Check for
Updates

Dynamic Algorithms against an Adaptive Adversary:
Generic Constructions and Lower Bounds

Amos Beimel Haim Kaplan’ Yishay Mansour*
Ben-Gurion University Tel Aviv University Tel Aviv University
Beer-Sheva, Israel Google Research Google Research
amos.beimel@gmail.com Tel Aviv, Israel Tel Aviv, Israel
haimk@tau.ac.il mansour.yishay@gmail.com
Kobbi Nissim® Thatchaphol Saranurak Uri Stemmer
Georgetown University University of Michigan Tel Aviv University
Washington, D.C., USA Ann Arbor, Michigan, USA Google Research
kobbi.nissim@georgetown.edu thsa@umich.edu Tel Aviv, Israel
u@uri.co.il

ABSTRACT

Given an input that undergoes a sequence of updates, a dynamic
algorithm maintains a valid solution to some predefined problem at
any point in time; the goal is to design an algorithm in which com-
puting a solution to the updated input is done more efficiently than
computing the solution from scratch. A dynamic algorithm against
an adaptive adversary is required to be correct when the adversary
chooses the next update after seeing the previous outputs of the
algorithm. We obtain faster dynamic algorithms against an adap-
tive adversary and separation results between what is achievable in
the oblivious vs. adaptive settings. To get these results we exploit
techniques from differential privacy, cryptography, and adaptive
data analysis. Our results are as follows.

We give a general reduction transforming a dynamic algorithm
against an oblivious adversary to a dynamic algorithm robust
against an adaptive adversary. This reduction maintains several
copies of the oblivious algorithm and uses differential privacy to
protect their random bits. Using this reduction we obtain dynamic
algorithms against an adaptive adversary with improved update

“Work partially funded by ERC grant 742754 (project NTSC), by the Israel Science
Foundation grant no. 391/21, and by the Cyber Security Research Center at Ben-Gurion
University

1LPartially supported by Israel Science Foundation (grant 1595/19), and the Blavatnik
Family Foundation.

#Work partially funded from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No. 882396),
by the Israel Science Foundation (grant number 993/17), Tel Aviv University Center
for Al and Data Science (TAD), and the Yandex Initiative for Machine Learning at Tel
Aviv University.

SWork partially funded by NSF grant No. 2001041 and by a gift to Georgetown
University.

TPartially supported by the Israel Science Foundation (grant 1871/19) and by Len
Blavatnik and the Blavatnik Family foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC ’22, June 20-24, 2022, Rome, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9264-8/22/06...$15.00
https://doi.org/10.1145/3519935.3520064

1671

and query times for global minimum cut, all pairs distances, and
all pairs effective resistance.

We further improve our update and query times by showing how
to maintain a sparsifier over an expander decomposition that can
be refreshed fast. This fast refresh enables it to be robust against
what we call a blinking adversary that can observe the output
of the algorithm only following refreshes. We believe that these
techniques will prove useful for additional problems.

On the flip side, we specify dynamic problems that, assuming a
random oracle, every dynamic algorithm that solves them against
an adaptive adversary must be polynomially slower than a rather
straightforward dynamic algorithm that solves them against an
oblivious adversary. We first show a separation result for a search
problem and then show a separation result for an estimation prob-
lem. In the latter case our separation result draws from lower
bounds in adaptive data analysis.

CCS CONCEPTS

» Theory of computation — Dynamic graph algorithms.

KEYWORDS

Dynamic algorithms, adaptive adversaries, differential privacy

ACM Reference Format:

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol
Saranurak, and Uri Stemmer. 2022. Dynamic Algorithms against an Adaptive
Adversary: Generic Constructions and Lower Bounds. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC
'22), June 20-24, 2022, Rome, Italy. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3519935.3520064

1 INTRODUCTION

Randomized algorithms are often analyzed under the assumption
that their internal randomness is independent of their inputs. This
is a reasonable assumption for offline algorithms, which get all their
inputs at once, process it, and spit out the results. However, in online
or interactive settings, this assumption is not always reasonable. For
example, consider a dynamic setting where the input comes in grad-
ually (e.g., a graph undergoing a sequence of edge updates), and the
algorithm continuously reports some value of interest (e.g., the size

https://doi.org/10.1145/3519935.3520064
https://doi.org/10.1145/3519935.3520064
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519935.3520064&domain=pdf&date_stamp=2022-06-10

STOC ’22, June 20-24, 2022, Rome, Italy

of the minimal cut in the current graph). In such a dynamic setting,
it might be the case that future inputs to the algorithm depend on
its previous outputs, and hence, depend on its internal randomness.
For example, consider a large system in which a dynamic algorithm
is used to analyze data coming from one part of the system while
answering queries generated by another part of the system, but
these (supposedly) different parts of the system are connected via a
feedback loop. In such a case, it is no longer true that the inputs of
the algorithm are independent of its internal randomness.

Nevertheless, classical algorithms, even for interactive settings,
are typically analyzed under the (not always reasonable) assump-
tion that their inputs are independent of their internal randomness.
(The reason is that taking these dependencies into account often
makes the analysis significantly more challenging.) One approach
for avoiding the problem is to make the system deterministic. This,
however, is very limiting as randomness is essential for good per-
formance in streaming algorithms, online algorithms, and dynamic
algorithms—basically in every algorithmic area in which the al-
gorithm runs interactively. This calls for the design of algorithms
providing (provable) utility guarantees even when their inputs are
chosen adaptively. Indeed, this motivated an exciting line of work,
spanning different communities in theoretical computer science, all
focused on this question. This includes works from the streaming
community [2, 3, 14, 15, 26, 29, 47, 51, 51, 66], learning community
[5, 29,37, 42, 46, 62], and dynamic algorithms [16, 18, 19, 21-25, 32—
35, 43-45, 49, 55, 56, 65, 67]. We continue the study of this question
for dynamic algorithms.

Before presenting our new results, we make our setting more
precise. Given an input x that undergoes a sequence of updates,
our goal is to maintain a valid solution to some predefined problem
P at any point in time. We consider both estimation and search
problems. In an estimation problem the goal is to provide a (1 +
€) approximation of a numeric quantity that is a function of the
current input. An example is the global min-cut problem, where
an update inserts or deletes an edge and the goal is to output a
(1 £ €) approximation of the size of the global min-cut. In a search
problem, the response to the query is a non-numeric value. For
example, in the search version of the global min-cut problem the
goal is to output a cut whose size is not much larger than the size
of the smallest cut.

Formally, given a problem P (over a domain X) and an ini-
tial input x9 € X, we consider a sequence of m input updates
u1, Uy, . .., Um, where every u; is a function u; : X — X. After every
such update u;, the (current) input is replaced with x; « u;(xj—1),
and our goal is to respond with a valid solution for P(x;). We refer
to the case where the sequence of input updates is fixed in advance
as the oblivious setting. In this work, we focus on the adaptive set-
ting, where the sequence of input updates may be chosen adaptively.
We think of the entity that generates the inputs as an “adversary”
whose goal is to force the algorithm to misbehave (either to err
or to have a large runtime). Specifically, the adaptive setting is
modeled by a two-player game between a (randomized) Algorithm
and an Adversary. At the beginning, we fix a problem P, and the
Adversary chooses the initial input xp. Then the game proceeds in
rounds, where in the ith round:

1672

Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer

(1) The Adversary chooses an update u;, thereby modifying the
current input to x; < u;(x;—1). Note that u; may depend on
all previous updates and outputs of the Algorithm.

(2) The Algorithm processes the new update u; and outputs its
current response z;.

Remark 1.1. For simplicity, in the above two-player game we fo-
cused on the case where the algorithm outputs a response after
every update. Actually, in later sections of the paper, we will make
the distinction between an update and a query. Specifically, in every
time step the Adversary poses either an update (after which the
Algorithm updates its data structure and outputs nothing) or a
query (after which the Algorithm outputs a response). Moreover,
in some of our results, we will separate between the preprocessing
time (the period of time after the algorithm obtains its initial input
X0, and before it obtains its first update) and the update time and
query time.

We say that the Algorithm solves P in the adaptive setting with
amortized update (and query) time ¢ if for any Adversary, with
high probability, in the above two-player game,

(1) For every i we have that z; is a valid solution for P(x;).
(2) The Algorithm runs in amortized time ¢ per update.

Notation. We refer to algorithms in the adaptive setting as algo-
rithms that work against an adaptive adversary, or adaptive algo-
rithms in short. Analogously, we refer to algorithms in the oblivious
setting as algorithms that work against an oblivious adversary, or
oblivious algorithms in short.

1.1 Owur Contributions

In this paper we take a general perspective into studying dynamic
algorithms against an adaptive adversary. On the positive side,
we develop a general technique for transforming an oblivious al-
gorithm into an adaptive algorithm. We show that our general
technique results in more efficient adaptive algorithms for several
graph problems of interest. On the negative side, we prove sepa-
ration results. Specifically, we present dynamic problems that can
be trivially solved against oblivious adversaries, but, under certain
assumptions, require a significantly higher computation time when
the adversary is adaptive. This is the first separation between the
oblivious setting and the adversarial setting for dynamic algorithms.
In particular, this is the first separation between randomized and
deterministic dynamic algorithms, since deterministic algorithms
always work against an adaptive adversary.

1.1.1 Our Positive Results. We describe a generic black-box reduc-
tion to obtain a dynamic algorithm against an adaptive adversary
from an oblivious one. This reduction can be applied to any oblivi-
ous dynamic algorithm for an estimation problem. We then apply
our generic reduction to obtain adaptive algorithms for several
well-studied graph problems. To speed up the adaptive algorithms
that we get from our generic reduction, we construct a sparsifier
over a dynamic expander decomposition with fast initialization
time. By combining our reduction technique with this sparsifier we
substantially improve the amortized update time. We obtain the
following theorem.

Dynamic Algorithms against an Adaptive Adversary

THEOREM 1.2. Given a graph G with n vertices undergoing edge
insertions and deletions, there are dynamic algorithms against an
adaptive adversary for the following problems:

e Global min cuts: (1 + €)-approximation in O(m!/2pl/4)
amortized update and query time (see Corollary 4.1).

o All-pairs effective resistance: (1 + ¢)-approximation us-
ing n3/40 () amortized update and query time (see Corol-
lary 4.13).

o All-pairs distances: Iog3i+o(1) n-approximation using
n1/2+1/2D+0 (1) gmortized update and query time, for any
integer i (see Corollary 4.7).

o All-pairs distances with better approximation: logn -
poly(log log n)-approximation using O(m*/®) amortized up-
date and query time, where m is the current number of edges
(see Corollary 4.2).

In Table 1, we compare our results to previously known results.
For all problems we consider, essentially the only known technique
against an adaptive adversary is to maintain a sparsifier of the
graph [17] and simply query on top of the sparsifier.

1.1.2 Our Negative Results. We present two separation results,
one for a search problem and one for an estimation problem. Our
separation results rely on (unproven) computational assumptions,
which hold in the random oracle model.! Assuming a random oracle
is a common assumption in cryptography, starting in the seminal
work of Bellare and Rogaway [13]. Many practical constructions
are first designed and proved assuming a random oracle and then
implemented using a cryptographic hash function replacing the
random oracle. This is known as the random oracle methodology.?
Thus, heuristically, the computational assumptions we make hold
for cryptographic hash functions. We obtain the following theorem.

THEOREM 1.3 (INFORMAL). Under some computational assump-
tions (or, alternatively, in the random oracle model):

(1) For any constant ¢ > 1, there is a dynamic search problem
;’earch, where n is a parameter controlling the instance size,
that can be solved in the oblivious setting with amortized
update time O(n), but requires amortized update time Q(n®)
in the adversarial setting, even if the algorithm is allowed time
2057 in the preprocessing stage.
There is a dynamic estimation problem P, wheren is a pa-
rameter controlling the instance size, that can be solved in the
oblivious setting with total time O(n®) over O(n®) updates,
but requires total time Q(n”) over O(n?) updates in the ad-

versarial setting.

~

We note that our lower bound for the estimation problem PL,

matches what we would get by applying our positive result (our
generic reduction) to the oblivious algorithm that solves Pl,.

! A random oracle is an infinite random string R such that the algorithm can read the
i-th bit in R, denoted R[], at the cost of one time unit. We assume that each bit of R
is uniformly distributed and independent of all other bits of R, thus, the only way to
get any information on R[i] is to read this bit.

2We remark that the random oracle methodology is a heuristic. Canetti, Halevi, and
Goldreich [28] provide specifically tailored constructions of cryptographic schemes
such that they become insecure under any instantiation of the random oracle with a
computable function.

1673

STOC 22, June 20-24, 2022, Rome, Italy

1.2 Technical Overview

We give a technical overview of our results. Any informalities made
herein will be removed in the sections that follow.

1.2.1 Generic Transformation Using Differential Privacy. Differen-
tial privacy [38] is a mathematical definition for privacy that aims
to enable statistical analyses of datasets while providing strong
guarantees that individual level information does not leak. Over
the last few years, differential privacy has proven itself to be an
important algorithmic notion (even when data privacy is not of
concern), and has found itself useful in many other fields, such as
machine learning, mechanism design, secure computation, proba-
bility theory, secure storage, and more [5, 10, 53, 54, 57].

Recall that the difficulty in the adaptive setting arises from po-
tential dependencies between the inputs of the algorithm and its
internal randomness. Our transformation uses a technique, intro-
duced by [47] (in the context of streaming algorithms), for using
differential privacy to protect not the input data, but rather the
internal randomness of algorithm. As [47] showed, this can be used
to limit (in a precise way) the dependencies between the internal
randomness of the algorithm and its inputs, thereby allowing to
argue more easily about the utility guarantees of the algorithm in
the adaptive setting. Following [47], this technique was also used
by [3, 14] for streaming algorithms and by [42] for machine un-
learning. We adapt this technique and connect it to the setting of
dynamic algorithms in general and dynamic algorithms for graph
problems in particular.

Informally, our generic transformation can be described as fol-
lows.

(1) Let T be a parameter, and let A be an oblivious algorithm.

(2) Before the first update arrives, we initialize ¢ = O(VT) inde-
pendent copies of A, with the initial input xp.

(3) For T time stepi =1,2,3,...,T:

(a) Obtain an update u;.

(b) Feed the update u; to all of the copies of A.

(c) Sample O(1) of the copies of A, query them, aggregate
their responses with differential privacy, and output the
aggregated value.

(4) Reset all of the copies of A, i.e., re-initialize each copy on
the current input with fresh randomness, and goto step 3.

It can be shown that this construction satisfies differential pri-
vacy w.r.t. the internal randomnesses of each of the copies of algo-
rithm A. The intuition is that by instantiating ¢ = O(VT) copies of
A we have enough “privacy budget” to aggregate T values privately
(this follows from advanced composition theorems for differential
privacy [39]). After exhausting our privacy budget, we reset all our
data structures, and hence, reset our privacy budget. The total time
we need for T steps is

é(ﬁ ttotal+T : tq),

where t;,] is the total time needed to conduct T updates to algo-
rithm A, and ¢4 is the query time of algorithm A. Instantiating
this generic construction for the graph problems we study already
gives new (and non trivial) results, but does not yet obtain the re-
sults stated in Theorem 1.2 and in Table 1. Specifically, this obtains
all the results in Theorem 1.2 except that the update and query

STOC ’22, June 20-24, 2022, Rome, Italy

Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer

Table 1: A comparison between previous oblivious and adaptive algorithms, and our new adaptive algorithm. The bound shown
is the maximum of update time and query time. We omit polylog(n) factors. By static algorithms, we mean algorithms that

compute the answer from scratch.

Problems Abprox Previous Previous Our new
pprox. oblivious algo. adaptive algo. adaptive algo.
72 m 1
: /2,1/4
Global min cut (1+e€) [63] (use static algo. [52]) m'/“n
All-pairs effective (1+6) n?/3+o(M) m L3/4+0(1)
resistance [31] (use static algo.)
10g3i+0(1) n nt/ro(1) n n1/2+1/(2D)+0(1)
All-pairs distances [41] (implicit in [17])
Tog - 2Z/3%0(T) m s
polyloglogn [31] (use static algo.)

time bounds depend on m, the number of edges, rather than n, the
number of vertices.

1.2.2 The Blinking Adversary Model. We observe that for the graph
problems we are interested in, we can improve over the above
generic construction as follows. We design oblivious algorithms
with an extra property that allows us to “refresh” them in Step 4
of the above generic transformation faster than the time needed to
initialize them from scratch. Formally, the “refresh” properties that
we need are:

(1) The algorithm maintains utility against a “semi-adaptive”
adversary (which we call a blinking adversary), defined as
follows. Every time we hit the refresh button, say in time
irefreshs the adversary gets to see all of the outputs given by
the algorithm before time i efresh- The adversary may use this
in order to determine the next updates and queries. From
that point on, until the next time we hit the refresh button,
the adversary is oblivious in the sense that it does not get to
see additional outputs of the algorithm.’

(2) Hitting the refresh button is faster than instantiating the
algorithm from scratch.

We show that if we have an algorithm A with a (hopefully fast)
refresh button, then when applying our generic construction to
A, in Step 4 of the generic construction it suffices to refresh all
the copies of algorithm A, instead of completely resetting them.
Assuming that refresh is indeed faster than reset, then we get a
speedup to our resulting construction. We then show how to con-
struct dynamic algorithms (for the graph problems we are interested
in) with a fast refresh button.

Designing algorithms with fast refresh. Let A be an oblivious
algorithm for one of our graph problems. In order to speedup A’s
reset time, we ideally would have used an appropriate sparsifier
(i.e., a graph with few edges that approximates the properties of
the original graph), and run our oblivious algorithm A on top
of the sparsifier. This would make sure that the time needed to
restart A (without restarting the sparsifier) depends on n rather
than m. Unfortunately, known sparsifiers that well approximate

3In our application, we hit the refresh button after every T outputs of the algorithm,
which means that the adversary gets to see the outputs of the algorithm in bulks of
size T.

1674

the functions that we estimate, do not work against an adaptive
adversary. Consequently, if we use such a sparsifier (and never reset
it) then the adversary may learn about the sparsifier’s randomness
through the estimates spitted out by the algorithm and use this
knowledge to fool the algorithm. On the other hand, resetting the
sparsifier would cost us O(m) time, which would be too much.

To overcome this challenge, we design a sparsifier with a fast
O(n) time refresh button. Our construction of a sparsifier has two
parts. We first use an adaptive dynamic algorithm of Bernstein et
al. [17] that maintains a decomposition of G into expanders. This
algorithm can handle insertion and deletion of edges in polylog
amortized time; we execute the update step of this algorithm in
each update to the graph. The second part is a construction of a
sparsifier from the decomposition to expanders. As we do not know
how to construct an adaptive dynamic algorithm for this task, we
only execute it in the refresh.

1.2.3 Negative Result for a Search Problem. In the full version of
this paper [11], we prove that there is a search problem that is much
easier for an oblivious algorithm than for an adaptive algorithm. We
next describe the ideas of this proof. To simplify the presentation in
the introduction, we present a simplified problem; our separation
in [11] is stronger.

Assume that Hy, : {0, 1}"" — {0, 1}" is a function such that H, (x)
can be computed in time O(n) for every x € {0,1}". Consider a
dynamic problem in which an adversary maintains a set X c {0, 1}"
of excluded strings (where |X| < 20-57), initialized as the empty set.
In each update the adversary adds an element to X and the algorithm
has to output the pair (x, H (x)) for an element x ¢ X. An oblivious
dynamic algorithm picks a random x in the preprocessing stage,
computes w = H, (x), and outputs the pair (x, w). No matter how
an oblivious adversary chooses its updates to X, the probability
that in a sequence of at most 20->" updates the adversary adds to X
the random x chosen by the algorithm is negligible (as x €g {0, 1}"
and the size of X is at most 20'5"), and the algorithm can use the
same output (x, w) after each update, thus not paying at all for
an update. However, an adaptive adversary can see the output
xj—1 of the algorithm after the (i — 1)-th update and add x;—; to
X. Thus, after each update the algorithm has to compute Hy (x;)
for a new x;. We want to argue that an adaptive algorithm has
to spend Q(n) amortized time per update. For this we need to

Dynamic Algorithms against an Adaptive Adversary

assume that Hy, is moderately hard, e.g., computing H,, (x) requires
time Q(n). However, this assumption does not suffice; we need
to assume that computing H, (x1), . .., Hp(x¢) for some £ requires
time Q(nf) for any sequence of inputs xi,...,x; chosen by the
algorithm. That is, we need to assume that computing H, on many
inputs cannot be done substantially more efficiently than computing
each Hp(x;) independently; such assumption is known as a direct-
sum assumption. Thus, assuming that there is a function that has a
direct-sum property we get a separation.

In the simple separation described above, the algorithm can in the
preprocessing stage choose a sequence xi, x2, . . ., xp and compute
the values Hy, (x1), Hp(x2), . . ., Hn(x¢). Thereby the algorithm does
not need to spend any time after each update. To force the algorithm
to work during the updates, in [11] we define a more complicated
dynamic problem and prove that the amortized update time of an
adaptive algorithm for this problem is high even if the preprocessing
time of the algorithm is 20-57.

The problem discussed above actually captures the very well-
known technique in dynamic graph algorithms for exploiting an
oblivious adversary (e.g. how dynamic reachability and shortest
paths algorithms choose a random root for an ES-tree [20, 48, 58],
or how dynamic maximal matching algorithms choose a random
edge to match [7, 60], and similarly for dynamic independent set
[9, 30] and dynamic spanner algorithms [8]). Roughly speaking,
the set X above corresponds to a set of deleted edges in the graph.
These algorithms need to “commit” to some x, but whenever x is
deleted/excluded from the graph, they need to recommit to a new
x" and spend a lot of time. By choosing a random x, the algorithm
would not recommit so often against an oblivious adversary, hence
obtain small update time. Our result, therefore, formalizes the intu-
ition that this general approach does not extend (at least as is) to
the adaptive setting.

1.2.4 Negative Result for an Estimation Problem. In the full version
of this paper [11], we present a separation result for an estimation
problem. Our result uses techniques from the recent line of work
on adaptive data analysis [37]. We remark that a similar connection
to adaptive data analysis was utilized by [51], in order to show
impossibility results for adaptive streaming algorithms. However,
our analysis differs significantly as our focus is on runtime lower
bounds, while the focus of [51] was on space lower bounds.

To obtain our negative result, we introduce (and assume the
existence of) a primitive, which we call boxes scheme, that allows a
dealer to insert m plaintext inputs into “closed boxes” such that:

(1) A closed box can be opened, retrieving the plaintext input,
in time T (for some parameter T).

(2) Any algorithm that runs in time b- T cannot learn “anything”
about the content of more than O(b) of the boxes.

Given this primitive (which we define precisely in [11]), we
consider the following problem.

Definition 1.4 (The average of boxes problem, informal). The
initial input consists of m closed boxes. On every time step, the
algorithm gets a predicate (mapping plaintexts to {0, 1}), and the
algorithm needs to estimate the average of this predicate over the
content of the m boxes.

1675

STOC 22, June 20-24, 2022, Rome, Italy

This is an easy problem in the oblivious setting, because the
algorithm can sample O(1) of the boxes, open them, and use their
content in order to estimate the average of all the predicates given
throughout the execution. However, as we show, this is a hard
problem in the adaptive setting. Specifically, every adaptive algo-
rithm for this problem essentially must open Q(m) of the m boxes
it gets as input. Intuitively, as opening boxes takes time, we get a
separation between the oblivious and the adaptive settings, thereby
proving item 2 of Theorem 1.3.

2 PRELIMINARIES ON DIFFERENTIAL
PRIVACY

Roughly speaking, an algorithm is differentially private if its output
distribution is “stable” w.r.t. a change to a single input element. To
formalize this, let X be a domain. A database S € X" is a list of
elements from domain X. The i-th row of S is the i-th element in S.

Definition 2.1 (Differential Privacy). A randomized algorithm
A is (e, 6)-differentially private (in short (e, §)-DP) if for any two
databases S and S’ that differ on one row and any subset of outputs

T, it holds that
Pr[A(S) € T] < e - Pr[A(S’) € T] +6,

where the probability is over the randomness of (A. The parameter
€ is referred to as the privacy parameter. When § = 0 we omit it
and write e-DP.

Composition. A crucial property of differential privacy is that it is
preserved under adaptive composition. Let Ay and A be algorithms.
The adaptive composition A = Az o Aj is such that, given a
database S, A invokes a1 = A1(S), then az = Az (a1, S), and finally
outputs (a1, az). The basic composition theorem guarantees that, if
A, ..., Ay are each (¢, §)-DP algorithms, then the composition
Aro---0Ay is (¢/ = ke, k8)-DP. The advanced composition theorem
shows that the privacy parameter ¢’ need not grow linearly in k,
but instead only in ~ Vk.

THEOREM 2.2 (ADVANCED COMPOSITION [39]). Lete, 8’ € (0,1]
and § € [0,1]. If Ay,..., Ay are each (e, 0)-DP algorithms, then
A o0 A is (e/,8" + k&)-DP where

¢’ =2kIn(1/8’) - € + 2ke>.

In our applications, the second term (which is linear in k) will be
dominated by the first term. The saving in €’ from k to Vk enables
a polynomial speed up in our applications.

Amplification via sampling. Secrecy-of-the-sample is a technique
for “amplifying” privacy by subsampling. Informally, if a y-fraction
of the input database rows are sampled, and only those are given
as input to a differentially private algorithm then the privacy pa-
rameter is reduced (i.e., improved) by a factor proportional to ~ y.

THEOREM 2.3 (AMPLICAFICATION VIA SAMPLING ([27, LEMMA 4.12])).
Let A be an e-DP algorithm where € < 1. Let A’ be the algorithm
that, given a database S of size n, first constructs a database T C S by
sub-sampling with repetition k < n/2 rows from S and then returns
A(T). Then, A’ is (& . ¢)-DP*

“The statement in [27] is more general and allows A to be (e, §)-DP.

STOC ’22, June 20-24, 2022, Rome, Italy

Generalization. Our analysis relies on the generalization property
of differential privacy. Let D be a distribution over a domain X
and let h : X — {0, 1} be a predicate. Suppose that the goal is to
estimate h(D) = E,.p[h(x)]. A simple solution is to sample a
set S consisting of few elements from X independently from D,
and then compute the empirical average h(S) = ﬁ Yxes h(x). By
standard concentration bounds, we have h(D) ~ h(S). That is, the
empirical estimate on a small sample S generalizes to the estimate
over the underlying distribution D.

The argument above, however, fails if S is sampled first and A is
chosen adaptively, because h can “overfit” S. The theorem below
says that, as long as the predicate h is generated from a differentially
private algorithm A, we can still guarantee generalization of h (even
when the choice of h is a function of S). As shown in [47], this key
property will link differentially privacy to accuracy of algorithms
against an adaptive adversary.

THEOREM 2.4 (GENERALIZATION OF DP [5, 37]). Lete € (0,1/3),
6€(0,e/4) andt > é log(%e). Let D be a distribution on a domain
X. Let S ~ D' be a database containing t elements sampled indepen-
dently from D. Let A be an algorithm that, given any database S of
size t, outputs a predicate h : X — {0, 1}. (We emphasize that h may
depend on S.)

If A is (e, 8)-DP, then the empirical average of h on sample S, i.e.,
h(S) = ﬁ >xeS h(x), and h’s expectation over the underlying distri-
bution D, i.e, h(D) = o [h(x)], are within 10e with probability
at least 1 — 5 . In other words we have

P, |S|éh(x) Ex-p [h(x)]

he—A(S)

] 5
> 10¢e <—

The only differentially private subroutine we need in this paper
is a very simple algorithm for computing an approximate median
of elements in databases.

THEOREM 2.5 (PRIVATE MEDIAN (FOLKLORE)). Let X be a finite do-
main with total order. For everye, € (0,1), thereisT' = O(% log(%)
such that the following holds. There exists an (e, 0)-DP algorithm
pMedian g that, given a database S € X*, in O(|S]| - %log3(%) .
polylog(|S|)) time outputs an element x € X (possibly x & S) such
that, with probability at least 1, there are at least |S|/2—T elements
in S that are bigger or equal to x and at least |S|/2 — T elements in S
that are smaller or equal to x.

The algorithm is based on binary search. If we assume that we
can sample a real number from the Laplace distribution in constant
time, then the running time would be O(|S|log |X|). Here, we do
not assume that and use the bound from [4]. We remark that there
are several advanced constructions for private median with error
that grows very slowly as a function of the domain size |X| (only
polynomially with log* | X|) [12, 27, 50]. In our application, however,
the domain size is already small, and hence, we can use the simpler
construction stated above.

3 A GENERIC REDUCTION

In this section, we present a simple black-box transformation of
dynamic algorithms against an oblivious adversary to ones against

)

1676

Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer

an adaptive adversary. The approach builds on the work of [47] for
transforming streaming algorithms, which focus on space instead
of update time. A key difference is that we apply subsampling
for speeding up. This is crucial to ensure that our applications in
Section 4 have non-trivial update and query time. We give the
formal statement and its proof below.

THEOREM 3.1. Let dg,1, @ > 0 be parameters. Let g be a function
that maps elements in some domain X to a number in [-U, —%] v
{0} u [% U] where U > 1. Suppose there is a dynamic algorithm A
for estimating g against an oblivious adversary that, given an initial
input xo € X undergoing a sequence of T updates, guarantees the
following:

o The total preprocessing and update time for handling T updates
is tyotal -
e The query time is tq and, with probability > 9/10, the answer
is a y-approximation of g(x).
Then, there is a dynamic algorithm A’ against an adaptive adver-
sary that, with probability at least 1 — 8¢,;, maintains a y(1 + a)-
approximation of a function g(x) when the input undergoes T updates
in O(NT - trora + T - tq) total update time. By restarting the algorithm
every T steps we can run A’ on a sequence ofupdates of any length

in O(tyora /NT + tq) amortized update time. The O in this theorem

hides polylog(— i Og

) factors.

Algorithm A’ descrlptlon
(1) Before the first update arrives, initialize ¢ = O(VT) copies

of A, denoted by ﬂ(l), e ﬂ(c), with the input xp.
(2) For each step i € [1,T], given an update u;,
(a) Feed the update u; to every copy of A.
(b) To compute a y(1 + «)-approximation of g(x;), do the
following:

(i) Independently and uniformly sample s = O(1) indices
j1r-.-»Js € [1,¢].> We emphasize the these sampled
indices are not revealed to the adversary.

(ii) Foreach 1 < k <'s, query AUK) and let outgjk) denote
its estimate of g(x;), round up outgjk) to the nearest

power of (1+a) and denote it by cmgjk). Ifoutl(jk) =0,
— (k)

set out;”™" =0.
(iii) Algonthm A’ outputs the estimate of g(x;) as
out] = pMedian, dﬁ(out(h) out<J‘))

where pMedian, , g is the algorithm for estimating
the median with differential privacy (see Theorem 2.5),
where €04 = 1/2 and f = Jg,51/2T.

Specifying parameters. Here, we specify the parameters of the
algorithm. This is needed for precisely stating the total update time.
Let Xneq denote the total ordered domain for pMediang,_ , 6. In our

out " which is {0} U {£(1 +
= 0(*EY) The

settmg,

a) | —log(Ha) U<a<x< 10g(1+0{) U} So |Xmed|
parameter I' from Theorem 2.5 is such that

|Xmed|
=0(lo
og(—,— 8)) = O(log(

5This is unlike in [47] where all instances of A are used.

med is simply the range of out;

1°gﬁU>) = 6(1).

1
Ir=0(
€,

me:

Dynamic Algorithms against an Adaptive Adversary

Now, we set s = 100I", so that when pMedianemed’ﬁ is given s num-
bers, it returns a number whose rank isin s/2+T = (1/2+1/100)s,
a good enough approximation of the median. Lastly, we set the
number of copies as

¢ =200 - 6s€meq - V2T In(100/8) = O(VT).

This choice of ¢ is such that after subsampling and composition the
entire algorithm would be private for the appropriate parameters
with respect to its random bits. See Corollary 3.4.

Total update time. The total time c copies of A preprocess the
initial input x¢ and handle all T updates is clearly c - t;ot,1 by def-
inition of t;,1. For each step i, we only query s many copies of

A to obtain out(“) out(]S) Roundlng out(]k) to its nearest

puting out] is to evaluate pMediane ol ﬁ which takes tmed = O(s -

Xme
oo lo g (Koeal d') polylog(s)) = O(s - 2~
tlme by Theorem 2.5. Therefore, we can conclude

Proposition 3.2. The total update time of A’ is at most

) .

¢ total + TXO ((tq + log) s+ tmed)

|

TlogU
adiail

og T
5fail

=0 tiotal * \/T log(

+0 (tq -T -log (TlogU) +T - polylog (TlogU))
Bl adpail
= O(tioa VT + tgT)
The second line is obtained by simply plugging in the definitions
of f = 8 /2T, T = O(log(*%E3")) = O(log(L5EL)), s = 100T =
O(log(T;gfgaif])) and, hence, we have that ¢ = O(VT - log(Tg}gif) .

log <L) and so the second line follows.
5fall

Accuracy against an adaptive adversary. It only remains to argue
that A’ maintains accurate approximation of g(x) against an adap-
r© e {0, 1}* denote the random strings
used by the oblivious algorithms AW, Al during the T up-
dates. We view the collection of random string R = {r(l), el r(c)}
as a database where each r(/) is its row. We will show that the tran-
script of the interaction between the adversary and algorithm A’
is differentially private with respect to R. (This is perhaps the most
important conceptual idea from [47].) Then, we will exploit this
fact to argue that the answers of (A’ are accurate. Let us formalize
this plan below.

For any time step i, let out;(R) denote the output of A" at time
step i when the collection R is fixed. Note that outl’.(R) is still a
random variable because A’ uses some additional random strings
for subsampling and computing a private median. Now, we define
Ti(R) = (uj,out](R)) as the transcript between Adversary and
algorithm A’ at step i. Let

T (R) = x0, Ti(R), ..., I7(R)
denote the transcript. We also prepend the transcript with the input

xo before the first update arrives. Since R is freshly sampled at the
beginning, it is completely independent from xo. We view 7; and

tive adversary. Let r(l), el

1677

STOC 22, June 20-24, 2022, Rome, Italy

7 as algorithms that, given a database R, return the transcripts.
From this view, we can prove that they are differentially private
with respect to R.

Lemma 3.3. For a fixed step i, 7; is (% - €med> 0)-DP with respect
toR.

ProoF. Given a transcript 7;(R) = (u;, out](R)) of only a single
step i, the update u; does not give any (new) information about R.
So it suffices to consider out](R), which is set to

(11) (}s))

pMediang d,B(OUt ,out

By Theorem 2.5, we have that pMedlanemed’ﬂ is (€med> 0)-DP. Its

(h) —(Js)

inputs are out; ,out;

o, ..

, which are determined by the subset
, r(fs)} c R, Wthh in turn are obtained by sub-sampling
from R. By invoking Theorem 2.3 (and note that s < ¢/2), subsam-
pling boosts the privacy parameter and so out(R) is ((’?S * €med> 0)-

DP with respect to R as claimed. O
Corollary 3.4. 7 is (ﬁ, %)-DP with respect to R.
Proor. Observe that 7 is an adaptive composition 77 0 --- o 77

(except that we prepend x(which is independent from R). Since
each 7y is ((’c—s - €med> 0)-DP as shown in Lemma 3.3, by applying the
advanced composition theorem (Theorem 2.2) with parameters € =
%emed, 6 =0,and 8’ = $/100, we have that that 7 is (¢’, 5k + §’)-
DP where

2
=+/2T In(100/p) - (—emed)+2T (—emed)

11 1
S—t—=—
200 © 200 100

because ¢ = 200 - 6s€peq - V2T In(100/6). Also, 5k + 8’ = /100.
Therefore, 7 is (1—(1)0, %)—DP. O

Next, we exploit differential privacy for accuracy against an
adaptive adversary. Let X; = (xo, u1, . . ., ;) denote the whole input
sequence up to time i. Let A(r, X;) denote the output of the obliv-
ious algorithm A on input sequence X;, given a random string r.
Let

accg, (r) = 1{g(x;) < A(r, %) < yg(xi)}
be the indicator function deciding if A(r, X;) is y-accurate. Note
that accg, (r)) indicates precisely whether the instance AW is
accurate at time i. Now, we show that at all times, most instances
of the oblivious algorithm are y-accurate.

Lemma 3.5. For each fixedi € [1,T], Z;zl acc;(i(r(j)) > %c with
probability at least 1 — f.

Proor. Observe that the function accg, (+) is determined by the
transcript 7. This is because the input sequence X; is just a substring
of the transcript 7~ and X; determines the predicate accg, .

Now, we have the following (1) each row of R is a string drawn
independently from the uniform distribution U, (2) accg, is a pred-
icate on strings and is determined by 7 as argued above, and (3)
7 can be viewed as a (ﬁ, %)-DP algorithm with respect to R
by Corollary 3.4. By the generalization property of differential pri-
vacy (Theorem 2.4), we have that the empirical average of accz, on

STOC ’22, June 20-24, 2022, Rome, Italy

Rie,1
lying distribution U, i.e., E,.qs[accz(7)] should be close to each
other. More formally, by invoking Theorem 2.4 where € = 1/100,
d=p/100and t = c > elz log(%e), we have that

Z;zl accg, (r()), and accg,’s expectation over the under-

1y ;
- Zaccii(r(j)) - E,_qlaceg, (]| = m

Jj=1

RF‘{(C </
accg, «—T(R)
Since the oblivious algorithm A returns accurate answers with
probability at least 9/10 as long as its random choice is indepen-
dent from the input, for any arbitrary input sequence X, we have
E,.q/[accz(r)] = 9/10. Therefore, we have that with probability
at least 1 — f3,

liaCC* (r(J)) > 2 —
c xi T 10

Jj=1

1

4
0 5

as desired.)

Given that most instances of the oblivious algorithm are always
accurate, it is intuitively immediate that A’ is always accurate too.
This is because A’ returns the median of the sub-sampled answers
from oblivious algorithms. Below, we verify this.

Corollary 3.6. Foralli € [1,T], g(x;) < out] < y(1+ a)g(x;)
with probability at least 1 — S¢yj)-

Proor. Consider a fixed step i. Recall that A’ independently
samples s indices ji, ..., js and queries AUK) for1 < k < s. Let
accg = accg, (r(jk)) indicate whether AUK) is accurate at time i.
Lemma 3.5 1mp11es that E[Y} kg 3CCK] 2 5s By Hoeffding’s bound,
Zk Lacck = 4s with probability at least 1 — exp(-0(s)) > 1 -
by making sure that the constant in the definition of s (actually T')
is large enough.

If accy = 1, we have that g(x;) < out(jk) < yg(x;) and so
— (k) (11)

g(x;) < out; -fraction ofout

—(Js)

< y(1+a)g(x;).Soat 1east

out;”" are y(1 +)-approximation of g(xi), With probablhty at

1_T

least 1-f,pMedian, , g returns out; such that there are 3
A9 fraction of out;

55 out M, out(h) that are at least out] and the
same holds for those that are at most outlf. Therefore, outlf is a
y(1+ a)-approximation of g(x;) with probability at least 1 — 25. By
union bound, this holds over all time steps with probability at least
1-2Tf =1— 6. o

Via the accuracy guarantee from Corollary 3.6 together with the
total update time bound from Proposition 3.2, we now conclude
the proof of Theorem 3.1.

Extensions of Theorem 3.1. Before we conclude this section, we
discuss several possible ways to extend the reduction from Theo-
rem 3.1.

Worst-case update time. First of all, although the reduction is
stated for amortized update time, it can be made worst-case if the
given oblivious algorithm guarantee worst-case update time. More
formally, we have the following.

1678

Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer

THEOREM 3.7. Letg: X — [—U,—%]U{O}U[li] U]
that maps elements in some domain X to a number in [-U, —%] U

be a function

{0} U [% U] where U > 1. Suppose there is a dynamic algorithm
A against an oblivious adversary that, given an initial input xo
undergoing a sequence of T updates, guarantees the following:

e The preprocessing time on xg is tp

o The worst-case update time for each update is t,,.

e The query time is tq and, with probability > 9/10, the answer

is a y-approximation of g(x).

Then, there is a dynamic algorithm A"’ against an adaptive adver-
sary that, with probability at least 1 — 8¢5, maintains a y(1 + a)-
approximation of a function g(x) when x undergoes any sequence of
update using

O(%+ﬁtu+tq)

worst-case update time.

Proor skeTcH. Using exactly the same algorithm from Theo-
rem 3.1, we obtain the adaptive algorithm A’ can handle T up-
dates whose preprocessing time is O(tp VT) and the worst-case up-

date/query time is O(#, VT + tq). To get an algorithm with é(\t/—‘% +

\/f ty + tq) worst-case update time, we create two instances ﬂ; dd
and AL, of A’ and proceed in phases. Each phase has ©(T)
updates. We only need to show how to avoid spending a large
preprocessing time of é(tp VT) in a single time step. During the
odd phases, we use ﬂ(’) 4q to handle the queries and distribute the
work for preprocessing of A, equally on each time step in this
phase. During the even phases, we do the opposite. So the prepro-
cessing time is “spread” over ©(T) updates, which consequently
contributes O(—”T) worst-case update time. This a very standard

technique in the dynamic algorithm literature (see e.g. Lemma 8.1

of [6]). o

Speed up for stable answers. Suppose that we know that during
T updates, the (1 + €)-approximate answers to the queries can
change only A times for some A < T. Then, using the same idea
from [47], the total update time of Theorem 3.1 can be improved to
O("‘total\/I + tq)A

This idea could be useful for several problems. For examples,
suppose that we want to maintain (1 + €)-approximation of global
minimum cut, or (s, #)-minimum cuts, or maximum matching in
unweighted graphs. If the current answer k, we know that it must
takes at least ek updates before the answer changes by a (1 + €)
factor. Suppose that, somehow, the answer is always at least k, then
we have A < T/ek. It is also possible to remove the assumption that
the answer is at least k: if there is a separated adaptive algorithm
that can take care of the problem when the answer is less than k,
then we can run both algorithms in parallel. This idea of combining
the two algorithms, one for small answers and another for large
answers, was explicitly used in [14] in the streaming setting.

Speed up via batch updates. In the algorithm for Theorem 3.1, re-
call that we create ¢ = O(VT) copies of A, denoted by AW, Al
For each copy AU we feed an update u; at every time step i one
by one. Consider what if we are lazy in feeding the update to AW,
That is, we wait until A is sampled and we want to query AW,

Dynamic Algorithms against an Adaptive Adversary

Only then we feed a batch of updates containing all updates that
we have not feed to A/) until the current update. The batch will
be of size O(c/s) = O(VT) in expectation. That is, through out
the sequence of T updates, each AU is expected to handles only
O(VT) batches containing O(NT) updates.

This implementation would not change the correctness. But the
whole algorithm can possibly be faster if A is a dynamic algorithm
that can handle a batch update of size O(VT) faster than a sequence
of O(VT) updates. This is a property that is quite natural to expect.
Indeed, there are some dynamic algorithms such that the larger
the batch the faster the update time on average, including dynamic
matrix inverse and its applications such that dynamic reachabil-
ity [59, 64]. However, these algorithms are not for approximating
functions and so we cannot exploit them in this paper.

4 APPLICATIONS TO DYNAMIC GRAPH
ALGORITHMS

In this section, we show new dynamic approximation algorithms
against an adaptive adversary for four graph problems including,
global minimum cut, all-pairs distances, effective resistances, and
minimum cuts. Given a graph G undergoing edge updates, let n
denote a number of vertices and m denote a current number of
edges in G. In Section 4.1, we show how the generic reduction from
Theorem 3.1 immediately transforms known algorithms against an
oblivious adversary to work against an adaptive adversary with
o(m) update and query time. In Section 4.2, we show how to speed
up the update time using sparsifiers and in Section 4.3 we discuss
limitations of adaptive dynamic algorithms maintaining sparsifiers.
Then, in Section 4.4, we show how to avoid these limitations and
obtain a sparsification technique that allows us to assume that
m = O(n) all the time and speed up our algorithms.

Throughout this section, O hides a polylog(n) factor. We also
assume edge weights are integers of size at most poly(n). Also,
to simplify the calculation, we will assume € = Q(1) in all of our
dynamic (1 + €)-approximation algorithms.

4.1 Applying the Generic Reduction

The update time of our dynamic algorithms in this subsection de-
pends on m. We assume that m never changes by more than a
constant factor, because otherwise, we can restart the algorithm
from scratch which would increase the amortized update time by
at most a constant factor.

We start with the first dynamic algorithm against an adaptive
adversary for (1 + €)-approximate global mincut.

Corollary 4.1 (Global minimum cuts). For every constant € > 0,
there is a dynamic algorithm against an adaptive adversary that,
given an unweighted graph G undergoing edge insertions and dele-
tions, with probability 1-1/poly(n),® maintains a (1+€)-approximate
value of the global mincut in O(m'/2n1/%) = O(m3/*) amortized up-
date time.

Proor. We simply apply Theorem 3.1 to the dynamic algorithm
against an oblivious adversary by Thorup [63, Theorem 11]. When

®In this paper, when we say 1/poly(n), we mean that it stands for every polynomial
that is greater than 1.

1679

STOC 22, June 20-24, 2022, Rome, Italy

the graph initially has m edges, his algorithm takes O(m) prepro-
cessing time’ and O(+/n) worst-case update time. So the total up-
date time for handling T updates (for any T) is

tiotal = O(m + T\/H)

Thorup’s algorithm maintains the (1 + ¢/3)-approximation of
the global mincut explicitly, so we can query it in tg = O(1) time.
By plugging this into Theorem 3.1 where a = €/3, since (1 + €/3) -
(1+a) < (1+¢€), we obtain an (1 + €)-approximation algorithm
against an adaptive adversary with amortized update time

~ (m+ T\/ﬁ)
o|l———|.
VT
This amortized update time is minimized for T ~ m/+/n. Therefore
if we rebuild our data structure after T ~ m/+/n updates we get an

amortized update time of O(m!/2n1/%). o

Corollary 4.2 (All-pairs distances). There is a dynamic algorithm
against an adaptive adversary that, given a weighted graph G, handles
the following operations in O(m*'®) amortized update time:

o Insert or delete an edge from the graph, and

e Givens,t € V(G), with probability at least 1 — 1/poly(n), re-
turn a (log(n) -poly(log log n))-approximation of the distance
between s and t.

Proor. Chen et al. [31, Lemma 7.15 and the proof of Theo-
rem 7.1] give a dynamic algorithm (A against an oblivious adversary
with the following guarantee. Given a weighted graph G with n ver-
tices and m edges and any parameter j, the algorithm preprocesses
G and with probability 1 — 1/poly(n) handles at most T = O(})
operations in ty, = O(m?/j) total update time. The operations
that A can handle include:

e edge insertions and deletions, and
e given (s, t), return a (log(n)-poly(loglog n)) approximation
of the (s, t)-distance in tg = O(}j) time.
We want to apply the transformation from Theorem 3.1 to A, but
there is a small technical issue. In Theorem 3.1, we only consider
algorithms that maintain one single number, but A can return
an answer for any pair (s,t). So we instead assume that A also
maintains a pair of variables (src, snk). Each (s, t)-query to A
contains two sub-steps: first we update (src, snk) « (s, t) and then
A returns the answer for (src, snk), which is now the only single
number that A maintains. So we can indeed apply Theorem 3.1 to
A.
Applying Theorem 3.1 to A, we obtain an algorithm against an

adaptive adversary with amortized update time of

"

By choosing j = m*/> (and restarting after every j updates) we get
an amortized update time of O(m4/ 5. O

m?/j

0]

Next, we show that by plugging another oblivious algorithm
into the reduction, we can speed up the above result.

"The preprocessing time is not explicitly stated in [63]. This preprocessing includes,
graph sparsification via uniform sampling, greedily packing O(1) trees, and initializing
information inside each tree. All of these takes near-linear time.

STOC ’22, June 20-24, 2022, Rome, Italy

Corollary 4.3 (All-pairs distances with cruder approximation). For
any integeri > 2, there is a dynamic algorithm against an adaptive
adversary that, given a weighted graph G, handles the following
operations in m'/2*1/ 2D+0 (1) gmortized update time:

o Insert or delete an edge from the graph, and

e Givens,t € V(G), with probability at least 1 — 1/poly(n),
return a O(log®~2 n)-approximation of the distance between
sandt.

Proor. Forster, Goranci, and Henzinger [41, Theorem 5.1] show
a dynamic algorithm A against an oblivious adversary that can
handle edge insertions and deletions in m!/#°(1) amortized update
time when an initial graph is an empty graph and, given s, t € V(G),
can return a O(log>~2 n)-approximate (s, t)-distance in polylog(n)
time. Again, we can use the same small modification as in Corol-
lary 4.2 to view as A as an algorithm that maintain only one num-
ber.

When an initial graph is not empty but has m edges, algorithm
A can handle T operations of edge updates and queries in at most
tiotal = (M+T) - ml/*+0(1) time with query time is t4 = polylog(n).
Therefore, via Theorem 3.1 we obtain an algorithm A’ against an
adaptive adversary with amortized update time of

(m+T)-m

0

(VT
This is O (m1/2+1/(2i)+°(1)) if we restart the structure every T =
ml-1/i

1/i+o(1)
+ polylog(n) | .

updates. O

Corollary 4.4 (All-pairs effective resistance). There is a dynamic
algorithm against an adaptive adversary that, given a weighted
graph G, handles the following operations in amortized update time
ml/4p1/2+0(1),
o Insert or delete an edge from the graph, and
e Givens,t € V(G), with probability at least 1 — 1/poly(n), re-
turn a (1+€)-approximation of the effective resistance between
sandt.

Proor. Chen et al. [31, Proof of Theorem 8.1] give a dynamic
algorithm A against an oblivious adversary with the following
guarantee. Given a weighted graph G with n vertices and m edges
and any parameters f§ and d, the algorithm preprocesses G in t, =

O(/% . (10%)0(1)) time and then handles the following operations
int, = O(ﬂ—2d+3(10g)o(d)) amortized time:

e edge insertions and deletions, and

e given (s, 1), update (src, snk) « (s, t).
That is, given T operations above, the total update time is iy, =

tp + T - ty. The algorithm also supports queries for a (1 + €)-
approximation of the (src, snk)-effective resistance in

il

time. We set d = (1), say d = O(loglogn), and will set 1/ =
(n?/m)®1/d) meaning that 1/ = n°) . This implies that

)

1
ty=0 mil-1

€

logn

/ﬁo(l) — no(l)

€

1680

Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer

(recall that we assume € to be a constant), which will help us sim-
plifying several factors in the update time below.

By plugging A into Theorem 3.1, we obtain an algorithm against
an adaptive adversary with amortized update time of

o +tq)=(

Now, to balance the first two terms in the bound, we set T = mﬂZd.
This gives the bound of

(\/aﬁ—d + nﬁd) . no(l) — m1/4nl/2+o(1)

tp+T -ty

VT

m+T.-p2d

77 +nﬁd) -n°(

by setting g% = m'/*/n'/2 to balance the terms. Indeed, 1/ =
(n?/m)®(1/d) a5 promised. O

4.2 Speed up via Sparsification against an
Adaptive Adversary

In the rest of this section, we show how to speed up the update
time of the algorithms from Section 4.1. The idea is simple. Given a
dynamic graph G with n vertices, we want to use a dynamic algo-
rithm against an adaptive adversary for maintaining a sparsifier H
of G where H preserves a certain structure of G (e.g. cuts, distances,
or effective resistances) but H contains at most O(n) edges, and
then apply the algorithms Section 4.1 on H. So the final update time
only depends on n and not m.

Preliminaries on graph sparsification. To formally use this idea,
we recall some definitions related to sparsification of graphs. Given
a (weighted) graph G, we say that H is an a-spanner of G if H is
a subgraph of G and the distances between all pairs of vertices
s,t € G are preserved with in a factor of «, i.e.

distg (u,v) < distg(u,v) < a - distg (u,).
We say that H is an a-cut sparsifier of G if, for any cut (S, V(G)\S),
we have that
86(S) <8(S) < a-86(S)

where 55 (S) and 8y (S) denote the cut size of S in G and H, respec-
tively. Also, we say that H is an a-spectral sparsifier of G, if for any
vector x € RV, we have that

x ' Lgx <x"Lyx < a-x'Lgx

where Lg and Ly are the Laplacian matrices of G and H, respec-
tively.

Fact 4.5. Suppose that H is an a-spectral sparsifier of G.

e H is an a-cut sparsifier of G (see e.g. [61]).
o The effective resistance in G between all pairs (s, t) are approx-
imately preserved in H up to a factor of a. That is,

Rg(u,v) < Ry(u,v) < a-Rg(u,0)

for allu,v € V where Rg(u,v) and Ry (u,v) denote the effec-
tive resistance between u and v in G and H, respectively (see
[36, Lemma 2.5]).

Dynamic Algorithms against an Adaptive Adversary

Using dynamic spanners as a blackbox. Bernstein et al. [17] showed
how to maintain a polylog(n)-spanner against an adaptive adver-
sary efficiently.

THEOREM 4.6 ([17, THEOREM 1.1]). There is a randomized dy-
namic algorithm against an adaptive adversary that, given an n-
vertex graph G undergoing edge insertions and deletions, with high
probability, explicitly maintains a polylog(n)-spanner H of size O(n)
using polylog(n) amortized update time.

With the above theorem, we can immediately speed up Corol-
lary 4.3 as follows:

Corollary 4.7 (All-pairs distances). For any integeri > 2, there
is a dynamic algorithm against an adaptive adversary that, given a
weighted graph G, handles the following operations in nl/2+1/2D)+o(1)
amortized update time:

o Insert or delete an edge from the graph, and

o Givens,t € V(G), with probability at least 1 — 1/poly(n), re-
turn a O(log3i+o(1) n)-approximation of the distance between
sandt.

Proor. Using Theorem 4.6, we maintain a polylog(n)-spanner
H of G containing O(n) edges in polylog(n) amortized update time.
Since H can be maintained against an adaptive adversary, we think
of H as our input graph and pay an additional polylog(n) approxi-
mation factor and update time. The argument now proceeds exactly
in the same way as in the proof of Corollary 4.3 except that now the
input graph always contains at most O(n) edges. Since the update
time of the algorithm of Theorem 4.6 is polylog(n), the number of
updates to H is at most polylog(n) for every update to G. O

4.3 Current Limitation of Sparsification
against an Adaptive Adversary

Here, we discuss the current limitation of dynamic sparsifiers
against an adaptive adversary, which explains why we could not
apply the same idea to get (1+¢)-approximation algorithms against
adaptive adversary.

Spanners. Observe that as long as we work on top of a polylog(n)-
spanner, we will need to pay additional polylog(n) factor in the
approximation factor. We can hope to improve this factor because,
against an oblivious adversary, there actually exists an algorithm by
Forster and Goranci [40] for maintaining a (2k — 1)-spanner of size
at most O(n'*1/k) edges using only O(k log? n) amortized update
time for any integer k > 1. This approximation-size trade-off is
tight assuming the Erdos conjecture.

If there was a dynamic spanner algorithm with similar guaran-
tees that works against an adaptive adversary, we would be able
to reduce the additional approximation factor, due to sparsifica-
tion, from polylog(n) to 2k — 1, while the update time would be
slightly slower because the sparsifiers have size O(n'*1/k) instead
of O(n). Unfortunately, it is an open problem if such a algorithm
exists. This is the main reason why we could not state the sparsified
version of Corollary 4.2 where the approximation ratio remains

log(n) - poly(loglogn).

1681

STOC 22, June 20-24, 2022, Rome, Italy

Open Question 4.8. Is there a dynamic algorithm against an adap-
tive adversary for maintaining a (2k — 1)-spanner of size O(n!*1/k)

using polylog(n) update time?

Spectral sparsifiers. The situation is similar for spectral sparsi-
fiers. Against an oblivious adversary, there exists a dynamic al-
gorithm by Abraham et al. [1] for maintaining (1 + €)-spectral
sparsifier containing only O(n) edges with polylog(n) amortized
update time. If there was an algorithm against an adaptive adver-
sary with the same guarantees, then we could immediately use it
in the same manner as in Corollary 4.7 to speed up Corollary 4.4 by
replacing m by n in their update time, while paying only an extra
(1 + €)-approximation ratio in the query. Unfortunately, whether
such a dynamic algorithm for (1 + €)-spectral sparsifier exists still
remains a fascinating open problem.

Open Question 4.9. Is there a dynamic algorithm against an adap-
tive adversary for maintaining a (1 + €)-spectral sparsifier of size
O(n) using polylog(n) update time?

The current start-of-the-art of dynamic spectral sparsifiser algo-
rithms against an adaptive adversary still have large approximation
ratio. In particular, Bernstein et al. [17] show how to maintain a
polylog(n)-spectral sparsifier in polylog(n) update time, and also a
O(k)-cut sparsifiers in O(nt/k) update time. We could apply these
algorithms to speed up Corollary 4.4, but then we must pay a large
additional approximation factor.

Fortunately, in Section 4.4, we are able to show a way to work
around this issue.

4.4 Speed up via Sparsification against a
Blinking Adversary

In this section, we show that even if dynamic (1 + €)-spectral spar-
sifiers against an adaptive adversary are not known, we can still
apply the sparsification idea to the whole reduction. Below, (1) we
describe the sparsification lemma in Lemma 4.12 and discuss why
we can view it as an algorithm for an intermediate model between
oblivious and adaptive adversaries which we call a blinking adver-
sary, defined in Section 1.2.2 and then (2) we apply Lemma 4.12 to
speed up our applications.

The algorithm is based on dynamic expander decomposition. We
recall the definition of expanders here.

Definition 4.10. Given a weighted graph G = (V,E,w) and a
vertex set S C V, the volume of S is volg(S) = X, cs degg(u)
where deg (1) = X (4,0)cg W(u,) is the weighted degree of u in G.
The size of a cut (S, V' \ S) in G is 3G(S) = Zyes,pev\s w(u, 0). We
say that G is a ¢-expander if for any cut (S,V \ S), its conductance

. s 55(5)
is defined as ®(G) = min(g y\s) min{vol(;(g),vol(;(V\S)} > ¢.

The following lemma says that for any graph G = (V, E) with
n vertices and m edges, there exists a partition/decomposition of
edges of G into ¢-expanders where each vertex appears in at most
O(log® n) expanders on average. Moreover, this decomposition can
be maintained against an adaptive adversary.

THEOREM 4.11 (DYNAMIC EXPANDER DECOMPOSITION [17, THE-
OREM 4.3]). For any ¢ = O(1/log* m) there exists a dynamic algo-
rithm against an adaptive adversary that preprocesses a weighted

STOC ’22, June 20-24, 2022, Rome, Italy

graph G with n vertices and m edges in O(¢~'m1log® n) time. The
algorithm maintains with probability 1 — 1/poly(n) a decomposi-
tion of G into ¢-expanders Gy, ...,G, that is, every edge of G is
exactly one G;j. The graphs (G;)1<i<z are edge disjoint and we have

Z V(G| = O(nlog>n). The algorithm supports edge deletions
and insertions in O(¢~2log” n) amortized time. After each update,
the output consists of a list of changes to the decomposition. The
changes consist of (i) edge deletions or deletions of isolated vertices to
some graphs Gi, (ii) removing some graphs G; from the decomposition,
and (iii) new graphs G; are added to the decomposition.®

Actually the algorithm can be made deterministic when ¢ =
o(1/ 21°g4/5 M =1/ no(by using the deterministic expander de-
composition from [33]. This would only add an extra n°W factor
in the update time of our applications, but in a first read, the reader
may assume for simplicity that Theorem 4.11 is deterministic.

Given the dynamic expander decomposition from Theorem 4.11,
we show that we can generate a (1 + €)-spectral sparsifier in O(n)
time and even maintain it dynamically if the adversary is oblivious
to the sparsifier. We emphasize that the time is independent of m
and depends only on n.

Lemma 4.12. Let cnt be the variable that counts the total number
of edge changes in all ¢p-expanders G1, . . ., Gz of G from Theorem 4.11
during a sequence of insertions and deletions. We can extend the algo-
rithm from Theorem 4.11 so that it handles the following additional
operation:

o SPARSIFY(t): return a graph H and continue maintaining H
until cnt has increased by t using O(n +t) total update time.
During the sequence of edge updates before cnt has increased
by t, H contains O(n + t) edges and there are at most O(t)
edge changes in H. If these edge updates are fixed at the
time SPARSIFY(t) is called (i.e., if the adversary is oblivious),
then with high probability, H is a (1 + €)-spectral sparsifier
throughout the update sequence. We emphasize that each call
to SPARSIFY(t) uses fresh random bits to initialize and maintain
H in this call.

The proof of Lemma 4.12 combines technical ingredients from
[17] and is given in the full version of this paper [11].

Discussion: Blinking adversary. Assuming an underlying adaptive
dynamic expander decomposition, we can think of the sparsifier of
Lemma 4.12 as a sparsifier with a fast refresh capability: Each call to
sparsifyrefreshes the sparsifier and makes it accurate independently
of the past updates.

Suppose we always call SPARSIFY(#) whenever cnt increases by t.
Then we, in fact, maintain using O(n/t) amortized update time a (1+
€)-spectral sparsifier H of G against a blinking adversary as define
in Section 1.2.2. This is because, Lemma 4.12 guarantees accuracy
of H for a fixed sequence of updates (before cnt increases by t),
and each call to SPARsIFY(¢) uses fresh random bits. So although
the adversary observes H following the last call to SPARSIFY(?),
this does not give it any useful information to fool the next call to
SPARSIFY(?).
8Theorem 4.3 in [17] is stated only for unweighted graphs. However, it is straightfor-
ward to extend the algorithm to weighted graphs by grouping edges of G by weights.

As there are O(log n) groups assuming that edge weights are at most poly(n), this
only add an extra factor of O(log n) to all the bounds.

1682

Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer

This model of an adversary lies between an oblivious adversary
that cannot observe the algorithm’s answers at all and an adaptive
adversary that can observe the algorithm’s answers after every
update. Interestingly, we show that algorithms against this inter-
mediate model of adversary can be used for speeding up some of
the applications obtained by our generic reduction. Specifically, we
show the following Corollary.

Corollary 4.13 (All-pairs effective resistance (sparsified)). There
is a dynamic algorithm against an adaptive adversary that, given
a weighted graph G, handles the following operations in n3/4+o(1)
amortized update time:

o Insert or delete an edge from the graph, and

e Given s,t € V(G), with probability at least 1 — 1/poly(n),
return a (1 + €)-approximation of the distance between s and
t.

Proor. First of all, we maintain the expander decomposition of
G in the background using the algorithm from Theorem 4.11 with
O(1) amortized update time when ¢ = ©(1/log* m). Let cnt be
the variable that counts the total number of edge changes in all
¢-expanders from the decomposition.

We proceed in phases and restart the phase whenever cnt has
increased by T since the beginning of the phase (we will later set
T = +/n).’ For each phase, our goal is to show a data structure for
(1+ O(e))-approximating effective resistance between vertices of
G against an oblivious adversary whose update time is independent
of m. Once this is done, we can apply Theorem 3.1 to make it work
against an adaptive adversary. Let ¢ = O(VT) be the number of
copies of the oblivious algorithms in the reduction of Theorem 3.1.

To achieve this goal, at the beginning of the phase, we compute
HD, . HO© using Lemma 4.12 where each HY = SpARSIFY(T)
are independently generated. For each instance AU) of the oblivi-
ous dynamic algorithm for effective resistance by Chen [31, Proof
of Theorem 8.1], we treat H\/) as its input graph. As in the proof of
Corollary 4.4, we recall that the guarantee of this algorithm here:

Given parameters and d, the algorithm preprocesses H)
int, = O(%Sm)| . (10%)0(1)) time. Then, the algorithm sup-
ports edge-update operations and (src, snk)-update operations in
ty = O(ﬁ_2d+3(k’%)o(d)) amortized update time. At any time,
the algorithm supports queries for a (1 + €)-approximation of the
(src, snk)-effective resistance in tq = O(nﬁd (10%)O("D) time. Sim-
ilar to Corollary 4.4, we will set d = w(1), say d = O(loglogn),
and will set 4 = 1/n'/* and so 1/ = n'/4¢ = p°() This implies
that (log)o(d) /BP0 = no() (recall that we assume € to be a
constant).

During the phase, cnt can increase by at most T and so by
Lemma 4.12 there are at most Ty = O(T) updates to H). By
substituting parameters, during the phase, the total update time
of AY) for handling Ty updates in H is tyopa = O(tp + Tyty) =
(n + Tym)n®Y, and the query time is tq = n3/40(1) Since we
can assume that the adversary for AY) is oblivious, Lemma 4.12
guarantees that H () remains a (1 + €)-spectral sparsifier of G

%It is possible that after one update to G, cnt increases by more than T. This means
that within one update to G, there can be more than one phase.

Dynamic Algorithms against an Adaptive Adversary

throughout the phase. Therefore, each AY) indeed answers (1 +
O(€))-approximation of (src, snk)-effective resistance in G.

By applying Theorem 3.1, we can maintain (1+O(€))-approximate
solution of G against an adaptive adversary where the amortized
update time for each phase is

Liotal

o3)

n+T-vn ,,3/4) o)
\NT

Now, to balance the first two terms in the bound, we set T = +/n. This
gives the bound of n3/4+0(1) The additional time for maintaining

HD . HO s CXO(T'HT) = é(ﬁyﬁr)) = O(n®/*) amortized

update time. Hence, the total amortized update time is n

3/a+0(1) g

REFERENCES

(1]

=

[9

=

[10]

(1]

[12]

[13]

[14

[15]

[16]

[17]

Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard
Peng. 2016. On fully dynamic graph sparsifiers. In Proceedings of the 57th IEEE
Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society,
335-344.

Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon
Yogev. 2021. Adversarial laws of large numbers and optimal regret in online
classification. In Proceedings of the 53rd ACM Symposium on Theory of Computing
(STOC). ACM, 447-455.

Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. 2021. A Framework
for Adversarial Streaming via Differential Privacy and Difference Estimators.
CoRR abs/2107.14527 (2021).

Victor Balcer and Salil P. Vadhan. 2019. Differential Privacy on Finite Computers.
J. Priv. Confidentiality 9, 2 (2019). https://doi.org/10.29012/jpc.679

Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and
Jonathan Ullman. 2021. Algorithmic stability for adaptive data analysis. SIAM 3.
Comput. 50, 3 (2021), 77-405.

Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz
Khan. 2016. Dynamic DFS in undirected graphs: Breaking the O(m) barrier. In
Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA).
730-739.

Surender Baswana, Manoj Gupta, and Sandeep Sen. 2018. Fully Dynamic Maximal
Matching in O(log n) Update Time (Corrected Version). SIAM J. Comput. 47, 3
(2018), 617-650. https://doi.org/10.1137/16M1106158

Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. 2012. Fully dynamic
randomized algorithms for graph spanners. ACM Trans. Algorithms 8, 4 (2012),
35:1-35:51. https://doi.org/10.1145/2344422.2344425 Announced at SODA’08.
Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein,
and Madhu Sudan. 2019. Fully Dynamic Maximal Independent Set with Polylog-
arithmic Update Time. In Proceedings of the 60th IEEE Symposium on Foundations
of Computer Science (FOCS). 382-405. https://doi.org/10.1109/FOCS.2019.00032
Amos Beimel, Iftach Haitner, Nikolaos Makriyannis, and Eran Omri. 2018. Tighter
Bounds on Multi-Party Coin Flipping via Augmented Weak Martingales and
Differentially Private Sampling. In Proceedings of the 59th IEEE Symposium on
Foundations of Computer Science (FOCS). 838-849.

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Sara-
nurak, and Uri Stemmer. 2021. Dynamic Algorithms Against an Adaptive Ad-
versary: Generic Constructions and Lower Bounds. CoRR abs/2111.03980 (2021).
arXiv:2111.03980 https://arxiv.org/abs/2111.03980

Amos Beimel, Kobbi Nissim, and Uri Stemmer. 2016. Private Learning and
Sanitization: Pure vs. Approximate Differential Privacy. Theory Comput. 12, 1
(2016), 1-61.

Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-
digm for Designing Efficient Protocols. In Proceedings of the 1st ACM Conference
on Computer and Communications Security (CCS). 62-73.

Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. 2021. Adversarially Robust
Streaming via Dense-Sparse Trade-offs. CoRR abs/2109.03785 (2021).

Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yogev. 2020. A
framework for adversarially robust streaming algorithms. In Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems.
63-80.

Aaron Bernstein. 2017. Deterministic Partially Dynamic Single Source Shortest
Paths in Weighted Graphs. In Proceedings of the 44th International Colloquium on
Automata, Languages and Programming (ICALP) (LIPIcs, Vol. 80). 44:1-44:14.
Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon
Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. 2020. Fully-
dynamic graph sparsifiers against an adaptive adversary. arXiv preprint
arXiv:2004.08432 (2020).

1683

(18]

[19]

[20]

[21

[22

[23

[24

™
2

[26

[27]

[28

[29]

@
=

[31

(32

[33

[34

[35

[36

[37

[38

[39

[40

(41

STOC 22, June 20-24, 2022, Rome, Italy

Aaron Bernstein and Shiri Chechik. 2016. Deterministic decremental single
source shortest paths: beyond the O (mn) bound. In Proceedings of the 48th ACM
Symposium on Theory of Computing (STOC). 389-397.

Aaron Bernstein and Shiri Chechik. 2017. Deterministic partially dynamic single
source shortest paths for sparse graphs. In Proceedings of the 28th ACM-SIAM
Symposium on Discrete Algorithms (SODA). 453-469.

Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. 2019. Decremen-
tal strongly-connected components and single-source reachability in near-linear
time. In Proceedings of the 51st ACM Symposium on Theory of Computing (STOC).
365-376.

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2015. De-
terministic Fully Dynamic Data Structures for Vertex Cover and Matching. In
Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms (SODA).
Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New de-
terministic approximation algorithms for fully dynamic matching. In Proceedings
of the 48th ACM Symposium on Theory of Computing (STOC). 398—411.

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2017. Fully Dy-
namic Approximate Maximum Matching and Minimum Vertex Cover in O(lo‘gr3
n) Worst Case Update Time. In Proceedings of the 28th ACM-SIAM Symposium on
Discrete Algorithms (SODA). 470-489.

Sayan Bhattacharya and Peter Kiss. 2021. Deterministic Rounding of Dynamic
Fractional Matchings. arXiv preprint arXiv:2105.01615 (2021).

Sayan Bhattacharya and Janardhan Kulkarni. 2019. Deterministically Maintaining
a (2 + €)-Approximate Minimum Vertex Cover in O(1/€?) Amortized Update
Time. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms
(SODA).

Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep
Silwal, and Samson Zhou. 2021. Adversarial Robustness of Streaming Algorithms
through Importance Sampling. arXiv preprint arXiv:2106.14952 (2021).

Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. 2015. Differentially
private release and learning of threshold functions. In Proceedings of the 56th
IEEE Symposium on Foundations of Computer Science (FOCS). 634-649.

Ran Canetti, Oded Goldreich, and Shai Halevi. 1998. The Random Oracle Method-
ology, Revisited. In Proceedings of the 30th ACM Symposium on Theory of Com-
puting (STOC). 209-218.

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. 2022. Adversarially
Robust Coloring for Graph Streams. In Proceedings of the 13th Innovations in
Theoretical Computer Science Conference, (ITCS) (LIPIcs, Vol. 215). 37:1-37:23.
Shiri Chechik and Tianyi Zhang. 2019. Fully Dynamic Maximal Independent Set
in Expected Poly-Log Update Time. In Proceedings of the 60th IEEE Symposium
on Foundations of Computer Science (FOCS). 370-381. https://doi.org/10.1109/
FOCS.2019.00031

Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol
Saranurak. 2020. Fast dynamic cuts, distances and effective resistances via vertex
sparsifiers. In Proceedings of the 61st IEEE Symposium on Foundations of Computer
Science (FOCS). 1135-1146.

Julia Chuzhoy. 2021. Decremental all-pairs shortest paths in deterministic near-
linear time. In Proceedings of the 53rd ACM Symposium on Theory of Computing
(STOC). 626-639. https://doi.org/10.1145/3406325.3451025

Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. 2020. A deterministic algorithm for balanced cut with
applications to dynamic connectivity, flows, and beyond. In Proceedings of the
61st IEEE Symposium on Foundations of Computer Science (FOCS). 1158-1167.
Julia Chuzhoy and Sanjeev Khanna. 2019. A new algorithm for decremental
single-source shortest paths with applications to vertex-capacitated flow and cut
problems. In Proceedings of the 51st ACM Symposium on Theory of Computing
(STOC). 389-400.

Julia Chuzhoy and Thatchaphol Saranurak. 2021. Deterministic Algorithms for
Decremental Shortest Paths via Layered Core Decomposition. In Proceedings of
the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA). 2478-2496.
David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. 2019. Fully dynamic
spectral vertex sparsifiers and applications. In Proceedings of the 51st ACM Sym-
posium on Theory of Computing (STOC). 914-925.

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold,
and Aaron Leon Roth. 2015. Preserving statistical validity in adaptive data
analysis. In Proceedings of the 47th ACM Symposium on Theory of Computing
(STOC). 117-126.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-
ing noise to sensitivity in private data analysis. In Proceedings of the 3rd Theory
of Cryptography Conference, (TCC) (Lecture Notes in Computer Science, Vol. 3876).
Springer, 265-284.

Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. 2010. Boosting and
Differential Privacy. In Proceedings of the 51st IEEE Symposium on Foundations of
Computer Science (FOCS). 51-60. https://doi.org/10.1109/FOCS.2010.12
Sebastian Forster and Gramoz Goranci. 2019. Dynamic low-stretch trees via
dynamic low-diameter decompositions. In Proceedings of the 51st ACM Symposium
on Theory of Computing (STOC). 377-388.

Sebastian Forster, Gramoz Goranci, and Monika Henzinger. 2021. Dynamic
maintenance of low-stretch probabilistic tree embeddings with applications. In

https://doi.org/10.29012/jpc.679
https://doi.org/10.1137/16M1106158
https://doi.org/10.1145/2344422.2344425
https://doi.org/10.1109/FOCS.2019.00032
https://arxiv.org/abs/2111.03980
https://arxiv.org/abs/2111.03980
https://doi.org/10.1109/FOCS.2019.00031
https://doi.org/10.1109/FOCS.2019.00031
https://doi.org/10.1145/3406325.3451025
https://doi.org/10.1109/FOCS.2010.12

STOC ’22, June 20-24, 2022, Rome, Italy

Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA).
1226-1245.

[42] Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi,
and Chris Waites. 2021. Adaptive Machine Unlearning. arXiv preprint
arXiv:2106.04378 (2021).

[43] Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein.
2020. New Algorithms and Hardness for Incremental Single-Source Shortest
Paths in Directed Graphs. In Proceedings of the 52nd ACM Symposium on Theory
of Computing (STOC). 153-166. https://arxiv.org/abs/2001.10751

[44] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. 2020. Decremental
SSSP in weighted digraphs: Faster and against an adaptive adversary. In Proceed-
ings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA). 2542-2561.

[45] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. 2020. Deterministic
algorithms for decremental approximate shortest paths: Faster and simpler. In
Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA).
2522-2541.

[46] Moritz Hardt and Jonathan R. Ullman. 2014. Preventing False Discovery in

Interactive Data Analysis Is Hard. In Proceedings of the 55th IEEE Symposium on

Foundations of Computer Science (FOCS). 454-463.

Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer.

2020. Adversarially Robust Streaming Algorithms via Differential Privacy. In

Advances in Neural Information Processing Systems 33: Annual Conference on

Neural Information Processing Systems 2020. https://proceedings.neurips.cc/

paper/2020/hash/0172d289da48c48de8c5ebf3de9f7eel- Abstract.html

[48] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2014. Decre-
mental single-source shortest paths on undirected graphs in near-linear total
update time. In Proceedings of the 55th IEEE Symposium on Foundations of Com-
puter Science (FOCS). 146—155.

[49] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. Journal of the ACM (JACM) 48, 4 (2001), 723-760.

[50] Haim Kaplan, Katrina Ligett, Yishay Mansour, Moni Naor, and Uri Stemmer. 2020.
Privately Learning Thresholds: Closing the Exponential Gap. In Proceedings of
the 33rd Conference on Learning Theory, COLT (Proceedings of Machine Learning
Research, Vol. 125). 2263-2285.

[51] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. 2021. Separat-
ing Adaptive Streaming from Oblivious Streaming Using the Bounded Storage
Model. In Proceedings of Advances in Cryptology — CRYPTO 2021 (Lecture Notes in
Computer Science, Vol. 12827). 94-121.

[52] David R. Karger. 2000. Minimum cuts in near-linear time. J. ACM 47, 1 (2000),
46-76. https://doi.org/10.1145/331605.331608

[47

Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer

Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2017. Ac-
cessing Data while Preserving Privacy. CoRR abs/1706.01552 (2017).

Frank McSherry and Kunal Talwar. 2007. Mechanism Design via Differential
Privacy. In Proceedings of the 48th IEEE Symposium on Foundations of Computer
Science (FOCS). 94-103.

Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning
forest with worst-case update time: adaptive, Las Vegas, and O(n'/2~€)-time.
In Proceedings of the 49th ACM Symposium on Theory of Computing (STOC).
1122-1129. https://doi.org/10.1145/3055399.3055447

Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. 2017.
Dynamic Minimum Spanning Forest with Subpolynomial Worst-Case Update
Time. In Proceedings of the 58th IEEE Symposium on Foundations of Computer
Science (FOCS). 950-961.

Kobbi Nissim and Uri Stemmer. 2019. Concentration Bounds for High Sensitivity
Functions Through Differential Privacy. J. Priv. Confidentiality 9, 1 (2019).
Liam Roditty and Uri Zwick. 2008. Improved dynamic reachability algorithms
for directed graphs. SIAM J. Comput. 37, 5 (2008), 1455-1471.

Piotr Sankowski and Marcin Mucha. 2010. Fast dynamic transitive closure with
lookahead. Algorithmica 56, 2 (2010), 180-197.

Shay Solomon. [n.d.]. Fully Dynamic Maximal Matching in Constant Update
Time. In Proceedings of the 57th IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE press, 325-334.

Daniel A Spielman and Shang-Hua Teng. 2011. Spectral sparsification of graphs.
SIAM J. Comput. 40, 4 (2011), 981-1025.

Thomas Steinke and Jonathan Ullman. 2017. Tight lower bounds for differentially
private selection. In Proceedings of the 58th IEEE Symposium on Foundations of
Computer Science (FOCS). 552-563.

Mikkel Thorup. 2007. Fully-dynamic min-cut. Combinatorica 27,1 (2007), 91-127.
Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. 2019.
Dynamic matrix inverse: Improved algorithms and matching conditional lower
bounds. In Proceedings of the 60th IEEE Symposium on Foundations of Computer
Science (FOCS). 456-480.

David Wajc. 2020. Rounding Dynamic Matchings Against an Adaptive Adversary.
In Proceedings of the 52nd ACM Symposium on Theory of Computing (STOC).

194-207. http://arxiv.org/abs/1911.05545
David P Woodruff and Samson Zhou. 2020. Tight bounds for adversarially

robust streams and sliding windows via difference estimators. arXiv preprint
arXiv:2011.07471 (2020).

Christian Wulff-Nilsen. 2017. Fully-dynamic minimum spanning forest with
improved worst-case update time. In Proceedings of the 49th ACM Symposium on
Theory of Computing (STOC). 1130-1143. https://doi.org/10.1145/3055399.3055415

https://arxiv.org/abs/2001.10751
https://proceedings.neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/3055399.3055447
http://arxiv.org/abs/1911.05545
https://doi.org/10.1145/3055399.3055415

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries on Differential Privacy
	3 A Generic Reduction
	4 Applications to Dynamic Graph Algorithms
	4.1 Applying the Generic Reduction
	4.2 Speed up via Sparsification against an Adaptive Adversary
	4.3 Current Limitation of Sparsification against an Adaptive Adversary
	4.4 Speed up via Sparsification against a Blinking Adversary

	References

