
Epsolute: E�iciently�erying Databases While Providing
Di�erential Privacy

Dmytro Bogatov
Boston University
Boston, MA, USA
dmytro@bu.edu

Georgios Kellaris
Canada

kellaris@bu.edu

George Kollios
Boston University
Boston, MA, USA
gkollios@cs.bu.edu

Kobbi Nissim
Georgetown University
Washington, D.C., USA

kobbi.nissim@georgetown.edu

Adam O’Neill
University of Massachusetts, Amherst

Amherst, MA, USA
adamo@cs.umass.edu

ABSTRACT
As organizations struggle with processing vast amounts of informa-
tion, outsourcing sensitive data to third parties becomes a necessity.
To protect the data, various cryptographic techniques are used in
outsourced database systems to ensure data privacy, while allowing
e�cient querying. A rich collection of attacks on such systems
has emerged. Even with strong cryptography, just communication
volume or access pattern is enough for an adversary to succeed.

In this work we present a model for di�erentially private out-
sourced database system and a concrete construction, Epsolute, that
provably conceals the aforementioned leakages, while remaining
e�cient and scalable. In our solution, di�erential privacy is pre-
served at the record level even against an untrusted server that
controls data and queries. Epsolute combines Oblivious RAM and
di�erentially private sanitizers to create a generic and e�cient
construction.

We go further and present a set of improvements to bring the
solution to e�ciency and practicality necessary for real-world adop-
tion.We describe the way to parallelize the operations, minimize the
amount of noise, and reduce the number of network requests, while
preserving the privacy guarantees. We have run an extensive set of
experiments, dozens of servers processing up to 10 million records,
and compiled a detailed result analysis proving the e�ciency and
scalability of our solution. While providing strong security and
privacy guarantees we are less than an order of magnitude slower
than range query execution of a non-secure plain-text optimized
RDBMS like MySQL and PostgreSQL.

CCS CONCEPTS
• Security andprivacy!Database and storage security;Man-
agement and querying of encrypted data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484786

KEYWORDS
Di�erential Privacy; ORAM; di�erential obliviousness; sanitizers;

ACM Reference Format:
Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam
O’Neill. 2021. Epsolute: E�ciently Querying Databases While Providing
Di�erential Privacy. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21), November 15–19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3460120.3484786

1 INTRODUCTION
Secure outsourced database systems aim at helping organizations
outsource their data to untrusted third parties, without compro-
mising data con�dentiality or query e�ciency. The main idea
is to encrypt the data records before uploading them to an un-
trusted server along with an index data structure that governs
which encrypted records to retrieve for each query. While strong
cryptographic tools can be used for this task, existing implemen-
tations such as CryptDB [56], Cipherbase [2], StealthDB [70] and
TrustedDB [3] try to optimize performance but do not provide
strong security guarantees when answering queries. Indeed, a se-
ries of works [9, 17, 34, 37, 40, 41, 43, 45, 51] demonstrate that these
systems are vulnerable to a variety of reconstruction attacks. That
is, an adversary can fully reconstruct the distribution of the records
over the domain of the indexed attribute. This weakness is promi-
nently due to the access pattern leakage: the adversary can tell if
the same encrypted record is returned on di�erent queries.

More recently, [33, 35, 43–45] showed that reconstruction attacks
are possible even if the systems employ heavyweight cryptographic
techniques that hide the access patterns, such as homomorphic en-
cryption [30, 69] or Oblivious RAM (ORAM) [31, 32], because they
leak the size of the result set of a query to the server (this is referred
to as communication volume leakage). Thus, even some recent sys-
tems that provide stronger security guarantees like ObliDB [28],
Opaque [75] and Oblix [50] are susceptible to these attacks. This
also means that no outsourced database system can be both opti-
mally e�cient and privacy-preserving: secure outsourced database
systems should not return the exact number of records required to
answer a query.

We take the next step towards designing secure outsourced data-
base systems by presenting novel constructions that strike a prov-
able balance between e�ciency and privacy. First, to combat the

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2262

https://doi.org/10.1145/3460120.3484786
https://doi.org/10.1145/3460120.3484786
https://doi.org/10.1145/3460120.3484786

access pattern leakage, we integrate a layer of ORAM storage in our
construction. Then, we bound the communication volume leakage
by utilizing the notion of di�erential privacy (DP) [24]. Speci�cally,
instead of returning the exact number of records per query, we
only reveal perturbed query answer sizes by adding random en-
crypted records to the result so that the communication volume
leakage is bounded. Our construction guarantees privacy of any
single record in the database which is necessary in datasets with
stringent privacy requirements. In a medical HIPAA-compliant set-
ting, for example, disclosing that a patient exists in a database with
a rare diagnosis correlating with age may be enough to reveal a
particular individual.

The resulting mechanism achieves the required level of privacy,
but implemented naïvely the construction is prohibitively slow. We
make the solution practical by limiting the amount of noise and
the number of network roundtrips while preserving the privacy
guarantees. We go further and present a way to parallelize the
construction, which requires adapting noise-generation algorithms
to maintain di�erential privacy requirements.

Using our system, we have run an extensive set of experiments
over cloud machines, utilizing large datasets — that range up to
10 million records — and queries of di�erent sizes, and we report
our experimental results on e�ciency and scalability. We compare
against best possible solutions in terms of e�ciency (conventional
non-secure outsourced database systems on unencrypted data) and
against an approach that provides optimal security (retrieves the
full table from the cloud or runs the entire query obliviously with
maximal padding). We report that our solution is very competitive
against both baselines. Our performance is comparable to that of
unsecured plain-text optimized database systems (like MySQL and
PostgreSQL): while providing strong security and privacy guaran-
tees, we are only 4 to 8 times slower in a typical setting. Compared
with the optimally secure solution, a linear scan (downloading all
the records), we are 18 times faster in a typical setting and even
faster as database sizes scale up.

To summarize, our contributions in this work are as follows:

• We present a new model for a di�erentially private out-
sourced database system, CDP-ODB, its security de�nition,
query types, and e�ciency measures. In our model, the ad-
versarial honest-but-curious server cannot see the record
values, access patterns, or exact communication volume.

• We describe a novel construction, Epsolute, that satis�es
the proposed security de�nition, and provide detailed algo-
rithms for both range and point query types. In particular,
to conceal the access pattern and communication volume
leakages, we provide a secure storage construction, utilizing
a combination of Oblivious RAM [31, 32] and di�erentially
private sanitization [10]. Towards this, we maintain an index
structure to know how many and which objects we need to
retrieve. This index can be stored locally for better e�ciency
(in all our experiments this is the case), but crucially, it can
also be outsourced to the adversarial server and retrieved
on-the-�y for each query.

• We improve our generic construction to enable paralleliza-
tion within a query. The core idea is to split the storage

among multiple ORAMs, but this requires tailoring the over-
head required for di�erential privacy proportionally to the
number of ORAMs, in order to ensure privacy. We present
practical improvements and optimization techniques that
dramatically reduce the amount of fetched noise and the
number of network roundtrips.

• Finally, we provide and open-source a high-quality C++ im-
plementation of our system. We have run an extensive set
of experiments on both synthetic and real datasets to em-
pirically assess the e�ciency of our construction and the
impact of our improvements. We compare our solutions to
the naïve approach (linear scan downloading all data every
query), oblivious processing and maximal padding solution
(Shrinkwrap [5]), and to a non-secure regular RDBMS (Post-
greSQL and MySQL), and we show that our system is very
competitive.

1.1 Related Work
We group the related secure databases, engines, and indices into
three categories (i) systems that are oblivious or volume-hiding and
do not require trusted execution environment (TEE), (ii) construc-
tions that rely on TEE (usually, Intel SGX), (iii) solutions that use
property-preserving or semantically secure encryption and target
primarily a snapshot adversary. We claim that Epsolute is the most
secure and practical range- and point-query engine in the outsourced
database model, that protects both access pattern (AP) and communi-
cation volume (CV) using Di�erential Privacy, while not relying on
TEE, linear scan or padding result size to the maximum.

Obliviousness and volume-hiding without enclave. This category
is the most relevant to Epsolute, wherein the systems provide either
or both AP and CV protection without relying on TEE. Cryptn [59]
is a recent end-to-end system executing “DP programs”. Cryptn
has a di�erent model than Epsolute in that it assumes two non-
colluding servers, an adversarial querying user (the analyst), and
it uses DP to protect the privacy of an individual in the database,
which includes volume-hiding for aggregate queries. Cryptn also
does not consider oblivious execution and attacks against the AP.
Shrinkwrap [5] (and its predecessor SMCQL [4]) is an excellent
system designed for complex queries over federated and distributed
data sources. In Shrinkwrap, AP protection is achieved by using
oblivious operators (linear scan and sort) and CV is concealed by
adding fake records to intermediate results with DP. Padding the
result to the maximum size �rst and doing a linear scan over it
afterwards to “shrink” it using DP, is much more expensive than in
Epsolute, however. In addition, in processing a query, the worker
nodes are performing an $ (= log=) cost oblivious sorting, where =
is the maximum result size (whole table for range query), since they
are designed to answer more general complex queries. SEAL [21]
o�ers adjustable AP and CV leakages, up to speci�c bits of leakage.
SEAL builds on top of Logarithmic-SRC [22], splits storage into
multiple ORAMs to adjust AP, and pads results size to a power of 2
to adjust CV. Epsolute, on the other hand, fully hides the AP and
uses DP with its guarantees to pad the result size. PINED-RQ [60]
samples Laplacian noise right in the B+ tree index tree, adding
fake and removing real pointers according to the sample. Unlike
Epsolute, PINED-RQ allows false negatives (i.e., result records not

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2263

included in the answer), and does not protect against AP leakage. On
the theoretical side, Chan et al. [18] (followed by Beimel et al. [8])
treat the AP itself as something to protect with DP. [18] introduces
a notion of di�erential obliviousness that is admittedly weaker
than the full obliviousness used in Epsolute. Most importantly, [18]
ensures di�erential privacy w.r.t. the ORAM only, while Epsolute
ensures DP w.r.t. the entire view of the adversary.

Enclave-based solutions. Works in this category use trusted execu-
tion environment (usually, SGX enclave). These works are primarily
concerned with the AP protection for both trusted and untrusted
memory, unlike Epsolute which also protects CV. Cipherbase [1, 2]
was a pioneer introducing the idea of using TEE (FPGA at that time)
to assist with DBMS security. HardIDX [29] simply puts the B+ tree
in the enclave, while StealthDB [70] symmetrically encrypts all
records and brings them in the enclave one at a time for processing.
EnclaveDB [57] assumes somewhat unrealistic 192GB enclave and
puts the entire database in it. ObliDB [28] and Opaque [75] assume
fully oblivious enclave memory (not available as of today) and de-
vise algorithms that use this fully trusted portion to obliviously
execute common DBMS operators, like �lters and joins. Oblix [50]
provides a multimap that is oblivious both in and out of the enclave.
HybrIDX claims protection against both AP and CV leakages, but
unlike Epsolute it only obfuscates them. Epsolute o�ers an indis-
tinguishability guarantee for AP and a DP guarantee for CV, while
HybrIDX hides the exact result size and only obfuscates the AP.
Lastly, Hermetic [74] takes on the SGX side-channel attacks, in-
cluding AP. It provides oblivious primitives, however, it only o�ers
protection against software and not physical attacks (e.g., it trusts
a hypervisor to disable interrupts).

Solutions against the snapshot adversary. Works in this category
protect against the snapshot adversary, which takes a snapshot
of the data at a �xed point in time (e.g., stolen hard drive). We
stress that Epsolute provides semantic security against the snap-
shot adversary on top of AP and CV protection. CryptDB [56] is
a seminal work in this direction o�ering computations over en-
crypted data. It has since been shown (e.g. [9, 41, 51]) that the
underlying property-preserving schemes allow for reconstruction
attacks. Arx [55] provides strictly stronger security guarantees by
using only semantically secure primitives. Seabed [54] uses an addi-
tively symmetric homomorphic encryption scheme for aggregates
and certain �lter queries. Samanthula et al. [62] o�er a method
to verify and apply a predicate (a junction of conditions) using
garbled circuits or homomorphic encryption without revealing the
predicate itself. SisoSPIR [39] presents a mechanism to build an
oblivious index tree such that neither party learns the pass taken.
See [15] for a survey of range query protocols in this category.

2 BACKGROUND
In this section we describe an outsourced database system adapted
from [43], a base for our own model (Section 3), and the construc-
tions we will use as building blocks in our solution.

2.1 Outsourced Database System
We abstract a database as a collection of = records A , each with a
unique identi�er A ID, associated with search keys SK: D = {(A1,

A ID1 , SK1), . . . , (A=, A ID= , SK=)}. We assume that all records have an
identical �xed bit-length, and that search keys are elements of the
domain X = {1, . . . ,# } for some # 2 N. Outsourced database
systems support search keys on multiple attributes, with a set of
search keys for each of the attributes of a record. For the ease of
presentation, we describe the model for a single indexed attribute
and then show how to extend it to support multiple attributes.

A query is a predicate @ : X ! {0, 1}. Evaluating a query @
on a database D results in @(D) = {A8 : @(SK8) = 1}, all records
whose search keys satisfy @.

Let Q be a set of queries. An outsourced database system for
queries in Q consists of two protocols between two stateful parties:
a user U and a server S (adapted from [43]):
Setup protocol ⇧setup: U receives as input a database D = {(A1,

A ID1 , SK1), . . . , (A=, A ID= , SK=)}; S has no input. The output for
S is a data structure DS; U has no output besides its state.

Query protocol ⇧query: U has a query @ 2 Q produced in the
setup protocol as input; S has as input DS produced in the
setup protocol. U outputs @(D); S has no formal output.
(Both parties may update their internal states.)

For correctness, we require that for any database D = {(A1, A ID1 ,

SK1), . . . , (A=, A ID= , SK=)} and query @ 2 Q, it holds that running
⇧setup and then ⇧query on the corresponding inputs yields for U
the correct output {A8 : @(SK8) = 1} with overwhelming probability
over the coins of the above runs. We call the protocol [-wrong if
this probability is at least 1 � [.

2.2 Di�erential Privacy and Sanitization
Di�erential privacy is a de�nition of privacy in analysis that pro-
tects information that is speci�c to individual records. More for-
mally, we call databases D1 2 X

= and D2 2 X
= over domain X

neighboring (denoted D1 ⇠ D2) if they di�er in exactly one record.

D��������� 2.1 ([23, 24]). A randomized algorithm A is (n, X)-
di�erentially private if for all D1 ⇠ D2 2 X= , and for all subsets O
of the output space of A,

Pr [A (D1) 2 O]  exp(n) · Pr [A (D2) 2 O] + X .

The probability is taken over the random coins of A.

When X = 0 we omit it and say that A preserves pure di�er-
ential privacy, otherwise (when X > 0) we say that A preserves
approximate di�erential privacy.

We will use mechanisms for answering count queries with dif-
ferential privacy. Such mechanisms perturb their output to mask
out the e�ect of any single record on their outcome. The simplest
method for answering count queries with di�erential privacy is the
Laplace Perturbation Algorithm (LPA) [24] where random noise
drawn from a Laplace distribution is added to the count to be pub-
lished. The noise is scaled so as to hide the e�ect any single record
can have on the count. More generally, the LPA can be used to ap-
proximate any statistical result by scaling the noise to the sensitivity
of the statistical analysis.1

1The sensitivity of a query @ mapping databases into R# is de�ned to be �(@) =
maxD1⇠D22X= k@ (D1) � @ (D2) k1 .

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2264

T������ 2.2 (�������T������ 1 ���� [24]). Let@ : D ! R# .
An algorithm A that adds independently generated noise from a zero-
mean Laplace distribution with scale _ = �(@)/n to each of the #
coordinates of @(D), satis�es n-di�erential privacy.

While Theorem 2.2 is an e�ective and simple way of answering
a single count query, we will need to answer a sequence of count
queries, ideally, without imposing a bound on the length of this
sequence. We will hence make use of sanitization algorithms.

D��������� 2.3. Let Q be a collection of queries. An (n, X,U, V)-
di�erentially private sanitizer for Q is a pair of algorithms (A, B)
such that:

• � is (n, X)-di�erentially private, and
• on input a dataset D = 31, . . . ,3= 2 X

= , A outputs a data
structure DS such that with probability 1 � V for all @ 2 Q,
|B (DS,@) �

Õ
8 @(38) |  U .

R����� 2.4. Given an (n, X,U, V)-di�erentially private sanitizer as
in De�nition 2.3 one can replace the answer B (DS,@) with B0(DS,
@) = B (DS,@) + U . Hence, with probability 1 � V , for all @ 2 Q,
0  B0 (DS,@) �

Õ
8 @(38)  2U . We will hence assume from now on

that sanitizers have this latter guarantee on their error.

The main idea of sanitization (a.k.a. private data release) is to
release speci�c noisy statistics on a private dataset once, which can
then be combined in order to answer an arbitrary number of queries
without violating privacy. Depending on the query type and the
notion of di�erential privacy (i.e., pure or approximate), di�erent up-
per bounds on the error have been proven. Omitting the dependency
on n, X , in case of point queries over domain size # , pure di�erential
privacy results in U = ⇥(log#) [6], while for approximate di�er-
ential privacy U = O(1) [7]. For range queries over domain size # ,
these bounds are U = ⇥(log#) for pure di�erential privacy [10, 25],
and U = O

�
(log⇤ #)

1.5� for approximate di�erential privacy (with
an almost matching lower bound of U = ⌦(log⇤ #)) [7, 16, 42].
More generally, Blum et al. [10] showed that any �nite query set Q
can be sanitized, albeit non-e�ciently.

Answering point and range queries with di�erential privacy. Utilizing
the LPA for answering point queries results in error U = O(log#).
A practical solution for answering range queries with error bounds
very close to the optimal ones is the hierarchical method [25, 36, 72].
The main idea is to build an aggregate tree on the domain, and add
noise to each node proportional to the tree height (i.e., noise scale
logarithmic in the domain size #). Then, every range query is
answered using the minimum number of tree nodes. Qardaji et al.
[58] showed that the hierarchical algorithm of Hay et al. [36], when
combined with their proposed optimizations, o�ers the lowest error.

Composition. Finally, we include a composition theorem (adapted
from [47]) based on [23, 24]. It concerns executions of multiple dif-
ferentially private mechanisms on non-disjoint and disjoint inputs.

T������ 2.5. Let A1, . . . ,AA be mechanisms, such that each A8
provides n8 -di�erential privacy. Let D1, . . . ,DA be pairwise non-
disjoint (resp., disjoint) datasets. Let A be another mechanism that
executes A1 (D1), . . . ,AA (DA) using independent randomness for
each A8 , and returns their outputs. Then, mechanism A is

�ÕA
8=1 n8

�
-

di�erentially private (resp.,
⇣
maxA8=1 n8

⌘
-di�erentially private).

2.3 Oblivious RAM
Informally, Oblivious RAM (ORAM) is a mechanism that lets a user
hide their RAM access pattern to remote storage. An adversarial
server can monitor the actual accessed locations, but she cannot
tell a read from a write, the content of the block or even whether
the same logical location is being referenced. The notion was �rst
de�ned by Goldreich [31] and Goldreich and Ostrovsky [32].

More formally, a ([1,[2)-ORAM protocol is a two-party protocol
between a user U and a server S who stores a RAM array. In each
round, the user U has input (>,0,3), where > is a RAM operation (r
orw), 0 is a memory address and 3 is a new data value, or? for read
operation. The input of S is the current array. Via the protocol, the
server updates the memory or returns to U the data stored at the
requested memory location, respectively. We speak of a sequence
of such operations as a program y being executed under the ORAM.

An ORAM protocol must satisfy correctness and security. Cor-
rectness requires that U obtains the correct output of the computa-
tion except with at most probability [1. For security, we require that
for every user U there exists a simulator S��ORAM which provides
a simulation of the server’s view in the above experiment given
only the number of operations. That is, the output distribution of
S��ORAM (2) is indistinguishable from V���S with probability at
most [2 after 2 protocol rounds.

ORAM protocols are generally stateful, after each execution the
client and server states are updated. For brevity, throughout the
paper we will assume the ORAM state updates are implicit, including
the encryption key generated and maintained by the client.

Some existing e�cient ORAM protocols are Square Root ORAM
[31], Hierarchical ORAM [32], Binary-Tree ORAM [63], Interleave
Bu�er Shu�e Square Root ORAM [73], TP-ORAM [64], Path-ORAM
[65] and TaORAM [61]. For detailed descriptions of each protocol,
we recommend the work of Chang et al. [19]. The latter three
ORAMs achieve the lowest communication and storage overheads,
O(log=) and O(=), respectively.

3 DIFFERENTIALLY PRIVATE OUTSOURCED
DATABASE SYSTEMS

In this sectionwe present ourmodel, di�erentially private outsourced
database system, CDP-ODB, its security de�nition, query types and
e�ciencymeasures. It is an extension of the ODBmodel in Section 2.

3.1 Adversarial model
We consider an honest-but-curious polynomial time adversary that
attempts to breach di�erential privacy with respect to the input
database D. We observe later in Section 3.1.1 that it is impossible
to completely hide the number of records returned on each query
without essentially returning all the database records on each query.
This, in turn, means that di�erent query sequences may be distin-
guished, and, furthermore, that di�erential privacy may not be
preserved if the query sequence depends on the content of the data-
base records. We hence, only require the protection of di�erential
privacy with respect to every �xed query sequence. Furthermore,
we relax to computational di�erential privacy (following [49]).

In the following de�nition, the notation V���⇧ (D,@1, . . . ,@<)

denotes the view of the server S in the execution of protocol ⇧ in
answering queries @1, . . . ,@< with the underlying database D.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2265

D��������� 3.1. We say that an outsourced database system ⇧ is
(n, X)-computationally di�erentially private (a.k.a. CDP-ODB) if for
every polynomial time distinguishing adversary A, for every neigh-
boring databasesD ⇠ D

0, and for every query sequence @1, . . . ,@< 2
Q
< where< = poly(_),

Pr
h
A

⇣
1_,V���⇧ (D,@1, . . . ,@<)

⌘
= 1

i


exp n · Pr
h
A

⇣
1_,V���⇧

�
D
0,@1, . . . ,@<

� ⌘
= 1

i
+ X + negl(_) ,

where the probability is over the randomness of the distinguishing
adversary A and the protocol ⇧.

R����� 3.2 (I�������). We note that security and di�erential
privacy in this model imply protection against communication volume
and access pattern leakages and thus prevent a range of attacks, such
as [17, 43, 51].

3.1.1 On impossibility of adaptive queries. Non-adaptivity in our
CDP-ODB de�nition does not re�ect a de�ciency of our speci�c
protocol but rather an inherent source of leakage when the queries
may depend on the decrypted data. Consider an adaptive CDP-
ODB de�nition that does not �x the query sequence @1, . . . ,@< in
advance but instead an arbitrary (e�cient) user U chooses them
during the protocol execution with S. As before, we ask that the S’s
view is DP on neighboring databases for every such U. We observe
that this de�nition cannot possibly be satis�ed by any outsourced
database system without unacceptable e�ciency overhead. Note
that non-adaptivity here does not imply that the client knows all
the queries in advance, but rather can choose them at any time
(e.g., depending on external circumstances) as long as they do not
depend on true answers to prior queries.

To see this, consider two neighboring databasesD,D 0. Database
D has 1 record with key = 0 and D

0 has none. Furthermore, both
have 50 records with key = 50 and 100 records with key = 100.
User U queries �rst for the records with key = 0, and then if there
is a record with key = 0 it queries for the records with key = 50,
otherwise for the records with key = 100. Clearly, an e�cient out-
sourced database system cannot return nearly as many records
when key = 50 versus key = 100 here. Hence, this allows distin-
guishing D,D 0 with probability almost 1.

To give a concrete scenario, suppose neighboring medical data-
bases di�er in one recordwith a rare diagnosis “Alzheimer’s disease”.
A medical professional queries the database for that diagnosis �rst
(point query), and if there is a record, she queries the senior patients
next (range query, age � 65), otherwise she queries the general
population (resulting in more records). We leave it open to mean-
ingfully strengthen our de�nition while avoiding such impossibility
results, and we defer the formal proof to future work.

3.2 Query types
In this work we are concerned with the following query types:
Range queries Here we assume a total ordering on X. A query
@ [0,1] is associated with an interval [0,1] for 1  0  1  # such
that @ [0,1] (2) = 1 i� 2 2 [0,1] for all 2 2 X. The equivalent SQL
query is:
SELECT * FROM table WHERE attribute BETWEEN a AND b;

Point queries Here X is arbitrary and a query predicate @0 is
associated with an element 0 2 X such that @0 (1) = 1 i� 0 = 1.
In an ordered domain, point queries are degenerate range queries.
The equivalent SQL query is:
SELECT * FROM table WHERE attribute = a;

3.3 Measuring E�ciency
We de�ne two basic e�ciency measures for a CDP-ODB.
Storage e�ciency is de�ned as the sum of the bit-lengths of the
records in a database relative to the bit-length of a corresponding
encrypted database. Speci�cally, we say that an outsourced database
system has storage e�ciency of (01,02) if the following holds. Fix
any D = {(A1, A ID1 , SK1), . . . , (A=, A ID= , SK=)} and let =1 =

Õ=
8=1 |A8 |.

Let Sstate be an output of S on a run of ⇧setup where U has input
D, and let =2 = |Sstate |. Then =2  01=1 + 02.
Communication e�ciency is de�ned as the sum of the lengths
of the records in bits whose search keys satisfy the query relative
to the actual number of bits sent back as the result of a query.
Speci�cally, we say that an outsourced database system has com-
munication e�ciency of (01,02) if the following holds. Fix any @
and DS output by ⇧setup, let U and S execute ⇧query where U has
inputs @ , and output ', and S has inputDS. Let<1 be the amount
of data in bits transferred between U and S during the execution of
⇧query, and let<2 = |' |. Then<2  01<1 + 02.

Note that 01 � 1 and 02 � 0 for both measures. We say that
an outsourced database system is optimally storage e�cient (resp.,
optimally communication e�cient) if it has storage (resp., commu-
nication) e�ciency of (1, 0).

4 EPSOLUTE
In this section we present a construction, Epsolute, that satis�es
the security de�nition in Section 3, detailing algorithms for both
range and point query types. We also provide e�ciency guarantees
for approximate and pure DP versions of Epsolute.

4.1 General construction
Let Q be a collection of queries. We are interested in building
a di�erentially private outsourced database system for Q, called
Epsolute. Our solution will use these building blocks.

• A ([1,[2)-ORAM protocol ORAM(·).
• An (n, X,U, V)-di�erentially private sanitizer (A, B) forQ and
negligible V , which satis�es the non-negative noise guaran-
tee from Remark 2.4.

• A pair of algorithms C�����I���� and L�����. C�����I��
��� consumes D and produces an index data structure I
that maps a search key SK to a list of record IDs A ID corre-
sponding to the given search key. L����� consumes I and
@ and returns a list) = A ID1 , . . . , A ID

|) |
of record IDs matching

the supplied query.
Our protocol ⇧ = (⇧setup,⇧query) of Epsolute works as shown

in Algorithm 1. Hereafter, we reference lines in Algorithm 1. See
Fig. 1 for a schematic description of the protocol.

Setup protocol ⇧setup. Let U’s input be a database D = {(A1,
A ID1 , SK1), . . . , (A=, A ID= , SK=)} (line 2).U creates an index I mapping

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2266

Algorithm 1 Epsolute protocol. ORAM (·) denotes an execution of ORAM protocol (Section 2.3), where U plays the role of the client. ORAM
protocol client and server states are implicit. (\) represents a set of valid record IDs (that are not in the true result set) .

⇧setup
1 : User U Server S
2 : Input: D Input: ;
3 : I C�����I���� (D)

4 : y = (w, A ID8 , A8)
��=
8=1

5 : ORAM (y)

6 : DS A (SK1, . . . , SK#)
DS

7 : Output: I Output: DS

⇧query
1 : User U Server S
2 : Input: @, I Input: DS

3 :) L����� (I,@) @ 2 B (DS,@)

4 : ytrue = (r, A ID8 ,?)
��
82)

2

5 : ynoise = (r,(\) ,?) |2�|) |

1

6 : ' ORAM (ytrue kynoise)

7 : Output: ' Output: ;

search keys to record IDs corresponding to these keys (line 3). U
sends over the records to S by executing the ORAM protocol on
the speci�ed sequence (lines 4 to 5). U generates a DP structure
DS over the search keys using sanitizer A, and sends DS over to
S (line 6). The output of U is I and of S is DS; �nal ORAM states
of S and U are implicit, including encryption key (line 7).

Query protocol ⇧query. U starts with a query @ and index I,
S starts with a DP structure DS. One can think of these inputs
as outputs of ⇧setup (line 2). U immediately sends the query to S,
which uses the sanitizer B to compute the total number of requests
2 , while U uses index I to derive the true indices of the records
the query @ targets (line 3). U receives 2 from S and prepares two
ORAM sequences: ytrue for real records retrieval, and ynoise to pad
the number of requests to 2 to perturb the communication volume.
ynoise includes valid non-repeating record IDs that are not part of
the true result set) (lines 4 to 5). U fetches the records, both real
and fake, from S using the ORAM protocol (line 6). The output of U
is the �ltered set of records requested by the query @ ; �nal ORAM
states of S and U are implicit (line 7).

The protocols for point and range queries only di�er in sanitizer
implementations, see Sections 4.5 and 4.6. Note above that in any
execution of ⇧query we have 2 � @(D) with overwhelming proba-
bility 1� V (by using sanitizers satisfying Remark 2.4), and thus the
protocol is well-de�ned and its accuracy is 1� V . Also note that the
DP parameter X is lower-bounded by V because sampling negative
noise, however improbable, violates privacy, and therefore the �nal
construction is (n, V)-DP.

Server User

User
ORAM

ServerStorage

Searchkey RecordID
Salary$40K IDs 56,46,89
Salary$50K IDs 85,38,63

... ...
Recordindex

Query:
“Salaries $40K–$50K"

ORAM read requests

ClientDPhisotgram
(point queries)

DPtree(rangequeries)

noise

noise

Figure 1: Epsolute construction

4.2 Security
T������ 4.1. Epsolute is (V · <)-wrong and (n, X)-CDP-ODB

where the negligible term is negl(_) = 2 · [2.

P����. We consider a sequence of views

V���1 ! V���2 ! V���3 ! V���4 .

V���1 is V���⇧ (D,@1, . . . ,@<). V���2 is produced only from
DS A (SK1, . . . , SK#). Namely, compute 28 A (DS,@8) for
all 8 and run ORAM simulator on

Õ
8 28 . By ORAM security,

Pr [A(V���1)] � Pr [A(V���2)]  [2 .

V���3 is produced similarly butDS A
⇣
SK01, . . . , SK

0

#

⌘
instead.

Note that the 28 are simply post-processing on DS via B so

Pr [A(V���2)] = exp(n) · Pr [A(V���3)] + X .

V���4 = V���⇧ (D
0,@1, . . . ,@<). It follows by ORAM security

Pr [A(V���3)] � Pr [A(V���4)]  [2 .

Putting this all together completes the proof. ⇤

4.3 E�ciency
For an ORAMwith communication e�ciency (01,02) and an (U, V)-
di�erentially private sanitizer, the Epsolute communication e�-
ciency is (01,02 · U). The e�ciency metrics demonstrate how the
total storage or communication volume (the number of stored or
transferred bits) changes additively and multiplicatively as the func-
tions of data size = and domain # . We therefore have the following
corollaries for the e�ciency of the system in the cases of approxi-
mate and pure di�erential privacy.

C�������� 4.2. Epsolute is an outsourced database system with
storage e�ciency (O(1), 0). Depending on the query type, assume it
o�ers the following communication e�ciency.

Range queries
⇣
O(log=),O

⇣
2log

⇤ # log=
⌘⌘

Point queries (O(log=),O(log=))
Then, there is a negligible X such that Epsolute satis�es (n, X)-di�er-
ential privacy for some n .2

2Note that the existence of n in this setting implies that the probability of an adversary
breaking the DP guarantees is bounded by it.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2267

P����. By using ORAM, we store only the original data once
and hence, we get optimal storage e�ciency.

The communication e�ciency depends on the upper bound of
the error for each sanitizer when X > 0, as described in Section 2.2
and Remark 2.4. The most e�cient ORAM protocol to date has
O(log=) communication overhead (see Section 2.3). ⇤

C�������� 4.3. Epsolute is an outsourced database system with
storage e�ciency (O(1), 0). Depending on the query type, assume it
o�ers the following communication e�ciency.
Range queries (O(log=),O(log# log=))
Point queries (O(log=),O(log# log=))
Then, Epsolute satis�es n-di�erential privacy for some n .

P����. Similarly, we derive the proof by considering the use of
ORAM and the upper bound of the error for each sanitizer when
X = 0 in Section 2.2. ⇤

4.4 Extending to multiple attributes
We will now describe how Epsolute supports multiple indexed
attributes and what the privacy and performance implications are.
The naïve way is to simply duplicate the entire stack of states of
U and S, and during the query use the states whose attribute the
query targets. However, Epsolute design allows to keep the most
expensive part of the state — the ORAM state — shared for all
attributes and both types of queries. Speci�cally, the index I and
DP structure DS are generated per attribute and query type, while
U and S ORAM states are generated once. This design is practical
sinceDS is tiny and index I is relatively small compared to ORAM
states, see Section 6.

We note that in case the indices grow large in number, it is
practical to outsource them to the adversarial server using ORAM
and download only the ones needed for each query. In terms of
privacy, the solution is equivalent to operating di�erent Epsolute
instances because ORAM hides the values of records and access
patterns entirely. Due to Theorem 2.5 for non-disjoint datasets, the
total privacy budget of the multi-attribute system will be the sum
of individual budgets for each attribute / index.

Next, we choose two DP sanitizers for our system, for point and
for range queries, and calculate the U values to make them output
positive values with high probability, consistent with Remark 2.4.

4.5 Epsolute for point queries
For point queries, we use the LPA method as the sanitizer to ensure
pure di�erential privacy. Speci�cally, for every histogram bin, we
draw noise from the Laplace distribution with mean U? and scale
_ = 1/n. To satisfy Remark 2.4, we have to set U? such that if values
are drawn from L������

�
U? , 1/n

�
at least as many times as the

number of bins # , they are all positive with high probability 1 � V ,
for negligible V .

We can compute the exact minimum required value of U? in
order to ensure drawing positive values with high probability by
using the CDF of the Laplace distribution. Speci�cally, U? should be
equal to the minimum value that satis�es the following inequality.

✓
1 �

1
2
4�U? ·n

◆#
 1 � V

which is equivalent to

U? =

2666666
�

ln
⇣
2 � 2 #

p
1 � V

⌘
n

3777777
4.6 Epsolute for range queries
For range queries, we implement the aggregate tree method as the
sanitizer. Speci�cally, we build a complete :-ary tree on the domain,
for a given : . A leaf node holds the number of records falling into
each bin plus some noise. A parent node holds sum of the leaf values
in the range covered by this node, plus noise. Every time a query
is issued, we �nd the minimum number of nodes that cover the
range, and determine the required number of returned records by
summing these node values. Then, we ask the server to retrieve
the records in the range, plus to retrieve multiple random records
so that the total number of retrieved records matches the required
number of returned records.

The noise per node is drawn from the Laplace distribution with
mean U⌘ and scale _ = log: #

n . Consistent with Remark 2.4, we
determine the mean value U⌘ in order to avoid drawing negative
values with high probability. We have to set U⌘ such that if values
are drawn from L������

⇣
U⌘,

log: #
n

⌘
at least as many times as

the number of nodes in the tree, they are all positive with high
probability 1 � V , for negligible V .

Again, we can compute the exact minimum required value of U⌘
in order to ensure drawing positive values with high probability by
using the CDF of the Laplace distribution. Speci�cally, U⌘ should be
equal to the minimum value that satis�es the following inequality.✓

1 �
1
2
4
�

U⌘ ·n
log: #

◆nodes
 1 � V

which is equivalent to

U⌘ =

&
�
ln (2 � 2 nodes

p
1 � V) · log: #
n

'
(1)

where nodes = : dlog: (:�1)+log: #�1e�1
:�1 +# is the total number of tree

nodes.

5 AN EFFICIENT PARALLEL EPSOLUTE
While the previously described scheme is a secure and correct
CDP-ODB, a single-threaded implementation may be prohibitively
slow in practice. To bring the performance closer to real-world
requirements, we need to be able to scale the algorithm horizontally.
In this section, we describe an upgrade of Epsolute — a scalable
parallel solution.

We suggest two variants of parallel Epsolute protocol. Both of
them work by operating< ORAMs and randomly assigning to each
of them =/< database records. For each query, we utilize the index
I to �nd the required records from the corresponding ORAMs. For
each ORAM, we execute a separate thread to retrieve the records.
The threads work in parallel and there is no need for locking, since
each ORAM works independently from the rest. We present two
methods that di�er in the way they build and store DP structure
DS, and hence the number of ORAM requests they make.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2268

Algorithm 2 Parallel Epsolute for ⇧W , extends Algorithm 1.< is the number of parallel ORAMs. H is a random hash function H : {0, 1}⇤ !
{1, . . . ,<}. W and :̃0 are computed as in Section 5.2. U and S maintain< ORAM states implicitly.

⇧setup of ⇧W
1 : User U Server S
2 : Input: D Input: ;
3 : I C�����I���� (D,<)

. for 9 2 {1, . . . ,<} do (in parallel)

4 :
D
A , A ID

E
s.t. H

⇣
A ID

⌘
= 9

5 : y =
D
(w, A ID, A)

E

6 : ORAM9 (y)

. endfor .

7 : DS A (SK1, . . . , SK#)
DS

8 : Output: I Output: DS

⇧query of ⇧W
1 : User U Server S
2 : Input: @, I Input: DS

3 :)1, . . . ,)< L����� (� ,@) @ : B (DS,@)

4 : 2 2 (1 + W)
:̃0
<

. for 9 2 {1, . . . ,<} do (in parallel) .

5 : ytrue = (r, A ID8 ,?)
��
82)9

6 : ynoise = (r,(\)9 ,?)
��2� |)9 |
1

7 : ' 9
ORAM9 (ytrue kynoise)

. endfor .

8 : Output: ' 9
��<
9=1 Output: ;

5.1 No-W-method: DP structure per ORAM
In⇧no�W , for each ORAM / subset of the dataset, we build a DP index
the same way as described in Section 4. We note that Theorem 2.5
for disjoint datasets applies to this construction: the privacy budget
n for the construction is the largest (least private) among the n’s of
the DP indices for each ORAM / subset of the dataset.

The communication e�ciency changes because (i) we essentially
add< record subsets in order to answer a query, each having at
most U extra random records, and (ii) each ORAM holds fewer
records than before, resulting in a tree of height log =

< .
However, we cannot expect that the records required for each

query are equally distributed among the di�erent ORAMs in order
to reduce the multiplicative communication cost from log= to log=

< .
Instead, we need to bound the worst case scenario which is repre-
sented by the maximum number of records from any ORAM that is
required to answer a query. This can be computed as follows.

Let - 9 be 1 if a record for answering query @ is in a speci�c
ORAM9 , and 0 otherwise. Due to the random assignment of records
to ORAMs, Pr

⇥
- 9 = 1

⇤
= 1/<. Assume that we need :0 records in

order to answer query @ . The maximum number of records from
ORAM9 in order to answer @ is bounded as follows.

Pr
266664
:0’
8=1

-8 > (1 + W)
:0
<

377775
 exp

✓
�
:0W2

3<

◆
(2)

Finally, we need to determine the value ofW such that exp
⇣
�
:0W2

3<

⌘
is smaller than the value V . Thus, W =

q
�3< log V

:0
. The communi-

cation e�ciency for each query type is described in the following
corollary.

C�������� 5.1. Let ⇧no�W be an outsourced database system with
storage e�ciency (O(1), 0). Depending on the query type, ⇧no�W
o�ers the following communication e�ciency.

Range queries
✓
O

✓✓
1 +

q
�3< log V

:0

◆
log =

<

◆
,O

⇣
log1.5 #

n < log=
⌘◆

Point queries
✓
O

✓✓
1 +

q
�3< log V

:0

◆
log =

<

◆
,O

⇣
log#
n < log=

⌘◆

Then, ⇧no�W satis�es n-di�erential privacy for some n .

In our experiments, we set< as a constant depending on the
infrastructure. However, if< is set asO(log=), the total communica-
tion overhead of the construction will still exceed the lower-bound
presented in [46].

5.2 W-method: shared DP structure
In ⇧W , we maintain a single shared DP structureDS. When a query
is issued, we must ensure that the number of records retrieved from
every ORAM is the same. As such, depending on the required
noisy number of records :̃0, we need to retrieve at most (1 + W) :̃0<

records from each ORAM, see Eq. (2), for W =
r
�3< log V

:̃0
. Setting

:̃0 = :0 +
log1.5 #

n for range queries and :̃0 = :0 +
log#
n for point

queries, the communication e�ciency is as follows.

C�������� 5.2. Let ⇧W be an outsourced database system with
storage e�ciency (O(1), 0). Depending on the query type, ⇧W o�ers
the following communication e�ciency.

Range queries

O

1 +

r
�3< log V

:0+
log1.5 #

n

!
log =

<

⇣
1 + log1.5 #

n

⌘!
, 0

!

Point queries
✓
O

✓✓
1 +

r
�3< log V
:0+

log#
n

◆
log =

<

⇣
1 + log#

n

⌘◆
, 0

◆

Then, ⇧W satis�es n-di�erential privacy for some n .

⇧W is depicted in Algorithm 2. There are a few extensions to
the subroutines and notation from Algorithm 1. C�����I���� and
L����� now build and query the index which maps a search key to
a pair — the record ID and the ORAM ID (1 to<) which stores the
record. Lines 4 to 6 of Algorithm 2 ⇧setup repeat for each ORAM
and operate on the records partitioned for the given ORAM using
hash function H on the record ID. A shared DP structure is created

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2269

with the sanitizerA (line 7). In Algorithm 2 ⇧query, the total number
of ORAM requests is computed once (line 4). Lines 5 to 7 repeat for
each ORAM and operate on the subset of records stored in the given
ORAM. Note that U and S implicitly maintain< ORAM states, and
the algorithm uses the (A, B) sanitizer de�ned in Section 4.

Note that we guarantee privacy and access pattern protection on
a record level. Each ORAM gets accessed at least once (much more
than once for a typical query) thus the existence of a particular
result record in a particular ORAM is hidden.

5.3 Practical improvements
Here we describe the optimizations aimed at bringing the construc-
tion’s performance to the real-world demands.

5.3.1 ORAM request batching. We have noticed that although the
entire set of ORAM requests for each query is known in advance, the
requests are still executed sequentially. To address this ine�ciency,
we have designed a way to combine the requests in a batch and
reduce the number of network requests to the bare minimum. We
have implemented this method over PathORAM, which we use for
the ([1,[2)-ORAM protocol, but the idea applies to most tree-based
ORAMs (similar to [20]).

Our optimization utilizes the fact that all PathORAM leaf IDs
are known in advance and paths in a tree-based storage share the
buckets close to the root. The core idea is to read all paths �rst,
processes the requests and and then write all paths back. This way
the client makes a single read request, which is executed much
faster than many small requests. Requests are then processed in
main memory, including re-encryptions. Finally, the client executes
the write requests using remapped leaves as a single operation,
saving again compared to sequential execution.

This optimization provides up to 8 times performance boost in
our experiments. We note that the gains in speed and I/O overhead
are achieved at the expense of main memory, which is not an issue
given that the memory is released after a batch, and our exper-
iments con�rm that. The security guarantees of PathORAM are
maintained with this optimization, since the security proof in [65,
Section 3.6] still holds. Randomized encryption, statistically inde-
pendent remapping of leaves, and stash processing do not change.

5.3.2 Lightweight ORAM servers. We have found in our experi-
ments that naïve increase of the number of CPU cores and gigabytes
of RAM does not translate into linear performance improvement
after some threshold. Investigating the observation we have found
that the Epsolute protocol, executing parallel ORAM protocols, is
highly intensivewith respect tomainmemory access, cryptographic
operations and network usage. The bottleneck is the hardware —
we have con�rmed that on a single machine the RAM and network
are saturated quickly preventing the linear scaling.

To address the problem, we split the user party U into multi-
ple lightweight machines that are connected locally to each other
and reside in a single trust domain (e.g., same data center). Speci�-
cally, we maintain a client machine that receives user requests and
prepares ORAM read requests, and up to < lightweight ORAM
machines, whose only job is to run the ORAM protocols in parallel.
See Fig. 2 for the schematic representation of the architecture. We

1Query:
ages18to 21

UntrustedserverpartySTrusteduserpartyU

User

4 ORAM requests:
ORAM IDs
Block IDs

2 True indices

LightweightORAM
machine

LightweightORAM
machine

KVS Store

KVS Store

KVS Store

KVS Store

3 Computing the amount of noise

5 ORAM GET requests

5 ORAM GET requests

5 ORAM GET requests

5 ORAM GET requests

DPhistogram

B+ tree

Application

DPtree

Client
6 prunning

fake records

Figure 2: Lightweight ORAM machines diagram. A user sends a
query to U modeled as the client machine, which uses local data
index and DP structures to prepare a set of ORAM requests, which
are sent to respective ORAMmachines. These machines execute the
ORAM protocol against the untrusted storage of S.

emphasize that U is still a single party, therefore, the security and
correctness guarantees remain valid.

The bene�t of this approach is that each of the lightweight
machines has its own hardware stack. Communication overhead
among U machines is negligible compared to the one between U
and S. The approach is also �exible: it is possible to use up to<
ORAM machines and the machines do not have to be identical. Our
experiments show that when the same number of CPU cores and
amount of RAM are consumed the e�ciency gain is up to 5 times.

6 EXPERIMENTAL EVALUATION
We have implemented our solution as a modular client-server ap-
plication in C++. We open-sourced all components of the software
set: PathORAM [14] and B+ tree [11] implementations and the
main query executor [12]. We provide PathORAM and B+ tree com-
ponents as C++ libraries to be used in other projects; the code is
documented, benchmarked and tested (228 tests covering 100 % of
the code). We have also published our datasets and query sets [13].

For cryptographic primitives, we used OpenSSL library (version
1.1.1i). For symmetric encryption in ORAMwe have used AES-CBC
algorithm [26, 27] with a 256-bits key (i.e., [2 = 2�256), for the hash
algorithm H used to partition records among ORAMs we have used
SHA-256 algorithm [52]. Aggregate tree fanout : is 16, proven to
be optimal in [58].

We designed our experiments to answer the following questions:

Question-1 How practical is our system compared to the most
e�cient and most private real-world solutions?

Question-2 How practical is the storage overhead?
Question-3 How di�erent inputs and parameters of the system

a�ect its performance?
Question-4 How well does the system scale?
Question-5 What improvements do our optimizations provide?
Question-6 What is the impact of supporting multiple attributes?

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2270

To address Question-1 we have run the default setting using
conventional RDBMS (MySQL and PostgreSQL), Linear Scan ap-
proach and Shrinkwrap [5]. To target Question-2, we measured
the exact storage used by the client and the server for di�erent data,
record and domain sizes. To answer Question-3, we ran a default
setting and then varied all parameters and inputs, one at a time. For
Question-4 we gradually added vCPUs, ORAM servers and KVS
instances and observed the rate of improvement in performance.
For Question-5 we have run the default setting with our optimiza-
tions toggled. Lastly, for Question-6 we have used two datasets to
construct two indices and then queried each of the attributes.

6.1 Data sets
We used two real and one synthetic datasets — California public pay
pension database 2019 [67] (referred to as “CA employees”), Public
Use Microdata Sample from US Census 2018 [68] (referred to as
“PUMS”) and synthetic uniform dataset.We have used salary /wages
columns of the real datasets, and the numbers in the uniform set
also represent salaries. The NULL and empty values were dropped.

We created three versions of each dataset — 105, 106 and 107
records each. For uniform dataset, we simply generated the target
number of entries. For PUMS dataset, we picked the states whose
number of records most closely matches the target sizes (Louisiana
for 105, California for 106 and the entire US for 107). Uniform dataset
was also generated for di�erent domain sizes — number of distinct
values for the record. For CA employees dataset, the set contains
260 277 records, so we contracted it and expanded in the following
way. For contraction we uniformly randomly sampled 105 records.
For expansion, we computed the histogram of the original dataset
and sampled values uniformly within the bins.

Each of the datasets has a number of corresponding query sets.
Each query set has a selectivity or range size, and is sampled either
uniformly or following the dataset distribution (using its CDF).

6.2 Default setting
The default setting uses the ⇧W from Section 5 and lightweight
ORAM machines from Section 5.3.2 and Fig. 2. We choose the ⇧W
because it outperforms ⇧no�W in all experiments (see Question-4
in Section 6.5). In the setting, there are 64 Redis services (8 ser-
vices per one Redis server VM), 8 ORAM machines communicating
with 8 Redis services each, and the client, which communicates
with these 8 ORAM machines. We have empirically found this con-
�guration optimal for the compute nodes and network that we
used in the experiments. ORAM and Redis servers run on GCP
n1-standard-16 VMs (Ubuntu 18.04), in regions us-east4 and
us-east1 respectively. Client machine runs n1-highmem-16 VM
in the same region as ORAM machines. The ping time between the
regions (i.e. between trusted and untrusted zones) is 12ms and the
e�ective bandwidth is 150MB/s. Ping within a region is negligible.

Default DP parameters are n = ln(2) ⇡ 0.693 and V = 2�20,
which are consistent with the other DP applications proposed in
the literature [38]. Buckets number is set as the largest power of
: = 16 that is no greater than the domain of the dataset # .

Default dataset is a uniform dataset of 106 records with domain
size 104, and uniformly sampled queries with selectivity 0.5 %. De-
fault record size is 4 KiB.

6.3 Experiment stages
Each experiment includes running 100 queries such that the over-
head is measured from loading query endpoints into memory to
receiving the exact and whole query response from all ORAM ma-
chines. The output of an experiment is, among other things, the
overhead (in milliseconds), the number of real and noisy records
fetched and communication volume averaged per query.

6.4 RDBMS, Linear Scan and Shrinkwrap
On top of varying the parameters, we have run similar workloads
using alternative mechanisms — extremes representing highest
performance or highest privacy. Unless stated otherwise, the client
and the server are in the trusted and untrusted regions respectively,
with the network con�guration as in Section 6.2.

Relational databases. Conventional RDBMS represents the most
e�cient and least private and secure solution in our set. While
MySQL and PostgreSQL o�er some encryption options and no
di�erential privacy, for our experiments we turned o� security
features for maximal performance. We have run queries against
MySQL and PostgreSQL varying data and record sizes. We used
n1-standard-32 GCP VMs in us-east1 region, running MySQL
version 14.14 and PostgreSQL version 10.14.

Linear Scan. Linear scan is a primitive mechanism that keeps all
records encrypted on the server then downloads, decrypts and
scans the entire database to answer every query. This method is
trivially correct, private and secure, albeit not very e�cient. There
are RDBMS solutions, which, when con�gured for maximum pri-
vacy, exhibit linear scan behavior (e.g., MS-SQL Always Encrypted
with Randomized Encryption [48] and Oracle Column Transparent
Data Encryption [53]). For a fair comparison we make the linear
scan even more e�cient by allowing it to download data via parallel
threads matching the number of threads and bytes per request to
that of our solution. Although linear scan is wasteful in the amount
of data it downloads and processes, compared to our solution it has
a bene�t of not executing an ORAM protocol with its logarithmic
overhead and network communication in both directions.

Shrinkwrap. Shrinkwrap [5] is a construction that answers feder-
ated SQL queries hiding both access pattern and communication
volume. Using the EMP toolkit [71] and the code Shrinkwrap au-
thors sharedwith us, we implemented a prototype that only answers
range queries. This part of Shrinkwrap amounts to making a scan
over the input marking the records satisfying the range, sorting the
input, and then revealing the result set plus DP noise to the client.
For the latter part we have adapted Shrinkwrap’s Truncated Laplace
Mechanism [5, De�nition 4] to hierarchical method [58] in order
to be able to answer an unbounded number of all possible range
queries. We have emulated the outsourced database setting by using
two n1-standard-32 servers in di�erent regions (12ms ping and
150MB/s bandwidth) executing the algorithm in a circuit model
(the faster option per Shrinkwrap experiments) and then revealing
the result to the trusted client. We note that although the complex-
ity of a Shrinkwrap query is O(= log=) due to the sorting step, its
functionality is richer as it supports more relational operators, like
JOIN, GROUP BY and aggregation. We also note that since MySQL,

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2271

PostgreSQL and Shrinkwrap are not parallelized within the query,
experiments using more CPUs do not yield higher performance.

6.5 Results and Observations
After running the experiments, we have made the following obser-
vations. Note that we report results based on the default setting.
• Epsolute is e�cient compared to a strawman approach, RDBMS
and Shrinkwrap: it is three orders of magnitude faster than
Shrinkwrap, 18 times faster than the scan and only 4–8 times
slower than a conventional database. In fact, for di�erent queries,
datasets, and record sizes, our system is much faster than the
linear scan, as we show next.

• Epsolute’s client storage requirements are very practical: client
size is just below 30MB while the size of the o�oaded data is
over 400 times larger.

• Epsolute scales predictably with the change in its parameters:
data size a�ects performance logarithmically, record size — lin-
early, and privacy budget n — exponentially.

• Epsolute is scalable: using ⇧W with the lightweight ORAM ma-
chines, the increase in the number of threads translates into linear
performance boost.

• The optimizations proposed in Section 5.3 provide up to an order
of magnitude performance gain.

• Epsolute e�ciently supports multiple indexed attributes. The
overhead and the client storage increase slightly due to a lower
privacy budget and extra local indices.
For the purposes of reproducibility we have put the log traces of

all our experiments along with the instructions on how to run them
on a publicly available page epsolute.org. Unless stated otherwise,
the scale in the �gures is linear and the G-axis is categorical.

Figure 3: Di�erent range-query mechanisms (log scale). Default set-
ting: 106 4 KiB uniformly-sampled records with the range 104.

�estion-1: against RDBMS, Linear Scan and Shrinkwrap.
The �rst experiment we have run using Epsolute is the default
setting in which we observed the query overhead of 840ms. To put
this number in perspective, we compare Epsolute to conventional
relational databases, the linear scan and Shrinkwrap.

For the default setting, MySQL and PostgreSQL, con�gured for
no privacy and maximum performance, complete in 97ms and
220ms respectively, which is just 8 to 4 times faster than Epsolute,
see Fig. 3. Conventional RDBMS uses e�cient indices (B+ trees) to
locate requested records and sends them over without noise and
encryption, and it does so using less hardware resources. In our
experiments RDBMS performance is linearly correlated with the
result and record sizes.

Figure 4: Linear scan performance, logarithmic scale. The experi-
ments are run for the default setting of 106 records of size 4 KiB and
64 threads, with one of the three parameters varying.

Linear scan experiments demonstrate the practicality of Epsolute
compared to a trivial “download everything every time” approach,
see Fig. 4. Linear scan’s overhead is O(=) regardless of the queries,
while Epsolute’s overhead is O(log=) times the result size. Accord-
ing to our experiments, Epsolute eclipses the linear scan at 4 KiB, 64
threads and only ten thousand records (both mechanisms complete
in about 120ms). For a default setting (at a million records), the
di�erence is 18 times, see Fig. 4.

Because Shrinkwrap sorts the input obliviously in a circuit model,
it incurs O(= log=) comparisons, each resulting in multiple circuit
gates, which is much more expensive than the linear scan. Unlike
linear scan, however, Shrinkwrap does not require much client
memory as the client merely coordinates the query. While Shrink-
wrap supports richer set of relational operators, for range queries
alone Epsolute is three orders of magnitude faster.

=
Record 1 KiB 4KiB 16 KiB

105 400 KiB 400 B 400 KiB 102 KiB 400 KiB 1.6MB
396MB 4.6MB 1.5GB 14MB 6.2GB 51MB

106 3.9MB 400 B 3.9MB 102KiB 3.9MB 1.6MB
3.2GB 15MB 12GB 25MB 48GB 62MB

107 40MB 400 B 40MB 102KiB 40MB 1.6MB
24GB 99MB 96GB 109MB 384GB 146MB

=
#

100 104 106

Table 1: Storage usage for varying data, record and domain sizes.
The values are as follows. Left top: index I (B+ tree), right top: ag-
gregate tree DS, right bottom: ORAMU state and left bottom (bold):
ORAM S state. Italic indicates that the value is estimated.

�estion-2: storage. While Epsolute storage e�ciency is near-
optimal (O(1), 0), it is important to observe the absolute values.
Index I is implemented as a B+ tree with fanout 200 and occupancy
70 %, and its size, therefore, is roughly 5.7= bytes. Most of the ORAM
client storage is the PathORAM stash with its size chosen in a way
to bound failure probability to about [1 = 2�32 (see [65, Theorem
1]). In Table 1, we present Epsolute storage usage for the parameters

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2272

https://epsolute.org

that a�ect it — data, record and domain sizes. We measured the
sizes of the index I, DP structureDS, and ORAM client and server
states. Our observations are: (i) index size expectedly grows only
with the data size, (ii) DS is negligibly small in practice, (iii) small
I andDS sizes imply the e�ciency of supporting multiple indexed
attributes, (iv) S toU storage size ratio varies from 85 in the smallest
setting to more than 2 000 in the largest, and (v) one can trade client
storage for ORAM failure probability. We conclude that the storage
requirements of Epsolute are practical.

Figure 5: Privacy budget n Figure 6: E�ect of n

�estion-3: varying parameters. To measure and understand
the impact of con�guration parameters on the performance of our
solution we have varied n , record size, data size =, domain size # ,
selectivities, as well as data and query distributions. The relation
that is persistent throughout the experiments is that for given data
and record sizes, the performance (the time to completely execute
a query) is strictly proportional to the total number of records, fake
and real, that are being accessed per query. Each record access
goes through the ORAM protocol, which, in turn, downloads, re-
encrypts and uploads O(log=) blocks. These accesses contribute
the most to the overhead and all other stages (e.g., traversing index
or aggregate tree) are negligible.

Privacy budget n and its e�ect. We have run the default setting
for n = {0.1, 0.5, ln 2, 1.0, ln 3}. n strictly contributes to the amount
of noise, which grows exponentially as n decreases, see Fig. 5, ob-
serve sharp drop. As visualized on Fig. 6, at high n values the noise
contributes a fraction of total overhead, while at low values the
noise dominates the overhead entirely.

Figure 7: Selectivity

Selectivity. Wehave ranged the selectivity from 0.1 % to 2 % of the
total number of records, see Fig. 7. Overhead expectedly grows with
the result size. For smaller queries, and thus for lower overhead, the
relation is positive, but not strictly proportional. This phenomena,
observed for the experiments with low resulting per-query time,

is explained by the variance among parallel threads. During each
query the work is parallelized over < ORAMs and the query is
completed when the last thread �nishes. The problem, in distributed
systems known as “the curse of the last reducer” [66], is when one
thread takes disproportionally long to �nish. In our case, we run
64 threads in default setting, and the delay is usually caused by a
variety of factors — blocking I/O, network delay or something else
running on a shared vCPU. This e�ect is noticeable when a single
thread does relatively little work and small disruptions actually
matter; the e�ect is negligible for large queries.

Figure 8: Record size Figure 9: Data size Figure 10: Domain size

Record, data and domain sizes. We have tried 1 KiB, 4 KiB and
16 KiB records, see Fig. 8. Trivially, the elapsed time is directly
proportional to the record size.

We set = to 105, 106 and 107, see Fig. 9. The observed correlation
of overhead against the data size is positive but non-linear, 10 times
increment in = results in less than 10 times increase in time. This is
explained by the ORAM overhead — when = changes, the ORAM
storage gets bigger and its overhead is logarithmic.

For synthetic datasets we have set # to 100, 104 and 106, see
Fig. 10. The results for domain size correlation are more interesting:
low and high values deliver worse performance than the middle
value. Small domain for a large data set means that a query often
results in a high number of real records, which implies signi�cant
latency regardless of noise parameters. A sparse dataset, on the
other hand, means that for a given selectivity wider domain is
covered per query, resulting in more nodes in the aggregate tree
contributing to the total noise value.

Figure 11: Data distribution Figure 12: Query distribution

Data and query distributions. Our solution performs best on the
uniform data and uniform ranges, see Figs. 11 and 12. Once a skew
of any kind is introduced, there appear sparse and dense regions
that contribute more overhead than uniform regions. Sparse regions
span over wider range for a given selectivity, which results in more

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2273

noise. Dense regions are likely to include more records for a given
range size, which again results in more fetched records. Both real
datasets are heavily skewed towards smaller values as few people
have ultra-high salaries.

Figure 13: Scalability measurements for ⇧W and ⇧no�W

�estion-4: scalability. Horizontal scaling is a necessity for a
practical system, this is the motivation for the parallelization in the
�rst place. Ideally, performance should improve proportionally to
the parallelization factor, number of ORAMs in our case,<.

For scalability experiments we run the default setting for both
⇧no�W and ⇧W (no-W-method and W-method respectively) varying
the number of ORAMs <, from 8 to 96 (maximum vCPUs on a
GCP VM). The results are visualized on Fig. 13. We report two
positive observations: (i) the W-method provides substantially better
performance and storage e�ciency, and (ii) when using this method
the system scales linearly with the number of ORAMs. (< = 96 is a
special case because some ORAMs had to share a single KVS.)

Improvement (section) Enabled Disabled Boost

ORAM batching (5.3.1) 840ms 6 978ms 8.3x
Lightweight ORAM machines (5.3.2) 840ms 4 484ms 5.3x
Both improvements 840ms 8 417ms 10.0x

Table 2: Improvements over parallel Epsolute

�estion-5: optimizations benefits. Table 2 demonstrates the
boosts our improvements provide; when combined, the speedup is
up to an order of magnitude.

ORAM request batching (Section 5.3.1) makes the biggest dif-
ference. We have run the default setting with and without the
batching. The overhead is substantially smaller because far fewer
I/O requests are being made, which implies bene�ts across the full
stack: download, re-encryption and upload.

Using lightweight ORAMmachines (Section 5.3.2) makes a di�er-
ence when scaling. In the default setting, 64 parallel threads quickly
saturate the memory access and network channel, while spreading
computation among nodes removes the bottleneck.

�estion-6: multiple a�ributes. Epsolute supports multiple in-
dexed attributes. In Section 4.4 we described that the performance
implications amount to having an index I and a DP structure DS

per attribute and sharing the privacy budget n among all attributes.
As shown in Table 1, I and DS are the smallest components of
the client storage. To observe the query performance impact, we
have used the default dataset with domains 104 and 106 as indexed

Figure 14: Query overhead when using multiple attributes. Only A
and Only B index one attribute. A and B indexes both attributes and
then queries one of them. Alternating indexes both attributes and
runs half of the queries against A and another half against B.

attributes A and B respectively. We ran queries against only A, only
B and against both attributes in alternating fashion. Each of the
attributes used n = ln 2

2 to match the default privacy budget of ln(2).
Fig. 14 demonstrates the query overhead of supporting multiple

attributes. The principal observation is that the overhead increases
only slightly due to a lower privacy budget. The client storage went
up by just 9MB, and still constitutes only 3.3 % of the server storage,
which is not a�ected by the number of indexed attributes.

7 CONCLUSION AND FUTUREWORK
In this paper, we present a system called Epsolute that can be used
to store and retrieve encrypted records in the cloud while providing
strong and provable security guarantees, and that exhibits excellent
query performance for range and point queries. We use an opti-
mized Oblivious RAM protocol that has been parallelized together
with very e�cient Di�erentially Private sanitizers that hide both
the access patterns and the exact communication volume sizes and
can withstand advanced attacks that have been recently developed.
We provide a prototype of the system and present an extensive
evaluation over very large and diverse datasets and workloads that
show excellent performance for the given security guarantees.

In our future work, we plan to investigate methods to extend
our approaches to use a trusted execution environment (TEE), like
SGX, in order to improve the performance even further. We will
also explore a multi-user setting without the need for a shared
stateful client, and enabling dynamic workloads with insertions
and updates. We will also consider how adaptive and non-adaptive
security models would change in the case of dynamic environments.
One would presumably also require DP of the server’s view in this
setting. Lastly, we plan to explore other relational operations like
JOIN and GROUP BY.

ACKNOWLEDGMENTS
We thank anonymous reviewers and Arkady Yerukhimovich for
valuable feedback. We also thank Daria Bogatova for devising the
name Epsolute and helping with the plots, diagrams and writing.
Finally, we thank Johes Bater for sharing Shrinkwrap code and
reviewing the prototype. Kobbi Nissim was supported by NSF Grant
No. 2001041, “Rethinking Access Pattern Privacy: From Theory to
Practice”. Dmytro Bogatov and George Kollios were supported by
NSF CNS-2001075 Award.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2274

REFERENCES
[1] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav Kaushik,

Donald Kossmann, Ravi Ramamurthy, Prasang Upadhyaya, and Ramarathnam
Venkatesan. 2013. Secure Database-as-a-Service with Cipherbase. In Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’13). Association for Computing Machinery, 1033–1036. https:
//doi.org/10.1145/2463676.2467797

[2] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,
Ravi Ramamurthy, and Ramarathnam Venkatesan. 2013. Orthogonal Security
With Cipherbase. In 6th Biennial Conference on Innovative Data Systems Research
(CIDR’13).

[3] Sumeet Bajaj and Radu Sion. 2013. TrustedDB: A trusted hardware-based database
with privacy and data con�dentiality. IEEE Transactions on Knowledge and Data
Engineering 26, 3 (2013), 752–765. https://doi.org/10.1109/TKDE.2013.38

[4] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie
Rogers. 2017. SMCQL: Secure Querying for Federated Databases. Proc. VLDB
Endow. 10, 6 (Feb. 2017), 673–684. https://doi.org/10.14778/3055330.3055334

[5] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.
2018. Shrinkwrap: e�cient sql query processing in di�erentially private data
federations. Proceedings of the VLDB Endowment 12, 3 (2018), 307–320. https:
//doi.org/10.14778/3291264.3291274

[6] Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nissim.
2014. Bounds on the sample complexity for private learning and private data
release. Machine learning 94, 3 (2014), 401–437. https://doi.org/10.1007/s10994-
013-5404-1

[7] Amos Beimel, Kobbi Nissim, and Uri Stemmer. 2013. Private learning and sanitiza-
tion: Pure vs. approximate di�erential privacy. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques. Springer, 363–378.
https://doi.org/10.1007/978-3-642-40328-6_26

[8] Amos Beimel, Kobbi Nissim, and Mohammad Zaheri. 2019. Exploring Di�eren-
tial Obliviousness. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques (APPROX/RANDOM 2019) (Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Vol. 145). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 65:1–65:20. https://doi.org/10.4230/LIPIcs.APPROX-
RANDOM.2019.65

[9] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly
Shmatikov. 2018. The Tao of Inference in Privacy-protected Databases. PVLDB
11, 11 (2018), 1715–1728. https://doi.org/10.14778/3236187.3236217

[10] Avrim Blum, Katrina Ligett, and Aaron Roth. 2013. A learning theory approach
to non-interactive database privacy. Journal of the ACM (JACM) 60, 2 (2013),
1–25. https://doi.org/10.1145/1374376.1374464

[11] Dmytro Bogatov. 2021. B+ tree (static). https://github.com/epsolute/b-plus-tree.
[12] Dmytro Bogatov. 2021. Epsolute. https://github.com/epsolute/epsolute.
[13] Dmytro Bogatov. 2021. Original and procesed datasets used in this paper. http:

//csr.bu.edu/dp-oram/. Accessed: 2021-01-24.
[14] Dmytro Bogatov. 2021. PathORAM. https://github.com/epsolute/path-oram.
[15] Dmytro Bogatov, George Kollios, and Leonid Reyzin. 2019. A comparative

evaluation of order-revealing encryption schemes and secure range-query pro-
tocols. Proceedings of the VLDB Endowment 12, 8 (2019), 933–947. https:
//doi.org/10.14778/3324301.3324309

[16] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. 2015. Di�erentially
private release and learning of threshold functions. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science. IEEE, 634–649. https://doi.org/
10.1109/FOCS.2015.45

[17] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
abuse attacks against searchable encryption. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. 668–679. https:
//doi.org/10.1145/2810103.2813700

[18] T-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs, and Elaine Shi. 2019. Foun-
dations of Di�erentially Oblivious Algorithms. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms (San Diego, California)
(SODA ’19). Society for Industrial and Applied Mathematics, USA, 2448–2467.

[19] Zhao Chang, Dong Xie, and Feifei Li. 2016. Oblivious RAM: A dissection and
experimental evaluation. Proceedings of the VLDB Endowment 9, 12, 1113–1124.
https://doi.org/10.14778/2994509.2994528

[20] Binyi Chen, Huijia Lin, and Stefano Tessaro. 2016. Oblivious Parallel RAM:
Improved E�ciency and Generic Constructions. In Theory of Cryptography,
Eyal Kushilevitz and Tal Malkin (Eds.). Springer Berlin Heidelberg, 205–234.
https://doi.org/10.1007/978-3-662-49099-0_8

[21] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. 2020. SEAL: Attack Mitigation for Encrypted Databases
via Adjustable Leakage. In 29th USENIX Security Symposium (USENIX Secu-
rity 20). USENIX Association, 2433–2450. https://www.usenix.org/conference/
usenixsecurity20/presentation/demertzis

[22] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, and Minos Garofalakis. 2016. Practical private range search revisited.
In Proceedings of the 2016 International Conference on Management of Data. 185–
198. https://doi.org/10.1145/2882903.2882911

[23] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 486–503. https://doi.org/10.1007/11761679_29

[24] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284. https://doi.org/10.1007/11681878_14

[25] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. 2010. Di�eren-
tial privacy under continual observation. In Proceedings of the forty-second ACM
symposium on Theory of computing. 715–724. https://doi.org/10.1145/1806689.
1806787

[26] Morris Dworkin. 2001. Recommendation for Block Cipher Modes of Operation:
Methods and Techniques. https://doi.org/10.6028/NIST.SP.800-38A

[27] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham,
E. Roback, and James Dray. 2001. Advanced Encryption Standard (AES). https:
//doi.org/10.6028/NIST.FIPS.197

[28] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious query processing
for secure databases. PVLDB 13, 2 (2019), 169–183. https://doi.org/10.14778/
3364324.3364331

[29] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Ker-
schbaum, and Ahmad-Reza Sadeghi. 2017. HardIDX: Practical and secure index
with SGX. In IFIP Annual Conference on Data and Applications Security and Privacy.
Springer, 386–408. https://doi.org/10.1007/978-3-319-61176-1_22

[30] Craig Gentry. 2010. Computing arbitrary functions of encrypted data. Commun.
ACM 53, 3 (2010), 97–105. https://doi.org/10.1145/1666420.1666444

[31] Oded Goldreich. 1987. Towards a theory of software protection and simulation
by oblivious RAMs. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing. 182–194. https://doi.org/10.1145/28395.28416

[32] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473. https:
//doi.org/10.1145/233551.233553

[33] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018.
Pump up the volume: Practical database reconstruction from volume leakage on
range queries. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 315–331. https://doi.org/10.1145/3243734.3243864

[34] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov. 2017. Why Your En-
crypted Database Is Not Secure. In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems. ACM, 162–168. https://doi.org/10.1145/3102980.3103007

[35] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted databases:
New volume attacks against range queries. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 361–378. https://doi.org/
10.1145/3319535.3363210

[36] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010. Boosting the
Accuracy of Di�erentially Private Histograms through Consistency. Proc. VLDB
Endow. 3, 1–2 (Sept. 2010), 1021–1032. https://doi.org/10.14778/1920841.1920970

[37] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu. 2012.
Secure multidimensional range queries over outsourced data. VLDBJ 21, 3 (2012),
333–358. https://doi.org/10.1007/s00778-011-0245-7

[38] Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna, Arjun Narayan,
Benjamin C Pierce, and Aaron Roth. 2014. Di�erential privacy: An economic
method for choosing epsilon. In 2014 IEEE 27th Computer Security Foundations
Symposium. IEEE, 398–410. https://doi.org/10.1109/CSF.2014.35

[39] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2016. Private large-
scale databases with distributed searchable symmetric encryption. In Cryptogra-
phers’ Track at the RSA Conference. Springer, 90–107. https://doi.org/10.1007/978-
3-319-29485-8_6

[40] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Rami�cation, Attack andMitigation.
In 19th Annual Network and Distributed System Security Symposium, NDSS 2012,
San Diego, California, USA, February 5-8, 2012. The Internet Society.

[41] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2014. Inference
attack against encrypted range queries on outsourced databases. In Proceedings
of the 4th ACM conference on Data and application security and privacy. 235–246.
https://doi.org/10.1145/2557547.2557561

[42] Haim Kaplan, Katrina Ligett, Yishay Mansour, Moni Naor, and Uri Stemmer. 2020.
Privately Learning Thresholds: Closing the Exponential Gap. In Proceedings of
Thirty Third Conference on Learning Theory (Proceedings of Machine Learning
Research, Vol. 125). PMLR, 2263–2285.

[43] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. 2016. Generic
attacks on secure outsourced databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1329–1340. https://doi.
org/10.1145/2976749.2978386

[44] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2020. The state of the uniform: attacks on encrypted databases beyond the
uniform query distribution. In 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 1223–1240. https://doi.org/10.1109/SP40000.2020.00029

[45] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved
reconstruction attacks on encrypted data using range query leakage. In 2018 IEEE

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2275

https://doi.org/10.1145/2463676.2467797
https://doi.org/10.1145/2463676.2467797
https://doi.org/10.1109/TKDE.2013.38
https://doi.org/10.14778/3055330.3055334
https://doi.org/10.14778/3291264.3291274
https://doi.org/10.14778/3291264.3291274
https://doi.org/10.1007/s10994-013-5404-1
https://doi.org/10.1007/s10994-013-5404-1
https://doi.org/10.1007/978-3-642-40328-6_26
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://doi.org/10.14778/3236187.3236217
https://doi.org/10.1145/1374376.1374464
https://github.com/epsolute/b-plus-tree
https://github.com/epsolute/epsolute
http://csr.bu.edu/dp-oram/
http://csr.bu.edu/dp-oram/
https://github.com/epsolute/path-oram
https://doi.org/10.14778/3324301.3324309
https://doi.org/10.14778/3324301.3324309
https://doi.org/10.1109/FOCS.2015.45
https://doi.org/10.1109/FOCS.2015.45
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.14778/2994509.2994528
https://doi.org/10.1007/978-3-662-49099-0_8
https://www.usenix.org/conference/usenixsecurity20/presentation/demertzis
https://www.usenix.org/conference/usenixsecurity20/presentation/demertzis
https://doi.org/10.1145/2882903.2882911
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.1007/978-3-319-61176-1_22
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3102980.3103007
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.14778/1920841.1920970
https://doi.org/10.1007/s00778-011-0245-7
https://doi.org/10.1109/CSF.2014.35
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1145/2557547.2557561
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1109/SP40000.2020.00029

Symposium on Security and Privacy (SP). IEEE, 297–314. https://doi.org/10.1109/
SP.2018.00002

[46] Kasper Green Larsen, Mark Simkin, and Kevin Yeo. 2020. Lower Bounds for
Multi-server Oblivious RAMs. In Theory of Cryptography. Springer International
Publishing, 486–503. https://doi.org/10.1007/978-3-030-64375-1_17

[47] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform
for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. 19–30. https://doi.org/10.1145/
1559845.1559850

[48] Microsoft. 2021. MS-SQL Always Encrypted. https://docs.microsoft.com/sql/
relational-databases/security/encryption/always-encrypted-database-engine.

[49] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Com-
putational di�erential privacy. In Annual International Cryptology Conference.
Springer, 126–142. https://doi.org/10.1007/978-3-642-03356-8_8

[50] PratyushMishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada
Popa. 2018. Oblix: An e�cient oblivious search index. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 279–296. https://doi.org/10.1109/SP.2018.00045

[51] Muhammad Naveed, Seny Kamara, and Charles VWright. 2015. Inference attacks
on property-preserving encrypted databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 644–655. https:
//doi.org/10.1145/2810103.2813651

[52] National Institute of Standards and Technology. 2015. Secure Hash Standard
(SHS). https://doi.org/10.6028/NIST.FIPS.180-4

[53] Oracle. 2021. Introduction to Transparent Data Encryption. https://docs.oracle.
com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm.

[54] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran
Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna
Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, 587–602.

[55] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: an encrypted
database using semantically secure encryption. Proceedings of the VLDB Endow-
ment 12, 11 (2019), 1664–1678. https://doi.org/10.14778/3342263.3342641

[56] Raluca Ada Popa, Catherine MS Red�eld, Nickolai Zeldovich, and Hari Balakrish-
nan. 2011. CryptDB: Protecting con�dentiality with encrypted query processing.
In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples. 85–100.

[57] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A secure
database using SGX. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
264–278. https://doi.org/10.1109/SP.2018.00025

[58] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Understanding hierarchical
methods for di�erentially private histograms. Proceedings of the VLDB Endowment
6, 14 (2013), 1954–1965. https://doi.org/10.14778/2556549.2556576

[59] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,
and Somesh Jha. 2020. Cryptn : Crypto-assisted di�erential privacy on untrusted
servers. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 603–619. https://doi.org/10.1145/3318464.3380596

[60] Cetin Sahin, Tristan Allard, Reza Akbarinia, Amr El Abbadi, and Esther Pacitti.
2018. A Di�erentially Private Index for Range Query Processing in Clouds. In
2018 IEEE 34th International Conference on Data Engineering (ICDE). 857–868.

https://doi.org/10.1109/ICDE.2018.00082
[61] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.

2016. Taostore: Overcoming asynchronicity in oblivious data storage. In 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 198–217. https://doi.org/10.
1109/SP.2016.20

[62] Bharath Kumar Samanthula, Wei Jiang, and Elisa Bertino. 2014. Privacy-
preserving complex query evaluation over semantically secure encrypted data.
In European Symposium on Research in Computer Security. Springer, 400–418.
https://doi.org/10.1007/978-3-319-11203-9_23

[63] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious
RAM with$ (log3 #) worst-case cost. In International Conference on The Theory
and Application of Cryptology and Information Security. Springer, 197–214. https:
//doi.org/10.1007/978-3-642-25385-0_11

[64] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. 2012. Towards Practical
Oblivious RAM. In Network and Distributed System Security Symposium (NDSS).

[65] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple
oblivious RAM protocol. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. 299–310. https://doi.org/10.1145/3177872

[66] Siddharth Suri and Sergei Vassilvitskii. 2011. Counting triangles and the curse of
the last reducer. In Proceedings of the 20th international conference on World wide
web. 607–614. https://doi.org/10.1145/1963405.1963491

[67] Transparent California. 2019. California public pay and pension 2019 dataset.
https://transparentcalifornia.com.

[68] U.S. Census Bureau. 2018. American Community Survey Public Use Microdata
Sample. https://www.census.gov/programs-surveys/acs/microdata.html.

[69] Vinod Vaikuntanathan. 2011. Computing blindfolded: New developments in fully
homomorphic encryption. In 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science. IEEE, 5–16. https://doi.org/10.1109/FOCS.2011.98

[70] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.
StealthDB: a scalable encrypted database with full SQL query support. Pro-
ceedings on Privacy Enhancing Technologies 2019, 3 (2019), 370–388. https:
//doi.org/10.2478/popets-2019-0052

[71] Xiao Wang, Alex J. Malozemo�, and Jonathan Katz. 2016. EMP-toolkit: E�cient
MultiParty computation toolkit. https://github.com/emp-toolkit.

[72] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2010. Di�erential privacy
via wavelet transforms. IEEE Transactions on knowledge and data engineering 23,
8 (2010), 1200–1214. https://doi.org/10.1109/TKDE.2010.247

[73] Dong Xie, Guanru Li, Bin Yao, Xuan Wei, Xiaokui Xiao, Yunjun Gao, and Minyi
Guo. 2016. Practical private shortest path computation based on oblivious storage.
In 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE,
361–372. https://doi.org/10.1109/ICDE.2016.7498254

[74] Min Xu, Antonis Papadimitriou, Andreas Haeberlen, and Ariel Feldman. 2019.
Hermetic: Privacy-preserving distributed analytics without (most) side channels.
(2019).

[75] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E
Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed
analytics platform. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’17). 283–298.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2276

https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1007/978-3-030-64375-1_17
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/1559845.1559850
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1109/SP.2018.00045
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.6028/NIST.FIPS.180-4
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm
https://doi.org/10.14778/3342263.3342641
https://doi.org/10.1109/SP.2018.00025
https://doi.org/10.14778/2556549.2556576
https://doi.org/10.1145/3318464.3380596
https://doi.org/10.1109/ICDE.2018.00082
https://doi.org/10.1109/SP.2016.20
https://doi.org/10.1109/SP.2016.20
https://doi.org/10.1007/978-3-319-11203-9_23
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1145/3177872
https://doi.org/10.1145/1963405.1963491
https://transparentcalifornia.com
https://www.census.gov/programs-surveys/acs/microdata.html
https://doi.org/10.1109/FOCS.2011.98
https://doi.org/10.2478/popets-2019-0052
https://doi.org/10.2478/popets-2019-0052
https://github.com/emp-toolkit
https://doi.org/10.1109/TKDE.2010.247
https://doi.org/10.1109/ICDE.2016.7498254

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Outsourced Database System
	2.2 Differential Privacy and Sanitization
	2.3 Oblivious RAM

	3 Differentially private outsourced database systems
	3.1 Adversarial model
	3.2 Query types
	3.3 Measuring Efficiency

	4 Epsolute
	4.1 General construction
	4.2 Security
	4.3 Efficiency
	4.4 Extending to multiple attributes
	4.5 Epsolute for point queries
	4.6 Epsolute for range queries

	5 An efficient Parallel Epsolute
	5.1 No-gamma-method: DP structure per ORAM
	5.2 Gamma-method: shared DP structure
	5.3 Practical improvements

	6 Experimental Evaluation
	6.1 Data sets
	6.2 Default setting
	6.3 Experiment stages
	6.4 RDBMS, Linear Scan and Shrinkwrap
	6.5 Results and Observations

	7 Conclusion and Future Work
	Acknowledgments
	References

