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ABSTRACT
Given an input that undergoes a sequence of updates, a dynamic
algorithm maintains a valid solution to some prede�ned problem at
any point in time; the goal is to design an algorithm in which com-
puting a solution to the updated input is done more e�ciently than
computing the solution from scratch. A dynamic algorithm against
an adaptive adversary is required to be correct when the adversary
chooses the next update after seeing the previous outputs of the
algorithm. We obtain faster dynamic algorithms against an adap-
tive adversary and separation results between what is achievable in
the oblivious vs. adaptive settings. To get these results we exploit
techniques from di�erential privacy, cryptography, and adaptive
data analysis. Our results are as follows.

We give a general reduction transforming a dynamic algorithm
against an oblivious adversary to a dynamic algorithm robust
against an adaptive adversary. This reduction maintains several
copies of the oblivious algorithm and uses di�erential privacy to
protect their random bits. Using this reduction we obtain dynamic
algorithms against an adaptive adversary with improved update
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and query times for global minimum cut, all pairs distances, and
all pairs e�ective resistance.

We further improve our update and query times by showing how
to maintain a sparsi�er over an expander decomposition that can
be refreshed fast. This fast refresh enables it to be robust against
what we call a blinking adversary that can observe the output
of the algorithm only following refreshes. We believe that these
techniques will prove useful for additional problems.

On the �ip side, we specify dynamic problems that, assuming a
random oracle, every dynamic algorithm that solves them against
an adaptive adversary must be polynomially slower than a rather
straightforward dynamic algorithm that solves them against an
oblivious adversary. We �rst show a separation result for a search
problem and then show a separation result for an estimation prob-
lem. In the latter case our separation result draws from lower
bounds in adaptive data analysis.

CCS CONCEPTS
• Theory of computation! Dynamic graph algorithms.
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1 INTRODUCTION
Randomized algorithms are often analyzed under the assumption
that their internal randomness is independent of their inputs. This
is a reasonable assumption for o�ine algorithms, which get all their
inputs at once, process it, and spit out the results. However, in online
or interactive settings, this assumption is not always reasonable. For
example, consider a dynamic setting where the input comes in grad-
ually (e.g., a graph undergoing a sequence of edge updates), and the
algorithm continuously reports some value of interest (e.g., the size
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of the minimal cut in the current graph). In such a dynamic setting,
it might be the case that future inputs to the algorithm depend on
its previous outputs, and hence, depend on its internal randomness.
For example, consider a large system in which a dynamic algorithm
is used to analyze data coming from one part of the system while
answering queries generated by another part of the system, but
these (supposedly) di�erent parts of the system are connected via a
feedback loop. In such a case, it is no longer true that the inputs of
the algorithm are independent of its internal randomness.

Nevertheless, classical algorithms, even for interactive settings,
are typically analyzed under the (not always reasonable) assump-
tion that their inputs are independent of their internal randomness.
(The reason is that taking these dependencies into account often
makes the analysis signi�cantly more challenging.) One approach
for avoiding the problem is to make the system deterministic. This,
however, is very limiting as randomness is essential for good per-
formance in streaming algorithms, online algorithms, and dynamic
algorithms—basically in every algorithmic area in which the al-
gorithm runs interactively. This calls for the design of algorithms
providing (provable) utility guarantees even when their inputs are
chosen adaptively. Indeed, this motivated an exciting line of work,
spanning di�erent communities in theoretical computer science, all
focused on this question. This includes works from the streaming
community [2, 3, 14, 15, 26, 29, 47, 51, 51, 66], learning community
[5, 29, 37, 42, 46, 62], and dynamic algorithms [16, 18, 19, 21–25, 32–
35, 43–45, 49, 55, 56, 65, 67]. We continue the study of this question
for dynamic algorithms.

Before presenting our new results, we make our setting more
precise. Given an input G that undergoes a sequence of updates,
our goal is to maintain a valid solution to some prede�ned problem
% at any point in time. We consider both estimation and search
problems. In an estimation problem the goal is to provide a (1 ±
n) approximation of a numeric quantity that is a function of the
current input. An example is the global min-cut problem, where
an update inserts or deletes an edge and the goal is to output a
(1 ± n) approximation of the size of the global min-cut. In a search
problem, the response to the query is a non-numeric value. For
example, in the search version of the global min-cut problem the
goal is to output a cut whose size is not much larger than the size
of the smallest cut.

Formally, given a problem % (over a domain - ) and an ini-
tial input G0 2 - , we consider a sequence of < input updates
D1,D2, . . . ,D< , where every D8 is a function D8 : - ! - . After every
such update D8 , the (current) input is replaced with G8  D8 (G8�1),
and our goal is to respond with a valid solution for % (G8 ). We refer
to the case where the sequence of input updates is �xed in advance
as the oblivious setting. In this work, we focus on the adaptive set-
ting, where the sequence of input updates may be chosen adaptively.
We think of the entity that generates the inputs as an “adversary”
whose goal is to force the algorithm to misbehave (either to err
or to have a large runtime). Speci�cally, the adaptive setting is
modeled by a two-player game between a (randomized) Algorithm
and an Adversary. At the beginning, we �x a problem % , and the
Adversary chooses the initial input G0. Then the game proceeds in
rounds, where in the 8th round:

(1) The Adversary chooses an updateD8 , thereby modifying the
current input to G8  D8 (G8�1). Note that D8 may depend on
all previous updates and outputs of the Algorithm.

(2) The Algorithm processes the new update D8 and outputs its
current response I8 .

Remark 1.1. For simplicity, in the above two-player game we fo-
cused on the case where the algorithm outputs a response after
every update. Actually, in later sections of the paper, we will make
the distinction between an update and a query. Speci�cally, in every
time step the Adversary poses either an update (after which the
Algorithm updates its data structure and outputs nothing) or a
query (after which the Algorithm outputs a response). Moreover,
in some of our results, we will separate between the preprocessing
time (the period of time after the algorithm obtains its initial input
G0, and before it obtains its �rst update) and the update time and
query time.

We say that the Algorithm solves % in the adaptive setting with
amortized update (and query) time C if for any Adversary, with
high probability, in the above two-player game,

(1) For every 8 we have that I8 is a valid solution for % (G8 ).
(2) The Algorithm runs in amortized time C per update.

Notation. We refer to algorithms in the adaptive setting as algo-
rithms that work against an adaptive adversary, or adaptive algo-
rithms in short. Analogously, we refer to algorithms in the oblivious
setting as algorithms that work against an oblivious adversary, or
oblivious algorithms in short.

1.1 Our Contributions
In this paper we take a general perspective into studying dynamic
algorithms against an adaptive adversary. On the positive side,
we develop a general technique for transforming an oblivious al-
gorithm into an adaptive algorithm. We show that our general
technique results in more e�cient adaptive algorithms for several
graph problems of interest. On the negative side, we prove sepa-
ration results. Speci�cally, we present dynamic problems that can
be trivially solved against oblivious adversaries, but, under certain
assumptions, require a signi�cantly higher computation time when
the adversary is adaptive. This is the �rst separation between the
oblivious setting and the adversarial setting for dynamic algorithms.
In particular, this is the �rst separation between randomized and
deterministic dynamic algorithms, since deterministic algorithms
always work against an adaptive adversary.

1.1.1 Our Positive Results. We describe a generic black-box reduc-
tion to obtain a dynamic algorithm against an adaptive adversary
from an oblivious one. This reduction can be applied to any oblivi-
ous dynamic algorithm for an estimation problem. We then apply
our generic reduction to obtain adaptive algorithms for several
well-studied graph problems. To speed up the adaptive algorithms
that we get from our generic reduction, we construct a sparsi�er
over a dynamic expander decomposition with fast initialization
time. By combining our reduction technique with this sparsi�er we
substantially improve the amortized update time. We obtain the
following theorem.
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T������ 1.2. Given a graph⌧ with = vertices undergoing edge
insertions and deletions, there are dynamic algorithms against an
adaptive adversary for the following problems:

• Global min cuts: (1 + n)-approximation in $̃ (<1/2=1/4)
amortized update and query time (see Corollary 4.1).

• All-pairs e�ective resistance: (1 + n)-approximation us-
ing =3/4+> (1) amortized update and query time (see Corol-
lary 4.13).

• All-pairs distances: log38+$ (1) =-approximation using
=1/2+1/(28)+> (1) amortized update and query time, for any
integer 8 (see Corollary 4.7).

• All-pairs distances with be�er approximation: log= ·
poly(log log=)-approximation using $̃ (<4/5) amortized up-
date and query time, where< is the current number of edges
(see Corollary 4.2).

In Table 1, we compare our results to previously known results.
For all problems we consider, essentially the only known technique
against an adaptive adversary is to maintain a sparsi�er of the
graph [17] and simply query on top of the sparsi�er.

1.1.2 Our Negative Results. We present two separation results,
one for a search problem and one for an estimation problem. Our
separation results rely on (unproven) computational assumptions,
which hold in the random oracle model.1 Assuming a random oracle
is a common assumption in cryptography, starting in the seminal
work of Bellare and Rogaway [13]. Many practical constructions
are �rst designed and proved assuming a random oracle and then
implemented using a cryptographic hash function replacing the
random oracle. This is known as the random oracle methodology.2
Thus, heuristically, the computational assumptions we make hold
for cryptographic hash functions. We obtain the following theorem.

T������ 1.3 (��������). Under some computational assump-
tions (or, alternatively, in the random oracle model):

(1) For any constant 2 > 1, there is a dynamic search problem
%=search, where = is a parameter controlling the instance size,
that can be solved in the oblivious setting with amortized
update time $ (=), but requires amortized update time ⌦(=2 )
in the adversarial setting, even if the algorithm is allowed time
20.5= in the preprocessing stage.

(2) There is a dynamic estimation problem %=est, where = is a pa-
rameter controlling the instance size, that can be solved in the
oblivious setting with total time $ (=6) over $ (=2) updates,
but requires total time ⌦(=7) over $ (=2) updates in the ad-
versarial setting.

We note that our lower bound for the estimation problem %=est
matches what we would get by applying our positive result (our
generic reduction) to the oblivious algorithm that solves %=est.

1 A random oracle is an in�nite random string R such that the algorithm can read the
8-th bit in R, denoted R[8 ], at the cost of one time unit. We assume that each bit of R
is uniformly distributed and independent of all other bits of R, thus, the only way to
get any information on R[8 ] is to read this bit.
2We remark that the random oracle methodology is a heuristic. Canetti, Halevi, and
Goldreich [28] provide speci�cally tailored constructions of cryptographic schemes
such that they become insecure under any instantiation of the random oracle with a
computable function.

1.2 Technical Overview
We give a technical overview of our results. Any informalities made
herein will be removed in the sections that follow.

1.2.1 Generic Transformation Using Di�erential Privacy. Di�eren-
tial privacy [38] is a mathematical de�nition for privacy that aims
to enable statistical analyses of datasets while providing strong
guarantees that individual level information does not leak. Over
the last few years, di�erential privacy has proven itself to be an
important algorithmic notion (even when data privacy is not of
concern), and has found itself useful in many other �elds, such as
machine learning, mechanism design, secure computation, proba-
bility theory, secure storage, and more [5, 10, 53, 54, 57].

Recall that the di�culty in the adaptive setting arises from po-
tential dependencies between the inputs of the algorithm and its
internal randomness. Our transformation uses a technique, intro-
duced by [47] (in the context of streaming algorithms), for using
di�erential privacy to protect not the input data, but rather the
internal randomness of algorithm. As [47] showed, this can be used
to limit (in a precise way) the dependencies between the internal
randomness of the algorithm and its inputs, thereby allowing to
argue more easily about the utility guarantees of the algorithm in
the adaptive setting. Following [47], this technique was also used
by [3, 14] for streaming algorithms and by [42] for machine un-
learning. We adapt this technique and connect it to the setting of
dynamic algorithms in general and dynamic algorithms for graph
problems in particular.

Informally, our generic transformation can be described as fol-
lows.

(1) Let ) be a parameter, and let A be an oblivious algorithm.
(2) Before the �rst update arrives, we initialize 2 = $̃ (

p
) ) inde-

pendent copies of A, with the initial input G0.
(3) For ) time step 8 = 1, 2, 3, . . . ,) :
(a) Obtain an update D8 .
(b) Feed the update D8 to all of the copies of A.
(c) Sample $̃ (1) of the copies of A, query them, aggregate

their responses with di�erential privacy, and output the
aggregated value.

(4) Reset all of the copies of A, i.e., re-initialize each copy on
the current input with fresh randomness, and goto step 3.

It can be shown that this construction satis�es di�erential pri-
vacy w.r.t. the internal randomnesses of each of the copies of algo-
rithm A. The intuition is that by instantiating 2 = $̃ (

p
) ) copies of

A we have enough “privacy budget” to aggregate) values privately
(this follows from advanced composition theorems for di�erential
privacy [39]). After exhausting our privacy budget, we reset all our
data structures, and hence, reset our privacy budget. The total time
we need for ) steps is

$̃
⇣p
) · Ctotal +) · C@

⌘
,

where Ctotal is the total time needed to conduct ) updates to algo-
rithm A, and C@ is the query time of algorithm A. Instantiating
this generic construction for the graph problems we study already
gives new (and non trivial) results, but does not yet obtain the re-
sults stated in Theorem 1.2 and in Table 1. Speci�cally, this obtains
all the results in Theorem 1.2 except that the update and query
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Table 1: A comparison between previous oblivious and adaptive algorithms, and our new adaptive algorithm. The bound shown
is the maximum of update time and query time. We omit polylog(=) factors. By static algorithms, we mean algorithms that
compute the answer from scratch.

Problems Approx. Previous
oblivious algo.

Previous
adaptive algo.

Our new
adaptive algo.

Global min cut (1 + n) =1/2

[63]
<

(use static algo. [52]) <1/2=1/4

All-pairs e�ective
resistance (1 + n) =2/3+> (1)

[31]
<

(use static algo.) =3/4+> (1)

All-pairs distances log38+$ (1) =
=1/8+> (1)

[41]
=

(implicit in [17]) =1/2+1/(28)+> (1)

log=·
poly log log=

=2/3+> (1)

[31]
<

(use static algo.) <4/5

time bounds depend on<, the number of edges, rather than =, the
number of vertices.

1.2.2 The Blinking Adversary Model. We observe that for the graph
problems we are interested in, we can improve over the above
generic construction as follows. We design oblivious algorithms
with an extra property that allows us to “refresh” them in Step 4
of the above generic transformation faster than the time needed to
initialize them from scratch. Formally, the “refresh” properties that
we need are:

(1) The algorithm maintains utility against a “semi-adaptive”
adversary (which we call a blinking adversary), de�ned as
follows. Every time we hit the refresh button, say in time
8refresh, the adversary gets to see all of the outputs given by
the algorithm before time 8refresh. The adversary may use this
in order to determine the next updates and queries. From
that point on, until the next time we hit the refresh button,
the adversary is oblivious in the sense that it does not get to
see additional outputs of the algorithm.3

(2) Hitting the refresh button is faster than instantiating the
algorithm from scratch.

We show that if we have an algorithm A with a (hopefully fast)
refresh button, then when applying our generic construction to
A, in Step 4 of the generic construction it su�ces to refresh all
the copies of algorithm A, instead of completely resetting them.
Assuming that refresh is indeed faster than reset, then we get a
speedup to our resulting construction. We then show how to con-
struct dynamic algorithms (for the graph problemswe are interested
in) with a fast refresh button.

Designing algorithms with fast refresh. Let A be an oblivious
algorithm for one of our graph problems. In order to speedup A’s
reset time, we ideally would have used an appropriate sparsi�er
(i.e., a graph with few edges that approximates the properties of
the original graph), and run our oblivious algorithm A on top
of the sparsi�er. This would make sure that the time needed to
restart A (without restarting the sparsi�er) depends on = rather
than<. Unfortunately, known sparsi�ers that well approximate

3In our application, we hit the refresh button after every) outputs of the algorithm,
which means that the adversary gets to see the outputs of the algorithm in bulks of
size) .

the functions that we estimate, do not work against an adaptive
adversary. Consequently, if we use such a sparsi�er (and never reset
it) then the adversary may learn about the sparsi�er’s randomness
through the estimates spitted out by the algorithm and use this
knowledge to fool the algorithm. On the other hand, resetting the
sparsi�er would cost us $ (<) time, which would be too much.

To overcome this challenge, we design a sparsi�er with a fast
$̃ (=) time refresh button. Our construction of a sparsi�er has two
parts. We �rst use an adaptive dynamic algorithm of Bernstein et
al. [17] that maintains a decomposition of⌧ into expanders. This
algorithm can handle insertion and deletion of edges in polylog
amortized time; we execute the update step of this algorithm in
each update to the graph. The second part is a construction of a
sparsi�er from the decomposition to expanders. As we do not know
how to construct an adaptive dynamic algorithm for this task, we
only execute it in the refresh.

1.2.3 Negative Result for a Search Problem. In the full version of
this paper [11], we prove that there is a search problem that is much
easier for an oblivious algorithm than for an adaptive algorithm.We
next describe the ideas of this proof. To simplify the presentation in
the introduction, we present a simpli�ed problem; our separation
in [11] is stronger.

Assume that�= : {0, 1}= ! {0, 1}= is a function such that�= (G)
can be computed in time $ (=) for every G 2 {0, 1}= . Consider a
dynamic problem inwhich an adversarymaintains a set- ⇢ {0, 1}=
of excluded strings (where |- | < 20.5=), initialized as the empty set.
In each update the adversary adds an element to- and the algorithm
has to output the pair

�
G,�= (G)

�
for an element G 8 - . An oblivious

dynamic algorithm picks a random G in the preprocessing stage,
computesF = �= (G), and outputs the pair (G,F). No matter how
an oblivious adversary chooses its updates to - , the probability
that in a sequence of at most 20.5= updates the adversary adds to -
the random G chosen by the algorithm is negligible (as G 2' {0, 1}=
and the size of - is at most 20.5=), and the algorithm can use the
same output (G,F) after each update, thus not paying at all for
an update. However, an adaptive adversary can see the output
G8�1 of the algorithm after the (8 � 1)-th update and add G8�1 to
- . Thus, after each update the algorithm has to compute �= (G8 )
for a new G8 . We want to argue that an adaptive algorithm has
to spend ⌦(=) amortized time per update. For this we need to
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assume that �= is moderately hard, e.g., computing �= (G) requires
time ⌦(=). However, this assumption does not su�ce; we need
to assume that computing �= (G1), . . . ,�= (G✓ ) for some ✓ requires
time ⌦(=✓) for any sequence of inputs G1, . . . , G✓ chosen by the
algorithm. That is, we need to assume that computing �= on many
inputs cannot be done substantiallymore e�ciently than computing
each �= (G8 ) independently; such assumption is known as a direct-
sum assumption. Thus, assuming that there is a function that has a
direct-sum property we get a separation.

In the simple separation described above, the algorithm can in the
preprocessing stage choose a sequence G1, G2, . . . , G✓ and compute
the values�= (G1),�= (G2), . . . ,�= (G✓ ). Thereby the algorithm does
not need to spend any time after each update. To force the algorithm
to work during the updates, in [11] we de�ne a more complicated
dynamic problem and prove that the amortized update time of an
adaptive algorithm for this problem is high even if the preprocessing
time of the algorithm is 20.5= .

The problem discussed above actually captures the very well-
known technique in dynamic graph algorithms for exploiting an
oblivious adversary (e.g. how dynamic reachability and shortest
paths algorithms choose a random root for an ES-tree [20, 48, 58],
or how dynamic maximal matching algorithms choose a random
edge to match [7, 60], and similarly for dynamic independent set
[9, 30] and dynamic spanner algorithms [8]). Roughly speaking,
the set - above corresponds to a set of deleted edges in the graph.
These algorithms need to “commit” to some G , but whenever G is
deleted/excluded from the graph, they need to recommit to a new
G 0 and spend a lot of time. By choosing a random G , the algorithm
would not recommit so often against an oblivious adversary, hence
obtain small update time. Our result, therefore, formalizes the intu-
ition that this general approach does not extend (at least as is) to
the adaptive setting.

1.2.4 Negative Result for an Estimation Problem. In the full version
of this paper [11], we present a separation result for an estimation
problem. Our result uses techniques from the recent line of work
on adaptive data analysis [37]. We remark that a similar connection
to adaptive data analysis was utilized by [51], in order to show
impossibility results for adaptive streaming algorithms. However,
our analysis di�ers signi�cantly as our focus is on runtime lower
bounds, while the focus of [51] was on space lower bounds.

To obtain our negative result, we introduce (and assume the
existence of) a primitive, which we call boxes scheme, that allows a
dealer to insert< plaintext inputs into “closed boxes” such that:

(1) A closed box can be opened, retrieving the plaintext input,
in time ) (for some parameter ) ).

(2) Any algorithm that runs in time 1 ·) cannot learn “anything”
about the content of more than $ (1) of the boxes.

Given this primitive (which we de�ne precisely in [11]), we
consider the following problem.

De�nition 1.4 (The average of boxes problem, informal). The
initial input consists of < closed boxes. On every time step, the
algorithm gets a predicate (mapping plaintexts to {0, 1}), and the
algorithm needs to estimate the average of this predicate over the
content of the< boxes.

This is an easy problem in the oblivious setting, because the
algorithm can sample $̃ (1) of the boxes, open them, and use their
content in order to estimate the average of all the predicates given
throughout the execution. However, as we show, this is a hard
problem in the adaptive setting. Speci�cally, every adaptive algo-
rithm for this problem essentially must open ⌦(<) of the< boxes
it gets as input. Intuitively, as opening boxes takes time, we get a
separation between the oblivious and the adaptive settings, thereby
proving item 2 of Theorem 1.3.

2 PRELIMINARIES ON DIFFERENTIAL
PRIVACY

Roughly speaking, an algorithm is di�erentially private if its output
distribution is “stable” w.r.t. a change to a single input element. To
formalize this, let - be a domain. A database ( 2 -= is a list of
elements from domain - . The 8-th row of ( is the 8-th element in ( .

De�nition 2.1 (Di�erential Privacy). A randomized algorithm
A is (n, X)-di�erentially private (in short (n, X)-DP) if for any two
databases ( and ( 0 that di�er on one row and any subset of outputs
) , it holds that

Pr[A(() 2 ) ]  4n · Pr[A(( 0) 2 ) ] + X,

where the probability is over the randomness of A. The parameter
n is referred to as the privacy parameter. When X = 0 we omit it
and write n-DP.

Composition. A crucial property of di�erential privacy is that it is
preserved under adaptive composition. LetA1 andA2 be algorithms.
The adaptive composition A = A2 � A1 is such that, given a
database ( ,A invokes 01 = A1 ((), then 02 = A2 (01, (), and �nally
outputs (01,02). The basic composition theorem guarantees that, if
A1, . . . ,A: are each (n, X)-DP algorithms, then the composition
A: �· · ·�A1 is (n 0 = :n,:X)-DP. The advanced composition theorem
shows that the privacy parameter n 0 need not grow linearly in : ,
but instead only in ⇡

p
: .

T������ 2.2 (A������� C���������� [39]). Let n, X 0 2 (0, 1]
and X 2 [0, 1]. If A1, . . . ,A: are each (n, X)-DP algorithms, then
A: � · · · �A1 is (n 0, X 0 + :X)-DP where

n 0 =
p
2: ln(1/X 0) · n + 2:n2 .

In our applications, the second term (which is linear in :) will be
dominated by the �rst term. The saving in n 0 from : to

p
: enables

a polynomial speed up in our applications.

Ampli�cation via sampling. Secrecy-of-the-sample is a technique
for “amplifying” privacy by subsampling. Informally, if a W-fraction
of the input database rows are sampled, and only those are given
as input to a di�erentially private algorithm then the privacy pa-
rameter is reduced (i.e., improved) by a factor proportional to ⇡ W .

T������ 2.3 (A�������������� ��� �������� ([27, L���� 4.12])).
Let A be an n-DP algorithm where n  1. Let A 0 be the algorithm
that, given a database ( of size =, �rst constructs a database) ⇢ ( by
sub-sampling with repetition :  =/2 rows from ( and then returns
A() ). Then, A 0 is ( 6:= · n)-DP.4
4The statement in [27] is more general and allows A to be (n,X)-DP.
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Generalization. Our analysis relies on the generalization property
of di�erential privacy. Let D be a distribution over a domain -
and let ⌘ : - ! {0, 1} be a predicate. Suppose that the goal is to
estimate ⌘(D) = EG⇠D [⌘(G)]. A simple solution is to sample a
set ( consisting of few elements from - independently from D,
and then compute the empirical average ⌘(() = 1

|( |
Õ
G 2( ⌘(G). By

standard concentration bounds, we have ⌘(D) ⇡ ⌘((). That is, the
empirical estimate on a small sample ( generalizes to the estimate
over the underlying distribution D.

The argument above, however, fails if ( is sampled �rst and ⌘ is
chosen adaptively, because ⌘ can “over�t” ( . The theorem below
says that, as long as the predicate⌘ is generated from a di�erentially
private algorithmA, we can still guarantee generalization of⌘ (even
when the choice of ⌘ is a function of (). As shown in [47], this key
property will link di�erentially privacy to accuracy of algorithms
against an adaptive adversary.

T������ 2.4 (G������������� �� DP [5, 37]). Let n 2 (0, 1/3),
X 2 (0, n/4) and C � 1

n2 log(
2n
X ). LetD be a distribution on a domain

- . Let ( ⇠ DC be a database containing C elements sampled indepen-
dently from D. Let A be an algorithm that, given any database ( of
size C , outputs a predicate ⌘ : - ! {0, 1}. (We emphasize that ⌘ may
depend on ( .)

If A is (n, X)-DP, then the empirical average of ⌘ on sample ( , i.e.,
⌘(() = 1

|( |
Õ
G 2( ⌘(G), and ⌘’s expectation over the underlying distri-

bution D, i.e., ⌘(D) = EG⇠D [⌘(G)], are within 10n with probability
at least 1 � X

n . In other words, we have

Pr
(⇠DC
⌘ A(( )

"�����
1
|( |

’
G 2(

⌘(G) � EG⇠D [⌘(G)]
����� � 10n

#
<

X

n
.

The only di�erentially private subroutine we need in this paper
is a very simple algorithm for computing an approximate median
of elements in databases.

T������ 2.5 (P������M����� (��������)). Let- be a �nite do-
mainwith total order. For every n, V 2 (0, 1), there is � = $ ( 1n log( |- |

V ))
such that the following holds. There exists an (n, 0)-DP algorithm
pMediann,V that, given a database ( 2 - ⇤, in $ ( |( | · 1

n log3 ( |- |
V ) ·

polylog( |( |)) time outputs an element G 2 - (possibly G 8 () such
that, with probability at least 1�V , there are at least |( |/2�� elements
in ( that are bigger or equal to G and at least |( |/2 � � elements in (
that are smaller or equal to G .

The algorithm is based on binary search. If we assume that we
can sample a real number from the Laplace distribution in constant
time, then the running time would be $ ( |( | log |- |). Here, we do
not assume that and use the bound from [4]. We remark that there
are several advanced constructions for private median with error
that grows very slowly as a function of the domain size |- | (only
polynomially with log⇤ |- |) [12, 27, 50]. In our application, however,
the domain size is already small, and hence, we can use the simpler
construction stated above.

3 A GENERIC REDUCTION
In this section, we present a simple black-box transformation of
dynamic algorithms against an oblivious adversary to ones against

an adaptive adversary. The approach builds on the work of [47] for
transforming streaming algorithms, which focus on space instead
of update time. A key di�erence is that we apply subsampling
for speeding up. This is crucial to ensure that our applications in
Section 4 have non-trivial update and query time. We give the
formal statement and its proof below.

T������ 3.1. Let Xfail,U > 0 be parameters. Let 6 be a function
that maps elements in some domain - to a number in [�* ,� 1

* ] [
{0} [ [ 1* ,* ] where * > 1. Suppose there is a dynamic algorithm A
for estimating 6 against an oblivious adversary that, given an initial
input G0 2 - undergoing a sequence of ) updates, guarantees the
following:

• The total preprocessing and update time for handling) updates
is Ctotal.

• The query time is C@ and, with probability � 9/10, the answer
is a W-approximation of 6(G).

Then, there is a dynamic algorithm A 0 against an adaptive adver-
sary that, with probability at least 1 � Xfail, maintains a W (1 + U)-
approximation of a function6(G) when the input undergoes) updates
in $̃ (

p
) · Ctotal +) · C@) total update time. By restarting the algorithm

every ) steps we can run A 0 on a sequence of updates of any length
in $̃ (Ctotal/

p
) + C@) amortized update time. The $̃ in this theorem

hides polylog() log*
UXfail

) factors.

Algorithm A 0 description.
(1) Before the �rst update arrives, initialize 2 = $̃ (

p
) ) copies

of A, denoted by A(1) , . . . ,A(2) , with the input G0.
(2) For each step 8 2 [1,) ], given an update D8 ,
(a) Feed the update D8 to every copy of A.
(b) To compute a W (1 + U)-approximation of 6(G8 ), do the

following:
(i) Independently and uniformly sample B = $̃ (1) indices

91, . . . , 9B 2 [1, 2].5 We emphasize the these sampled
indices are not revealed to the adversary.

(ii) For each 1  :  B , query A( 9: ) and let out( 9: )8 denote
its estimate of 6(G8 ), round up out( 9: )8 to the nearest
power of (1+U) and denote it by gout( 9: )8 . If out( 9: )8 = 0,
set gout( 9: )8 = 0.

(iii) Algorithm A 0 outputs the estimate of 6(G8 ) as

out08 = pMediannmed,V (gout( 91)8 , . . . , gout( 9B )8 )
where pMediannmed,V is the algorithm for estimating
the median with di�erential privacy (see Theorem 2.5),
where nmed = 1/2 and V = Xfail/2) .

Specifying parameters. Here, we specify the parameters of the
algorithm. This is needed for precisely stating the total update time.
Let -med denote the total ordered domain for pMediannmed,V . In our

setting, -med is simply the range of gout( 9: )8 which is {0} [ {±(1 +
U)0 | � log(1+U) *  0  log(1+U) * }. So |-med | = $ ( log*U ). The
parameter � from Theorem 2.5 is such that

� = $ ( 1
nmed

log( |-med |
V

)) = $ (log( log*
UV

)) = $̃ (1).

5This is unlike in [47] where all instances of A are used.
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Now, we set B = 100�, so that when pMediannmed,V is given B num-
bers, it returns a number whose rank is in B/2± � = (1/2± 1/100)B ,
a good enough approximation of the median. Lastly, we set the
number of copies as

2 = 200 · 6Bnmed ·
p
2) ln(100/V) = $̃ (

p
) ) .

This choice of 2 is such that after subsampling and composition the
entire algorithm would be private for the appropriate parameters
with respect to its random bits. See Corollary 3.4.

Total update time. The total time 2 copies of A preprocess the
initial input G0 and handle all ) updates is clearly 2 · Ctotal by def-
inition of Ctotal. For each step 8 , we only query B many copies of
A to obtain out( 91)8 , . . . , out( 9B )8 . Rounding out( 9: )8 to its nearest
power of (1 + U) takes $ (log log*

U ) time by binary search. Com-
puting out08 is to evaluate pMediannmed,V , which takes Cmed = $ (B ·
1

nmed
log( |-med |

V ) · polylog(B)) = $ (B · 1
nmed

log( log*UV ) · polylog(B))
time by Theorem 2.5. Therefore, we can conclude:

Proposition 3.2. The total update time of A 0 is at most

2 · Ctotal +) ⇥$
✓
(C@ + log

log*
U

) · B + Cmed

◆

= $

 
Ctotal ·

p
) · log

✓
) log*
UXfail

◆
·
s
log

)

Xfail

!

+$
✓
C@ ·) · log

✓
) log*
UXfail

◆
+) · polylog

✓
) log*
UXfail

◆◆

= $̃ (Ctotal
p
) + C@) )

The second line is obtained by simply plugging in the de�nitions
of V = Xfail/2) , � = $ (log( log*UV )) = $ (log() log*

UXfail
)), B = 100� =

$ (log() log*
UXfail

)) and, hence, we have that 2 = $ (
p
) · log() log*

UXfail
) ·q

log )
Xfail

) and so the second line follows.

Accuracy against an adaptive adversary. It only remains to argue
that A 0 maintains accurate approximation of 6(G) against an adap-
tive adversary. Let A (1) , . . . , A (2) 2 {0, 1}⇤ denote the random strings
used by the oblivious algorithms A(1) , . . . ,A(2) during the ) up-
dates. We view the collection of random string ' = {A (1) , . . . , A (2) }
as a database where each A ( 9) is its row. We will show that the tran-
script of the interaction between the adversary and algorithm A 0
is di�erentially private with respect to '. (This is perhaps the most
important conceptual idea from [47].) Then, we will exploit this
fact to argue that the answers of A 0 are accurate. Let us formalize
this plan below.

For any time step 8 , let out08 (') denote the output of A 0 at time
step 8 when the collection ' is �xed. Note that out08 (') is still a
random variable because A 0 uses some additional random strings
for subsampling and computing a private median. Now, we de�ne
T8 (') = (D8 , out08 (')) as the transcript between Adversary and
algorithm A 0 at step 8 . Let

T (') = G0,T1 ('), . . . ,T) (')
denote the transcript. We also prepend the transcript with the input
G0 before the �rst update arrives. Since ' is freshly sampled at the
beginning, it is completely independent from G0. We view T8 and

T as algorithms that, given a database ', return the transcripts.
From this view, we can prove that they are di�erentially private
with respect to '.

Lemma 3.3. For a �xed step 8 , T8 is ( 6B2 · nmed, 0)-DP with respect
to '.

P����. Given a transcript T8 (') = (D8 , out08 (')) of only a single
step 8 , the update D8 does not give any (new) information about '.
So it su�ces to consider out08 ('), which is set to

pMediannmed,V (gout( 91)8 , . . . , gout( 9B )8 ) .
By Theorem 2.5, we have that pMediannmed,V is (nmed, 0)-DP. Its
inputs are gout( 91)8 , . . . , gout( 9B )8 , which are determined by the subset
{A ( 91) , . . . , A ( 9B ) } ⇢ ', which in turn are obtained by sub-sampling
from '. By invoking Theorem 2.3 (and note that B  2/2), subsam-
pling boosts the privacy parameter and so out08 (') is (

6B
2 · nmed, 0)-

DP with respect to ' as claimed. ⇤

Corollary 3.4. T is ( 1
100 ,

V
100 )-DP with respect to '.

P����. Observe that T is an adaptive composition T) � · · · � T1
(except that we prepend G0 which is independent from '). Since
each T8 is ( 6B2 · nmed, 0)-DP as shown in Lemma 3.3, by applying the
advanced composition theorem (Theorem 2.2) with parameters n =
6B
2 nmed, X = 0, and X 0 = V/100, we have that that T is (n 0, X: + X 0)-
DP where

n 0 =
p
2) ln(100/V) ·

✓
6B
2
nmed

◆
+ 2) ·

✓
6B
2
nmed

◆2

 1
200

+ 1
200

=
1
100

because 2 = 200 · 6Bnmed ·
p
2) ln(100/V). Also, X: + X 0 = V/100.

Therefore, T is ( 1
100 ,

V
100 )-DP. ⇤

Next, we exploit di�erential privacy for accuracy against an
adaptive adversary. Let ÆG8 = (G0,D1, . . . ,D8 ) denote the whole input
sequence up to time 8 . Let A(A , ÆG8 ) denote the output of the obliv-
ious algorithm A on input sequence ÆG8 , given a random string A .
Let

accÆG8 (A ) = 1 {6(G8 )  A(A , ÆG8 )  W6(G8 )}
be the indicator function deciding if A(A , ÆG8 ) is W-accurate. Note
that accÆG8 (A

( 9) ) indicates precisely whether the instance A( 9) is
accurate at time 8 . Now, we show that at all times, most instances
of the oblivious algorithm are W-accurate.

Lemma 3.5. For each �xed 8 2 [1,) ], Õ2
9=1 accÆG8 (A

( 9) ) � 4
52 with

probability at least 1 � V .

P����. Observe that the function accÆG8 (·) is determined by the
transcriptT . This is because the input sequence ÆG8 is just a substring
of the transcript T and ÆG8 determines the predicate accÆG8 .

Now, we have the following (1) each row of ' is a string drawn
independently from the uniform distribution U, (2) accÆG8 is a pred-
icate on strings and is determined by T as argued above, and (3)
T can be viewed as a ( 1

100 ,
V
100 )-DP algorithm with respect to '

by Corollary 3.4. By the generalization property of di�erential pri-
vacy (Theorem 2.4), we have that the empirical average of accÆG8 on
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', i.e., 12
Õ2

9=1 accÆG8 (A
( 9) ), and accÆG8 ’s expectation over the under-

lying distribution U, i.e., EA⇠U [accÆG (A )] should be close to each
other. More formally, by invoking Theorem 2.4 where n = 1/100,
X = V/100 and C = 2 � 1

n2 log(
2n
X ), we have that

Pr
'⇠U2

acc ÆG8 T(')

266664

������
1
2

2’
9=1

accÆG8 (A
( 9) ) � EA⇠U [accÆG8 (A )]

������ �
1
10

377775
 V .

Since the oblivious algorithm A returns accurate answers with
probability at least 9/10 as long as its random choice is indepen-
dent from the input, for any arbitrary input sequence ÆG , we have
EA⇠U [accÆG (A )] � 9/10. Therefore, we have that with probability
at least 1 � V ,

1
2

2’
9=1

accÆG8 (A
( 9) ) � 9

10
� 1
10
� 4

5

as desired. ⇤

Given that most instances of the oblivious algorithm are always
accurate, it is intuitively immediate that A 0 is always accurate too.
This is because A 0 returns the median of the sub-sampled answers
from oblivious algorithms. Below, we verify this.

Corollary 3.6. For all 8 2 [1,) ], 6(G8 )  out08  W (1 + U)6(G8 )
with probability at least 1 � Xfail.

P����. Consider a �xed step 8 . Recall that A 0 independently
samples B indices 91, . . . , 9B and queries A( 9: ) for 1  :  B . Let
acc: = accÆG8 (A

( 9: ) ) indicate whether A( 9: ) is accurate at time 8 .
Lemma 3.5 implies that E[ÕB

:=1 acc: ] �
4
5B . By Hoe�ding’s bound,ÕB

:=1 acc: �
3
4B with probability at least 1 � exp(�⇥(B)) � 1 � V

by making sure that the constant in the de�nition of B (actually �)
is large enough.

If acc: = 1, we have that 6(G8 )  out( 9: )8  W6(G8 ) and so
6(G8 )  gout( 9: )8  W (1+U)6(G8 ). So at least 34 -fraction of gout( 91)8 , . . . ,

gout( 9B )8 are W (1 + U)-approximation of 6(G8 ). With probability at
least 1 � V , pMediannmed,V returns out08 such that there are 1

2 � �
B �

49
100 fraction of gout( 91)8 , . . . , gout( 9B )8 that are at least out08 and the
same holds for those that are at most out08 . Therefore, out

0
8 is a

W (1 + U)-approximation of 6(G8 ) with probability at least 1� 2V . By
union bound, this holds over all time steps with probability at least
1 � 2)V = 1 � Xfail. ⇤

Via the accuracy guarantee from Corollary 3.6 together with the
total update time bound from Proposition 3.2, we now conclude
the proof of Theorem 3.1.

Extensions of Theorem 3.1. Before we conclude this section, we
discuss several possible ways to extend the reduction from Theo-
rem 3.1.

Worst-case update time. First of all, although the reduction is
stated for amortized update time, it can be made worst-case if the
given oblivious algorithm guarantee worst-case update time. More
formally, we have the following.

T������ 3.7. Let6 : - ! [�* ,� 1
* ][{0}[ [ 1* ,* ] be a function

that maps elements in some domain - to a number in [�* ,� 1
* ] [

{0} [ [ 1* ,* ] where * > 1. Suppose there is a dynamic algorithm
A against an oblivious adversary that, given an initial input G0
undergoing a sequence of ) updates, guarantees the following:

• The preprocessing time on G0 is C?
• The worst-case update time for each update is CD .
• The query time is C@ and, with probability � 9/10, the answer
is a W-approximation of 6(G).

Then, there is a dynamic algorithm A 00 against an adaptive adver-
sary that, with probability at least 1 � Xfail, maintains a W (1 + U)-
approximation of a function 6(G) when G undergoes any sequence of
update using

$̃

✓
C?p
)

+
p
)CD + C@

◆

worst-case update time.

P���� ������. Using exactly the same algorithm from Theo-
rem 3.1, we obtain the adaptive algorithm A 0 can handle ) up-
dates whose preprocessing time is $̃ (C?

p
) ) and the worst-case up-

date/query time is $̃ (CD
p
) + C@). To get an algorithm with $̃ ( C?p

)
+

p
)CD + C@) worst-case update time, we create two instances A 0>33

and A 04E4= of A 0 and proceed in phases. Each phase has ⇥() )
updates. We only need to show how to avoid spending a large
preprocessing time of $̃ (C?

p
) ) in a single time step. During the

odd phases, we use A 0>33 to handle the queries and distribute the
work for preprocessing of A 04E4= equally on each time step in this
phase. During the even phases, we do the opposite. So the prepro-
cessing time is “spread” over ⇥() ) updates, which consequently
contributes $̃ ( C?p

)
) worst-case update time. This a very standard

technique in the dynamic algorithm literature (see e.g. Lemma 8.1
of [6]). ⇤

Speed up for stable answers. Suppose that we know that during
) updates, the (1 + n)-approximate answers to the queries can
change only _ times for some _ ⌧ ) . Then, using the same idea
from [47], the total update time of Theorem 3.1 can be improved to
$̃ (Ctotal

p
_ + C@).

This idea could be useful for several problems. For examples,
suppose that we want to maintain (1 + n)-approximation of global
minimum cut, or (B, C)-minimum cuts, or maximum matching in
unweighted graphs. If the current answer : , we know that it must
takes at least n: updates before the answer changes by a (1 + n)
factor. Suppose that, somehow, the answer is always at least : , then
we have _  ) /n: . It is also possible to remove the assumption that
the answer is at least : : if there is a separated adaptive algorithm
that can take care of the problem when the answer is less than : ,
then we can run both algorithms in parallel. This idea of combining
the two algorithms, one for small answers and another for large
answers, was explicitly used in [14] in the streaming setting.

Speed up via batch updates. In the algorithm for Theorem 3.1, re-
call that we create 2 = $̃ (

p
) ) copies ofA, denoted byA(1) , . . . ,A(2) .

For each copy A( 9) , we feed an update D8 at every time step 8 one
by one. Consider what if we are lazy in feeding the update to A( 9) .
That is, we wait until A( 9) is sampled and we want to query A( 9) .
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Only then we feed a batch of updates containing all updates that
we have not feed to A( 9) until the current update. The batch will
be of size $ (2/B) = $̃ (

p
) ) in expectation. That is, through out

the sequence of ) updates, each A( 9) is expected to handles only
$̃ (
p
) ) batches containing $̃ (

p
) ) updates.

This implementation would not change the correctness. But the
whole algorithm can possibly be faster if A is a dynamic algorithm
that can handle a batch update of size $̃ (

p
) ) faster than a sequence

of $̃ (
p
) ) updates. This is a property that is quite natural to expect.

Indeed, there are some dynamic algorithms such that the larger
the batch the faster the update time on average, including dynamic
matrix inverse and its applications such that dynamic reachabil-
ity [59, 64]. However, these algorithms are not for approximating
functions and so we cannot exploit them in this paper.

4 APPLICATIONS TO DYNAMIC GRAPH
ALGORITHMS

In this section, we show new dynamic approximation algorithms
against an adaptive adversary for four graph problems including,
global minimum cut, all-pairs distances, e�ective resistances, and
minimum cuts. Given a graph ⌧ undergoing edge updates, let =
denote a number of vertices and < denote a current number of
edges in⌧ . In Section 4.1, we show how the generic reduction from
Theorem 3.1 immediately transforms known algorithms against an
oblivious adversary to work against an adaptive adversary with
> (<) update and query time. In Section 4.2, we show how to speed
up the update time using sparsi�ers and in Section 4.3 we discuss
limitations of adaptive dynamic algorithms maintaining sparsi�ers.
Then, in Section 4.4, we show how to avoid these limitations and
obtain a sparsi�cation technique that allows us to assume that
< = $̃ (=) all the time and speed up our algorithms.

Throughout this section, $̃ hides a polylog(=) factor. We also
assume edge weights are integers of size at most poly(=). Also,
to simplify the calculation, we will assume n = ⌦(1) in all of our
dynamic (1 + n)-approximation algorithms.

4.1 Applying the Generic Reduction
The update time of our dynamic algorithms in this subsection de-
pends on <. We assume that < never changes by more than a
constant factor, because otherwise, we can restart the algorithm
from scratch which would increase the amortized update time by
at most a constant factor.

We start with the �rst dynamic algorithm against an adaptive
adversary for (1 + n)-approximate global mincut.

Corollary 4.1 (Global minimum cuts). For every constant n > 0,
there is a dynamic algorithm against an adaptive adversary that,
given an unweighted graph⌧ undergoing edge insertions and dele-
tions, with probability 1�1/poly(=),6maintains a (1+n)-approximate
value of the global mincut in $̃ (<1/2=1/4) = $̃ (<3/4) amortized up-
date time.

P����. We simply apply Theorem 3.1 to the dynamic algorithm
against an oblivious adversary by Thorup [63, Theorem 11]. When

6In this paper, when we say 1/poly(=) , we mean that it stands for every polynomial
that is greater than 1.

the graph initially has< edges, his algorithm takes $̃ (<) prepro-
cessing time7 and $̃ (p=) worst-case update time. So the total up-
date time for handling ) updates (for any ) ) is

Ctotal = $̃ (< +)
p
=).

Thorup’s algorithm maintains the (1 + n/3)-approximation of
the global mincut explicitly, so we can query it in C@ = $ (1) time.
By plugging this into Theorem 3.1 where U = n/3, since (1 + n/3) ·
(1 + U)  (1 + n), we obtain an (1 + n)-approximation algorithm
against an adaptive adversary with amortized update time

$̃

✓
< +)p=p

)

◆
.

This amortized update time is minimized for ) ⇡</p=. Therefore
if we rebuild our data structure after ) ⇡</p= updates we get an
amortized update time of $̃ (<1/2=1/4). ⇤

Corollary 4.2 (All-pairs distances). There is a dynamic algorithm
against an adaptive adversary that, given a weighted graph⌧ , handles
the following operations in $̃ (<4/5) amortized update time:

• Insert or delete an edge from the graph, and
• Given B, C 2 + (⌧), with probability at least 1 � 1/poly(=), re-
turn a (log(=) ·poly(log log=))-approximation of the distance
between B and C .

P����. Chen et al. [31, Lemma 7.15 and the proof of Theo-
rem 7.1] give a dynamic algorithmA against an oblivious adversary
with the following guarantee. Given a weighted graph⌧ with = ver-
tices and< edges and any parameter 9 , the algorithm preprocesses
⌧ and with probability 1 � 1/poly(=) handles at most ) = $ ( 9)
operations in Ctotal = $̃ (<2/ 9) total update time. The operations
that A can handle include:

• edge insertions and deletions, and
• given (B, C), return a (log(=) ·poly(log log=)) approximation
of the (B, C)-distance in C@ = $̃ ( 9) time.

We want to apply the transformation from Theorem 3.1 to A, but
there is a small technical issue. In Theorem 3.1, we only consider
algorithms that maintain one single number, but A can return
an answer for any pair (B, C). So we instead assume that A also
maintains a pair of variables (src, snk). Each (B, C)-query to A
contains two sub-steps: �rst we update (src, snk)  (B, C) and then
A returns the answer for (src, snk), which is now the only single
number that A maintains. So we can indeed apply Theorem 3.1 to
A.

Applying Theorem 3.1 to A, we obtain an algorithm against an
adaptive adversary with amortized update time of

$̃

✓
<2/ 9p

9
+ 9

◆
.

By choosing 9 =<4/5 (and restarting after every 9 updates) we get
an amortized update time of $̃ (<4/5). ⇤

Next, we show that by plugging another oblivious algorithm
into the reduction, we can speed up the above result.

7The preprocessing time is not explicitly stated in [63]. This preprocessing includes,
graph sparsi�cation via uniform sampling, greedily packing $̃ (1) trees, and initializing
information inside each tree. All of these takes near-linear time.
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Corollary 4.3 (All-pairs distances with cruder approximation). For
any integer 8 � 2, there is a dynamic algorithm against an adaptive
adversary that, given a weighted graph ⌧ , handles the following
operations in<1/2+1/(28)+> (1) amortized update time:

• Insert or delete an edge from the graph, and
• Given B, C 2 + (⌧), with probability at least 1 � 1/poly(=),
return a $ (log38�2 =)-approximation of the distance between
B and C .

P����. Forster, Goranci, and Henzinger [41, Theorem 5.1] show
a dynamic algorithm A against an oblivious adversary that can
handle edge insertions and deletions in<1/8+> (1) amortized update
time when an initial graph is an empty graph and, given B, C 2 + (⌧),
can return a$ (log38�2 =)-approximate (B, C)-distance in polylog(=)
time. Again, we can use the same small modi�cation as in Corol-
lary 4.2 to view as A as an algorithm that maintain only one num-
ber.

When an initial graph is not empty but has< edges, algorithm
A can handle ) operations of edge updates and queries in at most
Ctotal = (< +) ) ·<1/8+> (1) time with query time is C@ = polylog(=).
Therefore, via Theorem 3.1 we obtain an algorithm A 0 against an
adaptive adversary with amortized update time of

$̃

 
(< +) ) ·<1/8+> (1)

p
)

+ polylog(=)
!
.

This is $̃
⇣
<1/2+1/(28)+> (1)

⌘
if we restart the structure every ) =

<1�1/8 updates. ⇤

Corollary 4.4 (All-pairs e�ective resistance). There is a dynamic
algorithm against an adaptive adversary that, given a weighted
graph ⌧ , handles the following operations in amortized update time
<1/4=1/2+> (1) :

• Insert or delete an edge from the graph, and
• Given B, C 2 + (⌧), with probability at least 1 � 1/poly(=), re-
turn a (1+n)-approximation of the e�ective resistance between
B and C .

P����. Chen et al. [31, Proof of Theorem 8.1] give a dynamic
algorithm A against an oblivious adversary with the following
guarantee. Given a weighted graph ⌧ with = vertices and< edges
and any parameters V and 3 , the algorithm preprocesses ⌧ in C? =

$ (<V5 · (
log=
n )$ (1) ) time and then handles the following operations

in CD = $ (V�23+3 ( log=n )$ (3) ) amortized time:
• edge insertions and deletions, and
• given (B, C), update (src, snk)  (B, C).

That is, given ) operations above, the total update time is Ctotal =
C? + ) · CD . The algorithm also supports queries for a (1 + n)-
approximation of the (src, snk)-e�ective resistance in

C@ = $

 
=V3

✓
log=
n

◆$ (3) !

time. We set 3 = l (1), say 3 = $ (log log=), and will set 1/V =
(=2/<)⇥(1/3) meaning that 1/V = => (1) . This implies that✓

log=
n

◆$ (3)
/V$ (1) = => (1)

(recall that we assume n to be a constant), which will help us sim-
plifying several factors in the update time below.

By pluggingA into Theorem 3.1, we obtain an algorithm against
an adaptive adversary with amortized update time of

$̃

✓
C? +) · CDp

)
+ C@

◆
=

 
< +) · V�23p

)
+ =V3

!
· => (1)

Now, to balance the �rst two terms in the bound, we set ) =<V23 .
This gives the bound of

(
p
<V�3 + =V3 ) · => (1) =<1/4=1/2+> (1)

by setting V3 = <1/4/=1/2 to balance the terms. Indeed, 1/V =
(=2/<)⇥(1/3) as promised. ⇤

4.2 Speed up via Sparsi�cation against an
Adaptive Adversary

In the rest of this section, we show how to speed up the update
time of the algorithms from Section 4.1. The idea is simple. Given a
dynamic graph ⌧ with = vertices, we want to use a dynamic algo-
rithm against an adaptive adversary for maintaining a sparsi�er �
of⌧ where� preserves a certain structure of⌧ (e.g. cuts, distances,
or e�ective resistances) but � contains at most $̃ (=) edges, and
then apply the algorithms Section 4.1 on� . So the �nal update time
only depends on = and not<.

Preliminaries on graph sparsi�cation. To formally use this idea,
we recall some de�nitions related to sparsi�cation of graphs. Given
a (weighted) graph ⌧ , we say that � is an U-spanner of ⌧ if � is
a subgraph of ⌧ and the distances between all pairs of vertices
B, C 2 ⌧ are preserved with in a factor of U , i.e.

dist⌧ (D, E)  dist� (D, E)  U · dist⌧ (D, E) .

We say that� is an U-cut sparsi�er of⌧ if, for any cut ((,+ (⌧) \(),
we have that

X⌧ (()  X� (()  U · X⌧ (()

where X⌧ (() and X� (() denote the cut size of ( in⌧ and � , respec-
tively. Also, we say that � is an U-spectral sparsi�er of⌧ , if for any
vector G 2 R+ , we have that

G>!⌧G  G>!�G  U · G>!⌧G

where !⌧ and !� are the Laplacian matrices of ⌧ and � , respec-
tively.

Fact 4.5. Suppose that � is an U-spectral sparsi�er of ⌧ .

• � is an U-cut sparsi�er of ⌧ (see e.g. [61]).
• The e�ective resistance in⌧ between all pairs (B, C) are approx-
imately preserved in � up to a factor of U . That is,

'⌧ (D, E)  '� (D, E)  U · '⌧ (D, E)

for all D, E 2 + where '⌧ (D, E) and '� (D, E) denote the e�ec-
tive resistance between D and E in ⌧ and � , respectively (see
[36, Lemma 2.5]).
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Using dynamic spanners as a blackbox. Bernstein et al. [17] showed
how to maintain a polylog(=)-spanner against an adaptive adver-
sary e�ciently.

T������ 4.6 ([17, T������ 1.1]). There is a randomized dy-
namic algorithm against an adaptive adversary that, given an =-
vertex graph ⌧ undergoing edge insertions and deletions, with high
probability, explicitly maintains a polylog(=)-spanner� of size $̃ (=)
using polylog(=) amortized update time.

With the above theorem, we can immediately speed up Corol-
lary 4.3 as follows:

Corollary 4.7 (All-pairs distances). For any integer 8 � 2, there
is a dynamic algorithm against an adaptive adversary that, given a
weighted graph⌧ , handles the following operations in=1/2+1/(28)+> (1)

amortized update time:

• Insert or delete an edge from the graph, and
• Given B, C 2 + (⌧), with probability at least 1 � 1/poly(=), re-
turn a$ (log38+$ (1) =)-approximation of the distance between
B and C .

P����. Using Theorem 4.6, we maintain a polylog(=)-spanner
� of⌧ containing $̃ (=) edges in polylog(=) amortized update time.
Since � can be maintained against an adaptive adversary, we think
of � as our input graph and pay an additional polylog(=) approxi-
mation factor and update time. The argument now proceeds exactly
in the same way as in the proof of Corollary 4.3 except that now the
input graph always contains at most $̃ (=) edges. Since the update
time of the algorithm of Theorem 4.6 is polylog(=), the number of
updates to � is at most polylog(=) for every update to ⌧ . ⇤

4.3 Current Limitation of Sparsi�cation
against an Adaptive Adversary

Here, we discuss the current limitation of dynamic sparsi�ers
against an adaptive adversary, which explains why we could not
apply the same idea to get (1+n)-approximation algorithms against
adaptive adversary.

Spanners. Observe that as long aswework on top of a polylog(=)-
spanner, we will need to pay additional polylog(=) factor in the
approximation factor. We can hope to improve this factor because,
against an oblivious adversary, there actually exists an algorithm by
Forster and Goranci [40] for maintaining a (2: � 1)-spanner of size
at most $̃ (=1+1/: ) edges using only $ (: log2 =) amortized update
time for any integer : � 1. This approximation-size trade-o� is
tight assuming the Erdos conjecture.

If there was a dynamic spanner algorithm with similar guaran-
tees that works against an adaptive adversary, we would be able
to reduce the additional approximation factor, due to sparsi�ca-
tion, from polylog(=) to 2: � 1, while the update time would be
slightly slower because the sparsi�ers have size $̃ (=1+1/: ) instead
of $̃ (=). Unfortunately, it is an open problem if such a algorithm
exists. This is the main reason why we could not state the sparsi�ed
version of Corollary 4.2 where the approximation ratio remains
log(=) · poly(log log=).

Open Question 4.8. Is there a dynamic algorithm against an adap-
tive adversary for maintaining a (2: � 1)-spanner of size $̃ (=1+1/: )
using polylog(=) update time?

Spectral sparsi�ers. The situation is similar for spectral sparsi-
�ers. Against an oblivious adversary, there exists a dynamic al-
gorithm by Abraham et al. [1] for maintaining (1 + n)-spectral
sparsi�er containing only $̃ (=) edges with polylog(=) amortized
update time. If there was an algorithm against an adaptive adver-
sary with the same guarantees, then we could immediately use it
in the same manner as in Corollary 4.7 to speed up Corollary 4.4 by
replacing< by = in their update time, while paying only an extra
(1 + n)-approximation ratio in the query. Unfortunately, whether
such a dynamic algorithm for (1 + n)-spectral sparsi�er exists still
remains a fascinating open problem.

Open Question 4.9. Is there a dynamic algorithm against an adap-
tive adversary for maintaining a (1 + n)-spectral sparsi�er of size
$̃ (=) using polylog(=) update time?

The current start-of-the-art of dynamic spectral sparsi�ser algo-
rithms against an adaptive adversary still have large approximation
ratio. In particular, Bernstein et al. [17] show how to maintain a
polylog(=)-spectral sparsi�er in polylog(=) update time, and also a
$ (:)-cut sparsi�ers in $̃ (=1/: ) update time. We could apply these
algorithms to speed up Corollary 4.4, but then we must pay a large
additional approximation factor.

Fortunately, in Section 4.4, we are able to show a way to work
around this issue.

4.4 Speed up via Sparsi�cation against a
Blinking Adversary

In this section, we show that even if dynamic (1 + n)-spectral spar-
si�ers against an adaptive adversary are not known, we can still
apply the sparsi�cation idea to the whole reduction. Below, (1) we
describe the sparsi�cation lemma in Lemma 4.12 and discuss why
we can view it as an algorithm for an intermediate model between
oblivious and adaptive adversaries which we call a blinking adver-
sary, de�ned in Section 1.2.2 and then (2) we apply Lemma 4.12 to
speed up our applications.

The algorithm is based on dynamic expander decomposition. We
recall the de�nition of expanders here.

De�nition 4.10. Given a weighted graph ⌧ = (+ , ⇢,F) and a
vertex set ( ✓ + , the volume of ( is vol⌧ (() =

Õ
D2( deg⌧ (D)

where deg⌧ (D) = Õ
(D,E)2⇢ F (D, E) is the weighted degree ofD in⌧ .

The size of a cut ((,+ \ () in⌧ is X⌧ (() = Õ
D2(,E2+ \( F (D, E). We

say that ⌧ is a q-expander if for any cut ((,+ \ (), its conductance
is de�ned as �(⌧) = min((,+ \()

X⌧ (()
min{vol⌧ ((),vol⌧ (+ \() } � q .

The following lemma says that for any graph ⌧ = (+ , ⇢) with
= vertices and< edges, there exists a partition/decomposition of
edges of ⌧ into q-expanders where each vertex appears in at most
$ (log3 =) expanders on average. Moreover, this decomposition can
be maintained against an adaptive adversary.

T������ 4.11 (D������ �������� ������������� [17, T���
���� 4.3]). For any q = $ (1/log4<) there exists a dynamic algo-
rithm against an adaptive adversary that preprocesses a weighted
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graph ⌧ with = vertices and< edges in $ (q�1< log6 =) time. The
algorithm maintains with probability 1 � 1/poly(=) a decomposi-
tion of ⌧ into q-expanders ⌧1, . . . ,⌧I that is, every edge of ⌧ is
exactly one ⌧8 . The graphs (⌧8 )18I are edge disjoint and we haveÕI
8=1 |+ (⌧8 ) | = $ (= log 3=). The algorithm supports edge deletions

and insertions in $ (q�2 log7 =) amortized time. After each update,
the output consists of a list of changes to the decomposition. The
changes consist of (i) edge deletions or deletions of isolated vertices to
some graphs⌧8 , (ii) removing some graphs⌧8 from the decomposition,
and (iii) new graphs ⌧8 are added to the decomposition.8

Actually the algorithm can be made deterministic when q =

$ (1/2log4/5 =) = 1/=> (1) by using the deterministic expander de-
composition from [33]. This would only add an extra => (1) factor
in the update time of our applications, but in a �rst read, the reader
may assume for simplicity that Theorem 4.11 is deterministic.

Given the dynamic expander decomposition from Theorem 4.11,
we show that we can generate a (1 + n)-spectral sparsi�er in $̃ (=)
time and even maintain it dynamically if the adversary is oblivious
to the sparsi�er. We emphasize that the time is independent of<
and depends only on =.

Lemma 4.12. Let cnt be the variable that counts the total number
of edge changes in all q-expanders⌧1, . . . ,⌧I of⌧ from Theorem 4.11
during a sequence of insertions and deletions. We can extend the algo-
rithm from Theorem 4.11 so that it handles the following additional
operation:

• S�������(C): return a graph � and continue maintaining �
until cnt has increased by C using $̃ (= + C) total update time.
During the sequence of edge updates before cnt has increased
by C , � contains $̃ (= + C) edges and there are at most $̃ (C)
edge changes in � . If these edge updates are �xed at the
time S�������(C) is called (i.e., if the adversary is oblivious),
then with high probability, � is a (1 + n)-spectral sparsi�er
throughout the update sequence. We emphasize that each call
to S�������(C) uses fresh random bits to initialize andmaintain
� in this call.

The proof of Lemma 4.12 combines technical ingredients from
[17] and is given in the full version of this paper [11].

Discussion: Blinking adversary. Assuming an underlying adaptive
dynamic expander decomposition, we can think of the sparsi�er of
Lemma 4.12 as a sparsi�er with a fast refresh capability: Each call to
sparsify refreshes the sparsi�er andmakes it accurate independently
of the past updates.

Suppose we always call S�������(C) whenever cnt increases by C .
Thenwe, in fact, maintain using $̃ (=/C) amortized update time a (1+
n)-spectral sparsi�er � of⌧ against a blinking adversary as de�ne
in Section 1.2.2. This is because, Lemma 4.12 guarantees accuracy
of � for a �xed sequence of updates (before cnt increases by C ),
and each call to S�������(C) uses fresh random bits. So although
the adversary observes � following the last call to S�������(C),
this does not give it any useful information to fool the next call to
S�������(C).
8Theorem 4.3 in [17] is stated only for unweighted graphs. However, it is straightfor-
ward to extend the algorithm to weighted graphs by grouping edges of⌧ by weights.
As there are$ (log=) groups assuming that edge weights are at most poly(=) , this
only add an extra factor of$ (log=) to all the bounds.

This model of an adversary lies between an oblivious adversary
that cannot observe the algorithm’s answers at all and an adaptive
adversary that can observe the algorithm’s answers after every
update. Interestingly, we show that algorithms against this inter-
mediate model of adversary can be used for speeding up some of
the applications obtained by our generic reduction. Speci�cally, we
show the following Corollary.

Corollary 4.13 (All-pairs e�ective resistance (sparsi�ed)). There
is a dynamic algorithm against an adaptive adversary that, given
a weighted graph ⌧ , handles the following operations in =3/4+> (1)

amortized update time:
• Insert or delete an edge from the graph, and
• Given B, C 2 + (⌧), with probability at least 1 � 1/poly(=),
return a (1 + n)-approximation of the distance between B and
C .

P����. First of all, we maintain the expander decomposition of
⌧ in the background using the algorithm from Theorem 4.11 with
$̃ (1) amortized update time when q = ⇥(1/log4<). Let cnt be
the variable that counts the total number of edge changes in all
q-expanders from the decomposition.

We proceed in phases and restart the phase whenever cnt has
increased by ) since the beginning of the phase (we will later set
) =
p
=).9 For each phase, our goal is to show a data structure for

(1 +$ (n))-approximating e�ective resistance between vertices of
⌧ against an oblivious adversary whose update time is independent
of<. Once this is done, we can apply Theorem 3.1 to make it work
against an adaptive adversary. Let 2 = $̃ (

p
) ) be the number of

copies of the oblivious algorithms in the reduction of Theorem 3.1.
To achieve this goal, at the beginning of the phase, we compute

� (1) , . . . ,� (2) using Lemma 4.12 where each � ( 9) = S�������() )
are independently generated. For each instance A( 9) of the oblivi-
ous dynamic algorithm for e�ective resistance by Chen [31, Proof
of Theorem 8.1], we treat � ( 9) as its input graph. As in the proof of
Corollary 4.4, we recall that the guarantee of this algorithm here:

Given parameters V and 3 , the algorithm preprocesses � ( 9)

in C? = $ ( |⇢ (�
( 9 ) ) |

V5 · ( log=n )$ (1) ) time. Then, the algorithm sup-
ports edge-update operations and (src, snk)-update operations in
CD = $ (V�23+3 ( log=n )$ (3) ) amortized update time. At any time,
the algorithm supports queries for a (1 + n)-approximation of the
(src, snk)-e�ective resistance in C@ = $ (=V3 ( log=n )$ (3) ) time. Sim-
ilar to Corollary 4.4, we will set 3 = l (1), say 3 = $ (log log=),
and will set V3 = 1/=1/4 and so 1/V = =1/43 = => (1) . This implies
that ( log=n )$ (3) /V$ (1) = => (1) (recall that we assume n to be a
constant).

During the phase, cnt can increase by at most ) and so by
Lemma 4.12 there are at most )� = $̃ () ) updates to � ( 9) . By
substituting parameters, during the phase, the total update time
of A( 9) for handling )� updates in � is Ctotal = $̃ (C? + )� CD ) =
(= + )

p
=)=> (1) , and the query time is C@ = =3/4+> (1) . Since we

can assume that the adversary for A( 9) is oblivious, Lemma 4.12
guarantees that � ( 9) remains a (1 + n)-spectral sparsi�er of ⌧

9It is possible that after one update to⌧ , cnt increases by more than) . This means
that within one update to⌧ , there can be more than one phase.
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throughout the phase. Therefore, each A( 9) indeed answers (1 +
$ (n))-approximation of (src, snk)-e�ective resistance in ⌧ .

By applying Theorem 3.1, we canmaintain (1+$ (n))-approximate
solution of ⌧ against an adaptive adversary where the amortized
update time for each phase is

$̃

✓
Ctotalp
)�

+ C@

◆
=

✓
= +) · p=p

)
+ =3/4

◆
· => (1) .

Now, to balance the �rst two terms in the bound, we set) =
p
=. This

gives the bound of =3/4+> (1) . The additional time for maintaining
� (1) , . . . ,� (2) is 2⇥$̃ (=+) )

) = $̃ (
p
) · (=+) ))
) = $̃ (=3/4) amortized

update time. Hence, the total amortized update time is=3/4+> (1) . ⇤
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