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(b) model-predicted cumulative neck muscle contraction and discomfort levels over time

Figure 1: Predicting the neckmuscle contraction and discomfort levels of VR users. (a) A VR user chooses between two candidate
head motion trajectories of seemingly similar muscular workload for a visual task. (b) Our computational model predicts the
user’s potential neck muscle contraction level and thus perceived neck muscle discomfort before the movements happen. 3D
asset credits to Mixall, Bizulka, RootMotion at Unity, and shockwavegamez01, joseVG at Sketchfab.

ABSTRACT
Ergonomic efficiency is essential to the mass and prolonged adop-
tion of VR/AR experiences. While VR/AR head-mounted displays
unlock users’ natural wide-range head movements during viewing,
their neck muscle comfort is inevitably compromised by the added
hardware weight. Unfortunately, little quantitative knowledge for
understanding and addressing such an issue is available so far.

Leveraging electromyography devices, we measure, model, and
predict VR users’ neck muscle contraction levels (MCL) while they
move their heads to interact with the virtual environment. Specifi-
cally, by learning from collected physiological data, we develop
a bio-physically inspired computational model to predict neck
MCL under diverse head kinematic states. Beyond quantifying the
cumulative MCL of completed head movements, our model can also
predict potential MCL requirements with target head poses only.
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1 INTRODUCTION
VR/AR devices unlock natural viewing experiences via their
uniquely wide-field displays. With head tracking, users can move
their heads to shift attention and interact with peripheral content
[Bahill et al. 1975; Monteiro et al. 2021]. However, their current
head-mounted form factors incur non-trivial “in vitro” weight and
shift the head’s natural center of mass [Chen et al. 2021]. The
resulting changes in neck muscle state and workload have been
evidenced to cause discomfort and injuries [Chihara and Seo 2018;
Forde et al. 2011;Marklin Jr et al. 2022; Penumudi et al. 2020; Souchet
et al. 2022]. Despite emerging evidence and concerns over such
ergonomic side effects, comprehensively assessing and optimizing
VR users’ muscular comfort is still in its infancy.

A major cause of ergonomic discomfort is muscle fatigue and
stress [Lowe 1996], especially from external weights, e.g., HMDs
[Chihara and Seo 2018; Knight and Baber 2004]. Unlike optically
trackable body movements, measuring muscular activities is re-
markably difficult. Besides indirect sensing such as calorimetry
[Holdy 2004], biometrics from electromyography (EMG) sensors
reveal muscular status via its detected electric potential generated
by muscle fibers. In fact, the EMG signals directly correlate to mus-
cle contraction [Komi and Viitasalo 1976]. Therefore, extensive
literature attempted to understand our muscular functionalities
during daily tasks, with face/gaze [Manssuer et al. 2016], arm/hand
[Zhang et al. 2022], and full-body [Brown et al. 2021].

Recent attention has arisen to measure the influence of emerging
usage of HMDs [Chen et al. 2021]. For instance, Chihara et al. [2018]
measured and associated the altered muscular contraction with er-
gonomic discomfort by studying various viewing and interaction
postures. However, surprisingly, we still have little quantitative
knowledge of the introduced ergonomic effects before deploying a
VR/AR application. Computationally forecasting muscle contrac-
tion is the foundation toward the ultimate aim - systematically
optimizing visual content for ergonomically enhanced VR/AR.

We present a biophysically-inspired model to predict VR users’
neck muscular contraction and thus potential ergonomic discom-
forts over time. The model is applicable to both after (given a head
trajectory) and before (given a target position) users’ head move-
ments. We first perform a physiological study in VR to obtain EMG-
sensed biometrics from characterized natural head movements. The
analysis reveals muscle contraction’s significant correlations with
head poses and motion patterns. Developed upon the data, our bio-
physical model first predicts the instantaneous muscle contraction
given a head pose and angular acceleration. Then, by approximat-
ing representative trajectories [Farshadmanesh et al. 2012], the
model further extends to forecast potential discomfort given only
the target location and before the head movement occurs.

Our objective measurements and user studies demonstrate the
model’s: 1) prediction accuracy and generalizability with both post-
hoc estimation and pre-hoc prediction, 2) capability in optimizing
visual target layouts to reduce user-perceived muscular discomfort.

We hope this research will motivate new ergonomic-centered
designs for VR/AR. As a first step, our model serves as a quantitative
metric for evaluating and optimizing immersive applications, e.g.,
button layout in AR assistive tools or target positions in VR gaming.

In summary, our main contributions include:

• an EMG-sensed biometrical dataset of VR users’ neck muscle
activity, characterizing wide ranges of head movements,

• a biophysically formulated and learned model that predicts
muscular contraction with head poses and movements,

• an extended metric that forecasts the viewing-induced mus-
cular efforts and discomfort level given the target position,

• demonstrations of the model’s effectiveness in enhancing
users’ muscle comfort via altering targets’ spatial layouts.

2 RELATEDWORK
2.1 Ergonomics in VR/AR Interaction
Ergonomic efficiency is essential to the mass adoption of VR/AR.
Despite extensive efforts on designing more lightweight HMDs,
their current form factors still considerably alter users’ behaviors.
Consequently, muscular discomfort [Chihara and Seo 2018; Forde
et al. 2011; Penumudi et al. 2020; Souchet et al. 2022], especially in
the neck and shoulders [Kim and Shin 2018; Marklin Jr et al. 2022],
may be induced. Prior research has studied the impacts of head-
supported mass on neck muscle activities under various application
scenarios to better design dedicated hardware devices [Le et al.
2021; Rubine-Gatina et al. 2022; Thuresson et al. 2005, 2003], such as
military helmets. Complementing advances in hardware designs, we
focus onmodeling and predictingmuscle activities under the VR/AR
settings, where visual stimuli are controllable and optimizable, to
guide the design of virtual content for better ergonomic comfort.
Our approach shares a similar mindset to [Li et al. 2020; Ruiz et al.
2018], i.e., task-dependent optimization of virtual content.

2.2 Muscle Contraction during Movements
Muscle contraction level is a core biometrical indicator for studying
ergonomics [Dugan and Frontera 2000]. Unlike motions, which
can be reliably tracked by cameras, quantifying muscle activities
is notably more challenging. Existing work mainly exploits EMG
to reveal muscle activities by detecting the electric signals propa-
gating in neurally-activated muscles [Criswell 2010; Merletti and
Parker 2004]. In particular, elevated EMG readings indicate stronger
muscle contraction and elevated discomfort over time [Chesler and
Durfee 1997; Cifrek et al. 2009; Dimitrova and Dimitrov 2003; Vig-
otsky et al. 2018]. Recently, researchers have explored machine
learning techniques to infer muscle activities from spinal cord sig-
nals [Gok and Sahin 2019; Guo et al. 2018] and simulated human
musculoskeletal animation data [Nakada et al. 2018].

2.3 Learning from Electromyography Signals
Learning EMG signals has emerged to understand human muscu-
lar behaviors with various applications [Ahsan et al. 2009; Atzori
and Müller 2015; Phinyomark and Scheme 2018], including human-
machine interfaces [Atzori et al. 2016; Karolus et al. 2022; Moon
et al. 2005; Xiong et al. 2021] and VR/AR [Hirota et al. 2018; Lou
et al. 2019; Pai et al. 2019; Tsuboi et al. 2017]. EMG data has also
been leveraged to enable various sensing tasks, such as body move-
ment [Baldacchino et al. 2018; Du et al. 2017; Jaramillo-Yánez et al.
2020; Javaid et al. 2021; Wei et al. 2019; Zhao et al. 2020], hand [Liu
et al. 2021] and head [Barniv et al. 2005; Sugiarto et al. 2021] track-
ing. The flexible and non-invasive design of the latest EMG creates
new possibilities for understanding our behaviors invisible to cam-
eras. For instance, estimating force [Bardizbanian et al. 2020; Becker
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(d) MCL during stationary viewing
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(e) ΔMCL during dynamic viewing (head movements)

Figure 2: Pilot study illustration and results. (a) illustrates the major muscles controlling head movements, with highlighted
EMG sensor attachment regions. (b) shows our experimental setup with EMG sensors annotated. (c) The top row shows an
example raw EMG sequence (light green curve and right Y-axis) and its corresponding normalized MCL (dark green curve and
left Y-axis). The bottom row shows the total MCL integrated across all 4 channels. (d) visualizes the user-aggregated MCL for
stationary viewing. (e) shows the movement-induced ΔMCL for dynamic viewing. Each ΔMCL, i.e., arrow, was computed by
subtracting the MCL during stationary viewing at an anchor head pose from the average MCL during head movement from that
anchor head pose (arrow tail) to a target head pose (arrow head). The arrow lengths were scaled to 13% for easier visualization.
3D asset credits to joseVG and danielmclogan at Sketchfab.

et al. 2018; Gailey et al. 2017; Martínez et al. 2020; Wu et al. 2021;
Zhang et al. 2022], prosthetic [Castellini and Van Der Smagt 2009;
Gulati et al. 2021] and gait [Nazmi et al. 2019; Papagiannis et al.
2019] control. We aim to achieve the inverse by predicting the
EMG-measurable muscle status from human head movements.

3 NECK MUSCLE CONTRACTION LEVEL
DURING HEAD MOVEMENTS IN VR

3.1 Neck Muscles Controlling Head Rotations
We aim to model and predict neck muscle contraction level (MCL).
Human neck is a highly flexible skeletal structure that allows the
head to change its pitch, yaw, and roll angles. As shown in Figure 2a,
the major neck muscles include sternocleidomastoid (SCM) and
splenius capitis (SC) [Vasavada et al. 1998]. In particular, SCM/SC
laterally rotate the head to the opposite/same side when acting
unilaterally and flex/extend the head when acting bilaterally.

3.2 Experiment Description
Participants and setup. We recruited 8 participants (ages 23 − 31,

3 female). 4 of them have prior experience with VR headsets before
the study. All participants reported normal neck muscle conditions.

For each participant, we attached 4 Delsys Trigno wireless EMG
sensors on the left/right SCM and SC muscles (see Figures 2a and
2b). We originally tested with 6 EMG sensors by also including the
upper trapezius (UT) muscles. However, EMG sensors on the UT
exhibited significantly weaker signals compared to the others and
were thus excluded from the experiments. The EMG sensors detect
the electric potential (in millivolts, mV) generated by users’ muscle
fibers at 2000 Hz and stream the data to a PC with < 1ms latency.
During the study, every participant wore an Oculus Quest 2 head-
mounted display (HMD), remained seated, and performed a target
reaching task with visual stimuli. Their head poses were tracked by
the HMD and streamed to the same PC for time synchronization
with EMG. The HMD provides 1872 × 1856 resolution per eye at 90
FPS, and 98◦/104◦ vertical/horizontal field of view (FoV).

Stimuli and tasks. As illustrated in Figure 2b, the stimuli were
sequentially displayed pairs of spheres (3◦ in the FoV), one colored
yellow and the other red. The yellow sphere indicates an “anchor”
head pose r ≜ (𝑝,𝑦), where 𝑝/𝑦 represent pitch and yaw angles.
The red sphere indicates a “target” head pose that is ∆r ≜ (Δ𝑝,Δ𝑦)
away from r. While keeping their torso stationary, participants were
instructed to rotate their heads from the yellow anchor to the red
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target. Once the user successfully fixated on the target for 2 seconds
consecutively (simulating stationary viewing), both spheres were
shifted to continue with the next trial. A line connecting the two
spheres was rendered to guide the user’s head rotation to the next
target, designed to eliminate potential errors for target searching.
Please refer to our video for an example of the study process.

Conditions. Across participants, the stimuli pairs appeared ran-
domly with a pre-sampled anchor set R ≜ {(r𝑖 ,∆r𝑖 ), 𝑖 = 1, . . . 𝑁R }.
Given the comfortable range of human head rotations [Ruiz et al.
2018], we sampled stimulus directions within a 60◦ × 100◦ vi-
sual field. We tested and chose not to cover additional vertical
range to ensure participants’ neck comfort and avoid sprains. We
started with a preliminary test to determine the effective range
of r. Our test with 3 participants showed non-trivial EMG change
for |𝑦 | > 15◦ and |𝑝 | > 5◦. Therefore, using a 10◦ step size, we
sampled 63 anchor head poses for 𝑝 ∈ {±30◦,±20◦,±10◦, 0◦} and
𝑦 ∈ {±50◦,±40◦,±30◦,±20◦, 0◦}. Here, −/+ indicates left/right
or down/up from the head’s forward-facing direction. For each
of the 63 anchor poses r, 8 surrounding targets giving varying
movement patterns ∆r were studied. They were selected with
Δ𝑝 ∈ {±35◦, 0},Δ𝑦 ∈ {±25◦, 0}. We discarded the conditions with
target stimuli outside of the 60◦ × 100◦ range. That is, we ensured
r + ∆r ∈ [−30◦, +30◦] × [−50◦, +50◦].

Duration. We split the study into 7 sessions (about 5 minutes
each) with enforced breaks in between to avoid posture drifting.
Every sessionwasmonitored to ensure the subject remained station-
ary below the neck. The study, including hardware setup, pre-study
instructions, warm-up session (30 discarded trials), and breaks, took
about 2.5 hours per participant. In total, we collected about 5 hours
of time-synchronized motion-EMG paired data.

Data processing and analysis. We aim to model and optimize neck
muscle contraction driving head movements. However, raw EMG
signals cannot be directly used because they exhibit: 1) frequency-
dependent sensory noise; 2) oscillations between negative and posi-
tive values; 3) left-right asymmetry due to sensor positioning error
[Chihara and Seo 2018; Lehman and McGill 1999]; 4) cross-user
difference in scale for the same head movement. Therefore, similar
to prior literature [Reaz et al. 2006; Sommerich et al. 2000], we
performed a series of EMG signal processing, including detrending,
bandpass filtering, and rectification, as well as inter-channel bal-
ancing, normalization, and integration. Please refer to Supplement
A for details. At each time frame, our processing pipeline outputs
a single normalized muscle contraction value, integrated across
processed EMG signals from all 4 channels. Figure 2c illustrates the
EMG-to-MCL transformation with an example sequence.

3.3 Results
Stationary viewing (|∆r| = 0). Figure 2d shows the MCL when

the head remains static. The average normalized MCL was .32± .12.
The head pose demanding the least MCL (.17 ± .02) was r = (0, 0),
significantly lower than far-reaching poses. For instance, when
the target was located at r = (30◦, 50◦), the MCL was higher at
.68 ± .09. A repeated measures ANOVA showed that both 𝑝 and 𝑦
had a significant main effect on MCL (𝐹6,42 = 1.17, 𝑝 < .001 for 𝑝 ,
𝐹8,56 = 1.5, 𝑝 < .001 for 𝑦). A significant 𝑝 ×𝑦 interaction effect was

also observed (𝐹48,336 = 7.4, 𝑝 < .001). In particular, higher absolute
values of yaw elevate the corresponding averageMCL, from .21±.09
with 𝑦 = 0◦ to .47 ± .15 with |𝑦 | = 50◦. A Mann-Kendall (M.K.)
trend test showed a significant monotonic trend (𝜏 = 1.0, 𝑝 < .05).
On the other hand, the effect from pitch was asymmetric and non-
monotonic. The highest values of 𝑝 , 𝑝 = +30◦/−30◦ induces MCL
at .49 ± .16/.27 ± .09. An M.K. trend test did not show a significant
monotonic trend of pitch angle’s effect on MCL (𝜏 = −.6, 𝑝 = .07).

Dynamic viewing (|∆r| > 0). Figure 2e visualizes the ΔMCL
during head movements, which was computed by subtracting the
stationary MCL at an anchor from the average MCL during the
movement. Introducing movements (i.e., non-zero ∆r) significantly
elevated MCL up to 31.21% across all studied r. In addition to r,
movement pattern ∆r jointly influences the observed MCL. A re-
peated measures ANOVA showed that Δ𝑝 × Δ𝑦 has a significant
main effect on MCL (𝐹3,21 = 23.44, 𝑝 < .001). For each time frame,
we further extracted the angular acceleration in both directions
𝜶 ≜ (𝜶𝑝 ,𝜶 𝑦). Pearson correlation coefficients were computed to
assess the relationship; There were positive correlations between
MCL and |𝜶𝑝 | (𝑟 (12431) = .14, 𝑝 < .001), as well as MCL and |𝜶 𝑦 |
(𝑟 (12431) = .038, 𝑝 < .001). The elevation rate depends on indi-
vidual r. For example, the rate in yaw direction with movement
starting at r = (30◦, 50◦) was 88.9% higher than r = (0◦, 0◦).

3.4 Discussion
The analysis above leads us to several observations and motivations
for learning a computational model. First, despite individual par-
ticipants’ variances in muscular strengths and sizes, the measured
MCL shares consistent trends for each condition, both during static
viewing and dynamic movements. Second, the head pose (yaw 𝑦

and pitch 𝑝) significantly influences MCL. In particular, despite the
left-right symmetry with yaw, the pitch angle exhibits significantly
asymmetric and non-monotonic effects on MCL. Lower pitch an-
gles (i.e., heads facing downward) tend to reduce MCL. Third, in
dynamic scenarios, increasing acceleration significantly elevates
MCL. The elevation effect size depends on both the corresponding
starting head pose and movement direction.

4 METHOD: MODELING AND PREDICTING
NECK MUSCLE CONTRACTION LEVEL

The analysis of EMG-motion paired data from our pilot study moti-
vates us to establish a computational model correlating head move-
ments with neck muscle contraction level (MCL). Note that while
MCL can be measured using EMG sensors, they are 1) tedious and
costly to deploy; 2) insufficient to forecast MCL before a move-
ment happens. Therefore, we first propose a bio-physically inspired
MCL estimation model with open functions to characterize muscle-
driven head motions in Section 4.1. Using our collected data, we
then fit the open functions with machine learning models to:

(1) estimate the MCL associated with a completed head move-
ment, i.e., after a movement happens (Section 4.2);

(2) predict the MCL for a potential movement using target di-
rections only, i.e., before a movement happens (Section 4.3).
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Figure 3: MCLNet illustration and example MCL estimation
results. (a) illustrates the architectural design of MCLNet
for jointly learning 𝐼 , Tp (·), and E (·) from head motion and
MCL paired data; (b) shows themodel-predicted vs. hardware-
measured MCL for a sample sequence from the test set.

4.1 Bio-Physically Inspired MCL Model
Muscle-generated torque is proportional to MCL [Clancy et al.
2011; Paquin and Power 2018; Watanabe and Akima 2009]. Our
neck muscles actively generate the required amount of torque to
enable head rotation at varying speeds. Denoting this active torque
as Ta ∈ R2, we establish a mapping E (·) such that MCL = E (Ta).

From our pilot study (Figure 2d), maintaining the head stationary
at various poses requires significantly different levels of MCL, and
thus Ta. To maintain stationary viewing, however, there must be
another pose-dependent torque that counterbalances Ta. We term
this underlying torque as passive torque Tp ∈ R2. We hypothesize
that Tp is induced by factors such as gravity and muscle relaxation.
Notably, Tp exists during both stationary and dynamic viewing
conditions, but only depends on head poses, i.e., Tp ≜ Tp (r). By
contrast, we proactively generate Ta to perform stationary viewing
(compensating Tp) and change our head pose at wish for dynamic
viewing. Therefore, through the moment of inertia 𝐼 ∈ R, Ta corre-
lates both with the head pose r and angular acceleration 𝜶 :

Tp (r) + Ta (r,𝜶 ) = 𝐼 × 𝜶 . (1)

This further transforms the mapping E (·) between Ta and MCL:

MCL = (E ◦ Ta) (r,𝜶 ) = E
(
𝐼 × 𝜶 − Tp (r)

)
≜ H𝑚

(
E,Tp, 𝐼 , r,𝜶

)
↦→ R+,

(2)

where 𝐼 , Tp (·), and E (·) are the unknowns that map r/𝜶 to MCL.

4.2 Estimating MCL with Complete Trajectories
The data from our pilot study provide a large set of time-
synchronized head movement trajectories and MCL sequences:

r𝑡 ,𝜶 𝑡 ↦→ H𝑚

(
E,Tp, 𝐼 , r𝑡 ,𝜶 𝑡

)
. (3)

Using these paired sequential data, we formulate an MCL regres-
sion problem and optimize 1D CNN models with 𝐿2 loss to jointly
approximate the unknowns 𝐼 , Tp (·), and E (·). The complete model,
named MCLNet, is illustrated in Figure 3a.

Notably, a phenomenon called electro-mechanical delay exists
between EMG signals and muscular motions. Depending on in-
dividuals and muscle areas, the delay can incur a temporal offset
between the twomodalities up to 100ms [Cavanagh and Komi 1979].
To accommodate this temporal inconsistency for robust prediction,
our model takes in motion sequences with T=400ms window and
predicts MCL for the central 200ms interval, i.e., inputs cover addi-
tional 100ms outputs from the beginning and end. Given a sequence
of uniformly sampled head poses {r𝑡 }𝑇

𝑡=1, we first calculate the
corresponding angular accelerations {𝜶 𝑡 }𝑇

𝑡=1 through finite differ-
ence, then execute our model at each 𝑡 to obtain the overlapping
sequences of predicted MCL. Figure 3b visualizes the prediction-
measurement comparison for an example trajectory taken from the
test set. Visualized results for each subject are shown in Figure 8.

So far, a core requirement of MCLNet is the prior knowledge of
completed head movement trajectories. However, to benefit real-life
applications such as UX design and cinematography, we shall reduce
the potential discomfort before deploying to users. To this end, we
further extend our model to forecast MCL before a movement.

4.3 Predicting MCL with Target Head Poses
Given the starting and ending head poses {rs, re} of a uni-
directional head movement, the required MCL to travel between
them is determined by the actual movement trajectory. However, as
evidenced by our analysis in Section 3.4, {rs, re} alone carry signif-
icant influence on the overall MCL. Therefore, using our collected
data, we regress a representative motion trajectory for each pair of
{rs, re}, to approximate the temporal patterns of angular velocity
𝝎𝑡 :

𝝎𝑡 (rs, re) ∈ R2, s.t. rs +
∫ 𝑡𝑒

𝑡=𝑡𝑠

𝝎𝑡 (rs, re)d𝑡 = re . (4)

Motivated by prior literature studying the main sequence effect of
head movements [Zangemeister et al. 1981] and our observations
of a single main peak in each velocity profile (Figure 4), we perform
a unimodal Gaussian approximation for the angular velocity:

𝝎𝑖
𝑡 (rs, re) ≜ 𝐴𝑖 (rs, re)𝑒

− (𝑡−𝜇𝑖 (rs,re ))2
2(𝜎𝑖 (rs,re ) )2 , 𝑖 ∈ {𝑝,𝑦}. (5)

Using our collected data, we formulate a trajectory regression prob-
lem and optimize a Multi-Layer Perceptron (MLP) model, annotated
as TrajectoryNet, to predict {𝐴𝑖 , 𝜇𝑖 , 𝜎𝑖 }𝑖∈{𝑝,𝑦} given an arbitrary
pair of head poses {rs, re}. Using predicted angular velocity curves,
we can approximate the overall MCL:

H𝑐 (rs, re) =
∫ 𝑡𝑒

𝑡=𝑡𝑠

H𝑚

(
E,Tp, 𝐼 , rs +

∫ 𝑡

𝑡=𝑡𝑠

𝝎𝑡 (rs, re)d𝑡, ¤𝝎𝑡

)
d𝑡 .

(6)
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Figure 4 compares the velocity curves collected from our users with
TrajectoryNet’s predictions over an example pair of {rs, re} taken
from the test set. Full implementation details for both MCLNet and
TrajectoryNet can be found in Supplement B.

pitch 
-5 deg -> 20deg

yaw
-15 deg -> 20deg

Figure 4: Predicting head motion trajectories with
starting/ending head poses. Light/dark curves show
tracked/predicted angular velocities. Orange/green curves
show angular velocities in pitch/yaw directions.

5 EVALUATION
We present a series of objective measurements on our model’s
performance in predicting neck MCL, and a subjective psychophys-
ical study to demonstrate how the prediction reflects neck muscle
discomfort. We first evaluate MCLNet’s estimation accuracy with
complete head motion trajectories in Section 5.1, then extend to pre-
dict MCL before head movements by incorporating TrajectoryNet
in Section 5.2. Through a user study, we demonstrate our method’s
potential in forecasting and reducing users’ neck workload for a
more comfortable VR experience in Section 5.3.

5.1 MCL Estimation: After Head Movements
Experimental setup. We leveraged our data from the conditions

detailed in Section 3.2 to train our model. Additionally, during the
pilot study, we also collected two groups of conditions to establish
an evaluation dataset with unseen conditions. It contains 4 pitch
and 4 yaw angles, 𝑝 ∈ {±25◦,±5◦}, 𝑦 ∈ {±45◦,±15◦}, resulting in a
total of 16 anchor head poses. The same 8 surrounding targets with
travel angle Δ𝑝 ∈ {±35◦, 0◦},Δ𝑦 ∈ {±25◦, 0◦} were introduced to
each of them. Note that the evaluation conditions were designed
to contain no overlap with the training set. Due to the extra long
collection process and thus scheduling conflicts, 6 (3 female) of
the 8 participants completed the evaluation condition session. We
adopted their data for this experiment. Two quantitative metrics
were considered: Normalized Root-Mean-Square Error (NRMSE)
and Normalized Mean Absolute Error (NMAE). The metrics are
applied to measure the error ratio between the model-predicted and
hardware-measured (by the same method detailed in Supplement
A) MCL; a lower error ratio indicates better model performance.

Results and discussion. MCLNet achieves an overall performance
of 12.39 ± 4.74% NRMSE and 9.54 ± 4.14% NMAE across all 6 sub-
jects and 16 anchor head poses. Figure 6 summarizes its subject-
wise performance. Beyond the average accuracy, we further mea-
sure the correlation. That is, whether the model can predict the

elevation/reduction of MCL consistently with the hardware mea-
surement. We leveraged Pearson’s and Spearman’s coefficients be-
tween the two conditions. The results indicate a significant cor-
relation between model predictions and hardware measurements
(𝑟 (70066) = .62, 𝑝 < .001 and 𝑟 (70066) = .60, 𝑝 < .001). The ana-
lyzes above validate our method’s effectiveness in estimating neck
MCL when head motion trajectories were known beforehand.

5.2 MCL Prediction: Before Head Movements
Experimental setup. For this experiment, we first used the head

motion data from Section 5.1 to optimize and validate TrajectoryNet
(Section 4.3), then combined it with MCLNet to predict MCL using
target head poses only. Since our dataset consists of sequences of
stationary head pose followed by pose-changing movements, we
extracted the dynamic part to construct a dataset of starting/ending
head poses {rs, re} paired with HMD-tracked trajectories. The train-
test data split from Section 5.1 was used for evaluation.

Results and discussion. The performance of our MCL predic-
tion framework, composed of trajectory regression and MCL es-
timation, is shown in Figure 7. TrajectoryNet achieves an overall
NRMSE/NMAE of 3.54 ± 1.11%/2.16 ± 0.65% in pitch velocity and
3.45 ± 0.98%/2.01 ± 0.51% in yaw. The overall MCL prediction per-
formance is 16.76 ± 6.05% NRMSE and 14.71 ± 5.96% NMAE. Pear-
son’s and Spearman’s coefficients between the two conditions are
𝑟 (70066) = .59, 𝑝 < .001 and 𝑟 (70066) = .57, 𝑝 < .001, indicating
a significant correlation. The results above demonstrate that our
method can reliably predict the potential MCL with only the target
head poses, before the actual movement occurs.

5.3 Predicting and Reducing Neck Discomfort
Participants and setup. We recruited 13 participants (ages 20−35,

6 female). None of them were aware of the hypothesis, the research,
or the number of conditions. One participant came in with a prior
condition of neck injury andwas excluded duringwarm-up sessions.
There was no overlap between these participants and those from
the pilot study in Section 3. We conducted the study using an
Oculus Quest 2 HMD (without EMG). During the study, participants
observed stimuli through the HMD and were instructed to remain
seated while keeping their torso stationary. The study took around
60 minutes for each participant, including breaks between sessions.

Stimuli. As shown in Figure 5a, we developed and experimented
with a 3D balloon-popping gamewith target acquisition. The stimuli
were displayed as a sequence of red balloon targets rendered in
an amusement park scene. As an indicator, the target color was
changed to magenta upon a participant’s fixation. A line pointing
toward the next target was displayed to guide the user.

Tasks. The task was designed as two-alternative forced choice
to avoid bias from scaled rating, similar to prior works measuring
muscular discomfort [Farid et al. 2018; Pinto et al. 2021]. During
each session, the balloon targets were displayed, one at a time,
following a pre-defined scan path with 31 targets in different di-
rections S = {r𝑡 , 𝑡 = 0, . . . , 30, r𝑖 ∈ R}, similar to the definition
in Section 3.2. Participants were instructed to rotate their heads
to fixate on the balloon until it disappeared. To trigger both dy-
namic and stationary head status, a 1-second fixation on each target
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Figure 5: Stimuli and results of our neck discomfort user study. (a) shows the stimuli. (b) visualizes the visual targets’ angular
distributions of 3 example conditions. Color gradients indicate the temporal order of appearance. All 3 conditions share the
same total head rotations with full visual field coverage. (c) summarizes the voting distribution of the 3 comparisons on which
condition being more uncomfortable. Individual votes per condition are detailed in Table 1. 3D asset credits to Mixall at Unity.

was enforced before the next one appeared at r𝑡+1. Each session
contained a pair of two sequentially tested S that were generated
from 2 out of 3 different conditions, as detailed in the conditions
paragraph. After each session, the participants were instructed to
use the keyboard to indicate “which one of the two scan paths was
more uncomfortable, tiring, or difficult for your neck?”.

Conditions. Guided by our model, we designed 3 conditions of
progressively generated scan paths. They were created to ensure
an identical total head rotations and similar spatial coverage but
varied cumulative MCL. To ensure fair movements across condi-
tions, we randomly pre-partitioned a fixed amount of total head
rotations 900◦ into 30 steps. Then, at each step 𝑡 , the next target
pose r𝑡+1 was chosen from a set of candidate poses by maximizing
the corresponding score function of the selected condition:

MAX: C(r𝑖∈[1,𝑡+1] ) + H𝑐 (r𝑡 , r𝑡+1)
RND: C(r𝑖∈[1,𝑡+1] )
MIN: C(r𝑖∈[1,𝑡+1] ) − H𝑐 (r𝑡 , r𝑡+1)

Here, C is a term to ensure full visual field coverage for condition-
wise fairness. On average, the ratio between the cumulative MCL
of the three conditions MAX/RND/MIN was 3.48 vs. 1.95 vs. 1.00.
Please refer to Supplement D for details on our condition genera-
tion algorithm and Figure 5b for an example of each condition. The
three conditions generate 3 different pairs for 2AFC comparisons,
namely C1: MAX vs. MIN; C2: RND vs. MAX; C3: MIN vs. RND.
We repeated the random pre-partition of total head rotations and
condition generation process to get 6 sets of MAX/RND/MIN con-
ditions for a total of 18 sessions. The appearance order of the 18
sessions was randomized and counter-balanced across participants,
same for the 2 conditions within each session, to avoid bias.

Results. Table 1 in Supplement E and Figure 5c show individual
votes and the summary for each comparison, respectively. By aggre-
gating all sessions,MAX/RND/MIN were 86.1%/50.7%/13.1% voted
as being more uncomfortable in the related comparisons. Among all
comparisons, The difference was significantly higher than a random
guess (50%). By analyzing individual votes, a repeated measures

ANOVA indicated that the condition had a statistically significant ef-
fect on the votes (𝐹2,22 = 89.46, 𝑝 < .001). Post-hoc pairwise 𝑡-tests
with Holm adjustments showed that the difference was significant
among all 3 comparisons (𝑝 < .001 for all conditions).

Discussion. The analysis above shows the significant difference
in participants’ subjectively perceived discomfort levels among the
three conditions. The participant-rated discomfort levels, MAX >

RND > MIN, also matched our model’s prediction (H𝑐 ). Note that
the significant difference was not induced by head rotation angles
which were ensured to be identical via our progressive trajectory
generation. These results demonstrated our model’s capability of
predicting a user’s neck discomfort with target head poses only,
i.e., before the head movement takes place.

6 LIMITATIONS AND FUTUREWORK
This work considered the influence of yaw and pitch angles on
MCL, but not the roll dimension due to the challenges of precisely
manipulating it with visual stimuli and natural head movements.
However, it may also contribute to MCL [Keshner et al. 1989]. In-
troducing alternative tasks, such as full body movement [Imai et al.
2001], may enable controlling roll angles. We plan to investigate
the options concerning their effects on noise and movement nat-
uralness. Similar extensions include other muscle groups, such as
shoulders during interaction [Chihara and Seo 2018].

In Section 4.3, we estimate the motion trajectory speed as a
Gaussian representation given a starting and ending head pose.
Despite the representativeness [Hage et al. 2019], the approximation
may not fully contain the individuals’ behavioral variances. We
envision probabilistic modeling and learning [Ghahramani 2015]
may further reveal the statistical variances across users.

7 CONCLUSION
Using EMG sensors, we present biometrically-measured data that
reveals VR users’ neck muscular contraction levels and thus poten-
tial discomfort. By leveraging the data, we learn a computational
model that quantitatively predicts the MCL, both after and before
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a head movement occurs. We hope the research to motivate new
ergonomic and health-aware designs for VR/AR and interactive
computer graphics, toward answering essential questions such as
“will VR/AR devices induce additional ergonomic burdens on users if
they replace smartphones and monitors for everyday usage?”, “how
do we theoretically design more comfortable immersive displays
and interfaces before they are deployed?”. To this end, our model
may be applied to ergonomic-aware VR/AR interface optimization,
immersive video editing, and beyond.
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Figure 6: Performance of MCLNet for neck MCL estimation when complete head motion trajectories are known.

(a) performance of TrajectoryNet for angular velocity prediction (pitch) with target head poses only

(b) performance of TrajectoryNet for angular velocity prediction (yaw) with target head poses only

(c) performance of MCLNet coupled with TrajectoryNet for neck MCL prediction with target head poses only

Figure 7: Performance of our neck MCL prediction method (MCLNet +TrajectoryNet) with target head poses only.Our method
can reliably predict the potential neck MCL of a head movement before it takes place.
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(a) Subject 1
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(b) Subject 2
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(c) Subject 3
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(d) Subject 4
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(e) Subject 5
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(f) Subject 6

Figure 8: Qualitative MCL prediction results.Model-predicted vs. hardware-measured neck MCL for each of the 6 subjects who
contributed evaluation data. Each sequence shown is randomly sampled from that particular subject’s evaluation data.
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