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Submarine terraced deposits linked to 
periodic collapse of caldera-forming 
eruption columns

Johan T. Gilchrist    1  , A. Mark Jellinek1  , Emilie E. E. Hooft    2   & 
Sean Wanket    1 

Catastrophic, caldera-forming explosive eruptions generate hazardous 
ash fall, pyroclastic density currents and, in some cases, tsunamis, yet 
their dynamics are still poorly understood. Here we use scaled analogue 
experiments and spectral analysis of well-preserved concentric terracing of 
seafloor deposits built by submarine caldera-forming explosive eruptions 
to provide insights into the dynamics governing these eruptions and the 
resultant hazards. We show that powerful submarine eruption columns in 
collapsing regimes deliver material to the sea surface and seabed in periodic 
annular sedimentation waves. Depending on the period between successive 
waves, which becomes shorter with decreasing jet strength, their impact 
and spread at the sea surface and/or seabed can excite tsunamis, drive radial 
pyroclastic density currents and build concentric terraces with a wavelength 
that decreases with distance, or deposits that thin monotonically. Whereas 
the Sumisu (Izu–Bonin arc) caldera deposit architecture is explained by 
either a subaerial or deep-water model involving no interaction between 
sedimentation waves and the sea surface, those of the Macauley (Kermadec 
arc) and Santorini (Hellenic arc) calderas are consistent with a shallow-water 
model with extensive sedimentation wave–sea surface–seabed interactions. 
Our findings enable an explicit classification of submarine caldera-forming 
explosive eruption dynamics and quantitative estimates of eruption rates 
from their terraced deposits.

Clues to the puzzling dynamics that govern mass transport and associ-
ated hazards of catastrophic caldera-forming (CCF) eruption columns1–9 
are found on the terraced slopes that appear to be an inherent feature of 
shallow (<1 km depth) submarine deposits surrounding calderas along 
volcanic island arcs, including the recently constructed deposit of the 
15 January 2022 eruption of Hunga Tonga–Hunga Ha’apai10–15 (Fig. 1a,b 
and Supplementary Figs. 1 and 2). Historically enigmatic, visually arrest-
ing deposits extending over tens of kilometres constructed of ~1- to 
10-km-radius, ~10- to 100-m-high terraces have been linked to landslide 

events and resulting turbidity currents and to pyroclastic density cur-
rents (PDCs) flowing along the seafloor (submarine PDCs)13. Explana-
tions of terrace field planforms, terrace widths and profile shapes, as 
well as the evolution and variability of these properties with distance 
from eruptive sources, typically rely on extensive existing studies of 
the steady-state dynamics of turbidity currents and PDCs, as well as 
marine landslides (and combinations thereof)13,16,17. Although insightful 
at individual calderas, a challenging feature of the concentric terraced 
deposits is that they are so common10–15,18: why would the dynamics of 
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geometry of their deposits (Methods, Figs. 1e,f, 2e,f and 3a,b, Sup-
plementary Fig. 2, Supplementary Table 1 and Supplementary Videos 
1–4). In this article, we focus on the dynamics governing the delivery 
of dense mixtures of coarse pyroclastic material in SWs to the water 
surface (free surface) and seafloor, which forms the major volume of 
the erupted material15,20–22. Our experiments do not model the delivery 
of fine ash to the upper troposphere and stratosphere by buoyant 
plumes of interstitial gas that escape the collapsing part of the eruption 
column where it stalls at or near the maximum ‘fountain height’, ~Hftn 
(refs. 26,27). We also neglect complex effects of transient, spatially 
varying layers of floating pumice (pumice rafts) on SW-free-surface 
interactions28 (further discussion in Methods).

In ‘deep-water’ experiments, the water-layer depth hw ≫ Hftn (equa-
tion (5); Figs. 1e and 3a), whereas in shallow-water experiments hw ≤ Hftn 
(Figs. 1f and 3b and Supplementary Videos 1 and 2). Our previous work 
shows that in collapsing regimes in air or deep water, eruption columns 
collapse periodically as annular SWs to deliver material to an impact 
zone (Figs. 1e,g and 3a; fig. 20 in ref. 19). The excitation of SWs is driven 
by the periodic accumulation and release of dense material at Hftn, 
which excites oscillations of the fountain top at distinct fountain and 
environmental stratification frequencies29 (equations (6) and (7), 
respectively). Usefully, the fountain frequency predicts the timing 
between SWs and resulting PDCs, which govern the architecture of the 
terraced deposits (Methods and Fig. 3a; fig. 17 in ref. 19).

For shallow-water experiment #11, four distinct oscillation periods 
are identified in the subaerial fountain-top height time series (Fig. 3c,d 
and Supplementary Fig. 2) and agree with predicted 1/fftn, 1/Nwtr and 
1/Nair from source and environmental conditions, as well as 1/fswe  meas-
ured by tracking SW descent speed and radius. Overall, we find that 
shallow-water fountains input energy to the stratification at fwtrftn  and 
excite the higher frequencies Nwtr, Nair, fairftn and fswe . Energy is dissipated 
at frequencies above fswe  predominantly through molecular mixing 
across the air–water density interface30.

In the absence of a water layer or under deep-water conditions, SWs 
carry a momentum flux that increases in proportion to Hftn. Depending 
on Hftn and the extent to which entrainment and mixing reduce the den-
sity excess driving the descent of these mixtures, SWs can either impact 
the ground or seabed as jets that drive intense scouring and erosion 
or become largely dissipated descending clouds of dense particles. 
Deposition from such relatively quiescent particle clouds is mostly by 
individual particle settling19,31. By contrast, where strong impacts occur, 
SWs evolve into axisymmetric PDCs that deposit regularly spaced and 
axisymmetric terraces (Figs. 1c,e,g and 2e,f). Geometrically, terraces 
are confined within a characteristic impact zone with radius rim from 
the jet margin that is comparable to the jet diameter.

Under shallow-water conditions, SWs descending through air 
impact the free surface and excite water waves (analogue tsunamis) 
(Fig. 1f,h and Supplementary Videos 1 and 2). The momentum-driven 
spread of the mixture and its overshoot across the free surface as an 
erosive jet can scour the seabed, depending on the water-layer height 
hw. A useful metric to characterize SW interactions with the seabed is, 
thus, the dimensionless penetration depth

Dsw =
H
lsw

, (1)

where H = Hftn for subaerial or deep-water conditions or H = hw for 
shallow-water conditions and lsw is a characteristic scale for the over-
shoot depth of an SW (equation (9)), which can also be inferred obser-
vationally. If Dsw > 1, pyroclastic particle settling within the impact zone 
will form a nearly planar terrace. By contrast, if Dsw ≤ 1, descending SWs 
impact and spread at the seabed within the impact zone as erosive 
jets that deposit backward-facing terraces. In the special limit Dsw ≪ 1, 
intensive scouring produces a distinctive concave backward-facing 
terrace architecture (Fig. 4). In this case, Dsw predicts also a ‘scouring 

gravity currents such as landslides and PDCs be expressed so similarly 
at calderas with disparate structures, mechanical properties, slopes 
and slope stabilities and with distinct volcanic source geometries and 
eruptive histories?

Recent analogue experiments on subaerial eruptions suggest 
that concentric terracing (Fig. 1c,d) is an intrinsic feature of the parti-
cle–fluid (multiphase) interactions governing the rise and descent of 
material in eruption columns, and spread along the ground thereafter, 
evolving in ‘partial collapse’ or ‘total collapse’ regimes (‘collapsing 
regimes’ hereafter)19. Most well-documented large CCF events in the 
geological record, including CCF eruptions in shallow-water envi-
ronments, involve eruptive phases where half or more of the total 
erupted mass was delivered to PDCs15,20–22. In collapsing regimes that 
produce terraced deposits, as much as 90% of material ejected into 
the atmosphere is delivered back to the ground through the excita-
tion and descent of periodic, annular sedimentation waves19 (SWs; 
Fig. 1e). Critically, the minimum radius from the vent of terraces built 
by this mechanism is predicted to be similar to the erupting jet radius 
taken at its mean rise height, Hftn. While this expectation is potentially 
consistent with the terracing observed ~1 km adjacent to the caldera 
rim (in the ‘near field’) at Sumisu caldera (Fig. 1a), it is inconsistent 
with the relatively much larger radii of near-field terraces observed 
at Santorini (Fig. 1b) and Macauley calderas13 (Supplementary Fig. 1). 
A key difference to subaerial eruption columns in collapsing regimes, 
however, is that the dynamics of submarine CCF events are modified 
by interactions with water layers, which cause the mixture to spread as 
it penetrates and descends23,24. In this article, we use analogue experi-
ments on submarine eruptions through water layers of varying depth 
to show that terrace formation similarly occurs through the excitation 
of periodic SWs (Fig. 1c–h and Methods) and that this process is prob-
ably a generic feature of CCF events. We show that this process and its 
expression in the architectures of resulting deposits are highly sensitive 
to, and diagnostic of, both eruptive source and water depth conditions. 
We also show that the structural characteristics of terraces closest to 
the caldera rim record the effects of erosion and sedimentation related 
to the impact and spread of SWs at the seabed as PDCs, consistent with 
earlier studies13. Taken together, our results strengthen an emerging 
framework for classifying eruption column collapse deposits, quan-
titatively constraining eruption source parameters from qualitative 
observations of deposit architectures and understanding the timing 
and intensity of tsunami and PDC hazards related to CCF eruptions19,25.

Periodic sedimentation waves build terraces
CCF events at the Santorini, Sumisu, and Macauley (Supplementary 
Information) calderas13 each delivered mixtures of ash, gases and water 
vapour to the atmosphere through a shallow water layer. Each also 
produced deposits marked by sharply defined, approximately con-
centric and periodic terraces with low-slope, backward-facing profiles 
(Figs. 1a,b and 2a,b and Supplementary Fig. 1). Terraces at Santorini and 
Macauley decline monotonically in wavelength from order 1,000 to 
100 m over 10–16 km radial profiles. This pattern of wavelength decline 
is also evident in profiles from the northeastern terraces around Sum-
isu11 (Figs. 1a and 2b). However, significant differences in the deposit 
architectures occur. Whereas terraces are approximately planar ~1 km 
from the caldera rim in the near field at Sumisu, near-field terraces with 
concave backward profiles at Santorini and Macauley calderas occur 
~3−6 km from the caldera rim (Figs. 1a,b and 2a,b and Supplementary 
Fig. 1). Furthermore, there is a relatively wide and deep trough between 
the rim of Macauley caldera and the start of the near-field terraces that 
is not present at Santorini or Sumisu (Supplementary Fig. 1).

To investigate links among eruption column collapse dynamics, 
SWs and the construction of terraced deposits during CCF events in 
submarine settings, we conduct carefully scaled analogue experiments 
on turbulent particle–water fountains injected into water layers of 
varying depths and analyse the fountain-top height oscillations and 
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radius’ Rsc = rsc/r0, where rsc is the radius of the scoured region of the 
deposit and r0 is the vent radius (Fig. 1c). Of practical value (SWs and 
shallow water layers in collision), field measurements of the scouring 

radius can constrain the water depth and momentum flux carried by 
SWs. Furthermore, if the frequency at which SWs impact the free sur-
face is higher than the frequency at which spreading SWs descend to 
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Fig. 1 | Terraced deposits surrounding calderas and analogue experiments. 
a, Sumisu caldera (Izu–Bonin arc) bathymetry showing terracing of the shallow 
submarine pyroclastic deposit (30–60 thousand years ago)11. b, Bathymetry 
of the shallow submarine terraced pyroclastic deposit surrounding Santorini 
caldera (Greece, 3.6 thousand years ago10,14). Positive and negative latitude 
values correspond to North and South of the equator, respectively. Similarly, 
positive and negative longitude values correspond to East and West of the prime 
meridian, respectively. c, Left image shows terraced deposit built by deep-water 
experiment #10 (Supplementary Table 1) with marked scouring radius rsc and 

terrace wavelengths (λ). Right figure shows a vertically exaggerated digital 
elevation model of deposits, where radial particle ridges are marked by white 
line. d, Shallow-water experiment #6 deposit marked similarly as in c. e,f, Image 
pairs of a descending SW in deep-water experiment #32 (e) and shallow-water 
experiment #6 (f) where rsw is the SW radius, lsw is the SW jet entrance length into 
the water layer (equation (9)) and t is time. g,h, Conceptual model cartoons of a 
descending SW in a deep-water (g) and a shallow-water (h) experiment. Panel a 
reproduced with permission from ref. 11, Springer Nature Limited.
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the seabed, interactions between successive SWs spreading at the free 
surface can augment the delivery of erupted mass and momentum 
flux to growing deposits (Figs. 3b and 5 and Supplementary Video 1).

SWs and shallow water layers in collision
A number of key geometric properties of terraces observed around 
Sumisu, Santorini and Macauley calderas place restrictive constraints 
on the mechanics of their formation. In plan view, broad, regular con-
centric terraces with scalloped edges have a wavelength that declines 
with distance from caldera rims (Figs. 1a,b and 2a–e and Supplementary 
Figs. 1 and 3). In profile, terraces are sharply defined and backward 
facing with planar (Sumisu) or concave (Macauley and Santorini) 
(Fig. 2a,b and Supplementary Fig. 1) upper surfaces that are most 
apparent in the near field. Seismic reflection profiles at Macauley 
show (eruption-derived) ‘ponded volcaniclastic sediments’ within an 
~3-km-wide concave region13 (Supplementary Fig. 1). Furthermore, the 
occurrence of intermittent tsunamis is often associated with historic 
shallow-water caldera eruptions32–34, suggesting an intermittent tsu-
namigenic process during eruptions.

Our analogue terraced deposits are diagnostic of eruption inten-
sity in collapsing regimes and have planforms and radial profiles that 
are sensitive to the water-layer and SW penetration depths Dsw. Consist-
ent generally with deposits at Sumisu, Santorini and Macauley calderas, 
analogue deposits are constructed of regularly spaced, concentric and 
backward-facing terraces with broad, low-slope top surfaces, sharp 
crests and relatively short, high-slope downstream sides. Evident 
visually (Figs. 1c,d, 4 and 5) and spectrally (Fig. 2e,f), periodic terrace 

widths also decline with radial distance from the near to far field of 
experimental deposits. Akin to deep-water experiments under inter-
mediate or strong eruptive conditions, the backward-facing Sumisu 
deposit terraces are also characterized by azimuthal scalloping along 
terrace edges over scales smaller than terrace widths in the near field 
and comparable to the terrace widths in the far field. By contrast, 
concavity in near-field Santorini and particularly Macauley terraces 
signal both hw ≪ Hftn and Dsw < 1 conditions and require that these events 
be very strong eruptions (Figs. 1b, 2a and 5). Indeed, the ~2-km-wide 
concavity containing eruption-derived material at Macauley is consist-
ent with intense excavation within an impact zone under potentially 
extreme Dsw ≪ 1 conditions.

Quantitatively, water depth and eruption fountain strength are 
indicated from the deposit architecture through a Richardson number–
particle volume fraction (–Ri0 ↔ ϕ0) regime diagram derived from our 
experiments (Fig. 5 and equations (2) and (3) in Methods). In deep-water 
regimes, the number and maximum radii of terraces decrease as foun-
tains become weaker or more concentrated. In shallow-water cases, 
the water depth exerts the primary control over the extent to which 
SWs scour or deposit sediment in the near-field deposit (Fig. 4). Lateral 
scouring and concavity are intensified as Dsw → 0, whereas near-field 
terraces become increasingly planar as Dsw approaches and exceeds 
1. Deposit architecture can be combined with plausible estimates of 
eruption source parameters to constrain the fountain strength, particle 
volume fraction and mass eruption rate (MER) of CCF eruptions (Fig. 5 
and Methods). MER exerts a profound control over eruptive behaviour 
and is the greatest source of uncertainty in computational models of 
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Fig. 2 | Radial profiles and power spectra of terraced deposits. a,b, Radial 
deposit profiles showing backward-facing terraces with low-slope, planar 
upper surfaces around Santorini (a) and Sumisu (b) calderas. Relatively high 
slopes down gradient from sharp terrace crests are common characteristics of 
terrace morphometry. Profiles are colour coded to their locations in Fig. 1a,b. 
c,d, Normalized power spectra of deposit profiles from Santorini (c) and Sumisu 
(d) shown in Fig. 1 estimated with a standard Thompson multitaper algorithm. 

Spectral results of deposit profiles shown in Fig. 1a,b show a remarkable radial 
symmetry with power concentrated in the larger near-field terraces and a fall off 
with distance that is relatively smooth at Sumisu. e,f, Power spectra of deposit 
topography profiles shown in Fig. 1c,d for shallow-water experiment (e) and 
deep-water experiment (f) with near- and far-field terrace wavelength peaks 
marked.
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eruptions aimed at understanding PDC hazards as well as volcanic effects 
on climate24,35,36. To our knowledge this is the first attempt at a reconstruc-
tion of CCF eruption source parameters from deposit architectures.

Generic model for terrace formation by SWs
We combine experimental results related to the periodic delivery of 
material in SWs with established models of flow and sedimentation by 
PDCs and turbidity currents to construct a generic conceptual model 
for the formation and evolution of terraced deposits related to suc-
cessive SWs19,37–39 (Fig. 6). During a shallow-water eruption, an initial 
SW impacts the free surface and spreads, generating interfacial waves 
(analogue tsunamis) (Fig. 6a). If Dsw ≪ 1, the SW impacts and scours 
the seabed over a distance rsc (Fig. 4), deposits material to form a ter-
race (Fig. 1) and drives a ground-hugging gravity current (Fig. 6a–d). 
Subsequent SWs impact and further scour the first terrace before they 
spread and deposit material downstream (Fig. 6e). Successive flows are 
modulated by interactions with evolving deposit topography through 
the production and draining of standing waves formed at hydraulic 
jumps at the downstream edges of terraces (Fig. 6e). A similar overall 
evolution occurs in deep-water experiments where Dsw ≤ 1, albeit with 
less scouring of the deposit by successive SWs (deep-water experiments 
in Figs. 5 and 6g). It is important to note that this model applies only 
to deposition on relatively shallow and smooth slopes that are below 
the angle of repose of the particle size distribution carried by PDCs.

The primary effect of a shallow water layer on this terrace forma-
tion process is to cause SWs to stall and spread as they overshoot the 

free surface before their descent and impact with the seabed. This 
process introduces an important additional link between deposit 
architecture and the eruption dynamics through a ‘collapse frequency’ 
number ℱC (equation (10)). Key to the evolution summarized in Fig. 6 
is the time between successive SWs. If ℱC ≫ 1, SWs collapse in quick 
succession to combine or otherwise interact strongly before descend-
ing to the seabed or at the seabed, periodic terracing is inhibited and 
eruptions produce massive deposits, which is observed for the weakest 
events in our experimental results (Fig. 5). By contrast, as ℱC → 0, the 
period between column collapses is long enough that PDCs can flow 
out of the SW impact zone rim as discrete events to build terraces in the 
near-field deposit with distinct bedding. In this case, however, if Dsw → 0, 
deposit terraces adjacent to the caldera rim will be scoured  
(Figs. 4 and 5). Taken together, ℱC and Dsw provide explicit links among 
eruption source parameters, column dynamics, SWs, PDCs and deposit 
architecture.

Quantitatively, our results suggest that strong eruption columns 
in collapsing regimes will drive periodic rather than continuous PDCs 
to make terraced deposits where –Ri0 ≳ 10−4 and ℱC < 1 (Fig. 5). Such 
dynamics involving intense SW–water surface interactions will lead 
also to tsunamis32 and potentially to a greater likelihood for over-water 
and amphibious PDCs40. More generally, the inherent control of ℱC over 
deposit architecture is not restricted to submarine events. Akin to the 
deep-water experiments, low-strength CCF eruption columns on land 
will also have a greater proclivity to produce massive deposits, consist-
ent with previous studies25,41,42. Whether subaerial terraced deposits 
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shallow-water fountain-top height time series (dotted box in Supplementary  
Fig. 3) where the SW overturn τswe = 1/fswe , fountain collapse τftn = 1/fairftn and 
stratification oscillation periods, for the fountain rise through the water 1/Nwtr 
and air columns 1/Nair, are identified. d, Power spectrum of fountain-top height 
fluctuations where characteristic frequencies (f) are marked with separate 
colours within uncertainties. Inset graph shows power spectrum in log–log space 
with power law (red) indicating energy dissipation through irreversible mixing 
across density interfaces19,30.
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exist to test this link is currently unknown as terraces can be buried by 
pyroclastic material erupted later or after a CCF event (Supplementary 
Fig. 3). Building on our previous study19, here we constrain minimum 
–Ri0 − ϕ0 values where terracing is expected to occur for subaerial and 
submarine eruption columns in collapsing regimes. Future studies 
should investigate the maximum –Ri0 − ϕ0 eruption column parameter 
space where ℱC transitions from supplying discrete to continuous mass 
fluxes to spreading PDCs and whether this is expressed as a transition 
in near-field deposits from bedded and terraced architectures to mas-
sive architectures absent of terraces.

Our experimental results show that qualitative observations of ter-
raced deposit architectures related to CCF events are linked to underly-
ing eruption column dynamics and can quantitatively constrain source 
parameters of eruption columns in collapsing regimes. The potential 
to use these data to bound MERs, which are critical inputs for models 
and historically challenging to infer from observations36, provides 
exciting ways to study both submarine and subaerial eruption depos-
its. More broadly, understanding how the dynamics of PDCs driven 

by periodic SWs are potentially modified by evolving particle–fluid 
coupling regimes will also have implications for the flow of turbidity 
currents along the seafloor and rock and snow avalanches on land43.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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tributions and competing interests; and statements of data and code 
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Methods
Here we describe our experimental method and scaling parameters 
that characterize eruptive and experimental source parameters44. We 
then show how the periodic properties of deposit terrace profiles are 
analysed to identify near- and far-field terrace wavelengths.

To model submarine explosive eruptions, we inject turbulent 
mixtures of water and silica particles with a constant flow rate into 
water layers deeper or shallower than the jet-rise height (deep-water 
and shallow-water experiments, respectively; Figs. 1e,f and 3a,b). For 
deep-water experiments, flows are injected into a density-stratified salt-
water layer whereas for shallow-water experiments, they are injected into 
a constant-density water layer. We use ‘fine’ dp = 75 ± 25 μm and ‘coarse’ 
dp = 225 ± 25 μm diameter particles with densities of ρf = 2,525 kg m–3 
and ρc = 2,693 kg m–3, respectively, that simulate the inertial effects of 
fine and coarse ash on volcanic jet dynamics22,45. Applying experimental 
methodologies detailed in ref. 19, we characterize analogue eruption 
column behaviour quantitatively with a combination of high-resolution 
colour and greyscale images captured at 30 fps and 124 fps, respectively. 
Digital elevation models of analogue terraced deposits are produced 
after carefully draining experimental tanks with structure-from-motion 
photogrammetry carried out with Agisoft Metashape software.

The rise of both analogue and natural jets requires entrainment 
(and turbulent mixing). For entrainment to occur, work is extracted 
from the velocity field imparted at the mixture source to penetrate, 
overturn and engulf less-dense ambient fluid or atmosphere. The 
underlying balance between stabilizing buoyancy and driving inertial 
forces is captured by a source Richardson number19,46,47,

−Ri0 =
−g′0r0
u0

. (2)

Here, g′0 = g(ρa − ρ0)/ρa is the buoyancy of the jet mixture where ρa is 
the density of ambient water or atmosphere and ρ0 is the bulk density 
of the mixture, r0 is the jet radius and u0 is the jet vertical speed, all taken 
at the source of the jet where it enters the ambient fluid. Usefully, −Ri0 
can be defined for multiphase jets at their source in a water layer, in an 
air layer or at the water–air interface where submarine jets rise through 
a shallow water layer to enter an air layer. In general, where –Ri0 > 10−4, 
jets rise in collapsing regimes to a maximum height Hftn from which jet 
mixtures collapse periodically through the excitation of SWs19,29,48.

Our deep-water and shallow-water analogues address the key 
control of eruptive source conditions expressed through –Ri0. In 
deep-water/subaerial regimes, without considering additional thermal 
buoyancy fluxes arising through the heating of entrained atmosphere49 
and water-vapour condensation50, our predicted Hftn in terms of the 
source conditions alone is a lower bound. However, the magnitude 
of our underestimate is unclear. The extent to which condensation 
enters quantitatively is equivocal51. Furthermore, whether these thermal 
effects supply a sufficiently large enough buoyancy flux to the mixture 
to cause an order of magnitude or more change in the mass flux parti-
tioned between spreading ash clouds and PDCs, or drive the rise of gas 
and fine ash out of the mixture, at or before jets rise to Hftn is also unclear.

For eruptions through shallow water layers with DSW ≤ 1, our experi-
ments are strictly analogous to sonic or subsonic (pressure-balanced) 
eruptions where turbulent instabilities cause entrainment and water 
ingestion to commence very close to the vent source24. Our experi-
ments consequently overestimate water entrainment and underesti-
mate natural fountain heights. Nevertheless, our reconstructed MERs 
for Dsw ≪ 1 in Fig. 5 are consistent with expectations on the basis of 
recent hydrovolcanic calculations by ref. 24, which conservatively 
limit water depths to be less than about 200 m for the inferred MER.

The particle volume fraction present in the jet mixture at the 
source is

ϕ0 =
Vp
Vtot

. (3)

where Vp is the volume of particles in the mixture and Vtot is the total 
volume of the mixture. The particle volume fraction is used to calcu-
late the bulk density of the mixture ρ0 = (1 − ϕ0)ρf + ϕ0ρs where ρf is the 
interstitial fluid density at the source and ρs is the particle density.

In addition to particle volume fraction, particle size (inertia) and, 
to a lesser extent, density determine the particle–fluid coupling regime 
that affects the gathering and sedimentation of particles from explo-
sive eruption columns, ash clouds and related PDCs19,22,52–54. Metrics for 
the particle–fluid coupling regime are the Stokes and sedimentation 
numbers:

St =
τp
τf

(4a)

Σ = τf
τs
. (4b)

Here, τp is particle response time to fluid accelerations, τf is the charac-
teristic fluid flow timescale and τs is the particle settling time. Where 
St ≈ 1 and Σ ≈ 1, particle inertial and buoyancy effects modify the 
entrainment and sedimentation properties of eruption columns.

CCF eruptions occur in collapsing regimes where the excitation of 
SWs at the top of the momentum-driven fountain region of the eruption 
column is governed by well-established mechanics of turbulent foun-
tains19,29. The rise height of a multiphase fountain can, consequently, be 
predicted on dimensional grounds with the spatially averaged source 
momentum and buoyancy fluxes:

Hftn = CM3/4
0 B−1/20 , (5)

where M0 = πr20u
2
0, B = πr20u0g

′
0 and C is determined with the source 

parameters19,55–57. Oscillations of the fountain about an average Hftn 
occur at a frequency:

fftn = CftnB0M−1
0 , (6)

where Cftn ≈ 0.5 (refs. 19,29). Both Hftn and fftn are defined at the source 
with subscript 0 and at the air–water interface with subscript i. Assum-
ing particles are not lost from the fountain mixture during rise through 
the water column47, the momentum and buoyancy fluxes of the fountain 
mixture entering the air layer can be estimated with measurements of 
the fountain radius and rise speed at the air–water interface.

The characteristic fountain frequency fftn is distinct from the buoy-
ancy frequency N, which indicates the response of the stabilizing air 
or water-column density stratification to inertial effects of the foun-
tain19,29. Where fftn > N, the frequencies of sediment waves descending 
along fountain margins will be determined by both fftn and N, whereas 
where fftn < N, the frequencies of these processes will be determined 
solely by the stratification, N (ref. 19).

For deep-water fountains, depending on jet-source condi-
tions (Fig. 5), the relatively low frequencies and high amplitudes of 
fountain-top height oscillations are governed by fftn and the frequency 
at which the ambient density stratification oscillates in response to the 
perturbation of the fountain,

N =
√
− g
ρa,0

dρa(z)
dz

, (7)

where ρa,0 is the ambient density at the source height and the density 
stratification dρa(z)/dz is assumed to be linear (Fig. 3a). We define Nwtr 
for water layers, Nair for air layers and N for combined water and air 
layers.

For shallow-water fountains breaching the water surface, there 
are three additional modes that can contribute fountain-height oscil-
lations: (1) fairftn defined for the subaerial part of the fountain; (2) the 
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restoring stratification frequency N of the combined water and air 
layers, defined with the density difference between the water layer and 
air over the maximum fountain rise height through both layers; and (3) 
Nair of the air layer defined using the density difference between the 
water layer and air over the subaerial fountain rise height (Fig. 3b). 
Low-frequency and high-amplitude fountain-height oscillations are 
governed by Nwtr and Nair whereas fairftn governs relatively 
higher-frequency and lower-amplitude oscillations. Fountain-top 
oscillations are an expression of the build-up and collapse of periodic 
SWs around the upflowing fountain core (Fig. 3a,b). An additional mode 
is corner frequency related to inertial effects of the breaking waves and 
overturning motions characterizing stirring as well as entrainment and 
mixing across density interfaces as SWs descend:

fswe = usw
rsw

. (8)

where rsw and uSW are the SW radius and speed as they descend next to 
the fountain. Usefully, we predict SWs to excite a distinctive and easily 
recognized fountain-top oscillation corresponding to this frequency 
(ref. 19).

Fountain mixtures collapsing periodically from Hftn as SWs enter 
the water layer as momentum-driven jets with a characteristic jet 
entrance length scale46

lsw = QswM−1/2
sw , (9)

where Qsw and Msw are the volume and momentum fluxes of sediment 
waves calculated with their measured rsw and uSW as they enter the water 
layer. This jet entrance length scale will govern, in part, whether SWs 
are erosive or depositional on impact with the ground.

The timing between SW impacts at the sea surface or seabed com-
pared with the time for a SW to transform into a PDC and flow out of 
the SW impact zone will determine whether the spreading PDCs are 
fed intermittently or continuously. The ratio of an advective timescale 
for PDCs spreading out of the SW impact zone is τPDC = rim/vPDC whereas 
the period between successive SWs is τftn = 1/fftn. The ratio of these two 
timescales forms the ‘collapse frequency’ number

ℱC =
τPDC
τftn

. (10)

In the special limit ℱC ≫ 1, successive SWs coalesce such that periodic 
collapses typical of eruptions in collapsing regimes feed an approxi-
mately continuous mass flux to PDCs, resulting in massive or bedded 
deposits with negligible terracing. By contrast, as ℱC → 0, periodic 
column collapses drive increasingly discrete PDC events.

The MER of erupted material exiting the volcanic vent is a key 
source parameter used to compare eruption size and intensity and to 
initiate models of eruptions25,36,58,

MER = ρ0u0A0, (11)

where A0 = π[(r0)
2 − (r0 − Δr)

2] is the area of a ring vent geometry, with Δr 
the vent width, and is associated with caldera-forming eruptions22. Con-
straints on MER after an eruption are typically inferred from observations 
of eruption column height and estimates of total mass erupted divided 
by eruption duration58,59. Column height and MER estimated in this way, 
however, do not explicitly constrain unique values of –Ri0 and ϕ0 and, in 
turn, are not ideal for predicting whether eruption columns will collapse 
periodically or continuously. To link values of –Ri0 and ϕ0 associated with 
realistic natural MER values in Fig. 5, we use a mean caldera fissure vent 
radius r0 = 4,000 m and fissure width Δr = 50 m, mean particle density 
ρs = 1,500 kg m–3 and mean gas density ρg = 0.2 kg m–3 and vary the source 
velocity over 100 ≤ u0 ≤330 (refs. 21,35).

Data availability
Source parameter data for experiments conducted in this study are 
presented in Table 1. Data for Figs. 2, 3 and 4 are available at https://
doi.org/10.6084/m9.figshare.c.6432137.v1. Santorini bathymetry 
data are available at https://doi.org/10.7284/119607 and https://doi.
org/10.7284/906516.

Code availability
Code used for spectral analysis of fountain-top height oscillations and 
deposit profiles are available upon email request: jgilchri@eoas.ubc.ca.
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