € (k‘(lsfl)))’ we say that @ is
R-absorbing if both H[Q] and H[Q U R] have perfect matchings. For each balanced

Re (‘g_ﬁ)), let £(R) denote the collection of all R-absorbing sets in H.

Claim 1. For each balanced R € (‘2(_51)), IL(R)| > b*(}) " 2(k2)).

Let R € (‘g(ﬁ)) be a fixed balanced set, and let RN X = {z}. Note that the num-

ber of edges in H containing = and intersecting R\ {z} is at most k(,” ). Thus, since
01 (Ng(x)) > (1/2+0b) (”71) the number of edges e € E(H) with eNR = {x} is at least

NG () (),

Fix a choice of e € E(H) with eN R = {z}, and write R\ {z} = {u1,...,us} and
e\{z} = {v1,...,v}. Let Wy = e\{z}. For each pair {u;,v,} inorder j = 1,2,...,k,
we choose a k-set U; disjoint from W;_; U R such that both U; U {u;} and U; U {v;}
are edges in H and let W := U; UW;_;. If W}, is defined, then W, gives an absorbing
k(k 4+ 1)-set for R.

Note that for j € [k] there are k + 1+ jk vertices in W;_; UR. Thus, the number
of edges in H containing u; (respectively, v;) and another vertex in W;_; U R is at
most (k + 1+ jk)(,",)% < (k+ L)n(,",). Since d1(Ng(z)) > (1/2 +b)(}}) for
x € X, the number of sets U; for which U; N (W;_1 UR) = 0 and both U; U {u;} and
U; U{v;} are edges in H is at least

Z<2(1/2+b)<z_i> - <Z:1>> —2(k-+1)n<kf2)

o() ()

because n is sufficiently large.
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To summarize, the number of W), defined above from e is at least (b(g))k Hence,
there are at least 3 (7)(b(}))* absorbing, ordered k(k 4 1)-sets for R, with at most
(k2!) of them corresponding to a single R-absorbing set. Therefore,

Ly (P pE(m)
oy > LU PG

This completes the proof of Claim 1.

Now, let ¢ be a fixed constant with 0 < ¢ < min{(%)z, (2K3(k + 1)c?)~10%,
and choose a family G of balanced k(k + 1)-sets of V/(H) by selecting each of the

("Iék) (,2) balanced k(k + 1)-subsets of V(H) independently with probability
cn
(") ()

Then E(|G]) = en and E(|L(R) N G|) = p|L(R)| >
follows from Lemma 3.1 that, with probability 1 —

pi=

VPR en/(2(K2)( Iék) (2))- It
o(1),

(3.1) |G| < 2cn

and, for all balanced (k 4 1)-sets R,

bR kR en
> cl'5n.

(3.2) IL(R) NG =2 pILIR/2 2 Gam =

Furthermore, the expected number of intersecting pairs of k(k+1)-sets in G is at most

(nék‘) (;)ka +1) ((nék—ll) (:2) . (nék) (;_11» 2 < 26506 + 1P

< cl'gn.

Thus, using Markov’s inequality, we derive that with probability at least 1/2
(3.3) G contains at most 2c'?n intersecting pairs of k(k + 1)-sets.

Hence, there exists a family G satisfying (3.1), (3.2), and (3.3). Delete one k(k+1)-
set from each intersecting pair in such a family G, and remove all nonabsorbing
k(k + 1)-sets from G. The resulting family, call it G’, consists of pairwise disjoint
balanced, absorbing k(k + 1)-sets and satisfies

IL(R)NG'| > cton/2

for all balanced (k + 1)-sets R.

Since G’ consists only of absorbing k(k + 1)-sets, H[V(G')] has a perfect match-
ing, say M. By (3.1), |M| < 2ken. For a balanced set S C V(H) of size |S| <
(k+1)c'n/2, we partition S into balanced (k+1)-sets Ry, ..., Ry, where t < c¢!5n/2.
Since |L(R;) N G'| > ¢*®n/2, there is distinct absorbing k(k + 1)-set Q1,...,Q; in
G’ such that Q; is an R;-absorbing set for ¢ € [t]. Now H[V (M) U S| has a perfect
matching which consists of a perfect matching from each H[Q; U R;]. 0
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4. Fractional perfect matchings. To deal with hypergraphs that are not close
to Ha(n,n/4), we need to control the independence number of those hypergraphs.
This is done in the same way as in [31] by applying the hypergraph container result
in [8, 37].

First, we need the following lemma, which is more general and slightly stronger
than Lemma 4.2 in [31] but with a very similar proof. Let H be a hypergraph, A > 0
be a real number, and A be a family of subsets of V(H). We say that H is (A, A)-dense
if e(H[A]) > Xe(H) for every A € A.

LEMMA 4.1. Let € be a constant such that 0 < € < 1, and let n, k be integers such
thatk > 3 andn > 40k?/c. Letay = ¢/(8k),az = ¢/(8k?), and a3 < ¢/(2F-Kk!-8k). Let
H be a (1,k)-partite (k+ 1)-graph with vertex partition classes X, [n] with | X| = n/k.
Suppose dg({x,v}) > (Z:i) — (",:fl/k) — aznk=t for any x € X and v € [n] and
|E(Hi(n,n/k)) \ E(Hp)| > ee(Hir(n,n/k)) for any isomorphic copy Hy of H with
V(Ho) = V(Hr(n,n/k)). Then H is (A, ay)-dense, where A= {A CV(H):|ANX]| >
(1/k —a1)n and |AN[n]| > (1 —1/k—az)n}.

Proof. We prove this by way of contradiction. Suppose that there exists A C
V(H) such that |[ANX| > (1/k —a1)n, |[AN[n]| > (1 — 1/k — az)n, and e(H[A]) <
are(H). Without loss of generality, we may choose A such that |ANX| = (1/k—a1)n
and |AN[n]| = (1-1/k—az)n. Let U C [n] such that AN[n] C U and |U| =n—n/k.
Let Ay =ANX, Ay =X\ A, By = AN|n], and By = U \ A. Relabel the vertices of
H in [n] if necessary so that U = [n] \ [n/k].

Let Hy denote the isomorphic copy of H with the same partition classes X, [n] as
Hi(n,n/k). We derive a contradiction by showing that |E(Hy(n,n/k)) \ E(Hoy)| <
ee(Hy(n,n/k)). Note that

aniem =3(()- () (1) 210

and, further,

(4.1) e(Hy(n,n/k)) > Z(Z) Jk = Zi(;: D > Zi(”k__"ﬁ > Zi(”lﬂ__”ék)

Also, since n > 2k,

n/n nktl
4.2 % ok Kl k2
(4.2) e(Hr(n,n/k)) > k(k>/k> ok k1. k2

Consider x € Ay and v € [n]\ [n/k]. Let Eg,(B1,{z,v}) = {e € E(Hyp) : {z,v} C
e C By U{z,v}}. Note that, for v € By, we have
{e € E(Hy) : {z,v} C e and en[n/k] # 0}
2 dHo({xvv})
—{e € E(Hy — [n/k]) : {z,v} Ceand eN By # 0} — |En, (B1,{z,v})|

> ((Z‘i) - (”k_”{k) —agnk_1> —azn(”k_”ék> — |Exy (By, {2, 0})].

For v € By, we have
|{e € E(Hp) : {z,v} Ceand en[n/k] # 0}
2 du,({z,v}) — {e € E(Ho — [n/k]) : {z,v} C e}|

= ((20) = () o) - (5)
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So we have

Z Z {e € E(Hp),: {z,v} C e and eN [n/k] # 0}]

€A1 ve[n\[n/k]

n—1 n—mn/k n—n/k
2 2 <<k—1> < k—1 >a2n( k-2 )'EHO(BM{%U})>
rxEA vEB,

S0 () e ()

% o2 (o) () e e (2)

€A1 ve[n]\[n/k]

30 3 W ED 3) MR

€A vEBy xEA| vEB,

2 (6 (o) ()

€A1 ve[n]\[n/k]

Y

v

a3 —amal(" 1) -
Note that
o (nk—nék> B (nk—n{k> s <Z (nk—nék> ) (nk—n{kw
GO ()
—0
That is,
(4.4) ag%z (”k__”ék> YN (”k__”{k> > 0.

Therefore, we have
|[E(Mk(n,n/k)) \ E(Ho)l
= Z {e € E(Hi(n,n/k))\ E(Hyp) : x € e}|

r€A

+ Z {e € E(Hi(n,n/k))\ E(Hy) : = € e}]

TEAs

<Y Y Hee B(Hiln,n/k)\ E(Ho) : {w,v} C e}| + [As| - e(H(n,n/k))

€A1 vE[n]\[n/k]
n—1 n—n/k
w;rue ;n/k (<k_1) B ( k=1 )
—{e € E(Hy) : {z,v} Ceand en[n/k] # 0}|)
+|Az| - e(Hg(n,n/k))
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<Yy ¥ (agnkl-i-agn(n];_nék)) +A1||Bg|< i "{k) + | E(Ho[A])|

z€A1 ve[n]\[n/k]
+(arn) - e(Hy(n,n/k))/(n/k)  (by (4.3))

n n 1 n—n/k n—n/k
<k:(”_k>(a3"k +a2”(k—2)>+|‘41|32< k—l)

—|—ale(H0) + kay - e(Hig(n,n/k))
< <a3n + az n<”k__”£k>) + are(Ho) + kay - e(Hi(n,n/k))  (by (4.4))
< are(Hy) + (2]“ k! kas + Kas + kal) ~e(Hi(n,n/k)) (by (4.1) and (4.2))

< al% <Z) + (28 k! kag + KPas + kay) - e(Hi(n,n/k))

< (kay +2% - k! kaz + k*as + kay) - e(Hi(n,n/k))  (by (4.2))
<e-e(Hi(n,n/k)),

a contradiction. 0

To prove a fractional matching lemma, we need a recent result of Gao et al. [15]
on Erdds’ matching conjecture for stable graphs. For a hypergraph H, let v(H)
denote the size of maximum matching in H. Luczak and Mieczkowska [32] proved
that there exists a positive integer n; such that, for integers m,n with n > n; and
1 <m < n/3,if H is an n-vertex 3-graph with e(H) > max{(3) — ("~%), (*",") 1},
then v(H) > m. The result of Gao et al. [15] may be viewed as a stability version of
this Luczak-Mieczkowska result.

For sets e = {uy,...,ur} C [n] and f = {v1,...,vx} C [n] with u; < u;41 and
v; < viqq for i € [k — 1], we write e < f if u; < wv; for all ¢ € [k]. A hypergraph H
with V(H) = [n] and E(H) C ([Z]) is said to be stable if, for any e, f € ([Z]) with
e< f,e€ E(H) implies f € E(H). The following is a special case (when m = 3n/4)
of Lemma 4.2 in [15]. Note that one of the extremal configurations of Lemma 4.2
n [15], namely, D(n,m,3) (the 3-graph with vertex set [n] and edge set (L?’"/;_IJ)),
does not occur here.

LEMMA 4.2 (see Gao et al. [15]). For any n > 0 there exists ng > 0 with the
following properties: Let n be an integer with n > ng, and let H be a stable 3-graph on
the vertex set [n]. If e(H) > (3) — (3”/4) n*n® and v(H) < n/4, then H is n-close
to Hy(n,n/4 —1).

We will use perfect fractional matchings in a hypergraph H not close to Ha(n,n/4—
1) to obtain an almost regular subgraph of H. A fractional matchingin H is a function
[ E(H) — R*, where R" is the set of nonnegative reals, such that > .. f(e) <1
for all v € V(H), and it is perfect if  _ f(e) = 1 for all v € V(H). We write
vi(H) =max{}_ cp f(€) : fis a fractional matching in H}.

LEMMA 4.3. For any € > 0 there exist 0 < p < € and ng = no(e) such that,
for any integer n with n > ng and n = 0 (mod 4), the following holds: Let H be
a balanced (1,4)-partite 5-graph with partition classes X, [n] such that dg({z,v}) >
("51) — (373/4) —3pn3 for any v € X and v € [n] and H contains no independent set
S with |[SNX| >n/4—en and |SN[n]| > 3n/4 —en; then H contains a fractional

perfect matching.

Proof. Let X = {x1,...,2,/4}, and let w : V(H) — RT be a minimum fractional
vertex cover of H, that is, > . w(v) > 1 for all e € E(H), and subject to this,
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w(H) =}, ey gy w(v) is minimum. We may assume that the vertices in X and [n]
are labeled such that w(x1) > -+ > w(wy/4) and w(l) > -+ > w(n).
Let H' be the (1,4)-partite 5-graph with vertex set V(H) and edge set

E(H)U{ee (V(;I)) ilenX|=1and Zw(v) > 1}-

veEe

Thus, by definition, w is also a vertex cover of H'. Moreover, since E(H) C E(H'),
w is also a minimum fractional vertex cover of H’'. Hence, by linear programming
duality, we have vy(H) = w(H) = w(H') = vy(H'). Therefore, it suffices to show
that H' has a perfect matching. First, we show that H' is stable.
(1) Let Ty = {zy,, 12,13, 14,5} and To = {x},, j2, J3, ja, 5 } be balanced 5-element
subsets of V(H), with z;,,x;, € X and i; > j; for [ € [5]. Then T; € E(H’)
implies that Ty € E(H').
Since 4; > j; for I € [5], we have w(z;,) > w(z;,) and w(i) > w(y;) for 2 <1 < 5. Note
that > o, w(v) > 1as Ty € E(H'). Thus ) cp w(v) > >, w(v) > 1. Hence,
T, € E(H') by the definition of H', which completes the proof of (1).

Let G be the 3-graph with vertex set [n — 1] and edge set Ng({x, /4, [n]}). We
may assume that

(2) G has no matching of size n/4.
Suppose G has a matching of size n/4, say M = {e1, ..., e,4}. Partition V(H)\V (M)
into 2-sets fi,..., fa such that |f; N X| =1 for all i € [n/4]. By (1), M C Nu(f;).
Thus M’ = {e; U f; : i € [n/4]} is a perfect matching in H. So we may assume (2).

Since d({z,v}) > ("3') — (*Y*) = 3pn® for any z € X and v € [n], e(G) >
("31) — (") — 3pn®. Hence, by (2) and by Lemma 4.2, G is 7-close to Hj(n —
1,n/4—1) with respect to the partition [n— 1]\ [n/4—1], [n/4 — 1], where n = (3p)'/%.
Let Y = [n/4 — [nn]]. We claim that

(3) for every y € Y, da(y) > (") — 4y/mn>.
Otherwise, since G is stable, dg(2) < ("3') — 4/n? for z € Z := [n/4 — 1]\[n/4 —
[nn]]. Hence,

Y]

B0 - Lot = )\ BG) 2 3 3 (7 1) ~ o))

z€EZ

Y

S (Vi = Dy > n(n —1)°,

a contradiction which completes the proof of (3).

Since H contains no independent set S such that [SNX| > n/4—en and |SN[n]| >
3n/4 — en, we may greedily find a matching M; of size [\/gn] in H =Y.

Next we greedily construct a matching My of size |Y| in G — V(M) such that
lenY| =1 for all e € Ms. For y € Y, note that

{e € B(G):y €eand enV(M;) # 0} < 3|My|n < 3[\/nn]n < 4[/n]n*.
By (3), da(1) — 4/mm? > (";") — 8,/n? > 0; so there exists an edge e; € E(G) \
V(M) such that |e; N Y] = 1. Now suppose we have found a maximal matching

{e1,€2,...,e,} in G — V(M;) such that |e, N Y| =1foralli € [r]. If r > |Y] =
[n/4 — [/nn]], then {ei,...,e,} gives the desired matching M. So assume r < [Y].
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Write G, := (G — V(My)) — (Ui_,e;). Let v € Y\(V(My) U (Ul_,e;)). Note that
[[R\(Y U V(M) U (U_e;))| > n/4. Since dg(v) > (";') — 4,/qn?, the number of
edges e in G with v € e and e\{v} C [n]\(Y UV (M7) U (Ul_,e;)) is at least

(I[n]\(Y UV <U?—1€i>>|> 4 in? > (”f) 4y > 0.

So there exists an edge e,;1 in G, such that |e,;1 NY| = 1, contradicting the maxi-
mality of r.

Let My = {e1,...,€n/a—[mn)}- Note V(H)\ (V(M1) UV (Ms)) contains n/4 —
[\/nn] vertex-disjoint 2-set, say fi,..., fuja—[mn], such that [f; N X| =1 for i €
[n/4 — [y/nn]]. By (1), My € Ng/(f;) for i € [n/4 — [\/nn]]. Write My = {f; Ue; :
i € [n/4—Tymn]l}. Then M; U My is a perfect matching in H. O

5. Random rounding. We need a result of Lu, Yu, and Yuan [31] on the
independence number of a subgraph of a balanced (1, k)-partite (k+ 1)-graph induced
by a random subset of vertices. It is Lemma 4.3 in [31] which is stated for (1, 3)-partite
4-graphs, but the same proof (which uses the hypergraph container result) also works
for (1, k)-partite (k + 1)-graphs.

LEMMA 5.1 (see Lu, Yu, and Yuan [31]). Let l,e’, a1, a2 be positive reals, let
a > 0 with a < min{ay, as}, let k,n be positive integers, and let H be a (1, k)-partite
(k + 1)-graph with partition classes Q, P such that k|Q| = |P| = n, e(H) > InF*t1,
and e(H[F]) > 'e(H) for all F C V(H) with |[F N P| > ayin and |[F N Q| > aszn.
Let R C V(H) be obtained by taking each vertex of H wuniformly at random with
probability n=°9. Then, with probability at least 1 fno(l)efﬂ(”o'l), every independent
set J in H[R] satisfies |J N P| < (a1 +a+o0(1))n’! or [JNQ| < (a2 +a+o(1))n’1.

We also need Janson’s inequality to provide an exponential upper bound for the
lower tail of a sum of dependent zero-one random variables. See Theorem 8.7.2 in [7].

LEMMA 5.2 (see Janson’s inequality [7]). Let ' be a finite set and p; € [0,1] be
a real for i € I'. Let I'y, be a random subset of I' such that the elements are chosen
independently with P[i € T'p] = p; fori € . Let S be a family of subsets of T'. For
every A€ S, let [4 =1 if ACT), and 0 otherwise. Define X =3 ,.q1a, A =E[X],
and A = %ZA;éB > anpxo E[lalp]. Then, for 0 <t <A, we have

2

Now, we use the Chernoff bound and Janson’s inequality to prove a result on
several properties of certain random subgraphs.

LEMMA 5.3. Let n,k be integers such that n > k > 3, let H be a (1,k)-partite
(k + 1)-graph with partition classes A, B and k|A| = |B| = n, and let A3 C A and
Ay C B with |A;] = n%% for i = 3,4. Take n*' independent copies of R, and
denote them by R*, 1 < i < n'!, where R is chosen from V(H) by taking each vertex
uniformly at random with probability n=° and then deleting O(n® %) vertices so that
|R| € (k+1)Z and k|lRNA| = |RN B|. For each S CV(H), let Y := |[{i : S C R'}|.
Then, with probability at least 1 — o(1), all of the following statements hold:

(1) Yy = L £n 2002 for allv € V(H).

(i) Yiu,ey <2 for all {u,v} C V(H).

(iii) Y. <1 for alle € E(H).
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(iv) Foralli=1,...,n"', we have |R;NA| = (1/k+0o(n="))n"! and |R;,NB| =
(1 + o(n*0‘04))n0'1.

(v) Suppose p is a constant with 0 < p < 1 such that dg({z,v}) > (Zj) -
(";f{k) —pnF=Y for all x € A and v € B. Then for 1 < i < n'! and for
r€E€R,NA andv € R; N B, we have

|RiﬁB|—1 ‘RZQB|—|RlﬂB|/k
(o)) > () o

) — 3p|R; N B|F L.
(vi) |RinAj| =|AjIn=%9 £n0% for 1 <i<n'! andj € {3,4}.
Proof. For1 <i<n*!tandj € {3,4}, E[|R;NA|] = n®!/k, E[|R;NB|] = n°! and
E[|R; N A;|] =n™9A,|. Recall the assumptions |As| = |44 = n°%?. By Lemma 3.1,
we have
P (||Rz n A| _ nO.l/k| > n0.0G) < e—Q(n
P (HRZ NB|— n0'1’ > nO'Oﬁ) < e‘Q(”O'Oz), and
P (||R2 N Aj‘ _ |Aj|n70'9’ > n0.0G) < 679(710.03)'

Hence, with probability at least 1 — O(n'1)e=2""") (iv) and (vi) hold.

For every v € V(H), E[Yy] = »'t . a0 = no2 By
Lemma 3.1 again,

0.02
)

B ([[Ypu] =" 2 n%1%) < om0,
Hence, with probability at least 1 — O(n)e=2™"") (i) holds.
For positive integers p,q, let Z, , = |S € (V(pH)) :Ys > ¢q|. Then

E [Zp’q] é (n) (n1'1> (n—O.Q)pq S np+1.1q—0.9pq.

b q

So E[Zs23] < n7 %1 and E[Z) 2] < n?2798F < n=02 for k > 3. Hence by Markov’s
inequality, (ii) and (iii) hold with probability at least 1 — o(1).

Finally we show (v). Suppose for all z € A and v € B, dy({z,v}) > (}7;) —
("_f{k) — pnF=1. We see that, for 1 < i < n!'! and for z € R; N A and
v )

k
eR,NB

1 k-1
ol _ 1 n01 — 01/ o

_ o 01(k—1)

><k1> ( k-1 > pr :

By (iv), with probability at least 1 — O(?"Ll'l)e_ﬂ("o'oz)7 foralli=1,...,n"! we have
|[R; N Bl = (1 + o(n=%%))noL Thus for all « € R; N A and
v e R,NB,

E[dg, ({z,v})] > (Z - 1) —0-9(k=1) _ (n — n/kz> p=09(k=1) _ k=1, ~0.9(k=1)

E[dg,({z,v})] > <|}Z’T 1B|> _ <|R¢ N B|k—_\]? N B|/k

) —2p|R; N Bk 1,
We wish to apply Lemma 5.2 withI'= B, I', = R;N B, and S = (NH({krf’l})mB). We
define 1 1
_ 1 15, 2k—3
A= > E[ly, In,] < 5|Ri N B
b1,b2€S,b1#b2,biNba#0
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Thus,

P <dR7;({=T,U}) < <|Ri ﬂB) B <|Ri N B| - |R; QBWC) —3p|R, mBkl)

k—1 k—1
<P (dr, ({2,0}) < Eldn, ({z,v})] - plR: 1 BJ)
(p|RiN BI*71)?
2E(dR, ({z,v})) + 4A
,02|Ri N B|2k72

(0P +2|R; N BJ2k=3
< exp(~ ()

<exp(— ) (by Lemma 5.2)

)

<exp(—
9

Therefore, with probability at least 1 — O(n!1)e=2"" (v) holds.
By applying union bound, (i) — (vi) all hold with probability 1 — o(1). d

Now we prove that when the hypergraph H in Theorem 1.2 is not close to
Ha(n,n/4) then H contains an almost regular spanning subgraph.

LEMMA 5.4. Let 0 < p < ¢ < 1 be reals and n = 0 (mod 4) be sufficiently
large. Let H be a balanced (1, 4)-partite 5-graph with partition classes X, [n] such that
| X| = n/4. Suppose that dy ({z,v}) > ("3") — (3%/4) —pn3 for allz € X and v € [n].
If H is not e-close to Hq(n,n/4), then there exists a spanning subgraph H' of H such
that the following conditions hold:

(1) For all x € V(H'), with at most n®% exceptions, dg/(x) = (1 £ n=0-01)n02;

(2) For allx € V(H'), dy:(x) < 2n%2;

(3) For any two distinct x,y € V(H'), dp ({z,y}) < n19.

Proof. Let A3 C X and Ay C [n] with |A4;| = n%% for i = 3,4. Let Ry,..., Ryia

be defined as in Lemma 5.3. By (iv) of Lemma 5.3 , we have, for all i = 1,...,n'1,

IR N X| = (1/4+o(n™%"))nt and |R; N [n]| = (1 + o(n~%4))n1.
By (v) of Lemma 5.3, we have, for 1 <4 < n'! and forx € XN R; and v € [n] N R;,

|Ri 0 [n]> _ <3|Ri N [n]l/4

dn(to.op > () ,

)RR

By (iv) and (vi) of Lemma 5.3, we may choose I; C R; N (A3 U Ay4) such that, for
i=1,...,n"1 Rl:= R;\ I is balanced and |R}| = (1 — o(1))|R;|.

Let a; = €/32,a2 = ¢/512, and a3 < €(2% - 4!-32)~!. By applying Lemma 4.1 to
H,ay,as,a3, we see that H is (F,ay)-dense, where

F={UCVH):\UNX|>(1/4—ai)n, [UNn]| > (3/4—az)n}.

Now we apply Lemma 5.1 to H with [ = (3-4%-41)7Y a; = 1/4 — a1, ag =
3/4 — ay, and & = ay. Therefore, with probability at least 1 — n®Me=2"") for any
independent set S of R}, [SN RN X| < (1/4 —ay + o(1))n®! or |S N R, N[n]| <
(3/4 — az + o(1))n1.

By applying Lemma 4.3 to each H[R}], we see that each H[R}] contains a frac-

tional perfect matching w;. Let H* = Uzzll1 R;. We select a generalized binomial
subgraph H’ of H* by letting V(H’) = V(H) and independently choosing edge e
from E(H*), with probability w;_(e) if e € R; . (By (iii) of Lemma 5.3, for each

e € E(H*), i, is uniquely defined.)
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Note that, since w; is a fractional perfect matching of H[R!] for 1 < i < n'-l
Y eso wile) < 1 for v € Ry. By (i) of Lemma 5.3 and by Lemma 3.1, dg(v) = (1 £

n=00Mn0%2 for any vertex v € V(H)\(U?:l‘llfi), and dy (v) < (1 +n700M)no%2 < 2p0-2
for vertex v € U:‘;f[l By (ii) of Lemma 5.3, dg({z,y}) < 2 < n%19 for any
{z,y} € (V(2H)). Therefore, H' is the desired hypergraph. d

We also need the following lemma attributed to Pippenger and Spencer [34] (see
Theorem 4.7.1 in [7]), which extends a result of Frankl and
Rodl [14].

LEMMA 5.5 (see Pippenger and Spencer [34]). For every integer k > 2 and reals
r > 1 and a > 0, there are v = ~(k,r,a) > 0 and dy = do(k,r,a) such that for
every positive integer n and D > dy the following holds: Every k-uniform hypergraph
H = (V,E) on a set V of n vertices in which all vertices have positive degrees and
which satisfies the conditions that

(1) for all vertices x € V but at most yn of them, d(xz) = (1 £~)D;

(2) forallz eV, d(x) < rD;

(3) for any two distinct x,y € V, d(x,y) < vD
contains a matching of size at least (1 — (k — 1)a)(n/k).

6. Proof of Lemma 1.4.

Proof of Lemma 1.4. Let 0 < p’ < p < n < ¢ < 1. By Lemma 3.2, there exists
a matching M; with |M;| < pn such that, for any balanced set S with |S| < p'n,
H[V (M) U S] has a perfect matching.

Let Hy = H — V(M;). Then H; is not (g/2)-close to Hq(n — 4| M|, n/4 — | My]).
Write ny = |[n]\V(M1)|. Furthermore, for all x € V(H;) N X and v € V(H;y) N [n],

dus, ({,v}) > (”; 1) _ (3’;/4) —4|My[n? > (”13_ 1) - (3”;)/4> — 10pmd.

By Lemma 5.4, H; has a spanning subgraph H{ such that the following conditions
hold:
(1) For all z € V(H7), with at most n{-?? exceptions, dp (z) = (1 £ ny %Mng2;
(2) For all z € V(H}), dg:(z) < 2nY%;
(3) For any two distinct z,y € V(H}), dg; ({z,y}) < ni'?.
By Lemma 5.5, H] has a matching, say Ms, covering all but at most p'n vertices.
Write S = V(H1)\V(Mz). Recall H[V (M7) U S| has a perfect matching M]. Now
M U My gives the desired perfect matching. ]
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